
Figure 6: 3D mean values. For a 3D polytope with 7 faces (left),
the mean value coordinates defined in [Ju et al. 2005b] (top) are
significantly more distorted than our 3D mean value coordinates
(bottom) for the point indicated by the red sphere. Three slices are
shown with the order indicated: one horizontal, and two verticals.

their three-point family are simply, for µ∈ [0, 1]:

wµ,1i (x) = |x− vi|2 − |x− vi|µ.

Only two cases in this family (µ = 0 and µ = 1) were producing
non-negative homogenous coordinates in their formulation; ours
enforce non-negativity for all µ instead, at the cost of smoothness:
for µ∈]0,1[, the resulting coordinates are only C0.

Five-point coordinates. Similarly, the expressions for the
5-point Wachspress family and the two types of 5-point mean value
family are (for µ ∈ [0, 1] and where angles are denoted using the
conventions depicted in Fig. 2):

wµ,2i (x) = |x− vi|2 − (1 + µ
Ai−1 +Ai −Bi
Ai−1 +Ai

),

wµ,3i (x) = |x− vi|2−

|x− vi|
(1 + µ)(sinαi,x,i−1 + sinαi+1,x,i)

sinαi,x,i−1 + sinαi+1,x,i + µ sin(αi+1,x,i−1)
,

wµ,4i (x) = |x− vi|2 − |x− vi|
cos(µ(αi,x,i−1 − αi+1,x,i/4))

cos(µ(αi,x,i−1 + αi+1,x,i/4))
.

4 Other Examples of Power Coordinates

We provide next a series of new coordinates with varying degrees
of smoothness, to illustrate the generality of power coordinates.

4.1 Simple power coordinates

One can introduce simple coordinates by simply choosing weights
functionswi that are negative (to trivially enforce the sufficient con-
dition in Eq. (9)) and translation invariant homogeneous functions
of x ∪ {vi}i=1..n of degree 2 (to enforce similarity invariance):
they will directly enforce all the conditions (a)–(f), although with
C0 continuity in general. One can also use weights of the form
wi(x)= |vi−x|2−ŵi(x) for any ŵi’s that are non-negative trans-
lation invariant homogeneous functions of x ∪ {vi}i=1..n of arbi-
trary degree. Scale invariance is easy to enforce through the proper
choice of exponent or through normalization by the volume, surface
area, or mean-width of the polytope P , as discussed in Sec. 2.5.
Moreover, weights that are functions of edge distances such as the
ones used in [Malsch and Dasgupta 2004] and their trivial extension
using facet distances can also be employed, offering a direct gen-
eralization of their results to 3D. Furthermore, should such power
coordinates need to be C∞, the procedure described in Sec. 2.6 can
be directly used to ensure smoothness on any given polytope P .

4.2 Mean-Wachspress coordinates

A 2-parameter family of weights that blends Wachspress and mean
value coordinates can be trivially formulated as well: for any
strictly positive values a and b, weight functions defined as:

wMW
i (x) = |vi − x|2 − a− b |x− vi|/|P|1/d, (15)

will induce power coordinates, where the volume |P| of P is raised
to the inverse of the dimension to enforce similarity invariance.
These weights always produce C∞ coordinates: since they are
formed as a combination of Wachspress and mean-value homoge-
neous coordinates that are strictly positive inside P: thus, the suf-
ficient condition of smoothness discussed in Sec. 2.6 is guaranteed
to hold. Fig. 7 illustrates a few of these coordinates in 2D.

Figure 7: Mean-Wachspress. Using the unified expression in
Eq. (15), we recover mean value coordinates (left), Wachspress co-
ordinates (right), or a blend between the two (middle).

