
EUROGRAPHICS 2001 / A. Chalmers and T.-M. Rhyne
(Guest Editors)

Volume 20 (2001), Number 3

Valence-Driven Connectivity Encoding for 3D Meshes
Pierre Alliez Mathieu Desbrun

USC

{alliez|desbrun}@usc.edu

Abstract

In this paper, we propose a valence-driven, single-resolution encoding technique for lossless compression of trian-
gle mesh connectivity. Building upon a valence-based approach pioneered by Touma and Gotsman 22, we design
a new valence-driven conquest for arbitrary meshes that always guarantees smaller compression rates than the
original method. Furthermore, we provide a novel theoretical entropy study of our technique, hinting the optimal-
ity of the valence-driven approach. Finally, we demonstrate the practical efficiency of this approach (in agreement
with the theoretical prediction) on a series of test meshes, resulting in the lowest compression ratios published so
far, for both irregular and regular meshes, small or large.

1. Introduction

Efficient compression of triangle meshes is a timely research
subject, as demonstrated by the fast-growing demand for fast
transmission of 3D contents over the Internet 21. Over the
last five years, we have witnessed a rapid decrease in bit
rates with the design of smart compression schemes. Yet,
and contrary to the previous information media such as au-
dio, images, or video, little is known about the theoretical
entropy of 3D meshes.

Lossless connectivity encoding has been the focus of
numerous research work 4; 20; 15; 22; 10, including proven bit
rate upper bounds 15; 13; 16; 7; 18, and guaranteed asymptotic
behavior 22; 18. Although bit rate is the most theoretically
challenging part of a connectivity encoder, authors have
also added essential features from a telecommunication
standpoint, such as progressivity 8; 19; 14; 3; 25; 5; 12; 1, error re-
silience 2 and computational cost 6; 16; 11 among several oth-
ers.

While the importance of such features cannot be ignored,
single-rate encoding (i.e., simple encoding of a mesh) re-
mains challenging for two basic reasons. First, even progres-
sive algorithms require the encoding of a coarse base mesh
at the very beginning of the bitstream, the most critical part
of a transmission. Second, the upper bound deduced from
the census of planar triangulations from Tutte 23 has not yet
been reached, and the theoretical study of the entropy of 3D
meshes is still an open question. Guaranteeing upper bounds
for single-rate encoding of connectivity is a very important
research topic, since it is definitely interesting to be able to
predict the duration required for transmission of 3D models,
or the memory space required for storage. However, the ac-
tual compression rate of an encoder is even more important
in practice.

In this paper, we propose a single-rate compression tech-
nique to encode connectivity that, compared to the results
published so far, offers the best compression ratios on ar-
bitrary meshes. We also prove that our valence-driven tech-
nique is pertinent since a pure valence encoding is optimal
in terms of entropy.

1.1. Previous work

The EdgeBreaker technique 15 is currently the best encoding
technique proposing both a rigorous theoretical analysis and
an outstanding worst-case bound of the connectivity com-
pression bit rate. The original method used at most 4 bit per
vertex (denoted 4 b/v for simplicity), and has been followed
by numerous improvements on its upper bounds 13; 16; 7, its
asymptotic behavior 18 and its efficiency 16; 11. In 18, Szym-
czak et al. describe a coding improvement that also detects
and benefits from mesh regularity.

Besides EdgeBreaker and its derived methods, two pow-
erful techniques turn the connectivity of a triangle mesh into
a sequence of valence codes 22; 10 in order to automatically
benefit from the low statistical dispersion around the average
6 when using entropy encoding. This is achieved through a
deterministic conquest 22 or by a sequence of half edge col-
lapses 10.

In 22, Touma and Gotsman pioneered the conquest ap-
proach and compress the connectivity down to less then
0.2 b/v for very regular meshes, and between 2 and 3.5
b/v otherwise, in practice. The so-called conquest consists
in conquering the edges of successive pivot vertices in an
orientation-consistent manner and generating valence codes
for traversed vertices. Three additional codes: dummy, merge
and split are required in order to encode boundaries, handles
and conquest incidents respectively. The dummy code occurs

c The Eurographics Association and Blackwell Publishers 2001. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.



Alliez and Desbrun / Valence-Driven Connectivity Encoding for 3D Meshes

each time a boundary is encountered during the conquest;
the number of merge codes is equal to the genus of the mesh
being encoded. The split code frequency is mainly linked to
the mesh irregularity. Intuitively, if one looks at the encoding
process as a conquest along a spiraling vertex tree, the split
codes thus indicate the presence of its branching nodes.

The Mesh Collapse Compression scheme from Isenburg
and Snoeyink 10 performs a sequence of edge contractions
until a single vertex remains in order to obtain bit rates of 1
to 4 b/v. For each possible edge to contract, the authors cut
and open the mesh along the edge, which creates a digon - an
outer face bounded by only two edges. Resulting digons are
simple, complex or trivial according to the local edge con-
figuration. For simple digons, an edge-contraction is applied
and one valence code is output. For complex digons, a start
symbol is output. For trivial digons, an end symbol is output
in order to record a reversible operation.

1.2. Overview

In spite of the absence of linear worst-case bit-rate complex-
ity, the two latter methods turn out to be very appealing since
entropy coding of a valence sequence automatically bene-
fits from the mesh regularity and produces very competitive
compression ratios. In this paper, we demonstrate that, even
if the technique from Touma and Gotsman 22 turns out to be
almost optimal in the regular case (this has not been really
challenged since 1998), some important degrees of freedom
in the encoding algorithm remain. In particular, we achieve
a reduction of the rate of 15% on average for coarse irreg-
ular meshes, which is extremely beneficial for encoding a
base mesh in a progressive transmission 12. Also, we propose
for the first time an analysis of the maximum entropy that
a valence-encoding method can achieve asymptotically, and
we demonstrate a surprising upper bound that exactly equals
Tutte’s census 23, hinting the optimality of our method.

