
the Visual Computer manuscript No.
(will be inserted by the editor)

Efficient View-Dependent Refinement of 3D Meshes using
√

3-Subdivision

Pierre Alliez1,2, Nathalie Laurent1, Henri Sanson1, Francis Schmitt3

1 France Télécom R&D DIH HDM
4, rue du Clos Courtel BP 59
35512 Cesson-S´evigné Cedex, France
e-mail:{nathalie.laurent,henri.sanson}@rd.francetelecom.fr

2 University of Southern California
e-mail:alliez@usc.edu

3 Ecole Nationale Sup´erieure des T´elécommunications
46, rue Barrault
75634 Paris Cedex 13, France
e-mail:francis.schmitt@enst.fr

Received: date / Revised version: date

Abstract In this paper we introduce an efficient view de-
pendent refinement technique well-suited to adaptive visu-
alization of 3D triangle meshes on a graphic terminal. Our
main goal is the design of fast and robust smooth surface re-
construction from coarse meshes. We demonstrate that the√

3 subdivision operator recently introduced by Kobbelt of-
fers many benefits, including view-dependent refinement, re-
moval of polygonal aspect and highly tunable level of de-
tail adaptation. In particular, we propose a new data structure
that requires neither edges nor hierarchies for efficient and
reversible view-dependent refinement. Results on various 3D
meshes illustrate the relevance of the technique.

Key words Surface reconstruction – Adaptive visualization
– View dependent refinement – Subdivision surfaces – Device
driven refinement

1 Introduction

Subdivision surfaces define smooth surfaces as the limit of
a sequence of successive refinement steps applied to a base
mesh. This approach offers a number of benefits, and has
been used in the context of geometry compression, animation,
editing, scalability and adaptive rendering [1,2]. Subdivision
is a key issue for the reconstruction of surfaces, and brings
enough robustness to reach adaptive rendering at an interac-
tive rate. The recursive structure of the subdivision paradigm
naturally addresses the scalability feature required for the adap-
tation to graphic capabilities of a terminal. Furthermore, the

Send offprint requests to: Nathalie Laurent
Correspondence to: nathalie.laurent@rd.francetelecom.fr

distribution of the levels of details can be tuned by consider-
ing the additional adaptation to the user viewpoint.

While much effort has been spent on the design of ge-
ometric and topological laws that drive the subdivision pro-
cess [3–7], less effort has been spent for real-time rendering
of highly detailed surfaces generated through adaptive refi-
nement. This paper represents a step towards realtime per-
formance, and introduces a data structure that allows fast and
robust reversibility of the refinement process and that requires
only a small additional amount of memory. We carefully take
the camera viewpoint into account in order to define precisely
the areas of interest on the terminal and to generate on them
well-suited levels of details.

Two limiting factors seriously impede the perceptual quality
at the rendering stage:

– The polygonal aspect is obviously the main defect when a
smooth surface is poorly described for some memory and
transmission constraints. This defect is highly noticeable
along the silhouette areas as defined in Fig. 1;

– The bi-linear Gouraud or Phong shading interpolation ge-
nerates a piecewise rendering effect which is noticeable
for large triangles in the image space.

These two limiting factors lead us to elaborate a refinement
strategy through the subdivision paradigm. The main goal of
subdivision being the smoothness of the limit surface, a sub-
division approach appears then clearly well-suited to remove
the visual polygonal aspect of silhouette areas and to solve
the shading interpolation problem. For a given viewpoint, we
first only consider the areas located in the vision frustum, i.e.
in the field of vision of the camera, and then refine the subset
of the triangles belonging to visible areas facing the camera.
We also pay a special attention to the silhouette areas in order



2 Pierre Alliez et al.

6 LOKRXHWWH

HGJHV

&DPH UD

YLHZ SR LQW

Fig. 1 Silhouette definition : for a given viewpoint and a 3D 2-
manifold mesh, the silhouette is the subset of edges having two op-
posite adjacent faces, one frontfacing and the other one backfacing.

to remove their polygonal aspect. Therefore we separate the
problems into two tasks: theextraction of the areas of inter-
est, and theadaptive refinement process.

Section 2 reviews related work, while section 3 overviews
the general principle of the proposed method. The extrac-
tion and subdivision processes are described in sections 4
and 5 respectively. An efficient implementation is proposed
in section 6. Section 7 illustrates the numerous benefits of the
scheme with various mesh samples. In section 8, concluding
remarks and future work are presented.

2 Related works

In the context of visualization and telecommunication, sub-
division surfaces turn out to be very relevant since they ad-
dress the numerous challenges of ever more complex 3D-
based contents having to be stored, transmitted and rendered
on heterogeneous networks and terminals. These challenges
are addressed with geometry compression, be it progressive
[8,9] or not [10], eventually combined with adaptive visu-
alization [11]. Although a progressive compression scheme
is well-suited to an adaptation to network constraints, the
presented method also allows us to increase the mesh com-
plexity in a scalable way until the graphics capabilities of the
terminal are reached. The complexity of the mesh is locally
adapted depending on the camera viewpoint this time, where
it really matters. It is useful to recall that a telecom operator
is mostly interested in theperceived quality of the data for the
final user. For him the global bit count of a given 3D content
is often less important than the delay before displaying the
first image.

We now review in the next two subsections existing work
related to the extraction of the regions of interest and to sub-
division surfaces.