4.3 Anisotropic power coordinates

While all the choices of weights presented so far used Euclidean
geometric measures such as distances or areas, they can be eas-
ily extended to incorporate anisotropy through a norm defined by
|v|2g = vTGv for a constant, symmetric positive definite matrix
G. This anisotropic norm allows us to tailor our barycentric co-
ordinates quite directly by substituting the Euclidean norm | · |
by | · |g in previous formulas. In particular, weights of the form
wi(x) = |vi − x|2− ŵi(x) induce anisotropic barycentric coor-
dinates while staying similarity invariant if the distances used in
ŵi(x)’s are modified to be anisotropic. Note that this treatment is
reminiscent of the creation of anisotropic Hodge stars (i.e., [de Goes
et al. 2014a]) due to the interpretation of coordinates as Hodge star
values mentioned in Sec. 2.3.

Anisotropic mean value coordinates. The anisotropic variant
of mean value coordinates is particularly interesting, as it has a nice
geometric interpretation. Indeed, we define its weights as:

wAMVC
i (x) = |vi − x|2 − 2|vi − x|g. (16)

(Notice that unlike Eq. (15), there is no need to divide by the vol-
ume of P: similarity invariance is automatically enforced by the
normalization step.) Based on Eq. (2), the distance from the evalu-
ation point x to the facet of D(x) that is dual to edge xvi is:

di =
|vi − x|g
|vi − x|

We claim that this particular set of distances di can be geometrically
constructed as follows. For a given evaluation point x, construct a
secondary polytope Z with vertices zi that are at the intersection of
the rays xvi and the ellipsoid defined by the set of points y such
that (y − x)tG(y − x) = 1. The new polytope is trivially convex,
and the new vertices zi are expressed as

zi − x =
vi − x

|vi − x|g
.



Figure 8: Anisotropic 2D mean value coordinates. Computing the
mean value weights using a constant metric G= diag(15, 1) (top)
or G= diag(1, 15) (bottom) generates anisotropic variants of the
original mean value coordinates, still satisfying the same properties
but with deformed shape functions (see Fig. 7(right)).

Now consider the polar dual of Z w.r.t. a unit sphere centered at x
and denote the vertices of that polar dual by pi. One realizes that

pi − x =
|vi − x|g
|vi − x|2 (vi − x),

and thus |pi−x| = di. We conclude two things from this obser-
vation: first, the dual cell D(x) is always n-faceted since it corre-
sponds to Wachspress homogeneous coordinates for the polytope
Z; second, sinceZ depends smoothly on x, these anisotropic mean
value coordinates are always C∞, see Fig. 8. The SPD matrix G
defining the norm |.|g can also be spatially varying, i.e., a different
matrix for the evaluation ofwAMVC

i at a different x: the construction
and resulting properties are unchanged, offering even more degrees
of freedom to derive additional coordinates, see Fig. 12 (left).

Anisotropic mean-Wachspress coordinates. By the same rea-
soning, and because Wachspress coordinates are such that wWach

i −
|x−vi|2 is constant, the anisotropic variant of mean-Wachspress
coordinates are also C∞, and expressed with weights

wAMW
i (x) = |vi − x|2 − a− b |vi − x|g/|P|1/d. (17)

Figure 9: Anisotropic 3D mean value coordinates. Using the same
polytope and cuts as in Fig. 6, our 3D mean value coordinates for
G=diag(10, 1, 1) (top) and G=diag(1, 10, 1) (bottom).

4.4 Iterated power coordinates

Finally, we note that one can even define power coordinates implic-
itly through repeated iterations. For example, for a given evalua-
tion point x and a convex polytope P , one can compute a series of
weights w(k)

i (starting with w(0)
i = wWach

i for instance) using:

w
(k+1)
i (x) = |vi − x|2 − |vi − x|λ

(k)
i (x), (18)

where λ(k)
i (x) denotes the power barycentric coordinates derived

from weights w(k)
i . This procedure converged (in only 3 to 5 iter-

ations) to the same barycentric coordinates for all w(0)
i we chose.

The resulting barycentric coordinates (see Figs. 10 and 12(right))
are visually and numerically smooth. While we do not know how
to analyze or explicitly formulate the resulting coordinates, note
that they come from a repeated “barycentric” averaging of weights,
which may allow us to algorithmically define weights in such a
way that the resulting coordinates satisfy possibly-intricate implicit
relations—maybe even differential relations.