In the remainder of this paper, we first give some com-
mon definitions in section 2, before describing the encoding
method we built upon in section 3, and then describe our
valence-driven encoding strategy for connectivity compres-
sion in section 4. Comparative results on numerous meshes
are given in section 5, while section 6 gives some concluding
remarks and future work.

2. Definitions

In this paper, we consider 2-manifold meshes, where the lo-
cal surface around each vertex is homeomorphic to a disk.
We assume a consistent orientation of the faces, but no re-
striction on the genus and boundaries which can both be ar-
bitrary. The encoding process we consider generates an or-
dered set of valences from the mesh vertices and a few ad-
ditional accident codes while conquering edges according to
a counter-clockwise orientation around successive pivot ver-
tices. For the sake of clarity, we first define items and notions
that both the original algorithm 22 and ours make heavy use:

� conquest edge list: a set of adjacent edges forming a
closed path on the mesh. As we will see, the conquest only
acts on the vertices of the active edge list, locally separat-
ing the surface in an inner conquered region and an outer
free region;

� pivot vertex: a vertex chosen for conquering its adja-
cent edges in a counter-clockwise fashion. It is sometimes
called a focus vertex;

� full vertex: a vertex with every edge already conquered;
� dummy vertex: a vertex temporary added to the mesh in

order to virtually remove one hole or one boundary;
� ghost vertex: a unique ubiquitous vertex added in order to

virtually remove all holes and boundaries. A ghost vertex
is not manifold, thus it cannot be chosen to be a pivot;

� state flags: free or conquered are assigned to faces, ver-
tices and edges according to whether they have been con-
quered or not.

3. Original connectivity encoding method 22

This section provides a quick summary of the connectivity
encoding technique 22: we refer the reader to the original pa-
per for a lenghtier presentation. The encoding process starts
with a triangulated mesh, and generates a closed topology
by adding and connecting one common dummy vertex to
each boundary vertex. An arbitrary seed face fseed is cho-
sen, its vertices are added to an active (conquest) edge list
and their three corresponding valences are output to the code
sequence, which will eventually be compressed using con-
ventional entropy encoders. The face fseed , its vertices and
its edges are flagged conquered. The first vertex of fseed is
chosen as the pivot vertex. The conquest can now begin.

3.1. Conquest of a next free edge

The current pivot vertex vpivot tries to conquer its next free
edge e in the counter-clockwise order. Let us call v the vertex
belonging to e, and vp the vertex preceding vpivot in the ac-
tive edge list. As depicted in Figure 1, the vertex v is inserted
before the pivot in the active list, the edges e and fv;vpg, and
the face fvp;v;vpivotg are flagged conquered. According to
the current state of v, four cases may occur:

1. v has not been conquered yet. It is now flagged con-
quered, and its valence is output to the code sequence.
The active edge list is thus expanded as shown in Fig-
ure 1(b);

2. v is a dummy vertex and has not been conquered yet. It
is thus flagged conquered, and a code dummy and its va-
lence are output to the code sequence. The active edge
list is also expanded;

3. v has already been conquered and belongs to the active
list. To lift the local ambiguity of connectivity, a split
code and an associated forward offset (which indicates
where v is located in the current active list) are generated
(see Figure 2). The active list is then split in two: the (in-
ternal) sub-list is pushed to the stack for future treatment,
while the conquest continues using the (external) list;

c The Eurographics Association and Blackwell Publishers 2001.



Alliez and Desbrun / Valence-Driven Connectivity Encoding for 3D Meshes

4. v has already been conquered and belongs to an inactive
(sub-)list present on the stack. This case requires the lo-
calization of the inactive list in the stack and of v in that
list. A merge code along with its associated list index in
the stack and offset in the inactive list are generated. The
two lists are merged, leading to an active list containing
two occurrences of v (see Figure 3). The inactive list is
discarded from the stack. The merge code can only oc-
curs when the genus is greater than 0.

3.2. Full pivot removal

When (and while) the current pivot is full (i.e. with no free
edges), it is removed from the list, thus making the size of
the list decrease. If we call vn the vertex following vpivot

in the active edge list, the face fvp;vn;vpivotg and the edge
fvp;vng are flagged conquered (see Figure 4). Notice that an
edge has been conquered at no cost. No code is output during
this operation since the decoder, having previously received
the original valence of the vertices on the active list, is able
to decrease the number of free edges during the reconstruc-
tion process and is thus able to automatically detect full ver-
tices. After a recursive call for removal of full vertices, and
if the active list is non empty, the next vertex in the list is
chosen as the pivot (remember this for the next section), and
the edge conquest is resumed (see section 3.1). If the active
list is empty, we discard it from the list stack, the next one
is popped out and becomes active. The conquest is complete
when the list stack is empty. Every vertex, face and edge
are now conquered. The decoding process being straightfor-
wardly deduced from the encoding process, we refer to the
original paper 22 for more details.

