Back to Applied Geometry homepage Blue Noise through Optimal Transport
Fernando de Goes
Katherine Breeden
Victor Ostromoukhov
Mathieu Desbrun
Caltech Stanford Lyon 1 U./CNRS-LIRIS Caltech

ACM Transactions on Graphics 31(6) (SIGGRAPH Asia 2012)

Here you can find 10 point sets generated for a constant density function in a periodic domain, and various illustrations based on spatial and spectral analyses to evaluate our results. We also provide the initial point sets used as input to our algorithm. Click on the images to see enlarged versions

Visualization through gaps
(a)
Viualization through valence
(b)
Radial spectrum
Anisotropy
(c)
Reconstruction for zonepate
(d)
Fourier transform of point set distribution
(e)
(a) Visualization of gaps between white discs centered on sampling points.
(b) Coloring based on the number of neighbors for the Voronoi region for each site.
(c) Radial power spectra and anisotropy in dB (averaged over 10 point sets).
(d) Zoneplate for the function sin(x² + y²).
(e) Mean periodogram averaged for 10 point sets.

Input 1 [EPS, DAT] Result 1 [EPS, DAT] Input 2 [EPS, DAT] Result 2 [EPS, DAT]
Input 3 [EPS, DAT] Result 3 [EPS, DAT] Input 4 [EPS, DAT] Result 4 [EPS, DAT]
Input 5 [EPS, DAT] Result 6 [EPS, DAT] Input 6 [ EPS, DAT] Result 6 [EPS, DAT]
Input 7 [EPS, DAT] Result 7 [EPS, DAT] Input 8 [EPS, DAT] Result 8 [EPS, DAT]
Input 9 [EPS, DAT] Result 9 [EPS, DAT] Input 10 [EPS, DAT] Result 10 [EPS, DAT]