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Abstract
In this paper, we propose a controllable embedding method for high- and low-dimensional geometry processing through sparse
matrix eigenanalysis. Our approach is equally suitable to perform non-linear dimensionality reduction on big data, or to offer
non-linear shape editing of 3D meshes and pointsets. At the core of our approach is the construction of a multi-Laplacian
quadratic form that is assembled from local operators whose kernels only contain locally-affine functions. Minimizing this
quadratic form provides an embedding that best preserves all relative coordinates of points within their local neighborhoods.
We demonstrate the improvements that our approach brings over existing nonlinear dimensionality reduction methods on a
number of datasets, and formulate the first eigen-based as-rigid-as-possible shape deformation technique by applying our
affine-kernel embedding approach to 3D data augmented with user-imposed constraints on select vertices.

1 Introduction
Computing embeddings of discrete manifolds is one of the most
general geometry processing tasks. Surface parameterization, for
instance, seeks to embed a three-dimensional triangulated surface
into the plane while minimizing some form of distortion; mesh de-
formation is another example where a different embedding of a sur-
face or volume is sought after through user-specified constraints
while also minimizing distortion. While geometry processing has
been mostly focusing on 3D datasets, our big data era requires the
processing of high-dimensional data as well. Since machine learn-
ing algorithms struggle with high dimensions (an issue known as
the curse of dimensionality in this context), one typically needs
to map these data points from their high-dimensional space into
a lower dimensional space without significant distortion. Mapping
data (living in RD with D�1 but sampling a manifold of low in-
trinsic dimensionality d�D) into a low-dimensional embedding
space can be thought of as a preliminary feature extraction step in
machine learning, after which pattern recognition algorithms are
applied; yet it simply corresponds to an as-isometric-as-possible
parameterization of the original manifold. This link between ge-
ometry processing and dimensionality reduction has even been ex-
ploited for parameterization [ZKK02, CLZW07, SS09] and other
graphics applications [ZCO15].

Many linear dimensionality reduction methods exist. Principal
Component Analysis (PCA) or Singular Value Decomposition
(SVD), for instance, use eigenanalysis to find the most significant
low-dimensional coordinates in which to express high-dimensional
data in the most informative way. However, these linear methods
only perform well when the data is close to forming a linear sub-
space instead of an arbitrary non-flat manifold. Consequently, a
large body of work has been dedicated to nonlinear dimensionality
reduction instead to address this issue. Note that the applicability
of such low-dimensional embedding methods is incredibly broad,
as it is far from restricted to machine learning algorithms: reduced-

Figure 1: SAKE: high- and low-dimensional geometry processing. We in-
troduce a new technique to perform controllable embedding through eige-
nanalysis. Our approach allows us to find structure in high dimensional
datasets: (Top) from 221 RGB images (with 608×456 pixels; 10 are shown
on the right) of an actor in a knight costume captured from different light-
ing directions covering a large sphere of illumination [Lig16], a 2D embed-
ding is computed solely based on local pixel differences (left). Our Spectral
Affine-Kernel Embedding method finds a 2D parameterization of the images
corresponding to the direction and the intensity of the lighting (the knight
images correspond to red dots). (Bottom) The same spectral embedding ap-
proach can also be used for user-guided shape editing of 3D meshes and
pointsets, where a few handles are moved to precisely control the deforma-
tion of an initial object through a simple sparse matrix eigenanalysis.

dimensional representations of data, also called manifold learning,
produce a low count of “intrinsic variables” with which markedly
faster computations can be performed in the context of physical
simulation, rendering, image processing, chemistry, biology, etc.
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In this paper, we introduce a spectral approach to manifold learn-
ing that leverages simple and efficient geometry processing tech-
niques. We combine as-isometric-as-possible parameterizations of
local patches to generate a global, non-linear map into a low dimen-
sion, that preserves as best as possible the points’ positions relative
to each other in parametrized patches. In stark contrast to previ-
ous work (see Fig. 2 for instance), our approach guarantees the re-
covery of a locally isometric parametrization of the input manifold
when such a parametrization exists. We demonstrate on a variety
of examples that our Spectral Affine-Kernel Embedding (SAKE)
method outperforms existing techniques for both real and synthetic
datasets. Finally, we also illustrate how SAKE is useful even in low
dimensions by formulating an eigen-based non-linear shape defor-
mation technique for meshes and pointsets that allows the user to
deform an input shape as rigidly as possible based on the displace-
ment of a few handles.