Figure 10: Iterated power coordinates. From arbitrary C0 coor-
dinates (top), 3 iterations of Eq. (18) result in smooth coordinates.

5 Extensions to Non-Convex Polytopes

The link between homogeneous coordinates and orthogonal duals
partially extends to the case of non-convex polygons and polytopes,
in particular if we remove the positivity constraint (c).

5.1 Signed coordinates on non-convex 2D polygons

In R2, there is still a 1-to-1 correspondence between homogeneous
coordinates and weighted circumcentric dual cellsW(x) described
in Sec. 2.6, created as the dual of x for the simplicial d-manifold
with a “full connectivity” linking x to the vertices of P . Indeed,
for any set of functions hi(x) satisfying Eq. (4), the 2D vectors
fi(x)=hi(x)(vi − x)⊥ where ⊥ denotes a counterclockwise π/2
rotation, form a closed loop, thus defining the boundary of an or-
thogonal dual cell W(x) with possible self-intersections (see in-
set in Sec. 2.6). The converse is also true: given any orthogonal
dualW(x), hi(x) defined through the signed diagonal Hodge star
would satisfy Eq. (4). Thus, through the weighted circumcentric
dual, all homogeneous coordinates hi have a one-to-one correspon-
dence to an assignment of wi up to a constant gauge. Note that the
homogeneous coordinates can now be negative as a consequence,
thus violating condition (c). Replacing the power cell D(x) by the
weighted circumcentric dual W(x) in our approach recovers the
traditional 2D mean value coordinates, which are valid (but often
with negative coordinates) on arbitrary polygons.

5.2 Signed coordinates on non-convex 3D polytopes

The 3D case is more involved for two reasons. First, even though
there is still a 1-to-1 correspondence between power cells and



non-negative homogeneous coordinates as implied by the work of
Memari et al. [2012], the resulting coordinates are not guaranteed
to be continuous for continuous weights anymore, thus violating
condition (d): the power cell itself can exhibit discontinuous be-
havior because the visibility vectors connecting x to vertices vi
change their relative configuration as the evaluation point moves
around a non-convex polytope. Second, if we remove the positiv-
ity constraint, the resulting arbitrary homogeneous coordinates are
not fully characterized by our weighted circumcentric construction:
while Minkowski’s theorem guarantees the existence of a convex
orthogonally dual polytope from a sequence of (possibly flipped)
normals, such a polytope is no longer necessarily a weighted cir-
cumcentric dual. As a consequence, a truly general extension of
power coordinates for non-convex polytopes remains open. Nev-
ertheless, our weighted circumcentric approach still spans valid
homogeneous coordinates that are potentially negative, leading to
signed barycentric coordinates if their sums

∑
i hi are bounded

away from zero; e.g., we can recover well-known coordinates such
as the Voronoi coordinates in 3D mentioned in [Ju et al. 2005a].

5.3 Positive-power mean value coordinates.

If one still requires true generalized barycentric coordinates satis-
fying all the conditions (a)-(d), our geometric characterization of
coordinates over convex polytopes – in particular, our use of a sec-
ondary polytope in Sec. 4.3 – suggests a simple way to extend
power coordinates to non-convex polytopes: one can construct a
secondary polytope by smoothly displacing the original vertices de-
pending on the evaluation point. We can indeed alter the position
of the vertices to make the modified polytope star-shaped with re-
spect to the evaluation point; using the mean value weights given in
Eq. (12), we can still construct a non-degenerate power cell which
will be, by definition, still circumscribed to the unit sphere, but
that may involve only a subset of the vertices of the non-convex
polytopes. For instance, in order to eval-
uate positive generalized barycentric co-
ordinates for the evaluation point x in-
side the 7-vertex non-convex polygon
displayed in the inset, the pink poly-
gon is used. This star-shaped polygon
is found by ignoring the obstructed ver-
tex v5 blocked by the concave vertex v6,
and by displacing vertex v4 to a mod-
ified position ṽ4 along the edge v3v4.
(Note that it corresponds to the visible portion of the polygon used
in the positive MVC coordinates [Lipman et al. 2007].) This con-
struction, once the barycentric coefficients are redistributed to the
displaced vertices, results in true coordinates, without discontinuity
due to visibility as demonstrated in Fig. 11. The ensuing coordi-
nates are thus both local (in the sense advocated in [Zhang et al.
2014]), and positive [Lipman et al. 2007], but require no quadrature
to evaluate – making them particularly well suited to cage-based de-
formation of meshes. We leave implementation details and analysis
of this construction in 2D and 3D to a forthcoming paper.