2.1 Extraction

As already mentioned, we are mainly concerned with the ef-
ficient extraction of the silhouette. Indeed, the silhouette is a

very important geometrical feature of an object since it plays
a key part in the visual perception process [12], describes the
global shape of an object, and often corresponds to the first
pencil strokes of a draft. It is thus used in numerous research
fields:

– Computer vision: the silhouette is often used for shape
recognition applications or for 3D reconstruction from
multiviews;

– Line drawing: the silhouette separating hidden areas from
visible ones, it is thus naturally used for hidden line re-
moval tasks;

– Hybrid rendering: fast silhouette display is crucial in or-
der to reduce the rendering calculation costs. A complex
geometry is replaced by a coarse mesh on which a pre-
computed normal map is mapped. The illusion is effec-
tive, except on the silhouette since the poorly described
geometry is highly noticeable on these areas. Guet al.
[13] thus define by preprocessing a set of silhouette edges
in order to clip the geometry. A recent work by Sander
et al. [14] defines two progressive convex envelopes for
the coarse geometry, a normal map for the geometry illu-
sion and an edge tree for silhouette clipping. Results are
eloquent, especially when the silhouette edges are anti-
aliased during the clipping stage;

– Artistic rendering: silhouette is extracted and superimpo-
sed on a shaded mesh in order to obtain attractive visual
effects [15–19];

– Computational geometry: authors propose a very efficient
method that allows output sensitive [20] and perspective
accurate [21] extraction of silhouette edges. Benichou and
Elber [20] build a preprocessed data structure containing
a set of geodesic lines deduced from the mesh edges, then
convert a camera request into an intersection problem be-
tween a plane and a set of segments.

The silhouette extraction is not sufficient, since we also
have to extract frontfacing areas to rebuild smooth surfaces
in a view-dependent manner. In order to address this issue,
Zhang and Hoff [22] propose a fast backface culling method
using normal masks.

2.2 Subdivision surfaces

In this paper, we assume that a mesh is transmitted over the
network using a given compression scheme [23,10,24,8,25,
9]. We thus only consider visualization of the received data,
and we assume that the data is a triangle mesh. This stage be-
ing independent of the transmission process, we thus only fo-
cus on the rendering part of theadaptation challenge. Such a
technique is also attractive for an Internet-based service since
the user is able to see an appealing image very early in the
connection when the initial mesh has been transmitted. We
thus review the reconstruction methods acting on general tri-
angular meshes, and especially focus on those which allow
powerful and adaptive smooth surface reconstruction for avi-
sualization purpose.



Efficient View-Dependent Refinement of 3D Meshes using
√

3-Subdivision 3

The first basic principle for subdivision was developed by
Chaikin [26] in 1974: a smooth curve is generated through
successive refinement of a polygonal curve defined with a set
of control nodes, by inserting new nodes in between the old
ones. Catmull and Clark [3] and Doo and Sabin [4] extended
this principle to surfaces in 1978. A smooth surface is defined
by infinite subdivision of an initial control mesh, subdivision
still consisting in inserting new elements (i.e. nodes, faces
and associated edges). Much effort has been made to ensure
that subdivision processes converge towards a smooth limit
surface. The main advantage of subdivision comes from its
ability to rebuild a geometry in a very robust way, while only
requiring an initial coarse mesh used as a control model, and
encoded with a low bit count [10]. This last feature is very
appealing for telecommunication, since networks capabilities
are highly variable and may encounter some bottlenecks. In
addition, subdivision surfaces are intrinsically scalable, al-
lowing us to address theQuality of Service issue.

Subdivision surface schemes can be classified [1] accord-
ing to whether they approximate or interpolate [27] their con-
trol nodes. They turn out to be very efficient in the case of sur-
face reconstruction [5,6,28–32]. Interpolation schemes leave
original control nodes unchanged, while approximation ones
apply successive filtering onto the node positions. As the pre-
servation of the positions is not a strong constraint for our
targeted applications, we are thus free to choose any of these
methods. Nevertheless, we choose the approximating schemes
because of their simplicity and their resulting visual smooth-
ness.

The simplest scheme suited to irregular triangular meshes
is the Loop subdivision scheme, designed by Charles Loop
[5]. Like most subdivision schemes, this one uses the uni-
form 1-to-4 subdivision that inserts a new vertex on each
edge of the control mesh. It is based on a three-directional
quartic box spline basis function, and has been derived by
Hoppeet al. [6] in order to rebuild piecewise smooth sur-
faces. This last method is well-suited to a global reconstruc-
tion, and would suppress the polygonal aspect of silhouette
areas while preserving (and even rebuilding) the geometric
singularities such as corners, creases and dart vertices. In ad-
dition, and since 1997, Hoppe has strongly advocated the rel-
evance of silhouette areas for a visualization purpose, and
extended hisprogressive meshes in order to adapt geomet-
ric complexity to current viewpoint [11]. This last method,
using the edge collapse for the transitions between levels of
details, thus results in a forest of edge collapses which appear
to be CPU-consuming to get through. We prefer a refinement
through subdivision which is more efficient for the targeted
applications.

Let us recall our main challenge: we aim to rebuild a
smooth surface from an irregular triangular base mesh, while
keeping the mesh complexity below the graphic capabilities
of a terminal. Required features are:

– Efficiency: the refinement speed must coincide with an
interactive rendering rate;

– Local refinement: triangle count being the main limiting
factor of current graphic terminals, additional informa-
tion has to be generated only where it is relevant (i.e. on
visible frontfacing regions and on silhouette areas), while
keeping a low triangle count anywhere else in a consistent
manner;

– A robust and reversible subdivision operator, the view-
point being highly variable during visualization.

