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Abstract

We present a full geometric parameterization of generalized
barycentric coordinates on convex polytopes. We show that these
continuous and non-negative coefficients ensuring linear precision
can be efficiently and exactly computed through a power diagram
of the polytope’s vertices and the evaluation point. In particular,
we point out that well-known explicit coordinates such as Wachs-
press, Discrete Harmonic, Voronoi, or Mean Value correspond to
simple choices of power weights. We also present examples of
new barycentric coordinates, and discuss possible extensions such
as power coordinates for non-convex polygons and smooth shapes.

Keywords: Generalized barycentric coordinates, Wachspress and
mean-value coordinates, power diagrams, polytopal finite elements.

Concepts: •Computing methodologies → Shape modeling;
•Theory of computation→ Computational geometry;

1 Introduction

Generalized barycentric coordinates extend the canonical case of
Möbius’ barycentric coordinates on simplices: they offer a sim-
ple and powerful way to interpolate values on a polygonal (2D) or
polytopal (3D) convex domain through a weighted combination of
values associated with the polytope vertices. From values of a given
function Φ at vertices vi, one obtains a straightforward interpolat-
ing function φ via:

φ(x) =

n∑
i=1

λi(x) Φ(vi). (1)

where the weights {λi}i=1..n are functions of x that are often re-
ferred to as generalized barycentric coordinates.

While interpolation over simplicial (via linear basis functions) or
quadrilateral/hexahedral (via multilinear basis functions) elements
has been used for decades in finite element computations and graph-
ics, a strong interest in the design of more general interpolants re-
cently surfaced in various disciplines such as geometric modeling
(for Bézier patches, mesh parameterization, and volumetric defor-
mation), image processing (for image deformation) and computa-
tional physics (to define basis functions on polytopal elements).
Among the many possible choices of coordinates that are known to-
day, Wachspress coordinates [Wachspress 1975; Meyer et al. 2002;
Warren et al. 2006] have been widely adopted in 2D and 3D as they
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possess simple closed forms and produce natural-looking interpola-
tions in arbitrary convex domains due to being rational polynomials
of minimal degree [Warren 2003]. Mean value coordinates [Floater
2003; Floater et al. 2005] are also very useful as they behave nicely
even on non-convex polytopes [Hormann and Floater 2006], mak-
ing them particularly convenient for cage-based shape deforma-
tion [Ju et al. 2005b].

These two most-common coordinates have recently been extended
to spherical domains [Langer et al. 2006], to smooth shapes [Schae-
fer et al. 2007], and even to the Hermite setting [Dyken and Floater
2009]. Yet, the existence and construction of other generalized co-
ordinates on convex polytopes remain relevant in geometric mod-
elling [Varady et al. 2016] or even in finite element computa-
tions [Gillette et al. 2016], where convex elements are still strongly
preferred to ensure discrete maximum properties. The goal of this
paper is to propose a principled geometric approach to characterize,
design and compute coordinates on convex polytopes that provably
satisfy the key properties expected from barycentric coordinates.

1.1 Problem statement

This paper focuses mainly on polytopal barycentric coordinates in
Rd (d = 2, 3). Let P be a non-degenerate convex polytope with
n vertices V = {v1, ...,vn}. We further assume that these vertices
are all extreme points of the polytope, that is, no vertex is a con-
vex combination of the other vertices. Note that this implies that
the discrete Gaussian curvature of each vertex is strictly positive.
Functions {λi:Rd→R}i=1..n are called barycentric coordinates if
they satisfy the following properties:

•Partition of unity:∑
i=1..n

λi(x) = 1 ∀x∈P (a)

•Linear precision:∑
i=1..n

λi(x) vi = x ∀x∈P (b)

•Non-negativity inside the convex polytope P:

∀ i∈ [1..n], λi(x) ≥ 0 ∀x∈P (c)

•Smoothness away from vertices:

∀ i∈ [1..n], λi(·) ∈ Ck
(
P\∪j{vj}

)
. (d)

In previous work, additional properties are often required of
barycentric coordinates as well, including:

•Exact interpolation of nodal data (Lagrange property):

∀i, j∈ [1..n], λi(vj) = δij (e)

•Restriction on facets of ∂P:

For a facet F = Conv
(
vi1 , . . . ,vim

)
⊂∂P,

∀j /∈ {i1, . . . , im}, λj(x) = 0 ∀x ∈ F . (f)

However, the Lagrange property (e) and the property (f) of reduc-
tion to linearly-precise coordinates on the boundary faces of P are
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mere consequences of the requirements (a)–(d) for convex poly-
topes (see App. A). Generalized barycentric coordinates satisfying
all these requirements are particularly desirable in a wide variety of
applications: they enforce exact interpolation at vertices, offer a dis-
crete maximum principle for interpolants, guarantee convergence
of the Galerkin method for second-order PDEs, and so on [Floater
2015]. Despite their apparent simplicity, enforcing all these condi-
tions is remarkably difficult as we now briefly review.

1.2 Previous work

While a thorough survey on generalized coordinates can be found
in [Floater 2015], we briefly review previous approaches that have
been proposed over the years to better position our contributions.

Early developments for convex polytopes. Motivated by the
design of basis functions over convex polygons, Wachspress [1975]
proposed a general construction of rational polynomial basis func-
tions using projective geometry. This generalization of barycentric
coordinates was further analyzed and extended to higher dimen-
sions by Warren [Warren 2003], and its use in graphics (along with
simple 2D and 3D evaluations) was advocated in [Meyer et al. 2002;
Warren et al. 2006]. Weighted averages of simplicial barycentric
coordinates were also introduced by Floater [1997] for parameteri-
zation purposes, but these coordinates were onlyC0. The cotangent
weights used for the Laplacian operator [Meyer et al. 2002] (often
referred to as “discrete harmonic weights” [Eck et al. 1995]) were
also noted as valuable, but fail to satisfy positivity (c). In the con-
text of finite elements, the work of Malsch and Dasgupta [2004;
2005] extended Wachspress approach to weakly convex polygons
and convex polygons with interior nodes.