1.1 Previous work

We first abstract the problem to its most general form: suppose one
is given n points {xi}i∈[1..n] in RD that are supposed to approxi-
mately sample a d-dimensional manifold. Nonlinear dimensional-
ity reduction seeks a map of this pointset to Rd that “unfolds” the
manifold with the least amount of intrinsic distortion.

Embeddings via dense matrices. Isomap [TSL00] imposes low
distortion on the reduction map by best preserving pairwise
geodesic distances between input points. These geodesic distances
are approximated through a shortest path (Dijkstra’s) algorithm in
the proximity graph where each point is linked through an edge
to its k closest neighbors in the embedding space. Such intrinsic
distances are typically more reliable than straight-line Euclidean
distances in RD as soon as the manifold is locally curved. From the
set of all pairwise geodesic distances, a dense n×n Gram matrix
is explicitly assembled; from its top d eigenvectors are found the
optimal coordinates in the new d-dimensional Euclidean space that
best preserve all these pairwise distances [BG05]. This reliance on
all pairwise distances renders it inherently robust to noise, making
Isomap one of the most robust dimensionality reduction methods.
However, this construction is not without significant drawbacks.
First, the pairwise geodesic distances requireO(n2logn) operations
to compute, and are poorly accurate as they are not even correct for
points lying on flat manifolds since only graph paths are consid-
ered in the computation of shortest paths. Second, the Gram ma-
trix is dense, which means that finding the final embedding has a
worst-case complexity of O(n3)—although algorithmic improve-
ments have been proposed to reduce this complexity through land-
mark approximations [DST02]. Finally, Isomap only provides nice
maps for manifolds without large-sized holes: geodesic distances
would become significantly biased in this case since shortest paths
would have to go around hole borders, distorting the local notion
of intrinsic distances (see Fig. 3). Any attempt at unfolding a non-
simply connected domain (i.e., a non-contractible manifold patch)
will fail to be nearly isometric, although algorithms aiming at mit-
igating this issue have been formulated [RBBK10]. As a conse-
quence, global Isomap-type methods are quite robust, but not effi-
cient or general enough to handle arbitrary inputs.

Embeddings via sparse matrices. Another category of ap-
proaches, including Locally Linear Embeddings (LLE [RS00]),

Figure 2: Affine Precision. Laplacian Eigenmap (middle) is not linearly
precise as it fails to properly capture a uniformly sampled flat patch in 3D
(left). SAKE (right) does not suffer from this common limitation.

Laplacian Eigenmaps [BN01], Local Tangent Space Alignment
(LTSA [ZZ04]) and all their variants, infer the global structure of
a non-linear manifold by a careful analysis of the interactions be-
tween overlapping local neighborhoods. While these approaches
differ in how they approach the dimensionality reduction problem,
they all encourage nearby points in the original embedding to be
mapped to nearby points in the reduced space, ending up with a
sparse and symmetric matrix from which the embedding is deduced
through eigenanalysis. The sparsity of the resulting matrix makes
such local approaches scale relatively well to large data sets com-
pared to Isomap, since extremal eigenvectors of sparse matrices can
be typically found in O(n1.5) [SM00]. However, sparsity is also
a source of brittleness: the final embedding will preserve the lo-
cal geometry of data as much as possible, but global, large-scale
distortions are not penalized. This shortcoming gives rise to very
warped embeddings in practice [DST02, VDMPVdH09], an issue
that can be partially reduced by reinjecting global distances in the
solve [HWX10] at the cost of a higher computational cost. Hessian-
based locally linear embedding (Hessian-LLE [DG03], [YZ15])
may provide much improved results through the construction of
least-squares approximation of Hessian operators in local tangent
spaces, thus avoiding spurious (harmonic) warping that Laplacian-
based methods suffer from. However, if noise is present, the ap-
proximation of Hessians becomes unreliable, and this technique
ends up with even worse warping than LLE (see Fig. 8): au-
tomatically “stitching” local flattened neighborhoods into a non-
degenerate global unfolding that is as isometric as possible to the
original high-dimensional manifold is inherently difficult. There-
fore, these local methods to manifold learning are often efficient
and general enough to deal with arbitrary inputs, but rarely robust
enough to offer a reliable global embedding.