If we refine a mesh in the highest localized manner (i.e.
in a single face) using the conventional 1-to-4 subdivision
operator, while maintaining the mesh consistency, a rapid in-
crease in the number of mesh faces is observed. By using the
1-to-3 uniform subdivision operator a third times slower in-
crease is observed (see Fig. 3). However, as each new vertex
inserted by the 1-to-3 subdivision operator has a valence of 3,
this would rapidly generate a valence imbalance and a highly
degenerated mesh as shown in Fig. 2. But the

√
3 subdivi-

sion operator recently introduced by Kobbelt [7] judiciously
integrates the edge swapping operator in order to balance
the valences (Fig. 5), while providing a powerful relaxation
scheme that guarantees aC2-differentiability everywhere on
the limit surface, except on a finite number of points where
only C1-differentiability is guaranteed. We thus choose this
scheme in order to derive an efficient view-dependent refine-
ment scheme, also well-suited to piecewise smooth surfaces.

�������� �	�
�����
��

�������������

�������
��

�������������

Fig. 3 Left: the original mesh we aim to refine in a very localized
manner. Center: the well-known dyadic split (also named edge bi-
section) needs supplementary edges to maintain the mesh consis-
tency, thus increasing by 6 the number of mesh faces. Right: the 1-
to-3 uniform face subdivision allows us to build a slower refinement
scheme, increasing only by two the number of mesh faces.

3 Proposed method layout

Our challenge consists in maximizing the ratioperceptual
quality / number of faces, while keeping the number of faces
below the capabilities of the terminal. The proposed tech-
nique iteratively applies an adaptive refinement through the√

3 subdivision operator. One can distinguish two processes
which will be detailed in the next two sections: extraction
of areas of interest, and local refinement by an iterative sur-
face subdivision. Each subdivision iteration is composed of
the following three successive steps which will be detailed in
section 6:



4 Pierre Alliez et al.

��WR��

XQLIRUP�VSOLW

��WR��

XQLIRUP�VSOLW

Fig. 2 A sequence of 1-to-3 uniform splits without edge swapping would imbalance the valence of the vertices and degrade the triangle aspect
ratio, while keeping the initial edges unchanged.

– Mesh subdivision;
– Geometrical filtering of the vertex positions in order to

obtain the desired surface smoothness;
– Edge swapping in order to increase the triangle aspect

ratio and to obtain smooth connections between refined
areas and their surrounding.

We thus obtain an efficient surface reconstruction, while
an optimized data structure presented in section 6.3 allows
the reversibility of the refinement process and provides the
robustness required for interactive visualization. A pseudo-
code of the full refinement sequence will be given at the end
of section 6.

4 Extraction of areas of interest

The aim of the extraction process is to select visually rele-
vant faces. We first define the viewpoint of the user by the
optical center and the vision frustum formed by this center
and the corners of the display window. The areas of interest
thus concern:

– The set of faces located inside the vision frustum;
– The frontfacing triangles, i.e. triangles whose outward half

space pointed by their normal contains the camera view-
point;

– The silhouette areas derived from the silhouette edges
definition shown in Fig. 1. Silhouette areas are formed
by the set of triangles adjacent to the vertices belonging
to the silhouette edges. The triangle strips built from ex-
tracted silhouette edges are shown in Fig. 4.

5 Local refinement by surface subdivision

Our aim is to locally refine the mesh on the areas of interest,
while preserving a low triangle count elsewhere in order to
stay below the manageable graphics budget. As explained in

section 2, we have chosen the
√

3 subdivision operator (Fig.
5) in order to ensure a highly progressive refinement and har-
monious transitions between different levels of detail (Fig. 6).
The silhouette is limited to triangle strips (Fig. 4), therefore
the refinement process is very localized since the operator is
applied alternately with the extraction of the silhouette areas,
which gradually narrow during the adaptive refinement (see
Fig. 11 in the results section).

The smoothness properties of the surface reconstructed
with a given subdivision operator is dependent on the asso-
ciated filtering process described in Fig. 7. According to the
last analysis from Kobbelt [7], the

√
3 subdivision operator

guarantees aC2-differentiability everywhere, except at ex-
traordinary vertices with valence�= 6 where it isC 1. The

√
3

���������	�
��	�� 
	�����������	���������	�

��������	����	��������������

�������	����	��������������

Fig. 4 The silhouette areas form triangle strips on which the
√

3
subdivision scheme is applied. Frontfacing and backfacing areas be-
longing to the silhouette triangle strips (dark and light grey respec-
tively) are separated by the silhouette edges.



Efficient View-Dependent Refinement of 3D Meshes using
√

3-Subdivision 5

√� √�

Fig. 5 Applying the
√

3 subdivision operator twice generates a uniform 1-to-9 refinement with trisection of every original edge [7]. Note that
the well-known 1-to-4 operator [5], when applied twice, increases the mesh complexity by a factor 16, instead of 9, which is a drawback for
the fine tuning of the levels of detail.

operator inserts a new vertexvb at the barycenter of each tri-
angle defined by the initial vertices{vi, vj , vk}, then relaxes
each initial vertexv (i.e. vi, vj , vk, . . .) according to the fol-
lowing law:

v := (1 − αn)v + αn
1
n

n∑

a=1

va, (1)

wheren denotes the valence of vertexv in the previous mesh
before subdivision,v1, . . . , vn denote the corresponding ini-
tial vertices adjacent tov, andαn is given by the following
formula:

/RFDO�UHILQHPHQW

(GJH�VZDS)LQDO�PHVK

2ULJLQDO�PHVK

Fig. 6 The
√

3 subdivision operator is chosen because of its capabil-
ity to locally increase the geometric density from a coarse region to
a highly detailed one. The automatic preservation of consistency, as-
sociated with an amazingly simple implementation, makes this ope-
rator an excellent choice for our local surface refinement scheme.