Extensions to arbitrary polytopes. Recognizing that classical
forms of coordinates often lose smoothness or are not well-defined
when applied to a non-convex polytope, Floater introduced Mean
Value Coordinates (MVC [Floater 2003]). These coordinates still
have a simple expression that is easily evaluated, and while they fail
to offer positivity on concave polytopes, they remain well defined
everywhere in the plane given arbitrary polygonal domains [Hor-
mann and Floater 2006]. Floater et al. [2006] showed that while
the three most common existing generalized coordinates are part
of a larger family, only two of them, namely MVC and Wachs-
press, satisfy requirements (c)–(f) for convex polytopes. A number
of approaches have also explored the design of coordinates on non-
convex polytopes by relaxing some of the barycentric requirements.
When coordinates are used for deformation for instance, removing
the Lagrange property and extending the coordinates to be complex
valued (or, equivalently, matrix valued) allow for a minimization of
angle distortion [Weber et al. 2009; Weber and Gotsman 2010; Lip-
man et al. 2008]. Mean value coordinates can also be seen as a case
where positivity is no longer required for non-convex polytopes, a
goal targeted in [Manson and Schaefer 2010] as well. Instead, Pos-
itive Gordon-Wixom coordinates [Manson et al. 2011] do achieve
positivity for arbitrary polygons, but are only C0.

Non-analytical coordinates. Several coordinates have been in-
troduced lately to achieve stronger properties. Harmonic coordi-
nates [Joshi et al. 2007], for instance, proposed the use of harmonic
weights (satisfying ∆λi=0 inside the domain) to enforce positivity
for arbitrary polytopes. Positive Mean Value coordinates [Lipman
et al. 2007] also stay, by construction, positive on non-convex poly-
topes. Barycentric coordinates deriving from numerical optimiza-
tion have also been proposed, such as the interpolatory maximum
entropy coordinates [Hormann and Sukumar 2008]. However, these
specific methods involve inexact evaluation as they require quadra-

tures, optimization, or large memory footprint to store PDE solu-
tions. Their analysis is often more difficult as well.

Further extensions. The idea of generalized coordinates for
polytopes has been extended to smooth closed domains, see [War-
ren et al. 2006; Belyaev 2006; Schaefer et al. 2007]. Multiple
methods also extended mean-value coordinates to the Hermite set-
ting [Manson and Schaefer 2010; Weber et al. 2012; Li et al. 2013]
when both values and gradients (i.e., normal derivatives) on the
boundary need to be interpolated. It was also recognized in [Zhang
et al. 2014] that localized influence of a given vertex of the poly-
tope on the interpolation may be beneficial in some applications,
bringing forward the idea of local coordinates.

Related works. Finally, there are a few applications that share
commonalities with our work due to the generality of the concept
of barycentric coordinates. For instance, methods for scattered data
interpolation such as Shepard [Shepard 1968] and natural neigh-
bors [Sibson 1981] bear significant similarities with barycentric co-
ordinates: e.g., the Laplace interpolant variant of natural neighbors
is linked to the discrete harmonic barycentric coordinates [Hiyoshi
and Sugihara 1999; Cueto et al. 2003]. The finite element literature
is also brimming with discussions of various properties of barycen-
tric coordinates on polytopes [Milbradt and Pick 2008].

1.3 Contributions

Despite significant advances in extending barycentric coordinates,
only a few coordinates verifying conditions (a)–(f) on convex poly-
topes are known. In this paper, we exploit an equivalence between
generalized coordinates and orthogonal dual diagrams to formu-
late a full geometric parameterization of barycentric coordinates
via power diagrams. We also show how our formulation induces a
simple, exact and efficient evaluation of coordinates that leverages
robust computational geometry tools. Furthermore, we present how
to design customized coordinates through simple weight functions
per vertex of the polytope. Finally, we discuss how to extend our
approach to non-convex polytopes and arbitrary shapes.

2 Power Coordinates for Convex Polytopes

We begin our exposition by establishing a relationship between gen-
eralized barycentric coordinates and power diagrams, providing a
geometric (as opposed to analytical [Floater et al. 2006]) character-
ization of arbitrary coordinates on convex polytopes.

2.1 Background

Given a set of sites {xk}k=1..n in Rd and associated scalar weights
{wk}k=1..n, the power diagram of these weighted points is a tes-
sellation in which each convex cell Di is defined as:

Di = {x∈Rd | |x−xi|2 − wi ≤ |x−xk|2 − wk ∀k},

where | · | indicates the Euclidean norm. Note that when weights
are all equal, power diagrams reduce to Voronoi diagrams.

Properties. Cells are guaranteed to
be convex and have straight edges. Note
that some cells may be empty as well.
Two sites xi and xj are said to be
neighbors if the intersectionDi

⋂
Dj is

a non-empty power facet fij of codi-
mension 1, corresponding to a planar
polygon in 3D (see inset) and a line segment in 2D. We use lij



to indicate the distance |xi−xj |, and denote dij the signed distance
from xi to fij so that dij+dji= lij . The expression of the distance
from a site to a power facet is actually known analytically:

dij =
|xi − xj |2 + (wi − wj)

2|xi − xj |
. (2)

Finally, |fij | denotes the volume of fij (area in 3D, and length in
2D). Akin to the famous Voronoi-Delaunay duality, a power di-
agram also defines by duality a triangulation of the sites, known
as the regular (or weighted Delaunay) triangulation, in which each
neighboring pair of sites forms an edge that is orthogonal to its as-
sociated power facet. In fact, all possible orthogonal primal-dual
pairs corresponding to points {xk}k=1..n are completely param-
eterized by weights {wk}k=1..n; see, e.g., [Memari et al. 2012].
Furthermore, the weighted circumcenters of the tetrahedra of this
regular triangulation in 3D (resp., triangles in 2D, see Fig. 1(left))
correspond to dual vertices of the power diagram, i.e., they are at
the intersection of four power cells in 3D (resp., three in 2D). The
closed-form expression of the weighted circumcenter cw of a p-
dimensional simplex σp of T (p=1 . . . d) is:

cw(σp) = xi +
1

2 p |σp|
∑

xj∈σp

(
|xi − xj |2 + wi − wj

)
N̂
σp , (3)

where N̂
σp is the inward-pointing normal of the face of σp opposite

to xj , weighted by the volume of that face.

Gauge and translation. As Eqs. (2) and (3) indicate, adding a
constant shift to all the weights does not influence the diagram, so
the weights are defined up to a constant. Moreover, adding a linear
function t·xi to each weightwi will only induce a global translation
−t of the power diagram [Memari et al. 2012]. Thus, the geometry
of the power diagram has a (d+1)–parameter gauge.

2.2 From coordinates to power diagrams

Power diagrams have found a variety of applications in geome-
try processing [Mullen et al. 2011; de Goes et al. 2012; de Goes
et al. 2013; Liu et al. 2013; Budninskiy et al. 2016] and anima-
tion [Busaryev et al. 2012; de Goes et al. 2015]. As we now review,
they are also intimately linked to barycentric coordinates. Even if
our exposition focuses on 2D and 3D, the results of this section are
general and hold in arbitrary dimension.