3.3. Discussion

Although this technique results in very low bit rates for very
regular meshes, the bit rate goes up to 2 or 3 b/v for irregular
meshes such as those sent at the beginning of a progressive
transmission. After experimenting with the Touma and Gots-
man’s encoder 22 in order to examine the code sequence, the
number of split codes and the range of their offsets turn out
to seriously impede the compression ratios when the models
are somewhat irregular. Recall that a split code is followed

(a)

pivot pivot

(b)

output
valence 
code

active list

v
e

v
vp vp

Figure 1: Conquest atomic operation: (a) the current pivot
conquers the next edge counter-clockwise; (b) correspond-
ing vertex v is added before the pivot in the active list. Four
items are flagged conquered, i.e. two edges, one face and the
vertex v. The valence of v is output to the code sequence.

pivot

sub-list

conquered area

split(3)

(a) (b) (c)

v v v

vpvp vp

Figure 2: Split code: (a) the current pivot vertex tries to con-
quer an edge linked to a vertex already inserted in the active
list; (b) a split code and its associated forward offset are
generated. (c) the active list is split; notice that the original
counter-clockwise seed list has generated a clockwise sub-
list, thus allowing the conquest of the enclosed region.

by an index expressed in number of vertices in the active list
(see Figure 2). This is a serious obstacle to guarantee a linear
worst case bit-rate complexity, as pointed by 16. In addition,
there are presently no theoretical bounds on this valence-
based approach. Our contribution, described in the remain-
der of this paper, is two-fold: we improve upon the original
method while we provide a first analysis of the asymptotical
worst-case bit rate.

4. New Valence-driven Encoding

In this section, we present our new mesh connectivity en-
coding method. Building upon the technique 22 presented
in the previous section, we propose i) to replace the deter-
ministic conquest by an adaptive one in order to minimize
the number of split codes; ii) to decrease the range of the
offsets associated with each split code; iii) to improve com-
pression rates when encoding objects with numerous bound-
aries; and finally, iv) to provide the first upper bounds for
any valence-based approach, confirming the pertinence of a
valence-driven algorithm.

conquered 
area

conquered 
area

pivot

active list

list in the stack

pivot

conquered 
area

conquered 
area

active list

merge

conquered 
area

conquered 
area

pivot

active list

2 occurencies

active list

conquered 
face

(a) (b) (c)

v

vp

v

vp

v

vp

Figure 3: Merge code. (a) the current pivot vertex from the
active list tries to conquer a vertex already conquered, be-
longing to an inactive list previously pushed to the list stack;
(b) the vertex belonging to the next edge around the current
pivot is inserted before the pivot in the active list. One face
and two edges are conquered, a merge code is generated,
with its two associated offset codes (one for a localization in
the list stack and another one for the localization within the
list). (c) the two lists are merged.

c The Eurographics Association and Blackwell Publishers 2001.



Alliez and Desbrun / Valence-Driven Connectivity Encoding for 3D Meshes

(a)

full
pivot

active list

(b)

active list

conquered 
edge

vp

vn

vp

vn

Figure 4: Full pivot removal: (a) the current pivot is full,
with no free edges; (b) it is removed from the list, and one
face and one edge are flagged conquered. No code is output.

4.1. Valence-driven edge conquest

As we previously mentioned, a conquest on an irregular
mesh generates many split codes, along with costly offsets
coding. Figure 5(a) illustrates a typical example of the cre-
ation of a cavity, leading to a split of the active edge list.
It is therefore interesting to adapt the conquest to avoid the
creation of such cavities. We now present a simple heuris-
tic using the number of free edges for each vertex. In 22, the
next pivot is always selected as the next vertex on the active
edge list. However, both the encoder and the decoder always
have the whole active edge list to choose from, and picking
a specific vertex can dramatically reduce the occurrences of
splits later on in the conquest.

We first tried a very simple heuristic, consisting in choos-
ing the vertex with the minimum free edges as the next pivot,
i.e., the minimum number of neighbors not visited yet (see
Figure 5(c)). The number of free edges for each treated ver-
tex is known without any additional computations, since it
is simply the vertex’s transmitted valence decreased by the
number of neighbors already processed. As sketched in Fig-
ure 5(b), this will favor vertices inside cavities over vertices
that may create splits. This simplistic modification already
decreases the average number of splits by 50%. Notice that
all the full vertices will disappear first, since they correspond
to zero free edges. Further tests have shown however that
more refined heuristics behave even better.

Since the previous heuristic can lead to many vertices with
the same minimum number of free edges, it sometimes fails
to pick a vertex really in a cavity, thus not really helping
in reducing the number of splits. An averaged count of free
edges, depending on a larger neighborhood, would be more
accurate in such a case. Therefore, we use instead an adap-
tive mean number of free edges to select the next pivot ver-
tex. If the first heuristic fails to select a single vertex, we now
compute a mean number of free edges using a vertex and it
two immediate neighbors on the active edge list. If, again,
this test does not lead to a single choice, we will use the four
closest neighbors (two on each side) to enlarge the averaging
support, etc. For a given support size s, the mean number of
free edges m of a vertex of index v on the active edge list is
given by:

m =
1

2s+1

s

∑
i=�s

(1�j
i
s
j)n f e

v+i; (1)

where n f e
v is the number of free edges of the vertex v.

As noted before, the conquest strategy is driven using pre-
viously decoded data so that the decoder can follow this ex-
act same heuristic at no additional bit cost. The conquest
action being limited to the fore front of the conquest, i.e.
the vertices of the active list, we thus restrict the search to a
small ratio of the vertex count. For irregular coarse meshes,
the number of split codes is now reduced by 70% in average
(see Table 1). Figure 6 illustrates an example of the resulting
valence-driven conquest. Note that our new strategy corre-
sponds to adding a sort of "surface tension" to the contour of
the conquered region: we grow it only where it will minimize
the number of contour edges for the same number of interior
points. Now that the number of split codes is reduced, we
can further seek for a reduction of the range of the offsets
associated with the remaining split codes.