αn :=
4 − 2 cos(2π

n )
9

. (2)

Notice that theαn weighting parameter only depends onn,
the valence of vertexv. The choice ofαn according to this
formula guarantees the convergence to a smooth limit surface
[7].

���������	
�� ���
����������

����
�	
�����������
����������
���������

��αQ

αQ��

αQ��

αQ��

αQ��

αQ��

Fig. 7 The
√

3 operator consists of three steps: subdivision, geome-
trical filtering and edge swapping. The geometrical filtering step is
only applied on the initial vertices before subdivision (the black dots
on this example): each vertex position is updated by averaging it
with the crown of its initial neighboring vertices according to the
symmetric convolution mask shown.



6 Pierre Alliez et al.

6 Efficiency of the implementation

The efficiency of the view-dependent refinement process is
closely linked with execution speed and memory cost, while
the data structure influences its performances and its robust-
ness. Our goal consisting in the building of a reconstruction
engine that generates several thousands of faces by second
during the visualization process, robustness is a key feature.
Therefore we limit the numbers of data types and required
predicates. The following sections detail how we optimized
the extraction stage and the corresponding data structure.

6.1 The extraction sequence

In order to reduce the processing time of the extraction, the
items belonging to the areas of interest are sought through a
sequence of three successive steps:

1. The vision frustum is defined by the display window cor-
ners and the camera center. We only retain for the refi-
nement process the set of faces adjacent to the vertices
located within the vision frustum;

2. Faces orientation: we only retain the frontfacing areas
which are deduced from a straight orientation test with
the camera center. Such a search process is limited to the
set of faces located within the vision frustum;

3. The silhouette area search process is limited on the set of
faces selected from the two previous steps. We then retain
all the faces adjacent to the vertices belonging to the sil-
houette edges. They form a set of triangle strips along the
silhouette edges (Fig. 4).

The first iterations of refinement are applied on the front-
facing and silhouette items located within the vision frustum,
while the following ones concern a tiny subset of the trian-
gles belonging to the refined silhouette strips. During the vi-
sualization stage, the camera and the objects may be trans-
formed by scalings, translations, and rotations, which can be
the result of a combination of several transformations. For
efficiency, we avoid the calculation of each vertex transfor-
mation in the camera reference model and prefer to compute
an inverse transformation expressed only for the camera. A
mesh rotation around its own center is converted into an in-
verse camera rotation around the same center, a mesh scaling
is converted into a camera forwards to or backwards from the
mesh center, and so on. As the camera vision frustum is de-
fined by only five points (the optical center and the four win-
dow corners), the calculating time is thus strongly reduced.

6.2 Propagation by inheritance

The faces located in the vision frustum are searched in an
exhaustive way only at the first extraction. Indeed, the new
faces created through the subdivision paradigm generally lie
within the vision frustum by inheritance of their parent pro-
perties. The same inheritance is applied for frontfacing areas.

The level of refinement may be controlled by i) a maximum
number of refinement iterations, ii) a geometrical magnitude
measured in pixels on the image plane, thus resulting in a
device-driven refinement, iii) a surface curvature criterion in
order to avoid refinement of nearly planar areas, or iv) by any
combination of these criteria.

The first silhouette extraction only applies to the set of
seed faces located within the vision frustum and oriented to-
wards the camera. This heuristic runs fine in practice because,
as one of the two faces adjacent to a silhouette edge is front-
facing, this face is then a good candidate seed for the search
process when it is in the vision frustum. As the silhouette
areas are defined by the set of faces adjacent to vertices be-
longing to the silhouette edges, some of them may be neither
located in the vision frustum, nor front-oriented. These faces
are indeed necessary in order to apply the refinement process
and obtain a final smooth silhouette curve. For the next sil-
houette extraction, only the subdivided triangles of the last
silhouette triangle strips are analyzed. Figure 11 in the results
section illustrates the progressive silhouette tracking during
subdivision. Such an inherited behavior makes the assump-
tion that no silhouette areas on the limit surface will exist on
regions where no silhouette areas have been detected at the
first extraction. This is a reasonable assumption because the
process converges to a smooth limit surface.

Let us now examine the well-suited data structure used
for silhouette extraction and adaptive visualization.

6.3 Data structure

At a given moment in time, the areas of interest are itera-
tively refined by subdivision for a current viewpoint. At the
next instant, the viewpoint and the objects in the scene may
be modified. The areas of interest must then be updated be-
fore being refined again. This thus necessitates restoring the
initial mesh. Three different solutions for the data structure
may then be chosen to restore this information:

1. A permanent copy of the original mesh to be restored
by direct copy. Such a solution is memory expensive and
time consuming because it requires the entire data traver-
sal, instead of incrementally update their modified parts.
Furthermore, it does not allow the building of a progres-
sive reversible refinement;

2. A precomputed mesh hierarchy to quickly run through the
refinement levels. This solution cannot be retained in the
highly adaptive context of this paper. Since the

√
3 ope-

rator combines a face subdivision and an edge swapping,
this last topological operator makes the number of combi-
nations explode. Furthermore, the geometry we target on
silhouette areas being highly detailed, such a hierarchy
would take up too much memory space;

3. An adaptive data structure keeping a history of elemen-
tary actions generated on-the-fly during the adaptive re-
finement process. Such a history allows us to rewind the



Efficient View-Dependent Refinement of 3D Meshes using
√

3-Subdivision 7

sequence of actions associated with a view-dependent re-
finement process in a progressive way. This solution has
been selected since it only requires restoration by sim-
plification of the faces belonging to the areas of interest.
This simplification is very straightforward, invoking only
i) direct face or vertex elimination, ii) direct face updating
or, iii) vertex displacement. This solution has the advan-
tages of running fairly fast and requiring only low me-
mory cost.