Homogeneous coordinates. Given a convex polytope P with
vertices {vi}i=1..n, the homogeneous coordinates of P [Floater
2015] are a set of functions {hi : Rd → R}i=1..n that satisfy the
following property:∑

i=1..n

hi(x)(vi − x) = 0 ∀x∈P,∀ i∈ [1..n]. (4)

Provided that all hi(x) are Ck, non-negative, and with a non-
vanishing sum inside P , barycentric coordinates satisfying condi-
tions (a)–(d) can be constructed via direct normalization:

λi(x) = hi(x)/
∑
k=1..n

hk(x). (5)

Orthogonal duals. Now let x be an arbitrary point inside P . De-
fine a set of vectors ni(x) =

(
vi − x

)
/|vi − x|. For a set of ho-

mogeneous coordinates, these vectors satisfy, by construction,∑
i=1..n

hi(x)|vi−x| ni(x)
Eq. (4)
= 0.

This relation directly implies, through Minkowski’s theorem [Klain
2004], the existence of a unique (up to translation) convex poly-
tope D(x) in Rd, of which the face normals are given by the unit

vectors ni(x) and the corresponding face areas are hi(x)|vi−x|.
By construction, such a polytope is orthogonally dual to the trian-
gulation T of points {x} ∪ {vi}i=1..n with x and vi connected
iff hi(x) > 0. This argument was already made in [Langer et al.
2006], but was not exploited to parameterize extended coordinates
through power diagrams. We also note the similarity of this ar-
gument with the Maxwell-Cremona equivalence of self-supporting
structures with 2D power diagrams used in [de Goes et al. 2013].

Conversely, given any convex polytope D(x) such that each facet
fi (with normal ni and area |fi|) is orthogonal to (vi−x), we have:

0 =

∫
D(x)

n(s)ds =
∑
i=1..n

ni|fi| =
∑
i=1..n

|fi|
|vi−x|

(vi−x).

Therefore, based on Eq. (4), the n functions

hi(x)= |fi|/|vi − x| (6)

define homogeneous, non-negative coordinates. Their sum is also
guaranteed not to vanish provided that D(x) is not degenerate (i.e.,
not reduced to a point). The geometry of D(x) then defines gener-
alized barycentric coordinates.

Geometric equivalence. We conclude that there is a one-to-one
correspondence between non-negative homogeneous coordinates at
any interior point x∈P and orthogonal dual cells. This implies
that we can parameterize the set of all generalized barycentric co-
ordinates satisfying conditions (a)–(c) over a convex polytope P by
the power weights as functions of x. One can see this parameter-
ization as a geometric counterpart to the analytical parameteriza-
tion of [Floater et al. 2006] (we will make this link more formal in
Sec. 3.4), which now generalizes to arbitrary dimensions.

Figure 1: Power coordinates. From a set of weights on the vertices
vi of a polygon (left) or polytope (right) P , the power cell of a
point x (with weight 0) offers a simple geometric interpretation of
continuous, non-negative linearly-precise barycentric coordinates.

2.3 From power diagrams to coordinates

Our geometric characterization of generalized barycentric coordi-
nates suggests a simple approach to both formulate and evaluate
barycentric coordinates, which turns out to be linked to the notion
of discrete Hodge stars on meshes.

Power coordinates evaluation. We can now explicitly describe
how a convex polytope P and a given choice of weights wi(x)
can be used to compute exactly the corresponding coordinates. For
a point x inside P , we proceed as follows to evaluate the power
barycentric coordinates λi(x):

1. From the n vertices v1, ...,vn of polytope P , create (n+1)
weighted points: (v1, w1(x)) , ..., (vn, wn(x)), to which we
add (x, 0), i.e., the evaluation point with a weight of zero.

2. Compute the power diagram of these (n+1) weighted points,
which generates a power cell D associated to point x.

3. Compute the homogenous coordinates hi as follows: if the
edge from x to vi is present in the regular triangulation dual



to the power diagram, set: hi = |fi|/|x−vi|, where fi is the
facet of D dual to the edge; otherwise, set hi=0.

4. Normalize the homogeneous coordinates via Eq. (5) to obtain
the power coordinates λi at x.

Note that we assigned a weight of 0 to the evaluation point x for
simplicity: weights being defined up to a constant (see Sec. 2.1),
this choice has no bearing on the generality of our approach.

Implementation. The power diagram construction and the ar-
eas and lengths involved in the evaluation of the coordinates are
trivially handled via the use of a computational geometry library
such as CGAL [CGAL 2016]: one simply needs to use the class
Regular triangulation 3, and insert – possibly in parallel
for efficiency – the n+1 weighted points (see Supplemental Material
for code), before reading off the geometric quantities from the re-
sulting power diagram. For an n-vertex polytope, constructing the
power diagram costs O(n logn) in 2D, and O(ndd/2e) in dD for
d > 2. Power coordinates are thus very easy and efficient to com-
pute for the typically small values of n used in practice. Finally, this
construction still holds on facets of P , where the dual polytope D
is now unbounded in the normal direction of the facet—but all pre-
vious expressions remain valid in this limit case. This implies that
evaluations of barycentric coordinates near the boundary are very
stable if a robust library is used to compute power diagrams. Other-
wise, a simple distance thresholding approach can be implemented
to avoid numerical degeneracies.

Coordinates as Hodge stars. Suppose we pick a point x ∈ P ,
for which we construct the dual orthogonal cell D(x) correspond-
ing to a given choice of weights (we will provide concrete exam-
ples of weights shortly). Note that the homogeneous coordinates—
and thus, the barycentric coordinates up to normalization—are ex-
pressed as a ratio of volume of dual facets of the power cell D(x)
and volume of their associated primal edges, see Eq. (6). In Discrete
Exterior Calculus (DEC [Desbrun et al. 2008]), this expression cor-
responds to the edge-based Hodge star ?1 for 1-forms, as

?1 = diag(hi).

This connection becomes obvious if one notices that Eq. (4) can be
reexpressed in the DEC formalism through:

dt0 ?1 d0 X = 0,

where X is seen as a 0-form denoting the coordinates of the ver-
tices and the evaluation point, and d0 is the exterior derivative cor-
responding to a signed adjacency matrix. Linear precision of coor-
dinates thus amounts to what was referred in [Glickenstein 2005;
de Goes et al. 2014b] as the linear precision of the generalized
Laplacian operator when using weighted diagonal Hodge stars.