4.2. Reduction of offset range

In 22, the offset codes resulting from a split or a merge code
are expressed in number of vertices in a list, leading to a
possibly large range. From an information theory point of
view, the smaller the range, the better the compression rate,
obviously. We thus propose to replace the offset codes by a
unsigned index in the list once sorted in the decreasing or-
der of the Euclidean distance from each vertex to the pivot.
We also exclude the vertices incident to the pivot since they
cannot be candidates to the split. This drastically reduces the
range of the indices during splits. In practice, this offset be-

0 1 2

3 4

Figure 5: (a) The original conquest 22 is simulated in the
neighborhood of a highly variable density mesh. Each new
pivot is chosen in a deterministic way, i.e. the vertex succeed-
ing the previous pivot in the list. A split code is far more fre-
quent in regions with highly variable density and appears af-
ter a cavity has been formed by the active list. (b) Intuitively,
the key idea of our adaptive conquest consists of choosing
the best pivot candidate so that it tends to minimize the num-
ber of split codes. Such a choice is driven by the number of
free edges for each vertex on the list. (c) Several configura-
tions of the conquest around a valence-6 pivot vertex, with
associated number of free edges.

c The Eurographics Association and Blackwell Publishers 2001.



Alliez and Desbrun / Valence-Driven Connectivity Encoding for 3D Meshes

3
6

6

(g) (h) (i) (j) (k) (l)

5

5

6

6

(a) (b) (c) (d) (e) (f)

Figure 6: Top line, the original coder from 22: (a) The next counter-clockwise edge is conquered from the active pivot. A valence
code 5 is output. (b) code 5. (c) code 6. (d) the pivot, full, is removed from the list at null cost. The next vertex in the active list is
chosen as pivot. (e) code 6. (f) code split with an offset of 2. The code sequence is {5,5,6,6,split(2)}. Bottom line, our technique:
(g) the best pivot candidate is searched into the active list. One unique vertex has only one free edge, it is thus chosen as a pivot.
(h) code 3. (i) the full pivot is removed. The best pivot candidate has 0 free edge. (j) the full pivot is removed. The next best pivot
candidate has 2 free edges. (k) code 6. (l) code 6. The pivot is now full. The code sequence is {3,6,6}.

comes zero in most of the cases. Therefore, we always add 6
to this offset so that our arithmetic encoder can compress this
offset just as if it was a valence, optimizing the compression
rate (see details in Section 4.4).

Notice that, although such reordering turns out to be very
efficient from a bit-rate standpoint, it requires a decoding
of the geometry interleaved with the connectivity. This de-
pendence to the geometry is sometimes not desirable, if for
instance a progressive geometry transmission is used. In that
case, we recommend to keep the original offset with addi-
tion of a sign bit in order to encode the backward split cases
in a more efficient manner. Indeed, the active edge list being
closed, it decreases the range of the offsets in most of the
cases (as mentioned in 7).

4.3. Encoding of multiple boundaries

In the technique summarized in section 3, a dummy vertex
being added and connected to each boundary, objects with
numerous boundaries may lead to numerous dummy codes,
followed by their associated high valence. When an object
with many boundaries (or several connected components
containing various boundaries) is encoded, the bit rate will
seriously increase unnecessarily. We have opted for a more
efficient handling of the boundaries, by inserting only one
ubiquitous ghost vertex connected to every boundaries. We
insert at the beginning of the bit stream one bit to indicate the
presence or absence of boundaries, and the ghost vertex’s to-
tal valence, i.e. the total number of vertices lying on bound-
aries. During the conquest, we generate a ghost code each
time it is encountered. The ghost vertex being most prob-
ably not manifold, it is never chosen as a pivot during the
conquest. In order to allow the conquest to terminate, an ac-
tive list containing only the ghost vertex is simply removed
from the stack, even when not full. If the ghost vertex is not
full and the stack is empty, the decoder concludes that more

vertices are to be treated, and pushes a new active list on the
stack with the next three valence codes. This simple modi-
fication allows us to encode efficiently meshes with several
boundaries, when the previous method was suffering from a
rapid bit rate increase for these sort of meshes. Notice that
this is particularly interesting for coarse meshes with a lot
of small holes, where the number of holes is not negligible
compared to the total number of vertices.
4.4. Efficient Encoding of the Code Sequence

Contrary to 22, we encode the sequences of codes generated
during the conquest through the range encoder 17, an adap-
tive arithmetic encoder 24. This has two main advantages:
first, this encoder is distributed for free with GNU general
public license, and second, the bit rate compression analysis
will be easier, and will allow us to find asymptotical upper
bounds (see section 4.7) which would have been difficult us-
ing the Huffman coding mixed with RLE proposed by 22.

Roughly speaking, the range encoder exploits the proba-
bility distribution of the symbols to optimize their individual
size. However, it doesn’t require the transmission of a ta-
ble of occurrences like a Huffman encoder would: instead,
the probability of occurrence of each symbol is assumed
equiprobable first, and then is updated while the symbol se-
quence is sent/received. If the number of distinct symbols
generated is known, along with their probability of occur-
rence in the sequence, we can explicitly compute the aver-
age number of bits per symbol the encoding will require. In
practice, as soon as the size of the sequence is larger than a
thousand, the prediction and the actual bit rate observed only
differ by less than a few percent.
4.5. Initialization of the Adaptive Entropy Encoder

As mentioned in the previous paragraph, the range en-
coder 17 assumes an equiprobable distribution of codes at
the beginning, by lack of a better guess. When the mesh to

c The Eurographics Association and Blackwell Publishers 2001.



Alliez and Desbrun / Valence-Driven Connectivity Encoding for 3D Meshes

encode is large, the range encoder will adapt quickly to the
actual distribution. However, if the mesh is relatively small
(and remember than single-resolution encoders are mainly
used for small, irregular meshes), this initial distribution
could be easily optimized. Our tests have shown that most
meshes have a relatively similar valence distribution, like
depicted in Figure 9: such a distribution is therefore a more
educated guess than constant probability.