The proposed data structure implemented in C++ uses only
face and vertex items, their adjacency and their history lists
of actions as follows:

class Face

{
Vertex *v[3];

Face *f[3]; // adjacent faces

list<Action> HistoryList; // history

};
class Vertex

{
float x,y,z;

list<Face> f; // adjacent faces

list<Vertex> v; // adjacent vertices

list<Action> HistoryList; // history

};
class Action

{
unsigned short label; // time index

unsigned char type; // four distinct actions

void *parms;

};

Each face or vertex carries its own refinement history, made
of a set of sequential labeled actions. The labelt := 3i +
(s − 1) refers to an action which has been done during the
sth step of theith iteration of the refinement sequence, where
s := {1, 2, 3} refers to the face subdivision step, the geome-
trical filtering step and the edge swapping step respectively.
An action labeled witht does not relate to the forwardt th

refinement step, but rather stores the minimal information
required to restore the item in its position at the previous
(t − 1)th step. As any useless information has to be released
during the rewind of a refinement history, the rewind of an
elementary action named for exampleface created simply
deletes this face from memory. The following list enumer-
ates the four elementary actions associated with the faces and
the vertices required for a complete reversibility of the refi-
nement history:

– Vertex creation during the 1-to-3 face subdivision: a ver-
tex is inserted at the face barycenter (Fig. 8);

– Face creation during the 1-to-3 face subdivision opera-
tion: two faces are created while the split one is updated
in order to save memory space (Fig. 8);

– Vertex displacement during the filtering process associa-
ted with the

√
3 subdivision operator (Fig. 8);

��������	�
	v

����3i
vertex_created�	��	v������������

����
�������	�
	f

����3i
face_modified
	f�v���	���	v3�	��	f������������

��������	�
	f1

����3i
face_created�	��	f1������������

��������	�
	f2

����3i
face_created�	��	f2������������

������������	�
	v1	
	v2	���	v3

����3i+1
vertex_moved
∆v1�	��	v1������������

����3i+1
vertex_moved
∆v2�	��	v2������������

����3i+1
vertex_moved
∆v3�	��	v3������������

�����������

�������� 

f

!

"

�

v1

v2

v3

f
f2

f1

v1

v2

v3

v

�

�

�

�

�

�

�

� �

f. f>�@

f2. f>�@

f1. f>�@

Fig. 8 Face subdivision and vertex filtering at theith iteration of
the refinement sequence. We denotef.v[n] the vertex of indexn be-
longing to the facef , andf.f [n] the face adjacent tof and opposite
to vertexf.v[n], n = {0, 1, 2}. The face subdivision creates one
vertexv and two facesf1 andf2, modifies the facef , and adds to
their history lists four associated elementary actions. The first ac-
tion denotedface modified associated withf and labeled3i means
that f.v[2] was referring tov3 before subdivision. We thus will be
able to restoref to its original position. Each created itemf1, f2

andv owns an initial action namedface created or vertex created.
Notice that each face of index 2 adjacent tof , f1 andf2 (i.e.f.f [2],
f1.f [2] andf2.f [2]) is located outside the initial triangle facef . The
filtering process applies a displacement∆vn on the position of each
initial verticesv1, v2 andv3 and generates for each an action named
vertex moved, where the corresponding displacement∆vn is stored.

– Edge swapping, equivalent to a vertex exchange between
two adjacent faces. Our data structure does not use any
edge item to enforce robustness and to ensure memory
saving. The edge swapping is thus associated with only
two elementary actions described in Fig. 9.

To improve the efficiency of the proposed process, we first
precompute and store in a finite-length table the weighting
coefficients1 − αn and αn

n (see Eq. 2), the number of dif-
ferent valences being limited on a triangular mesh. We also
estimate in a first pass the memory allocation that would be
necessary for the refinement process, in order to allocate me-
mory per large blocks and avoid memory fragmentation.

The following pseudo-code summarizes the global ex-
traction and subdivision sequence. Various refinement crite-
ria may be expressed separately for frontfacing and silhouette
areas by:

– A minimum edge length expressed in pixels in the image
space;

– A predefined number of iterations;
– A threshold on an estimation of the surface curvature.



8 Pierre Alliez et al.

Let us now consider the current vision frustum,{F} the faces
belonging to the vision frustum,{Ff} the frontfacing faces
and{Fs} the faces belonging to the silhouette areas:

Adaptive refinement sequence
Rewind last refinement
// Extraction stage

flag→F the faces located in the vision frustum
flag→Ff the frontfacing faces ∈ {F}
flag→Fs the silhouette faces from seeds ∈ {Ff}

i := 1

While({Fs}
⋃ {Ff} is not empty) // ith subdivision iteration

If(f.flag→Ff and frontfacing refinement criterion is true)
remove f from {Ff}

If(f.flag→Fs and silhouette refinement criterion is true)
remove f from {Fs}

subdivide {Fs}
⋃ {Ff} (ith iteration)

flag→Ff sub-faces of {Ff}
flag→Fs silhouette faces from seeds ∈ sub-faces of {Fs}
i + +

The following pseudo-code details the three subdivision steps
presented in section 6.1, and describes the history generation:

1. Face subdivision (3ith step), see Fig. 8
For each face f = {v1, v2, v3} to subdivide

add vertex v at f.barycenter
add(3i,vertex created) to v.HistoryList
f := {v1, v2, v}
add(3i,face modified,f.v[2] was v3) to f .HistoryList
add face f1 := {v3, v1, v}
add(3i,face created) to f1.HistoryList
add face f2 := {v2, v3, v}
add(3i,face created) to f2.HistoryList
flag→to filter v1, v2 and v3

update local vertex and face adjacency

�

�

�

�

�

�

�

�

�

�

�

������	
����
��
f


���3i+2�face_modified�
f�v���
�
�
v1�
��
f������������

������	
����
��
f ’


���3i+2�face_modified�
f
’�v���
�
�
v2�
��
f
’������������

����
��
�

f
f '

v1

v4

v3

v

v2

v1

v4

v3

v

v2

f

f '
�

�

�

�

�

�

�

Fig. 9 Edge swapping at theith iteration of the refinement se-
quence. Let us consider the facef , we swap the edge shared with
f ′ := f.f [2]. This operation is memorized using only two actions
labeled3i + 2 and associated withf andf′. In this example, the
vertex f.v[0] was referring tov1 before swapping, whilef ′.v[0]
was referring tov2. The two curved arrows on the right, highlight
the fact that two pairs of adjacent faces around vertexv remain to be
processed.

flag→to swap f , f1 and f2

2. Geometrical filtering ((3i + 1)th step)
For each vertex v with flag→to filter

read convolution mask associated to v.valence
compute and store displacement ∆v

For each vertex v with flag→to filter

move vertex according to ∆v
add(3i + 1,vertex moved,∆v) to v.HistoryList
flag→filtered v

3. Edge swapping ((3i + 2)th step), see Fig. 9
For each face f with flag→to swap

f ′ := f.f [2] // neighbor of index 2 only
// let f = {v1, v2, v} and f ′ = {v2, v1, v4}
f := {v4, v2, v}
add(3i + 2,face modified,f.v[0] was v1) to f .HistoryList
f ′ := {v, v1, v4}
add(3i+2,face modified,f ′.v[0] was v2) to f ′.HistoryList
update local face and vertex adjacency
flag→swapped f

flag→swapped f ′

7 Results

We have implemented the proposed view-dependent refine-
ment technique for 3D meshes in C++ and by using the OpenGL
graphics library. The results obtained on many different ex-
amples have highlighted strong benefits of this approach com-
pared to a uniform refinement technique. In the general case,
and for a given user viewpoint, only a fraction of the global
surface is seen. It is then judicious to refine only these areas of
interest. One of the most obvious benefits is in the visual qual-
ity which is obtained by the selective smoothing of the silhou-
ettes. This smoothing is updated according to user viewpoint
with efficiency and complete robustness. The process times
given in this section have been measured on a PII 266 MHz,
using 256 Mbytes memory, including extraction, but exclud-
ing the building of the corresponding OpenGL display lists
and the rendering.

Figure 10 highlights the benefits in terms of savings in
calculation when taking the viewpoint into account. In this
example, the silhouette areas have been refined until the pro-
jected edge length does not exceed the screen resolution, this
heuristic eliminating clearly the polygonal aspect along the
silhouette. The non-visible backfacing areas are not refined
and simply removed from the display list, while frontfacing
areas are refined according to a maximum number of four
subdivision iterations. We could also use, for the frontfacing
areas, a device-driven heuristic such as the minimum edge
length in the image plane, or a surface geometry criterion
such as a curvature estimation. In this example, 6.4 s have
been required to increase the original 838 triangle mesh up to
a 43 294 triangle mesh. A global uniform refinement equiva-
lent to the silhouette area would have led to a600 000 triangle



Efficient View-Dependent Refinement of 3D Meshes using
√

3-Subdivision 9

mesh, with the same visual quality for the given viewpoint as
this43 294 triangle mesh.

Figure 11 illustrates how the silhouette areas progressi-
vely narrow during four iterations of adaptive refinement only
applied on the silhouette areas. The exhaustive silhouette search
only occurs during the first extraction (top line, column 2),
the following ones being restricted to the last silhouette tri-
angle strips. A time of 0.9 s has been required to increase
the triangle count from 562 to3 736, the silhouette extraction
representing only 2% of it.

Figure 12 illustrates an adaptive refinement according to
the following number of subdivision iterations: three on front-
facing areas and six on silhouette areas. A time of 4.2 s has
been required to increase the triangle count from1 396 to
18 034. This figure also highlights the cropping effect of the
local refinement restricted to the vision frustum.

We have also implemented the uniform 1-to-4 Loop sub-
division scheme and the uniform

√
3 subdivision scheme. Fig-

ure 13 compares them with the proposed view-dependent re-
finement technique. A sequence of uniform subdivision high-
lights the fact that the

√
3 subdivision operator (line 1) in-

creases the geometric density more slowly than the Loop sub-
division operator (line 2). The proposed method allows us to
further optimize the ratio perceptual quality / number of faces
since the refinement is localized on visually relevant areas
such as frontfacing and silhouette areas (line 3). In this ex-
ample, three subdivision iterations on frontfacing areas make
it possible to obtain the same quality with fewer faces than the
uniform

√
3 scheme. Furthermore, five subdivision iterations

on silhouette areas completely remove the polygonal aspect
of the silhouette with a28 170 triangle count mesh, while the
uniform Loop and the uniform

√
3 scheme reach with only

three iterations88 840 and37 692 faces respectively. Figure
14 illustrates the increase of the number of mesh faces asso-
ciated with the refinement sequences shown in Fig. 13.