2.4 Existence condition

Due to gauge invariance, we saw in Sec. 2.3 that we can always fix
the weight for the evaluation point x to 0 without loss of general-
ity. However, arbitrary assignment of other weights may not always
lead to useful coordinates: given an arbitrary set of weighted points,
the power cell associated with the evaluation location x may be-
come empty. Weights must thus be chosen such that the power cell
D(x) corresponding to the weighted point (x, 0) is non-degenerate
for any x ∈ P . Thankfully, this is a simple condition to enforce.

Theorem. For a point x, the power cell D(x) is not degenerate
if and only if there is a vector t∈Rd, such that

|vi − x|2 − wi(x) + t · (vi − x) ≥ 0 ∀ i=1 . . . n, (7)

with the inequality being strict for at least one of them.

Proof: By adding a linear function to the weight (see Sec. 2.1), we
can always translate the dual polytope D(x) by a vector t(x) in
order for point x to be inside D(x). Then the cell is not degenerate
(i.e., not empty) if and only if the signed distances from x to the
faces of this shifted dual along the corresponding primal edges are
all non-negative, with at least one of them being strictly positive:
this results from Eq. (2), which is now rewritten using the distance
di between x and the power cell facet dual to edge vix through

di =
|vi − x|2 − wi(x)

2|vi − x| . (8)

�
As a corollary of Eq. (7), a trivial sufficient condition for non-
degeneracy of the power cell is thus

wi(x) ≤ |vi − x|2. (9)

Note that this happens to be the same condition as in [de Goes et al.
2014b] in the very different context of generalizing orthogonal dual
cells on non-flat triangle meshes through weights.

2.5 Properties

If the non-degeneracy condition is enforced, power coordinates
have —or can easily be made to have— valuable properties beyond
linear precision:

•Non-negativity. Since the homogeneous power coordi-
nates are non-negative by construction, the condition of
non-degeneracy discussed above also enforces that the
denominator of Eq. (5) can never be zero. As a result, power
barycentric coordinates are well-defined and non-negative
anywhere in P .
•Locality. The cells of some vertices ofP may not share a dual

facet with the cell of x, thus resulting in zero coordinates.
Our construction can thus seamlessly offer local coordinates
as proposed in [Zhang et al. 2014]. Indeed, depending on the
choice of weight functions, the evaluation point x can be far
enough away from a given vertex vi that they no longer share
a dual facet in the power diagram. The vertex vi then loses
its influence on x since the corresponding λi vanishes.
•Similarity invariance. Invariance of coordinates to rotation,

translation, and scaling of the polytope P is often desirable.
Here again, we can easily accommodate these requirements.
Power barycentric coordinates are rotation and translation
invariant if the weights themselves are—an example being
weights that are functions of geometric measures like
distances or volumes. They will also be invariant under
scaling of P by a factor of s iff the pointwise duals D(x)
get uniformly scaled as well. This can be easily achieved
by making sure that the input weights are of SI unit [m2]
through normalization by the proper power of the volume
of the polytope (or any other geometric measure). We will
provide entire families of such coordinates in Sec. 4.
•Continuity. As can be seen from Eq. (3), a power cell D(x)

(and its face areas in particular) are smoothly dependent
on the weights. Therefore, by choosing continuous weight
functions wi(x) we automatically inherit continuity for the
corresponding power coordinates.

2.6 Smoothness

Smoothness of our coordinates deserves a closer inspection as it is
the least trivial property to obtain in our framework. We first define
a reference connectivity which will allow us to express a sufficient
condition of smoothness—and a systematic approach to renderC∞

the power coordinates derived from an arbitrary set of weights.



Figure 2: Conventions for Eq. (10) and Eq. (13), respectively.

Full-connectivity homogenous coordinates. Until now, we al-
ways derived the connectivity of the power diagram (and of its dual
triangulation) based on the weights at vertices of P and on the po-
sition of the evaluation point x. However, it is common practice to
define an imposed connectivity for the triangulation, and express a
weighted circumcentric dual W(x) for which weights are used to
derive a weighted circumcenter cwσ per simplex σ of this triangula-
tion that are then connected into the dual W based on the adjacency
between simplices: this is what was proposed in [de Goes et al.
2014b] for instance, for a given triangle mesh with a weight per
vertex. The weighted circumcentric dual
W(x) is not necessarily embedded: flips
of edges and faces are possible (see inset:
red face fi is flipped; for these weights,
the power cell D would be the black con-
vex cell, but the weighted circumcentric
dual W is, instead, the polygon including
the fish tail shape). In our context, we de-
fine a “full-connectivity” triangulation of
P
⋃

x to be the triangulation formed by P (after its facets are tri-
angulated) and all the edges linking x to the vertices vi of P . This
triangulation, along with the weights wi(x) (and 0 for x), induces a
Hodge star Hw

i (x) per edge xvi, for which an explicit formulation
in 2D reads [Mullen et al. 2011]

Hw
i (x) =

1

2
(cotαi,i+1,x + cotαx,i−1,i) (10)

+
cotαi+1,x,i

2|x− vi|2
(wi(x)− wi+1(x))−

cotαx,i,i+1

2|x− vi|2
wi+1(x)

+
cotαi,x,i−1

2|x− vi|2
(wi(x)− wi−1(x))−

cotαi−1,i,x

2|x− vi|2
wi−1(x),

where αi,x,i−1 is the angle at x in the triangle (x,vi−1,vi) as de-
scribed in Fig. 2(left). The 3D version Hw

i (·) can be similarly as-
sembled from the weighted circumcenters computed from Eq. (3).
These Hodge star values Hw

i still form homogeneous coordinates
in the sense of Eq. (4), but they are not necessarily satisfying posi-
tivity. We refer to these star values as the full-connectivity homoge-
neous coordinates.

Smoothness condition. Now that we have introduced the
Hodge star edge values computed from the triangulation with full
connectivity, we can express a sufficient condition for C∞ of our
power coordinates λi(x).