6 Future Work

Our characterization of coordinates based on power duals opens
a number of avenues for future work. We mention a few in lieu
of a conclusion to illustrate both the current limitations of power
coordinates and the opportunities that our work offers.

Theoretical developments. Given the generality of power coor-
dinates, finding necessary conditions on the weights for smooth-
ness, deriving simple and efficient evaluations of their derivatives,
or proving contraction for iterated power coordinates are examples

Figure 11: Positive Power Mean Value Coordinates. Even on non-
convex polytopes, one can use the power mean value coordinates
on a “secondary” star-shaped polytope to force positivity. Here,
four basis functions are displayed using a rainbow color ramp.

of results that could have very practical consequences. The use of
power coordinates to define higher-order Whitney basis functions
using the work of Gillette et al. [2016] is also of great interest.

Harmonic coordinates. Coordinates issued from partial differen-
tial equations have not found wide acceptance due to the memory
footprint required by the storage of solutions, despite the clear ad-
vantage of being positive on arbitrary polygons. A natural question
is whether the additional insight afforded by power coordinates can
result in an explicit or iterated formulation (see Sec. 4.4) which
could be evaluated without the need for precomputed solutions.

Bézier patches. Non-negative barycentric coordinates over poly-
topes have been shown crucial to offer multisided Bézier patches
in [Loop and DeRose 1989], and recently in [Varady et al. 2016].
Rewriting their construction in the context of power coordinates
may help in providing fast evaluations of these general patches.

Coordinates on non-convex polytopes. Although we showed how
our construction extends naturally to non-convex polytopes, we
have only scratched the surface of what can be accomplished for
this case. Understanding a general construction with the same effi-
ciency of evaluation is an obvious future work.

Transfinite interpolants. Finally, the notion of power diagram
for pointsets extends to continuous power diagrams of curves,
which can be computed rather efficiently [Hoff
et al. 1999]. Consequently, our construction
will converge as a polytope is refined to cap-
ture a smooth shape (inset: example of power
Voronoi dual for 3D bean shape). This exten-
sion is similar to the transfinite form of Sibsons
interpolant [Gross and Farin 1999], and closed-
form solutions of specific choices of weight
functions are possible and could offer valuable
new transfinite interpolants as well.
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tion of Bézier surfaces. ACM Trans. Graph. 8, 3, 204–234.

MALSCH, E. A., AND DASGUPTA, G. 2004. Shape functions for
polygonal domains with interior nodes. International Journal
for Numerical Methods in Engineering 61, 8, 1153–1172.

MALSCH, E. A., AND DASGUPTA, G. 2005. Algebraic construc-
tion of smooth interpolants on polygonal domains. The Mathe-
matica Journal 9, 3, 641–658.

MALSCH, E. A., LIN, J. J., AND DASGUPTA, G. 2005. Smooth
two-dimensional interpolations: A recipe for all polygons. Jour-
nal of Graphics, GPU, and Game Tools 10, 2, 27–39.

MANSON, J., AND SCHAEFER, S. 2010. Moving least squares
coordinates. Comp. Graph. Forum 29, 5, 1517–1524.

MANSON, J., LI, K., AND SCHAEFER, S. 2011. Positive Gordon-
Wixom coordinates. CAD 43, 11, 1422–1426.

MEMARI, P., MULLEN, P., AND DESBRUN, M. 2012.
Parametrization of generalized primal-dual triangulations. In In-
ternational Meshing Roundtable. 237–253.

MEYER, M., BARR, A., LEE, H., AND DESBRUN, M. 2002.
Generalized barycentric coordinates on irregular polygons. J.
Graph. Tools 7, 1, 13–22.