Mesh deformation. Conceptually, mesh deformation techniques
are embedding methods as well, although they do not map onto
a reduced space: given an input simplicial 2- or 3-manifold in
R3 and a few select displacements of handle vertices in space,
they compute a deformed embedding that interpolates constrained
vertices while preserving the local neighborhoods of the original
mesh as closely as possible. In fact, differential coordinates based
on the Laplace-Beltrami operator (see a review of existing meth-
ods in [Sor05, Sor06]) can be seen as a close relative of Lapla-
cian Eigenmaps, where a particular embedding is found based on
the initial Laplacian operator through a linear solve instead of
an eigenvalue problem. Non-linear approaches to mesh deforma-
tion have been introduced as well to prevent visual artifacts of
previous linear methods [ZHS∗05, HSL∗06, BPGK06, HSTP11].
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Figure 3: Non-simply connected manifold. For points uniformly distributed over a 2-dimensional S-shaped manifold containing a hole (left), Isomap (top
middle) overestimates the size of the hole, while Laplacian Eigenmaps result (bottom middle) is severely distorted. However, HLLE with k=12 (top right) and
Sake with k=K=12 (bottom right) recover close to perfect embeddings in this noiseless case.

One of the simplest non-linear methods is the as-rigid-as-possible
(ARAP) modeling approach [SA07], which extends the Laplacian
editing paradigm to better enforce surface rigidity—at the price of
a slow-converging alternate minimization instead of a simple linear
solve. We will show that our spectral approach, when used on low-
dimensional data and with a few added terms to accommodate posi-
tion constraints, provides a non-linear alternative to surface defor-
mation which applies to meshes as well as pointsets and for which
off-the-shelf libraries can be used for fast and robust results.

1.2 Overview and contributions

In this paper, we propose a controllable embedding method for
high- and low-dimensional geometry processing. Our spectral ap-
proach can not only perform non-linear dimensionality reduction
on big data, but it also offers a non-linear shape editing tool for 3D
meshes and pointsets when applied to 3D data.

We propose a three-step approach to the embedding problem: a)
we first parameterize each local neighborhood from RD into Rd

as isometrically as possible via Isomap, using an additional geo-
metric correction of geodesics to improve robustness to irregular
sampling; b) we then compute an exhaustive set of relative coor-
dinates that captures the position of every point with respect to its
local neighborhood; c) lastly, a global embedding is found as the
new point positions in Rd that best preserve all the relative coordi-
nates from all the neighborhoods. Each of these 3 steps is efficiently
formulated as a spectral problem: (a) requires independent (thus,
trivially parallelizable) partial eigendecompositions of dense, but
small matrices; (b) is done via independent partial SVDs; and (c)
is achieved via a partial eigendecomposition of a sparse, positive-
definite symmetric matrix. Our approach can be understood in geo-
metric terms as constructing the global embedding coordinates that
are as linear as possible in the local most-isometric parameteriza-
tion of each small neighborhood of the original input. Note that
this is in marked contrast with most previous methods which fail
to properly unfurl even flat or developable manifolds (see Figs. 2
and 3). Finally, we explore applications of manifold learning to 3D
geometry processing by formulating a spectral, as-rigid-as-possible
deformation technique that computes the most-isometric embed-
ding of an original shape based on user-defined position constraints.

Besides our novel embedding approach, we also provide along the
way a series of contributions covering various aspects of manifold
learning and shape deformation:

• we introduce a geodesic curvature correction to the distances
used in Isomap [TSL00] that adds much improved stability to
this staple of nonlinear dimensionality reduction in the case of
irregular and sparse sampling, without affecting its computa-
tional complexity or adding new parameters;

• we add robustness to Locally-Linear Embeddings [RS00] and
Laplacian Eigenmaps [BN01] by using an exhaustive set of rel-
ative coordinates to guarantee the absence of spurious harmonic
deformation in the final embedding. Our extension is much
simpler and more robust to irregular sampling and noise than
Hessian-LLE [DG03] which unnecessarily requires quadratic
accuracy of their local Hessian operators;

• we introduce a simple approach for user-guided deformation of
meshes and pointsets which, unlike previous non-linear edit-
ing approaches [BPGK06,SA07], can be efficiently and reliably
computed through eigenanalysis of a sparse matrix.