Lemma. The power coordinates derived from weights wi(x) are
C∞ if the weight functions wi(x) are also C∞, and if

Hw
i (x) ≥ 0 ∀i=1..n. (11)

Proof: Positivity of the full-connectivity homogeneous coordinates
Hw

i for all x readily implies that the edge xvi is part of the regular
triangulation induced by the power diagram of the weighted
vertices (vi, wi) of P and (x, 0) [Glickenstein 2005] Now, if
every wi(·) is C∞ and since the regular triangulation dual to the

Figure 3: Increasing smoothness. From an original C0 coordi-
nates (top) with discontinuous derivatives (inset: y-component of
gradient in orange hues), we can turn them into C∞ coordinates
by computing the weight shift M described in Sec. 2.6, or using an
even larger shift (bottom), which smooths the basis functions.

power diagram keeps the same connectivity for all x, the power
coordinates are C∞ because the signed dual facet volumes are C∞

functions of x: only a change of connectivity in the power diagram
could induce a loss of smoothness. �

Smoothness correction. While the condition above is only suf-
ficient, we can derive from it a procedure to render any set of
weights C∞: we can always shift them by a constant to meet the
condition Hw

i (x)≥ 0 ∀i. Indeed, for a given d-dimensional poly-
tope P and a set of weights, define:

M = max

{
0, − inf

x,i

Hw
i (x) |x−vi|d

si(x)

}
,

where si(x) equals the volume of the (d−1)−dimensional face as-
sociated with vi of the Wachspress dual of P times |x−vi|d−1. M
is finite because the unitless denominator si is bounded away from
zero: it is the volume (length when d=2, area when d=3) of the
stereographic projection along xvi of the spherical (d−1)−polygon
formed by the unit normals of the faces incident to vi—which
has a minimum of κi, the Gaussian curvature at vertex i, assumed
to be strictly positive (see Sec. 1.1). In practice, we can find an
evaluation of M by either sampling the interior of P in a prepro-
cessing phase, or using a less tight but safe upper bound, such as
infi(H

w
i /κi) · diam(P)d, where diam is the diameter operator,

i.e., the maximum distance between pairs of vertices. Then, assum-
ing similarity invariance is enforced (see Sec. 2.5), the SI unit of M
is [m2d−2]; consequently, the use of altered weights w̃i defined as:

w̃i(x)=wi(x)−M1/(d−1),

is guaranteed to lead to smooth coordinates as their corresponding
full-connectivity homogeneous coordinates Hw̃

i are non-negative.
Note that the weight at x is kept fixed at 0, and M depends on



the polygon shape; but the resulting λi is similarity invariant. This
shift byM can be understood as a blend of the (non-smooth) power
coordinates with the always-smooth Wachspress coordinates.

While highly application-dependent, the design of smooth, posi-
tive, and linear-precise coordinates is thus rather simple, as it only
requires a few conditions on weights to guarantee relevance of the
resulting power coordinates. We provide a number of examples
in Sec. 4, after discussing the geometric interpretation of existing
barycentric coordinates in our framework.

3 Existing Power Coordinates

Before formulating new weights, we review existing coordinates
for convex polytopes to show that they correspond in our power
coordinates framework to very simple choices of weights, providing
straightforward extensions to arbitrary dimensions.

3.1 Wachspress coordinates

Ju et al. [2005a] noticed that Wachspress coordinates can be ex-
pressed in terms of the polar dual of the input polytope P , i.e.,
using a dual cell D(x) for which the distance from x to a dual face
fi is di = 1/|vi−x|. This is, in fact, a particular case of our gen-
eralized notion of dual, and using Eq. (2) we directly conclude that
Wachspress coordinates are expressed in arbitrary dimensions as:

wWach
i (x) = |x− vi|2 − 2.

Note that the constant 2 can be changed to any strictly positive con-
stant: normalization (Eq. (5)) will lead to the same coordinates.

Figure 4: Discrete harmonic coordinates. While the original dis-
crete harmonic coordinates (left) can go negative (grey colors) in
convex polygons, our power variant (right) remain positive (rain-
bow colors) everywhere by construction, but may only be C0.

3.2 Power discrete harmonic

Discrete Harmonic coordinates [Meyer et al. 2002] are also trivially
related to a notion of dual, as they are the coordinates correspond-
ing to the canonical, circumcenter-based Hodge star. Thus, they
correspond to the case where D(x) is the classical Voronoi cell of
x, hence to zero weights. In 3D, these null weights correspond
to the coordinates dubbed “Voronoi” in [Ju et al. 2007]. How-
ever, our power diagram construction guarantees non-negativity,
they are thus more directly related to the Laplace coordinates de-
fined in [Hiyoshi and Sugihara 1999]. The power form of discrete
harmonic coordinates are in general not smooth, only continuous,
see Fig. 4. However, note that this variant is quite different from
a simple thresholding of the discrete harmonic homogeneous coor-
dinates: instead, our power coordinates are linear precise, a prop-
erty that simply discarding negative homogeneous coordinates (i.e.,
thresholding them to zero) would not enforce.

3.3 Mean value coordinates: old and new

The initial derivation of mean value coordinates by Floater [2003]
relies on the local integration of the normal of a unit circle cen-

tered at x. While this seems unrelated to the polytopal dual cell
that our construction relies on, one realizes that in fact, creating a
cell D(x) such that each distance di from
x to a facet fi of D(x) is unit (or, more
generally, constant) leads to the exact same
normal integral as in the original deriva-
tion. This particular dual (see inset) is thus
circumscribing the unit circle, and using
Eq. (2) once again, we find that the weights
needed to exactly reproduce mean value co-
ordinates are:

wMVC
i (x) = |vi − x|2 − 2|vi − x|. (12)

Again, the factor 2 can be replaced by any strictly positive constant
without affecting the normalized coordinates.

Somehow surprisingly, this orthogonal dual construction with unit
distances di leads in 3D to a very different set of coordinates:
while the existing 3D extension of MVC [Ju et al. 2005b; Floater
et al. 2005] relies on barycentric coordinates over spherical trian-
gles, our homogeneous coordinates are still ratios of volumes of
a straight-edge dual cell that circumscribes the unit sphere. As a
consequence, the power variant happens to be significantly less dis-
torted as demonstrated in Figs. 5 and 6. Moreover, our construction
generalizes to higher dimensions in a straightforward manner since
the expression of wMVC

i above still holds as is.

Figure 5: Original vs. Power Mean Value Coordinates. Even on
a simple parallelepiped (left), the original MVC [Ju et al. 2005b]
(center) for the bottom-right corner marked with a red dot exhibits
a more asymmetric behavior than our power variant (right).

3.4 3-point and 5-point coordinates in 2D

Floater et al. [Floater et al. 2006] introduced a general parameter-
ization of barycentric coordinates by smooth functions ci through
the following homogenous expressions:

hi =
ci+1Ai−1 − ciBi + ci−1Ai

4AiAi−1
, (13)

whereAi andBi are the signed areas of triangles (x,vi,vi+1) and
(x,vi−1,vi+1) respectively, see Fig. 2(right). Assume that for a
given x, the regular triangulation deriving from our power coordi-
nates include the edges xvi; then starting from the expression of the
canonical weighted Hodge star given in Eq. (10), basic trigonome-
try leads to weights of the form:

wi(x) = |x− vi|2 − ci(x), (14)

providing a simple geometric interpretation of ci which extends to
arbitrary dimensions. Note that this is not an exact equivalence:
our corresponding power coordinates are guaranteed to be positive,
while the original parameterization of [Floater et al. 2006] does not:
as in the discrete harmonic case, our parameterization is not just a
thresholding of the original homogeneous coordinates since it al-
ways enforces linear precision, which naive thresholding loses.