In particular, these results demonstrate the gain obtained
in memory for the adaptive refinement, and the benefit of
not having to render so many redundant triangles. Notice that
such a gain is less obvious in the context of a continuous nav-
igation since we do not exploit the frame-to-frame coherence.

Interestingly, we have also noticed a shorter time required
for the mesh generation through subdivision than for a straight
reading of a raw file describing the refined mesh, or even for
a bitstream decoding of this refined mesh [10].

8 Conclusion and future work

We have derived an efficient view-dependent refinement tech-
nique of 3D meshes which provides visually smooth surfaces
from the subdivision scheme defined by Kobbelt [7]. Our
contribution mainly concerns the view-dependent behavior,
and an efficient implementation associated with a simple data
structure that contains neither edges, nor hierarchy which ap-

�����������	
�����
�

�����

�����

����

����

�����

�����

����

�����

�����

�����

����

����

�

�����

�����

�����

�����

�����

�����

�����

�����

�����

� � � � � �

,WHUDWLR QV

�
I
D
F
H
V

8QLIR UP VTUW���

8QLIR UP /RRS

9 LHZ�GHSHQGHQW

Fig. 14 Increase of the number of faces (meshvenus, see Fig. 13)
with the uniform Loop refinement scheme, the uniform

√
3 refine-

ment scheme and the proposed view-dependent technique. Note that
the fourth and fifth iterations correspond to a view-dependent refi-
nement only applied on the silhouette areas.

pears unsuitable to highly adaptive methods.

We have pointed out a practical application of the
√

3 sub-
division operator: a complete adaptation both to the capabil-
ities of a graphic terminal and to the user viewpoint. For a
telecom operator, the proposed technique can be seen as a
few steps towards scalable tuning of theQuality of Service
for 3D-based applications, well-suited to low and high end
terminals.

Despite the efficiency of the proposed scheme, we note
two remaining limitations. The first one lies within the refined
data which have only a short life. Indeed, for a given view-
point, a set of visually relevant data is generated through sub-
division, and completely removed from memory through the
rewind of its refinement history, before processing again the
original mesh for the next user viewpoint. This drawback may
be reduced in the reasonable case of continuous navigation in
the virtual scene by stretching the silhouette triangle strips in
order to spread the refinement cost over several images. The
second limitation is that frontfacing areas which are hidden
by other parts are nevertheless refined. Again, in the hypoth-
esis of continuous navigation, the OpenGL z-buffer built for
the previous viewpoint could be used to avoid useless pro-
cessing.

Other future work includes: i) a continuous geomorph be-
tween levels of details, ii) the definition of semi-sharp edges
as in [33] that may allow a more sophisticated surface recon-
struction technique, iii) the enhancement of the extraction ef-
ficiency by using the output-dependent silhouette extraction
method from Benichou and Elber [20]. However, for current
mesh complexity as those in our examples, the extraction pro-
cess represents only an average of 2% of the entire subdi-
vision process duration, iv) the fast backface culling using
normal masks from Zhang and Hoff [22] which could also
further reduce the cost of the extraction process.



10 Pierre Alliez et al.

Fig. 10 Mannequin mesh . Top line, and from left to right: the original mesh, the refined mesh, and the refined model displayed under a
different viewpoint in order to highlight the geometrical density obtained on silhouette areas. Notice how backfacing areas are left unrefined
in order to optimize the ratio: perceptual quality / number of faces. Bottom left: the polygonal aspect from the silhouettes has been removed
since the mesh is refined on corresponding areas until the edge length measured in the image space is lower than one pixel. Middle right: the
silhouette details on the right ear lobe. Bottom right: the refined mesh seen from the back.



Efficient View-Dependent Refinement of 3D Meshes using
√

3-Subdivision 11

Fig. 11 Nefertiti mesh. Top left: the original mesh seen from the current viewpoint. From top to bottom: four successive iterations of the
silhouette refinement. Column 2: the silhouette strips extracted before subdivision. Column 3: progressive smoothing of the silhouette after
subdivision as seen from the user viewpoint. Column 4: local and progressive increase of the mesh density near the silhouette.



12 Pierre Alliez et al.

Fig. 12 Venus mesh. Top line, from left to right: the original mesh seen from the current viewpoint, the model refined using three iterations
on frontfacing areas and six on silhouette areas, and the model seen from a different viewpoint. Bottom images: areas of interest are restricted
to the silhouette strips and to the set of frontfacing faces intersecting the vision frustum.

Acknowledgements A very special thanks to Gaspard Breton for
helping to implement the camera transform, to Alexandre Buisson
for invaluable help in optimization tips, and to Mathieu Desbrun
for writing assistance. The mannequin head is courtesy of Hugues
Hoppe. This work is part of the 3D project V2NET, backed by a
grant from the RNRT (National Telecommunications Research Net-
work), and has been partially supported by the Integrated Media
Systems Center, a NSF Engineering Research Center, cooperative
agreement number EEC-9529152.

References

1. D. Zorin and P. Schr¨oder. Subdivision for Modeling and Ani-
mation.SIGGRAPH 2000 course notes, 2000.

2. P. Schr¨oder. Opportunities for subdivision-based multiresolu-
tion modeling. InPacific Graphics 99 Conference Proceedings,
pages 104–105, 1999.

3. E. Catmull and J. Clark. Recursively generated B-Spline sur-
faces on arbitrary topological meshes.Computer Aided Design,
10(6):350–355, 1978.

4. D. Doo and M. Sabin. Behaviour of recursive division surfaces
near extraordinary points.Computer Aided Design, 10(6):356–
360, 1978.