2 Spectral Affine-Kernel Embeddings

We first introduce a procedure to map a pointset S assumed to sam-
ple (possibly with noise) a connected d-manifold from RD into a
d-dimensional space, where D> d. We assume the pointset to be
arbitrarily indexed, and we denote its n points as {xi}i=1..n, where
each point xi is given as a vector of D coordinates. The result of
our most-isometric embedding approach will be the corresponding
mapped positions {zi}i=1..n in Rd .

2.1 General algorithm

Our dimensionality reduction proceeds in four distinct steps:

• We first form a proximity graph G by linking nearby input
points; we then assemble a local geodesic neighborhood N (i)
of each input point xi based on the proximity graph.

• We compute for each xi an as-isometric-as-possible embedding
of its neighborhood in Rd .

• For each of these resulting embeddings, we assemble a sparse
matrix Li representing a linear operator (“multi-Laplacian”)
whose kernel is restricted to constant and linear functions.

• We then assemble a quadratic form Q derived from the affine-
kernel matrices Li, and find the final embedding {zi}i=1...n in
Rd by computing the lowest (d+1) eigenvectors of Q.
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We now review each step in order to provide both algorithmic de-
tails and mathematical justification for our embedding approach.

2.2 Proximity graph and geodesic neighborhoods

We begin by forming a proximity graph G by linking every point
of S with its k nearest neighbors based of the Euclidean distance
in RD, found efficiently through a kd-tree, cover tree, or locality
sensitive hashing data structure. The value of k must be small to
make sure the edges of the graph are short enough to offer reliable
approximations of geodesics. Knowing that we will approximate
a d-dimensional manifold, we typically choose k= 4d, i.e., a va-
lence proportional to d like for a regular grid. We then assign to
each point xi the set of indicesN (i) corresponding to the K nearest
neighbors of the ith point in the proximity graph—hence, defin-
ing a geodesic neighborhood—for K larger than k. By default, we
pick K in the interval [k;2dk] to account for the dimensionality of
the data and the amount of noise. These K-neighborhoods define
n overlapping patches that we will each unfold, then glue together
into a global d-dimensional embedding.

Note that our choice of a small value k for the proximity graph
and a distinct, larger value K to define neighborhoods prevents the
traditional issue of “shortcutting” the manifold: existing methods
do not make the distinction between these two values, and pick a
neighborhood based on either an ε-ball around the point or its k-
nearest-neighbors in RD. However, robustness to noise requires a
large number of neighbors, which creates graph edges that are far
from being geodesics. Instead, our simple alternative allows the use
of large neighborhoods (to be robust to noise) while still keeping
a sparse edge graph to better approximate geodesic distances. Of
course, any additional knowledge on the sampling (such as noise
level) can be used to adjust the two parameters k and K. These
parameters can even vary from point to point if needed to better deal
with varying sampling density for instance, although our strategy
can already handle large density variations, see Fig. 10.

2.3 Mapping neighborhoods into reduced space

Each geodesic neighborhood is then mapped as isometrically as
possible into dimension d. Given that these neighborhoods are
small and contractible, we use Isomap [TSL00] to achieve the map-

Figure 4: Geodesic distance correction. From a triangulated patch of a
spherical cap with good aspect ratio elements (left, top and side views), the
total relative L2 error of all pairwise distances computed based on Dijk-
stra’s shortest paths is 29.9; our simple post-processing reduces the error
to 6.5. If we bin all the distances based on the number of edges in the edge-
based connecting paths, we see that aside from the case of a single edge
(where the geodesic distance cannot be improved), our geodesic distance
correction reduces errors by a factor five or more.

Figure 5: Geodesic curvature correction. Our geometric correction im-
proves geodesic approximations for coarse and irregularly sampled data;
without it, extreme distortion can happen on imperfectly sampled datasets.
We set k=K=12 for this noiseless Swiss Roll example (left).

ping reliably: using PCA instead would be significantly less isomet-
ric if the input manifold is curved.

Geodesic distances via Dijkstra’s algorithm. Each edge of the
proximity graph G is considered an intrinsic geodesic curve, thus
its Euclidean length in RD is an accurate estimate of the intrin-
sic distance between its end points. For every pair of points in
the geodesic neighborhood of point i that are not directly con-
nected by an edge, we compute its approximate geodesic distance
by solving the all-pairs-shortest-path problem, which Dijkstra’s al-
gorithm [Dij59] achieves optimally in O(K2 logK).