Three-point coordinates. Based on the relationship between
their parameterization and ours, the explicit weight expressions of



Figure 6: 3D mean values. For a 3D polytope with 7 faces (left),
the mean value coordinates defined in [Ju et al. 2005b] (top) are
significantly more distorted than our 3D mean value coordinates
(bottom) for the point indicated by the red sphere. Three slices are
shown with the order indicated: one horizontal, and two verticals.

their three-point family are simply, for µ∈ [0, 1]:

wµ,1i (x) = |x− vi|2 − |x− vi|µ.

Only two cases in this family (µ = 0 and µ = 1) were producing
non-negative homogenous coordinates in their formulation; ours
enforce non-negativity for all µ instead, at the cost of smoothness:
for µ∈]0,1[, the resulting coordinates are only C0.

Five-point coordinates. Similarly, the expressions for the
5-point Wachspress family and the two types of 5-point mean value
family are (for µ ∈ [0, 1] and where angles are denoted using the
conventions depicted in Fig. 2):

wµ,2i (x) = |x− vi|2 − (1 + µ
Ai−1 +Ai −Bi
Ai−1 +Ai

),

wµ,3i (x) = |x− vi|2−

|x− vi|
(1 + µ)(sinαi,x,i−1 + sinαi+1,x,i)

sinαi,x,i−1 + sinαi+1,x,i + µ sin(αi+1,x,i−1)
,

wµ,4i (x) = |x− vi|2 − |x− vi|
cos(µ(αi,x,i−1 − αi+1,x,i/4))

cos(µ(αi,x,i−1 + αi+1,x,i/4))
.

4 Other Examples of Power Coordinates

We provide next a series of new coordinates with varying degrees
of smoothness, to illustrate the generality of power coordinates.

4.1 Simple power coordinates

One can introduce simple coordinates by simply choosing weights
functionswi that are negative (to trivially enforce the sufficient con-
dition in Eq. (9)) and translation invariant homogeneous functions
of x ∪ {vi}i=1..n of degree 2 (to enforce similarity invariance):
they will directly enforce all the conditions (a)–(f), although with
C0 continuity in general. One can also use weights of the form
wi(x)= |vi−x|2−ŵi(x) for any ŵi’s that are non-negative trans-
lation invariant homogeneous functions of x ∪ {vi}i=1..n of arbi-
trary degree. Scale invariance is easy to enforce through the proper
choice of exponent or through normalization by the volume, surface
area, or mean-width of the polytope P , as discussed in Sec. 2.5.
Moreover, weights that are functions of edge distances such as the
ones used in [Malsch and Dasgupta 2004] and their trivial extension
using facet distances can also be employed, offering a direct gen-
eralization of their results to 3D. Furthermore, should such power
coordinates need to be C∞, the procedure described in Sec. 2.6 can
be directly used to ensure smoothness on any given polytope P .

4.2 Mean-Wachspress coordinates

A 2-parameter family of weights that blends Wachspress and mean
value coordinates can be trivially formulated as well: for any
strictly positive values a and b, weight functions defined as:

wMW
i (x) = |vi − x|2 − a− b |x− vi|/|P|1/d, (15)

will induce power coordinates, where the volume |P| of P is raised
to the inverse of the dimension to enforce similarity invariance.
These weights always produce C∞ coordinates: since they are
formed as a combination of Wachspress and mean-value homoge-
neous coordinates that are strictly positive inside P: thus, the suf-
ficient condition of smoothness discussed in Sec. 2.6 is guaranteed
to hold. Fig. 7 illustrates a few of these coordinates in 2D.

Figure 7: Mean-Wachspress. Using the unified expression in
Eq. (15), we recover mean value coordinates (left), Wachspress co-
ordinates (right), or a blend between the two (middle).

4.3 Anisotropic power coordinates

While all the choices of weights presented so far used Euclidean
geometric measures such as distances or areas, they can be eas-
ily extended to incorporate anisotropy through a norm defined by
|v|2g = vTGv for a constant, symmetric positive definite matrix
G. This anisotropic norm allows us to tailor our barycentric co-
ordinates quite directly by substituting the Euclidean norm | · |
by | · |g in previous formulas. In particular, weights of the form
wi(x) = |vi − x|2− ŵi(x) induce anisotropic barycentric coor-
dinates while staying similarity invariant if the distances used in
ŵi(x)’s are modified to be anisotropic. Note that this treatment is
reminiscent of the creation of anisotropic Hodge stars (i.e., [de Goes
et al. 2014a]) due to the interpretation of coordinates as Hodge star
values mentioned in Sec. 2.3.

Anisotropic mean value coordinates. The anisotropic variant
of mean value coordinates is particularly interesting, as it has a nice
geometric interpretation. Indeed, we define its weights as:

wAMVC
i (x) = |vi − x|2 − 2|vi − x|g. (16)

(Notice that unlike Eq. (15), there is no need to divide by the vol-
ume of P: similarity invariance is automatically enforced by the
normalization step.) Based on Eq. (2), the distance from the evalu-
ation point x to the facet of D(x) that is dual to edge xvi is:

di =
|vi − x|g
|vi − x|

We claim that this particular set of distances di can be geometrically
constructed as follows. For a given evaluation point x, construct a
secondary polytope Z with vertices zi that are at the intersection of
the rays xvi and the ellipsoid defined by the set of points y such
that (y − x)tG(y − x) = 1. The new polytope is trivially convex,
and the new vertices zi are expressed as

zi − x =
vi − x

|vi − x|g
.



Figure 8: Anisotropic 2D mean value coordinates. Computing the
mean value weights using a constant metric G= diag(15, 1) (top)
or G= diag(1, 15) (bottom) generates anisotropic variants of the
original mean value coordinates, still satisfying the same properties
but with deformed shape functions (see Fig. 7(right)).

Now consider the polar dual of Z w.r.t. a unit sphere centered at x
and denote the vertices of that polar dual by pi. One realizes that

pi − x =
|vi − x|g
|vi − x|2 (vi − x),

and thus |pi−x| = di. We conclude two things from this obser-
vation: first, the dual cell D(x) is always n-faceted since it corre-
sponds to Wachspress homogeneous coordinates for the polytope
Z; second, sinceZ depends smoothly on x, these anisotropic mean
value coordinates are always C∞, see Fig. 8. The SPD matrix G
defining the norm |.|g can also be spatially varying, i.e., a different
matrix for the evaluation ofwAMVC

i at a different x: the construction
and resulting properties are unchanged, offering even more degrees
of freedom to derive additional coordinates, see Fig. 12 (left).