In practice, we reserve the first three symbols f0;1;2g for
the accident codes: fghost; split;mergeg, and feed the range
coder 17. We initialize the probability distribution with null
frequencies for the three accident codes and a fitted Gaussian
distribution centered on the average 6 value elsewhere. This
turns out to improve the bit-rates, especially for low com-
plexity meshes as mentioned before. The best σ parameter
found from the Gaussian curve is quantized using 4 bits and
stored at the beginning of the bit stream.

4.6. A Simplified Solution: Getting Rid of the Splits

During the development of the technique detailed above, we
came across a slightly different solution, significantly sim-
pler to program. However, in practice, the bit rates obtained
are not as good as the solution presented above (and some-
times even not as good as 22). If a quick implementation of
small meshes is sought, this solution is definitely attractive:
we therefore describe it roughly here.

The split code has been designed to solve an incident of
conquest, i.e., when the current pivot vertex tries to con-
quer an edge linked to a vertex already transmitted (see sec-
tion 3.1). Thus, we have to deal with the problems when
they are encountered during the conquest. Instead of treat-
ing the problems, delaying them until they completely dis-
appear turns out to be much simpler. This can be achieved
by generating a skip code without any parameter instead of
a split, and not splitting the list but rather resuming the con-
quest somewhere else (see Figure 7). The current pivot is
then flagged skipped and is not candidate to pivot anymore,
except as a full pivot in order to guarantee the termination of
the conquest. For genus-0 objects, all the problems disappear
without any further actions, while meshes with higher genus
end up with a single triangle stripset where each border ver-
tex is flagged skipped. A fixed number of additional codes
(2 � genus� 1 face indices to be exact) are then required to
terminate the conquest by simply zipping the triangle stripset
(see Figure 8) without need for additional bits.

This simple code substitution makes the conquest
straightforward. Indeed, it does not require any stack since
the active list is never split. We thus recommend it for a sim-
pler implementation of the original coder 22. Again, this is of
course to the detriment of the bit rate.

4.7. Theoretical Bit-Rate Bounds of our Encoder

The principal critique of 22 found in the bibliography is the
absence of clear upper bounds on the number of bits per
vertex. Although a theoretical upper bound is less important

conquered area

conquered area

skip

conquered area

skip

new 
pivot

new pivot

ccw edge list

cw edge list

free area

free 
area

(a) (b)

(c) (d)

Figure 7: (a) The pivot of the clockwise oriented list intends
to conquer an edge linked to an already transmitted vertex.
(b) the pivot is flagged skipped, a skip code is output, and
another (best) pivot candidate is sought, not taking into ac-
count skipped vertices. (c,d) same as upper with a counter-
clockwise oriented active list.

than the rate-distortion behavior in practice, it is fundamen-
tal for a number of applications to guarantee a good worst-
case bit rate to know, for instance, the maximum expected
time for transmission. Moreover, if some prior knowledge
of the mesh is known, we would like to exploit it in order to
find tighter guaranteed bounds: very regular meshes (valence
6 almost everywhere) results obviously in much smaller bit
rates.

A quick analysis of the bit rate for 22 seems to lead to a non
linear worst-case bit rate. Indeed, if we bound the number of
splits by V (the number of vertices in the mesh), and each
offset values by V also, we obtain a size of V � log2(V ) bits,
resulting in log2(V ) bits per vertex. However, this bound is
far from being reasonable. Roughly speaking, if there is re-
ally a large number of splits (order of V ), then they cannot
lead to lists of size V , but rather of lists with a constant low
vertex count. Inversely, if the list during a split is of size V ,
then there cannot be a large number of other splits, since we
have already visited the entire mesh. This explains why the

Figure 8: Conquest on a genus-2 mesh. Only one active list
has been required. Conquered area is colored in blue, while
free area is colored in grey. Using skip codes builds a set
of connected triangle strips, where each vertex is flagged
skipped (colored in light-yellow). The transmission of the
faces located at the cross of three strips (colored in red) is
sufficient for the decoder to zip remaining strips at no cost.

c The Eurographics Association and Blackwell Publishers 2001.



Alliez and Desbrun / Valence-Driven Connectivity Encoding for 3D Meshes

observed bit rate for our method is always between 0 and
3:4 b/v for any mesh with more than 100 vertices. Note that
even the mesh given in 16 as being a worst-case example
for the approach in 22 turns out to be not conclusive: their
"snowflake" example does not create any splits when en-
coded. It does create splits on 50% of the vertices only if the
recursive full pivot removal (detailed in section 3.2) is not
used (this point is not obvious in the original paper). There-
fore, both our approach and 22 performs optimally on such
an Hamiltonian mesh. A pathological case for the number of
splits remains elusive; our approach consisting in decreasing
the number of splits is therefore particularly crucial in this
context.

Nevertheless, we can guarantee theoretical upper bounds
if the number of splits is supposed negligible. In the ap-
pendix, we show that maximizing the entropy of a mesh,
under the constraint of the Euler’s formula, leads to the op-
timal 3.24 bits per vertex required in theory 23. This is the
first time that Tutte’s constant (log2(256=27) = 3:24:::) ap-
pears in the theoretical bounds of a triangle encoder, proving
a posteriori the pertinence of the valence coding.

Additionally, we are able to bound the asymptotical worst
bit-rate for meshes with known regularity: given for instance
the percentage of valence-6 vertices in a mesh (regularity
criterion defined by 18), we obtain an explicit formula which
ensures a bound decreasing to zero for regular meshes (see
Figure 10). Notice that the lowest bit-rate known for the reg-
ular case was 0.811 b/v 18. All the details about these bounds
and their proofs are postponed until the Appendix of this pa-
per. We believe that having such bounds on the bit rate is a
very desirable feature of a mesh compression scheme. No-
tice the number of splits is very small for any object: we
conjecture that the number of splits is sublinear. If this is
true, then the number of splits along with the number of bits
used to code the split index will not change the optimality of
our technique.