Geodesic curvature correction. Shortest paths computed on the
neighborhood graph suffer from non-zero geodesic curvatures:
Dijkstra’s algorithm will return shortest paths that are polylines
made of graph edges, hence very unlikely to be actual geodesics.
To improve geodesic distance estimates, we correct for these
graph-induced errors by post-processing each shortest path to
remove spurious geodesic curvatures; more precisely, we con-
struct an improved shortest path by shifting its vertices paral-
lel to the neighborhood’s local tangent space so as to make its
geodesic curvature zero. To this end, we first compute an esti-
mate of the local tangent d-dimensional space of the neighbor-
hood through PCA, which returns a d-dimensional basis of or-
thonormal vectors t1, ...td in RD. Then for each “geodesic” poly-
line between two points xp and xq (representing their shortest
connecting path in graph G), we displace the intermediate ver-
tices of the polyline parallel to the d-dimensional tangent space
and orthogonal to the line (xpxq) to project out any “zigzag-
ging”, thus straightening the geodesic. This is easily achieved
numerically: if xr is a vertex of the polyline, first project the
RD vectors vr = xr−xp onto the tangent d-dimensional space
to obtain v̂r = ∑ j(t j ·vr) t j; from
the resulting vectors v̂r, further
extract their projection along the
direction v̂q through

ṽr = v̂r− [v̂r · v̂q] v̂q/|v̂q|2.
These final (tangent) vectors ṽr of the points along the path between
xp and xq are then subtracted from their corresponding original ver-
tices xr to determine their improved locations. The length of the re-
sulting polyline (see inset), which has now zero geodesic curvature,
is a more accurate geodesic distance lpq between xp and xq. Note
that this correction guarantees exact distance evaluations when the
neighborhood is flat, and provides a robust and consistent estimate
of distances in the general case of a curved manifold—even applied
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on a well-shaped triangle surface (where the graph is now formed
by the edges of the mesh), our simple projection reduces the rel-
ative geodesic length errors fivefold as shown in Fig. 4. The only
assumption our approach makes is that the PCA-based estimate of
the local tangent space on a neighborhood of size K is of reason-
able quality. As a result, if the neighborhoods are chosen to be too
small relative to the noise present in the data or too large compared
to data features, the quality of the correction may partially drop.

From distances to d-dimensional embedding. From all the pair-
wise geodesic distances lpq (for p and q in i∪N (i)) of the lo-
cal neighborhood of point xi, we apply Multi-Dimensional Scal-
ing [BG05] to obtain a lower dimensional flat embedding of a
neighborhood that best preserves the geodesic distances. First, the
matrix Di =(lpq) of pairwise geodesic distances is converted into
a Gram matrix Gi via “double-centering” [TSL00]; then the d top
eigenvectors of Gi are computed. Once scaled by the square root of
their respective eigenvalue, they represent the optimal as-isometric-
as-possible coordinates Yi of a d-dimensional embedding of all the
points in the neighborhood of xi. This MDS procedure is varia-
tional, as it amounts to solving a quadratic minimization under rank
constraint, since the solution Yi minimizes the Frobenius norm
||YYt−Gi||2F subject to rank(Y) = d [VMS16]. Note that if the
points are lying on a flat or developable manifold, no distortion oc-
curs in this process—a property that regular Isomap fails to enforce
due to the zigzagging of Dijkstra’s shortest paths.

Discussion. Pairwise distances on triangle or tetrahedral meshes
can of course be computed faster and better through fast march-
ing [ZKK02] or heat-based distances [CWW13]. Diffusion dis-
tances have also been proposed to offer approximate geodesic dis-
tances through truncation of the graph Laplacian spectrum and tun-
ing of a diffusion time t [CLL∗05]. However, our approach applies
to pointsets in arbitrary dimensions, and its simplicity makes it par-
ticularly convenient: improvements over original Dijkstra distances
are already significant with only a small computational overhead.