Anisotropic mean-Wachspress coordinates. By the same rea-
soning, and because Wachspress coordinates are such that wWach

i −
|x−vi|2 is constant, the anisotropic variant of mean-Wachspress
coordinates are also C∞, and expressed with weights

wAMW
i (x) = |vi − x|2 − a− b |vi − x|g/|P|1/d. (17)

Figure 9: Anisotropic 3D mean value coordinates. Using the same
polytope and cuts as in Fig. 6, our 3D mean value coordinates for
G=diag(10, 1, 1) (top) and G=diag(1, 10, 1) (bottom).

4.4 Iterated power coordinates

Finally, we note that one can even define power coordinates implic-
itly through repeated iterations. For example, for a given evalua-
tion point x and a convex polytope P , one can compute a series of
weights w(k)

i (starting with w(0)
i = wWach

i for instance) using:

w
(k+1)
i (x) = |vi − x|2 − |vi − x|λ

(k)
i (x), (18)

where λ(k)
i (x) denotes the power barycentric coordinates derived

from weights w(k)
i . This procedure converged (in only 3 to 5 iter-

ations) to the same barycentric coordinates for all w(0)
i we chose.

The resulting barycentric coordinates (see Figs. 10 and 12(right))
are visually and numerically smooth. While we do not know how
to analyze or explicitly formulate the resulting coordinates, note
that they come from a repeated “barycentric” averaging of weights,
which may allow us to algorithmically define weights in such a
way that the resulting coordinates satisfy possibly-intricate implicit
relations—maybe even differential relations.

Figure 10: Iterated power coordinates. From arbitrary C0 coor-
dinates (top), 3 iterations of Eq. (18) result in smooth coordinates.

5 Extensions to Non-Convex Polytopes

The link between homogeneous coordinates and orthogonal duals
partially extends to the case of non-convex polygons and polytopes,
in particular if we remove the positivity constraint (c).

5.1 Signed coordinates on non-convex 2D polygons

In R2, there is still a 1-to-1 correspondence between homogeneous
coordinates and weighted circumcentric dual cellsW(x) described
in Sec. 2.6, created as the dual of x for the simplicial d-manifold
with a “full connectivity” linking x to the vertices of P . Indeed,
for any set of functions hi(x) satisfying Eq. (4), the 2D vectors
fi(x)=hi(x)(vi − x)⊥ where ⊥ denotes a counterclockwise π/2
rotation, form a closed loop, thus defining the boundary of an or-
thogonal dual cell W(x) with possible self-intersections (see in-
set in Sec. 2.6). The converse is also true: given any orthogonal
dualW(x), hi(x) defined through the signed diagonal Hodge star
would satisfy Eq. (4). Thus, through the weighted circumcentric
dual, all homogeneous coordinates hi have a one-to-one correspon-
dence to an assignment of wi up to a constant gauge. Note that the
homogeneous coordinates can now be negative as a consequence,
thus violating condition (c). Replacing the power cell D(x) by the
weighted circumcentric dual W(x) in our approach recovers the
traditional 2D mean value coordinates, which are valid (but often
with negative coordinates) on arbitrary polygons.

5.2 Signed coordinates on non-convex 3D polytopes

The 3D case is more involved for two reasons. First, even though
there is still a 1-to-1 correspondence between power cells and



non-negative homogeneous coordinates as implied by the work of
Memari et al. [2012], the resulting coordinates are not guaranteed
to be continuous for continuous weights anymore, thus violating
condition (d): the power cell itself can exhibit discontinuous be-
havior because the visibility vectors connecting x to vertices vi
change their relative configuration as the evaluation point moves
around a non-convex polytope. Second, if we remove the positiv-
ity constraint, the resulting arbitrary homogeneous coordinates are
not fully characterized by our weighted circumcentric construction:
while Minkowski’s theorem guarantees the existence of a convex
orthogonally dual polytope from a sequence of (possibly flipped)
normals, such a polytope is no longer necessarily a weighted cir-
cumcentric dual. As a consequence, a truly general extension of
power coordinates for non-convex polytopes remains open. Nev-
ertheless, our weighted circumcentric approach still spans valid
homogeneous coordinates that are potentially negative, leading to
signed barycentric coordinates if their sums

∑
i hi are bounded

away from zero; e.g., we can recover well-known coordinates such
as the Voronoi coordinates in 3D mentioned in [Ju et al. 2005a].

5.3 Positive-power mean value coordinates.

If one still requires true generalized barycentric coordinates satis-
fying all the conditions (a)-(d), our geometric characterization of
coordinates over convex polytopes – in particular, our use of a sec-
ondary polytope in Sec. 4.3 – suggests a simple way to extend
power coordinates to non-convex polytopes: one can construct a
secondary polytope by smoothly displacing the original vertices de-
pending on the evaluation point. We can indeed alter the position
of the vertices to make the modified polytope star-shaped with re-
spect to the evaluation point; using the mean value weights given in
Eq. (12), we can still construct a non-degenerate power cell which
will be, by definition, still circumscribed to the unit sphere, but
that may involve only a subset of the vertices of the non-convex
polytopes. For instance, in order to eval-
uate positive generalized barycentric co-
ordinates for the evaluation point x in-
side the 7-vertex non-convex polygon
displayed in the inset, the pink poly-
gon is used. This star-shaped polygon
is found by ignoring the obstructed ver-
tex v5 blocked by the concave vertex v6,
and by displacing vertex v4 to a mod-
ified position ṽ4 along the edge v3v4.
(Note that it corresponds to the visible portion of the polygon used
in the positive MVC coordinates [Lipman et al. 2007].) This con-
struction, once the barycentric coefficients are redistributed to the
displaced vertices, results in true coordinates, without discontinuity
due to visibility as demonstrated in Fig. 11. The ensuing coordi-
nates are thus both local (in the sense advocated in [Zhang et al.
2014]), and positive [Lipman et al. 2007], but require no quadrature
to evaluate – making them particularly well suited to cage-based de-
formation of meshes. We leave implementation details and analysis
of this construction in 2D and 3D to a forthcoming paper.

6 Future Work

Our characterization of coordinates based on power duals opens
a number of avenues for future work. We mention a few in lieu
of a conclusion to illustrate both the current limitations of power
coordinates and the opportunities that our work offers.