MILBRADT, P., AND PICK, T. 2008. Polytope finite elements. Int.
J. Num. Meth. Eng. 73, 12, 1811–1835.

MULLEN, P., MEMARI, P., DE GOES, F., AND DESBRUN, M.
2011. HOT: Hodge-optimized triangulations. ACM Trans.
Graph. 30, 4.

SCHAEFER, S., JU, T., AND WARREN, J. 2007. A unified, integral
construction for coordinates over closed curves. CAGD 24, 8-9,
481–493.

SHEPARD, D. 1968. A two-dimensional interpolation function for
irregularly-spaced data. In ACM National Conference, 517–524.

SIBSON, R. 1981. A brief description of natural neighbor interpo-
lation. In Interpolating Multivariate Data. John Wiley & Sons,
ch. 2, 21–36.

SUKUMAR, N., AND BOLANDER, J. 2009. Voronoi-based inter-
polants for fracture modelling. Tessellations in the Sciences.

SUKUMAR, N. 2004. Construction of polygonal interpolants: a
maximum entropy approach. Int. J. Num. Meth. Eng. 61, 12,
2159–2181.

VARADY, T., SALVI, P., AND KARIKO, G. 2016. A multi-sided
Bézier patch with a simple control structure. Comp. Graph. Fo-
rum 35, 2, 307–317.

Figure 12: More 3D coordinates. Left: anisotropic mean value
coordinates for G = diag(5 cos2(10x)+1, 1, 1). Right: iterated
power coordinates from Eq. (18) in 3D.

WACHSPRESS, E. 1975. A Rational Finite Element Basis. Aca-
demic Press.

WARREN, J., SCHAEFER, S., HIRANI, A. N., AND DESBRUN,
M. 2006. Barycentric coordinates for convex sets. Advances in
Computational Mathematics 27, 3, 319–338.

WARREN, J. 2003. On the uniqueness of barycentric coordinates.
Contemporary Mathematics, 93–99.

WEBER, O., AND GOTSMAN, C. 2010. Controllable confor-
mal maps for shape deformation and interpolation. ACM Trans.
Graph. 29, 4, Art. 78.

WEBER, O., BEN-CHEN, M., AND GOTSMAN, C. 2009. Com-
plex barycentric coordinates with applications to planar shape
deformation. Comp. Graph. Forum 28, 2.

WEBER, O., BEN-CHEN, M., GOTSMAN, C., AND HORMANN,
K. 2011. A complex view of barycentric mappings. Comp.
Graph. Forum 30, 5, 1533–1542.

WEBER, O., PORANNE, R., AND GOTSMAN, C. 2012. Bihar-
monic coordinates. Comp. Graph. Forum 31, 8, 2409–2422.

ZHANG, J., DENG, B., LIU, Z., PATANÈ, G., BOUAZIZ, S., HOR-
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A Lagrange & Facet Restriction Properties

We here show that conditions (a)-(d) imply properties (e) and (f)
for the case of convex polytope P with vertices {vi}i=1...n in
arbitrary dimension. As a consequence of (a) and (b), we have∑
i λi(x)(vi − x) = 0. When evaluating at a vertex vj , one gets:∑

i=1...n,i6=j

λi(vj)(vi − vj) = 0

Since all vertices are extreme points of the polytope, a convex com-
bination of vectors (vi − vj)i6=j is zero if and only if all the co-
efficients are zeros, i.e., λi(vj) = 0 for i = 1 . . . n, i 6= j: indeed,
there exists a direction at vj along which all vectors (vi − vj)i6=j
have positive components. Using condition (a), we conclude that
the Lagrange property (e) holds, i.e., λi(vj)=δij .

As for condition (f), we can construct a coordinate system such that
a given boundary facet contains vertices with their first coordinates
at 0, and such that all other vertices have positive first coordinates
due to the convexity of P . Thus, similar to the previous argument,
property (f) reflecting the restriction of coordinates to the boundary
facets follows from conditions (a)-(d) since a positive linear com-
bination of positive numbers must be a positive number.