5. C. Loop. Smooth surface subdivision based on triangles, 1987.
Master’s thesis.

6. H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. Mc
Donald, J. Schweitzer, and W. Stuetzle. Piecewise smooth sur-
face reconstruction. InSIGGRAPH 94 Conference Proceed-
ings, pages 295–302, 1994.

7. L. Kobbelt.
√

3-Subdivision. InSIGGRAPH 2000 Conference
Proceedings, pages 103–112, 2000.



Efficient View-Dependent Refinement of 3D Meshes using
√

3-Subdivision 13

Fig. 13 Venus mesh. Top left: the original mesh seen from the current viewpoint. Line 1: a sequence of three uniform
√

3 subdivision
iterations. Line 2: a sequence of three uniform Loop subdivision iterations. Line 3: the resulting view-dependent refined mesh after three and
five iterations on frontfacing areas and on silhouette areas respectively.



14 Pierre Alliez et al.

8. A. Khodakovsky, P. Schr¨oder, and W. Sweldens. Progressive
geometry compression. InSIGGRAPH 2000 Conference pro-
ceedings, pages 271–278, 2000.

9. P. Alliez and M. Desbrun. Progressive encoding for lossless
transmission of 3D meshes. InSIGGRAPH 2001 Conference
Proceedings, pages 195–202, 2001.

10. P. Alliez and M. Desbrun. Valence-driven connectivity encod-
ing of 3D meshes. InEurographics 2001 Conference Proceed-
ings, pages 480–489, 2001.

11. H. Hoppe. View-dependant refinement of progressive meshes.
In SIGGRAPH 97 Conference Proceedings, pages 189–198,
1997.

12. J.J. Koenderink. What does the occluding countour tell us about
solid shape.Perception, 13:321–30, 1984.

13. X. Gu, S.J. Gortler, H. Hoppe, L. McMillan, B. J. Brown, and
A.D. Stone. Silhouette mapping. Technical Report TR-1-99,
Harvard University, 1999.

14. P.V. Sander, X. Gu, S.J. Gortier, H. Hoppe, and J. Snyder. Sil-
houette clipping. InSIGGRAPH 2000 Conference proceedings,
pages 327–334, 2000.

15. D. Dooley and M. Cohen. Automatic illustration of 3d geomet-
ric models: Lines. InProceedings of the Symposium on Inter-
active 3D Graphics, pages 77–82, 1990.

16. L. Markosian, M.A. Kowalski, S.J. Trychin, J.F. Hugues, and
L.D. Bourdev. Real time non photorealistic rendering. InSIG-
GRAPH 97 Conference Proceedings, pages 415–420, 1997.

17. A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-
photorealistic lighting model for automatic technical illustra-
tion. In SIGGRAPH 98 Conference Proceedings, pages 447–
452, 1998.

18. B. Gooch, P-P.J. Sloan, A. Gooch, P. Shirley, and R. Riesenfeld.
Interactive technical illustration.ACM Symposium on Interac-
tive 3D Graphics, pages 31–38, 1999.

19. R. Raskar and M. Cohen. Image precision silhouette edges.
Symposium on Interactive 3D Graphics 1999, Atlanta, pages
135–140, 1999.

20. F. Benichou and G. Elber. Output sensitive extraction of silhou-
ette from polygonal geometry. InPacific Graphics 99 Confe-
rence Proceedings, pages 60–69, 1999.

21. G. Barequet, C.A. Duncan, M.T. Goodrich, S. Kumar, and
M. Pop. Efficient perspective-accurate silhouette computation.
ACM SCG 99, pages 417–418, 1999.

22. H. Zhang and K.E. Hoff. Fast backface culling using normal
masks. Symposium on Interactive 3D Graphics, pages 103–
106, 1997.

23. C. Touma and C. Gotsman. Triangle mesh compression. In
Graphics Interface 98 Conference Proceedings, pages 26–34,
1998.

24. H. Hoppe. Progressive meshes. InSIGGRAPH 96 Conference
Proceedings, pages 99–108, 1996.

25. O. Devillers and P-M. Gandoin. Geometric compression for in-
teractive transmission. InVisualization 2000 Conference Pro-
ceedings, pages 319–326, 2000.

26. G. Chaikin. An algorithm for high speed curve generation.
Computer Graphics and Image processing, 3:346–349, 1974.

27. M. Halstead, M. Kass, and T. DeRose. Efficient, fair interpola-
tion using catmull-clark surfaces. InSIGGRAPH 93 Conference
Proceedings, pages 35–44, 1993.

28. J. Warren. Subdivision methods for geometric design. Techni-
cal report, Rice University - Department of Computer Science,
1995.

29. M. Eck and H. Hoppe. Automatic reconstruction of b-spline
surfaces of arbitrary topological type. InSIGGRAPH 96 Con-
ference Proceedings, pages 325–334, 1996.

30. T.W. Sedelberg, J. Zheng, D. Sewell, and M. Sabin. Non-
uniform recursive subdivision surfaces. InSIGGRAPH 98 Con-
ference Proceedings, pages 387–394, 1998.

31. H. Suzuki, S. Takeuchi, and T. Kanai. Subdivision surface fit-
ting to a range of points. InPacific Graphics 99 Conference
Porceedings, pages 158–167, 1999.

32. A. Levin. Interpolating nets of curves by smooth subdivision
surfaces. InSIGGRAPH 99 Conference Proceedings, pages 57–
64, 1999.

33. T. DeRose, M. Kass, and T. Trunong. Subdivision surfaces in
character animation. InSIGGRAPH 98 Conference Proceed-
ings, pages 85–94, 1998.