2.4 Relative coordinates

Now that we have unfurled all geodesic neighborhoods in d-
dimensions, we assemble for each of these mapped neighborhoods
a set of linear equations that represent all possible relative co-
ordinates of a point with respect to its neighbors. Equivalently,
we will show that these equations enforce harmonicity in all
constant metrics. Since the neighborhood of point xi has been
nearly-isometrically mapped to points y j ∈Rd for each j in the
index set {i}∪N (i), we will denote by Yi the (K+1)×d matrix
containing all the coordinates of the neighborhood points, i.e.,

Yi =
(
yi y j1 y j2 . . . y jK

)t
Affine-precise linear combinations. Define the d×K matrix Ei =(
y j1−yi; y j2−yi; . . . ; y jK−yi

)
containing in the m-th column

the d coordinates of the edge vector y jm−yi. This matrix can be
thought of as a redundant basis of the d-dimensional tangent space,
and its kernel is formed by the space of all linear combinations
of edges summing to zero. Because we picked K > d (i.e., more
neighbors than the dimensionality), the rank-nullity theorem di-
rectly implies that the size of this kernel is K− d, as the edges
span the entire d dimensions in practice. The basis of this kernel
can be constructed efficiently through a Singular Value Decompo-

sition (SVD) of Ei = UΛΛΛVt , where U is a d×d orthogonal matrix,
ΛΛΛ is a d×K rectangular diagonal matrix with the d singular values
in decreasing magnitude on the diagonal, and V is a K×K orthog-
onal matrix. We simply select the last K− d right singular vectors
{wp ∈RK}p=1..K−d of unit length as the basis vectors of the ker-
nel. Now yi can be written as a linear combination of its neighbors
y j for each of these vectors wp since, by construction,

∀p ∈ [1..K−d],
(

∑
j∈N (i)

[wp] j

)
yi = ∑

j∈N (i)
[wp] j y j, (1)

where [wp] j denotes the j-th coordinate of wp. Consequently, the
matrix Li of size (K−d)×(K+1) defined as

Li =

(
∑

j∈N (i)
[w1] j ∑

j∈N (i)
[w2] j . . . ∑

j∈N (i)
[wK−d ] j

−w1 −w2 . . . −wK−d

)t

satisfies: Li Yi = 0. Note that the set of weights wp can be seen as
a linearly-independent basis of all relative coordinates, describing
the position of yi in terms of its neighbors y j for j ∈ N (i). Using
the whole space of relative coordinates instead of picking just one
results in a more complete encoding of the data, allowing us to
capture the geometry of a patch in a reliable way.

Affine kernel. Note that matrix Li has an important property: its
kernel consists of all (discrete) affine functions. Indeed, consider a
scalar function f :Rd→R and call f the (K+1)-dimensional col-
umn vector representing the sampling of f in the neighborhood,
i.e. f j = f (y j) for j∈ {i}∪N (i). Due to our construction of Li,
any constant function will satisfy Lif=0. The same property holds
for linear functions as well because the weights form a basis of
the kernel of Ei (Eq. (1)). Thus, Ker Li contains all sampled affine
functions. Furthermore, the rows of Li are (K−d) independent vec-
tors (by construction via the SVD), so by the rank-nullity theorem
the kernel of Li is of dimension (K+1)−(K−d)=d+1. However,
the space of affine functions f (y)=aty+b (a∈Rd ,b∈R) also has
dimension d+1. This implies that sampled affine functions are the
only elements of KerLi.

Multi-Laplacian interpretation. Note that our construction can be
understood as an extension of Laplacian eigenmaps [BN01]: while
their approach uses a single linear equation per neighborhood cor-
responding to a local condition of harmonicity, we have instead a
whole set of linear equations. Each row of our local operator Li
can be interpreted as a discrete harmonicity condition in a different
metric—hence our use of the term “multi-Laplacian.” Indeed, the
action of a row of Li on a discrete function f is of the form d ? d f
in the DEC notation [DKT08], and equating it to zero corresponds
to a harmonic condition in a possibly non-Euclidean metric. The
matrix Li, in fact, encodes harmonicity conditions for all constant
metrics σ over the unfolded neighborhood: the anisotropic Lapla-
cian operator ∆σ f =∇·(σ∇ f ) returns zero for affine functions as
discussed in [dGAOD13, dGLB∗14] since constant metrics σ sat-
isfy ∇· (σ∇ f ) = Tr(σHess f ). (Linear accuracy is actually valid
for all divergence-free metrics, but the restricted case of constant
metrics is sufficient for our purpose.) Therefore, our construction
can be thought of as identifying the intersection of the spaces of
σ-harmonic functions for all constant σ: these “multi-harmonicity
conditions” restrict the kernel to be sampled affine functions only—
while the normal Laplacian is blind to any non-zero off-diagonal
term of the Hessian. Note that the multi-Laplacian Li we end up
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Figure 6: Bumps example. For a regularly-sampled “two-bump” surface (left), LLE creates foldovers; HLLE/LTSA both significantly distort areas around
the bumps in a non-isometric way; MLLE recovers an almost regular grid, completely ignoring the local curvature of the original data; k=24 neighbors were
used for all the methods. Instead, SAKE (k=8,K=24) finds a most-isometric embedding.