Figure 9: Distribution of the code sequence generated dur-
ing the traversal of the venus mesh. Entropy encoding ben-
efits from the low dispersion of data around the average va-
lence 6.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w
or

st
-c

as
e 

bi
t-

ra
te

 (
b/

v)

valence-6 vertex ratio

Figure 10: Asymptotic behavior, function of the proportion
of valence-6 vertices.

4.8. Discussion

We have described a new connectivity encoding scheme,
with both good bit rates in practice and good theoretical
bounds. In essence, the proposed optimized conquest makes
the behavior of the algorithm adaptive to the previously de-
coded data. We believe that it would also be applicable for
several conquest-type algorithms. Similarly to 22, the decod-
ing process is easily deduced from our encoding scheme. We
also offer a theoretical analysis of our algorithm, showing
that encoding only valences is optimal.

5. Results

Table 1 gives a comparison on several meshes shown in Fig-
ure 11, along with the associated numbers of split and merge
codes. The connectivity of the triceratops, commonly used
for comparison, compresses down to 1.88 b/v with our tech-
nique while 20, 9, and 22 result in 4.3, 2.52, and 2.2 b/v re-
spectively. This mesh is representative of the gain obtained
on coarse irregular meshes. Figure 12 shows an example
of a conquest on the David’s head. It is also interesting to
mention that: a) our technique is barely sensitive to the seed
face, therefore a random face can be selected; b) running
gzip or other standard file compression tools on our com-
pressed data actually increases their size; c) use of higher
order arithmetic encoding does not reduce the bit rate fur-
ther. These three facts are a good sign that we are close to
the actual entropy of the mesh connectivity. The current im-
plementation of our encoding/decoding technique processes
on average 20,000 faces/s on a regular PIII PC. Finally, the
percentage of splits in our different examples never exceeds
0.9% for small meshes, and decreases with the number of
vertices as expected.

6. Conclusions and future work

In this paper, we described a lossless, single-resolution con-
nectivity encoding technique which results in the best com-
pression ratios published so far. We also demonstrate that
under the assumption of a negligible number of splits, we
reach the optimal upper bound (3.24 b/v) for the bit rate per
vertex for large, arbitrary meshes. Our method uses an adap-
tive conquest over the mesh to transform the mesh into a se-
quence of valences and few additional codes. This sequence
is then processed by an adaptive arithmetic encoder that will
use the low dispersion present in these valences to compress

c The Eurographics Association and Blackwell Publishers 2001.



Alliez and Desbrun / Valence-Driven Connectivity Encoding for 3D Meshes

Mesh #F #V TG22 Ours
b/v [#s;#m] b/v [#s;#m]

david 1 586 328 3.58 (2) 2.96 (1)
david 2 2924 1512 3.15 (21) 2.88 (7)
david 3 11820 6035 2.92 (87) 2.70 (43)
david 4 47753 24085 2.69 (255) 2.52 (138)
venus 16532 8268 2.82 (43) 2.71 (21)
foot 20028 10016 2.33 (14) 2.20 (3)
knot 7680 3887 0.035 (1;1) 0.024 (1;1)
body 1396 711 2.62 (3) 2.35 (0)
feline 99732 49864 2.38 (147;2) 2.27 (57;2)
mann. 1 839 428 2.97 (6) 2.51 (1)
mann. 2 23402 11704 0.46 (10) 0.37 (6)
dinosaur 28136 14070 2.39 (59) 2.25 (17)
nefertiti 562 299 2.83 (3) 2.37 (0)
fandisk 12946 6475 1.08 (6) 1.02 (0)
bunny 29783 15000 2.064 (11) 1.98 (5)
triceratops 5660 2832 2.20 (29) 1.88 (5)
femur 7798 3897 3.00 (73;2) 2.71 (38;2)

Table 1: Compression results (in bit per vertex). s and m
denotes the number of split and merge codes respectively.

Figure 11: 3D meshes used for our bit-rate measurements.

it. On large meshes like the David’s head, we obtain com-
pression rates of 188 to 1 compared to the connectivity part
of a VRML ascii file.

We did not work on geometry compression at all in this
paper. Current progressive techniques such as 12 seems to

performed very well on uniform meshes, but more work
may have to be done for irregular meshes if lossless ge-
ometry compression is sought. Progressive encoding, still
in the context of lossless transmission, is also pertinent to
optimize the rate-distortion behavior, as explained in 3; 14; 1.
Finally, genus reduction, error-resilience, polygonal meshes,
non-manifold, even polygon soup encoding are also ob-
vious future work. An executable code implementing our
method can be found on the web at: http://www-
grail.usc.edu/SingleRateEncoder/.

Acknowledgements

Many thanks to Michael Schindler for providing invaluable
help about the Range Encoder 17 library, to Mark Meyer for
reviewing the paper, and to Zoë Wood for hints on graph
theory. The authors want to thank Peter Schröder and Wim
Sweldens for initial discussions, and to Stephan Gumhold,
Martin Isenburg, and Craig Gotsman for helping us improv-
ing this paper tremendously. The David’s head mesh is cour-
tesy of Marc Levoy and the Digital Michelangelo Project
(Igor Guskov provided us with the 4 resolutions), while
the other meshes are courtesy of Caltech, Stanford, Hugues
Hoppe, and Renato Pajarola. This work has been partially
supported by the Integrated Media Systems Center, a NSF
Engineering Research Center, cooperative agreement num-
ber EEC-9529152.
References

1. P. Alliez and M. Desbrun. Progressive Encoding for Lossless
Transmission of 3D Meshes. Siggraph 2001 Conference Pro-
ceedings, 2001.