Theoretical developments. Given the generality of power coor-
dinates, finding necessary conditions on the weights for smooth-
ness, deriving simple and efficient evaluations of their derivatives,
or proving contraction for iterated power coordinates are examples

Figure 11: Positive Power Mean Value Coordinates. Even on non-
convex polytopes, one can use the power mean value coordinates
on a “secondary” star-shaped polytope to force positivity. Here,
four basis functions are displayed using a rainbow color ramp.

of results that could have very practical consequences. The use of
power coordinates to define higher-order Whitney basis functions
using the work of Gillette et al. [2016] is also of great interest.

Harmonic coordinates. Coordinates issued from partial differen-
tial equations have not found wide acceptance due to the memory
footprint required by the storage of solutions, despite the clear ad-
vantage of being positive on arbitrary polygons. A natural question
is whether the additional insight afforded by power coordinates can
result in an explicit or iterated formulation (see Sec. 4.4) which
could be evaluated without the need for precomputed solutions.

Bézier patches. Non-negative barycentric coordinates over poly-
topes have been shown crucial to offer multisided Bézier patches
in [Loop and DeRose 1989], and recently in [Varady et al. 2016].
Rewriting their construction in the context of power coordinates
may help in providing fast evaluations of these general patches.

Coordinates on non-convex polytopes. Although we showed how
our construction extends naturally to non-convex polytopes, we
have only scratched the surface of what can be accomplished for
this case. Understanding a general construction with the same effi-
ciency of evaluation is an obvious future work.

Transfinite interpolants. Finally, the notion of power diagram
for pointsets extends to continuous power diagrams of curves,
which can be computed rather efficiently [Hoff
et al. 1999]. Consequently, our construction
will converge as a polytope is refined to cap-
ture a smooth shape (inset: example of power
Voronoi dual for 3D bean shape). This exten-
sion is similar to the transfinite form of Sibsons
interpolant [Gross and Farin 1999], and closed-
form solutions of specific choices of weight
functions are possible and could offer valuable
new transfinite interpolants as well.
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CEGOÑINO, J., AND DOBLARÉ, M. 2003. Overview and re-
cent advances in natural neighbour Galerkin methods. Archives
of Computational Methods in Engineering 10, 4, 307–384.

DASGUPTA, G., AND WACHSPRESS, E. L. 2008. Basis functions
for concave polygons. Computers & Mathematics with Applica-
tions 56, 2, 459–468.

DE GOES, F., BREEDEN, K., OSTROMOUKHOV, V., AND DES-
BRUN, M. 2012. Blue noise through optimal transport. ACM
Trans. Graph. 31, 6, Art. 171.

DE GOES, F., ALLIEZ, P., OWHADI, H., AND DESBRUN, M.
2013. On the equilibrium of simplicial masonry structures. ACM
Trans. Graph. 32, 4, Art. 93.

DE GOES, F., LIU, B., BUDNINSKIY, M., TONG, Y., AND DES-
BRUN, M. 2014. Discrete 2-tensor fields on triangulations. Com-
put. Graph. Forum 33, 5, 13–24.

DE GOES, F., MEMARI, P., MULLEN, P., AND DESBRUN, M.
2014. Weighted triangulations for geometry processing. ACM
Trans. Graph. 33, 3, Art. 28.

DE GOES, F., WALLEZ, C., HUANG, J., PAVLOV, D., AND DES-
BRUN, M. 2015. Power particles: An incompressible fluid solver
based on power diagrams. ACM Trans. Graph. 34, 4, Art. 50.

DESBRUN, M., KANSO, E., AND TONG, Y. 2008. Discrete differ-
ential forms for computational modeling. In Discrete differential
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construction of barycentric coordinates over convex polygons.
Advances in Computational Mathematics 24, 1, 311–331.

FLOATER, M. S. 1997. Parametrization and smooth approximation
of surface triangulations. CAGD 14, 3, 231 – 250.

FLOATER, M. S. 2003. Mean value coordinates. CAGD 20, 1,
19–27.

FLOATER, M. S. 2015. Generalized barycentric coordinates and
applications. Acta Numerica 24 (5), 161–214.

GILLETTE, A., RAND, A., AND BAJAJ, C. 2016. Construction of
scalar and vector finite element families on polygonal and poly-
hedral meshes. Computational Methods in Applied Math 19.

GLICKENSTEIN, D., 2005. Geometric triangulations and discrete
Laplacians on manifolds. arXiv.org:math/0508188.

GROSS, L., AND FARIN, G. 1999. A transfinite form of Sibson’s
interpolant. Discrete Applied Mathematics 93, 1, 33–50.

HIYOSHI, H., AND SUGIHARA, K. 1999. Two generalizations of
an interpolant based on Voronoi diagrams. International Journal
of Shape Modeling 05, 02, 219–231.

HOFF, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND CUL-
VER, T. 1999. Fast computation of generalized Voronoi dia-
grams using graphics hardware. In Proceedings of ACM SIG-
GRAPH, 277–286.

HORMANN, K., AND FLOATER, M. S. 2006. Mean value coordi-
nates for arbitrary planar polygons. ACM Trans. Graph. 25, 4,
1424–1441.

HORMANN, K., AND SUKUMAR, N. 2008. Maximum entropy
coordinates for arbitrary polytopes. Comp. Graph. Forum 27, 5,
1513–1520.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
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A Lagrange & Facet Restriction Properties

We here show that conditions (a)-(d) imply properties (e) and (f)
for the case of convex polytope P with vertices {vi}i=1...n in
arbitrary dimension. As a consequence of (a) and (b), we have∑
i λi(x)(vi − x) = 0. When evaluating at a vertex vj , one gets:∑

i=1...n,i6=j

λi(vj)(vi − vj) = 0

Since all vertices are extreme points of the polytope, a convex com-
bination of vectors (vi − vj)i6=j is zero if and only if all the co-
efficients are zeros, i.e., λi(vj) = 0 for i = 1 . . . n, i 6= j: indeed,
there exists a direction at vj along which all vectors (vi − vj)i6=j
have positive components. Using condition (a), we conclude that
the Lagrange property (e) holds, i.e., λi(vj)=δij .

As for condition (f), we can construct a coordinate system such that
a given boundary facet contains vertices with their first coordinates
at 0, and such that all other vertices have positive first coordinates
due to the convexity of P . Thus, similar to the previous argument,
property (f) reflecting the restriction of coordinates to the boundary
facets follows from conditions (a)-(d) since a positive linear com-
bination of positive numbers must be a positive number.