2. C. Bajaj, S. Cutchin, V. Pascucci, and G. Zhuang. Error Re-
silient Streaming of Compressed VRML. Technical Report
98-25, Center for Computational Visualization, CS dept. and
TICAM. University of Texas at Austin, 1999.

3. D. Cohen-Or, D. Levin, and O. Remez. Progressive Compres-
sion of Arbitrary Triangular Meshes. Visualization 99 Confer-
ence Proceedings, pages 67–72, 1999.

4. M. Deering. Geometry Compression. Siggraph 95 Conference
Proceedings, pages 13–20, 1995.

5. O. Devillers and P-M. Gandoin. Geometric Compression for
Interactive Transmission. Visualization 2000 Conference Pro-
ceedings, pages 319–326, 2000.

6. L. De Floriani, P. Magillo, and E. Puppo. A Simple and Ef-
ficient Sequential Encoding for Triangle Meshes. 15th Euro-
pean Workshop on Computational Geometry, march 1999.

7. S. Gumhold. New Bounds on the Encoding of Planar Trian-
gulations. Technical Report WSI-2000-1, Wilhelm Schickard
Institute for Computer Science, Tubingen, march 2000.

8. H. Hoppe. Progressive Meshes. Siggraph 96 Conference Pro-
ceedings, pages 99–108, 1996.

9. M. Isenburg. Triangle Strip Compression. Proceedings of
Graphics Interface 2000, pages 197–204, 2000.

10. M. Isenburg and J. Snoeyink. Mesh Collapse Compression.
Proceedings of ACM Symposium on Computational Geometry,
pages 419–420, 1999.

c The Eurographics Association and Blackwell Publishers 2001.



Alliez and Desbrun / Valence-Driven Connectivity Encoding for 3D Meshes

11. M. Isenburg and J. Snoeyink. Spirale Reversi: Reverse Decod-
ing of EdgeBreaker Encoding. 12th Canadian Conference on
Computational Geometry, pages 247–256, 2000.

12. A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive
Geometry Compression. Siggraph 2000 Conference Proceed-
ings, pages 271–278, 2000.

13. D. King and J. Rossignac. Guaranteed 3.67v bit encoding of
planar triangle graphs. 11th Canadian Conference on Compu-
tational Geometry, pages 146–149, 1999.

14. R. Pajarola and J. Rossignac. Compressed Progressive
Meshes. IEEE Transactions on Visualization and Computer
Graphics, 6:1:79–93, 2000.

15. J. Rossignac. EdgeBreaker : Connectivity Compression for
Triangle Meshes. IEEE Transactions on Visualization and
Computer Graphics, pages 47–61, 1999.

16. J. Rossignac and A. Szymczak. Wrap&zip decompression of
the connectivity of triangle meshes compressed with Edge-
Breaker. Journal of Computational Geometry, Theory and Ap-
plications, 14:119–135, november 1999.

17. M. Schindler. A Fast Renormalization for Arith-
metic Coding. Proceedings of IEEE Data Com-
pression Conference, Snowbird, UT, page 572, 1998.
http://www.compressconsult.com/rangecoder/.

18. A. Szymczak, D. King, and J. Rossignac. An EdgeBreaker-
based efficient compression scheme for regular meshes, 2000.

19. G. Taubin, A. Guéziec, W. Horn, and F. Lazarus. Progressive
Forest Split Compression. Siggraph 98 Conference Proceed-
ings, pages 123–132, 1998.

20. G. Taubin, W. Horn, F. Lazarus, and J. Rossignac. Geometry
coding and VRML. Proceedings of the IEEE, 86(6):1228–
1243, 1998.

21. G. Taubin and J. Rossignac. 3D Geometry Compression,
1999-2000. ACM Siggraph conference course notes.

22. C. Touma and C. Gotsman. Triangle Mesh Compression.
Graphics Interface 98 Conference Proceedings, pages 26–34,
june 1998.

23. W. Tutte. A Census of Planar Triangulations. Canadian Jour-
nal of Mathematics, 14:21–38, 1962.

24. I.H. Witten, R.M. Neal, and J.G. Cleary. Arithmetic Cod-
ing for Data Compression. Communications of the ACM,
30(6):520–540, june 1987.

25. Y. Yemez and F. Schmitt. Progressive Multilevel Meshes from
Octree Particles. Proceedings of 2nd International Conference
on 3-D Imaging and Modeling, pages 290–299, 1999.

Appendix: Theoretical Results

We consider a 2-manifold mesh with V vertices, F faces and
E edges, and the following usual assumptions:

� the mesh has no boundary and no holes, i.e. every edge
has two adjacent faces,

� the mesh is topologically equivalent to a sphere, i.e., has
a genus of zero.

Figure 12: Conquest behavior on the David mesh.

Entropy of a code sequence

The entropy denotes the minimal number of bits required per
symbol for lossless encoding of a given code sequence. It is
both a function of the number N of distinct symbols and to
their respective probability pi in this particular sequence:

entropy =

N

∑
i=1

pilog2
1
pi

(2)

This formula indicates that the final rate of our connectiv-
ity encoding technique is intricately related to the range and
the dispersion of valences, i.e., their statistical distribution.

Valence distribution for arbitrary meshes

In a triangular mesh without boundary, the possible range of
valences is [3;+1]. Obviously, the number of distinct va-
lences in the mesh is bounded by the vertex count. Using
the Euler formula: F +V � E = 2, we can derive the ex-
pression for the sum of valences. If we count three edges for
each face of the mesh, we get 3F . Since each edge is shared
by exactly two faces, this counts the edges twice, we thus
obtain 3F = 2E. If one substitutes this equality in the Eu-
ler formula, it yields: V �E + 2E=3 = 2 () E = 3V � 6.
The sum of valence being equivalent to twice the number of
edges, we obtain:

∑valence = 2E = 6V �12: (3)

The average valence for an arbitrary mesh is therefore 6.
Equation 3 indeed implies that numerous vertices are of low
valence (3 to 6), balancing for the valences higher than the
average valence 6 for triangular meshes. Intuitively, a vertex
with valence > 6 must have one or several associated low
valence vertices to compensate. The minimum valence be-
ing equal to 3, the presence of high valences vertices implies
that the probability of valence < 6 vertices increases dramat-
ically, promoting efficient entropy encoding. As an example,
one vertex with a high valence of V � 1 constrains an aver-
age valence about 5 for the V�1 remaining vertices, and two
vertices with valence V �2 constraints an average valence of
4 elsewhere.

Worst Asymptotical Bit Rate vs. Tutte’s enumeration

From Equation 2, it is easily seen (and well known) that the
worst compression ratio is encountered for both the maxi-
mum number of distinct symbols and an equal probability

c The Eurographics Association and Blackwell Publishers 2001.



Alliez and Desbrun / Valence-Driven Connectivity Encoding for 3D Meshes

for each of them. This would lead to a mesh where each
vertex has a distinct valence and thus appears only once in
the distribution. Fortunately, this case is impossible as previ-
ously explained, due to the average-6 valence.

Let’s have a look at the maximum entropy of a mesh. For
now, we will consider that our conquest happens without any
skip or split codes. We call pi the percentage of vertices of
valence i in the worst-case mesh, for i from 3 to 1. The
set of pi therefore represents the distribution of valence that
leads to the worst bit rate through mesh encoding using our
technique.

Since we are dealing with a mesh, we must satisfy two
basic constraints: all the percentages must sum to one, and
the valence average must be 6 (see above). It yields:

1

∑
3

pi = 1;
1

∑
3

i � pi = 6: (4)

Now, we must find what valence distribution p leads to
the worst bit rate: we have to maximize the following infinite
sum:

1

∑
3

pi � log2
1
pi

(5)

under the previously mentioned two constraints. After
rewriting this optimization under constraints using Lagrange
multipliers, p must maximize the following function f :

f (p3; p4; :::;λ;µ) =
1

∑
3

pilog2
1
pi

+λ(
1

∑
3

pi�1)+µ(
1

∑
3

i � pi�6)

(6)

where λ and µ are two Lagrange multipliers. Derivatives of f
with respect to each of the unknown percentages pi must be
zero. It thus implies, for each i, that: log2(pi) = λ�1+µ� i.
Therefore, we can rewrite pi as:

pi = αe�βi
: (7)

We then rewrite the constraints given by equation 8 as:
1

∑
3

pi = α
1

∑
3

e�βi
= 1;

1

∑
3

i � pi = α
1

∑
3

i � e�βi
= 6: (8)

We now solve for α and β, knowing the two following
closed form solutions (when β is strictly positive):

1

∑
3

e�βi
=

e(�2β)

eβ�1
(9)

1

∑
3

ie�βi
=

e(�2β)
(�3e(2β)

+5eβ
�2)

(eβ�1)(�e(2β)+2eβ�1)
: (10)

The unique solution is: α = 16=27 and β =�ln(3=4).

If we now compute the maximum entropy e induced by

the above worst-case distribution:

e =

1

∑
3

pilog2(
1
pi
) =�

1

∑
3

αe�βilog2(αe�βi
)

=�log2(α)
1

∑
3

αe�βi
+

β
ln(2)

1

∑
3

iαe�βi

=�log2(α)+
6β

ln(2)
: (11)

Substituting α and β in this last equation leads to an en-
tropy of:

e = log2(
256
27

)' 3:24511249784: (12)

This is exactly the number of bits needed to encode each
vertex of an arbitrary planar mesh as found by Tutte 23 by a
pure enumeration of all possible planar graphs. In the case
where no split/skip codes occur, we thus have proved that
our valence-driven encoding is asymptotically optimal,
with a rate of 3:2452 b/v guaranteed. This also proves, a pos-
teriori, that 22 was indeed optimal under the same assump-
tion of no split codes.

Regular Meshes

As 18 proposed, we can also measure the regularity of a mesh
using its fraction of valence-6 vertices, denoted S. By simply
adding a constraint on p6 in the previous proof, we now find
β unchanged and

α =
4096
6183

(1�S) (13)

Figure 10 illustrates the worst-case asymptotic behavior,
with an expected zero entropy when the mesh is perfectly
regular.

This has led us to use, in practice, a similar bit rate predic-
tion formula, where we simply consider the number of split
codes to be zero (negligible): from Equation 2 and knowing
the exact valence distribution of a mesh, it is now straight-
forward to predict the bit-rate of the connectivity (see table
2) rather accurately. This works very well for complex 3D
meshes, since the range encoder converges to the final en-
tropy for a sufficiently large number of encoded symbols, as
demonstrated in the following table. In all our tests, we al-
ways found the prediction to be in agreement with the mea-
sured bit rate within less than 2%.

Mesh #V Predicted Measured Diff.

venus 8268 2.67 b/v 2.71 b/v 1.49 %
feline 49864 2.25 2.27 0.88 %
david 3 6035 2.64 2.70 2.27 %
david 4 24085 2.48 2.52 1.61 %
dinosaur 14070 2.22 2.25 1.35 %

Table 2: Prediction of bit-rates from valence distribution.

c The Eurographics Association and Blackwell Publishers 2001.