with is less difficult to assemble than a Hessian operator on which
Hessian-LLE is based, since it requires no specific behavior when
applied to sampled quadratic functions; yet the two operators have
the exact same kernel, bringing robustness to the process as the au-
thors of [DG03] argued.

2.5 Assembling the global quadratic form Q

In order to find the final embedding {zi}i=1..n in Rd of the pointset
S, we assemble a sparse, symmetric, and positive-definite n×n
matrix Q. Let Z=(z1 z2 . . . zn)

t , and Si be the (K+1)×n selection
matrix of neighborhood i, i.e., the sparse matrix such that each
component (p,q) is 1 if q ∈ N (p), and 0 otherwise—so that
SiZ is the mapped neighborhood of i in the final d-dimensional
embedding. We then define our global quadratic form Q as:

Q =
n

∑
i=1

St
i Lt

i Li Si.

Given our interpretation of the matrices Li as storing harmonicity
conditions for all constant metrics, one can understand the global
quadratic form as the sum of local Dirichlet energies computed in
all possible locally constant metrics. The resulting quadratic form
thus penalizes any non σ-harmonic functions—that is, any non-
affine functions— in any given neighborhood: it is therefore much
more “discerning” than a simple Laplacian.

2.6 Extracting the final embedding

From the sparse SPD matrix Q, we extract the final, global
embedding of the input pointset as a set of positions {zi}i=1..n
in Rd by computing the first (d+1) smallest eigenvectors qm
of Q (satisfying Qqm = λmqm). Note that the first eigenvector is
constant with an associated zero eigenvalue by construction. The d
coordinates of points zi simply correspond to the second, third, ...,
and (d+1)st smallest d eigenvectors:

zi =
(
[q2]i [q3]i . . . [qd+1]i

)t
.

Indeed, these are the positions that make every local neighborhood
satisfy the multi-harmonic conditions as closely as possible, in
a least squares sense, since the matrix Z = (z1 z2 . . . zn)

t is the
solution of the following minimization:

argmin
Z

1
2 Tr
[
ZtQZ

]
s.t. ZtZ = Id,

where the constraint is used to prevent degenerate solutions (sim-
ilar to the use of Fiedler vectors in [MTAD08]). The final embed-
ding thus preserves the local relative coordinates as best as possi-
ble since, by construction of wp, we have LiYi = 0 over all the

isometrically parametrized patches of the original manifold. No-
tice that if the input pointset was finely sampling a developable
manifold, we exactly recover, up to an affine transformation, the
intrinsic discretization of the manifold isometrically unfolded in
Rd (and the first (d+1) eigenvalues of Q are zero in that case).
If the original manifold is not developable, this extraction picks
the unfolding which is as affine as possible in each locally isomet-
ric coordinates—and the eigenvalues of Q inform us on how non-
developable the initial manifold was, and how much metric distor-
tion we can expect from our optimal low-dimensional embedding.

2.7 Computational complexity

Once the initial proximity graph is computed (a task that is com-
mon to all manifold learning methods), our approach involves four
distinct stages. First, we compute an all-pair-shortest-path algo-
rithm per neighborhood so that each approximate geodesic dis-
tances between point pairs can be evaluated; this step has a com-
plexity of O(K2 logK) for each of the n neighborhoods. Second,
we compute an as-isometric-as-possible parameterization of each
neighborhood, which requires the O(K3) eigenanalysis of a dense
(K+1)×(K+1) matrix of distances. Third, we compute a SVD
in O(K3) to find the affine-kernel matrix Li in each neighborhood.

Figure 7: Swiss roll with sparse noise. Flexibility in the size of geodesic
neighborhoods renders SAKE stable to noise. We use points sampled from
an intrinsically 2D Swiss roll embedded in 3D with sparse, uniformly-
distributed noise in the normal direction (left, 2 views). Results of non-
linear 2D embeddings (right column, from top to bottom): LLE (k = 15),
HLLE/LTSA (k=15), MLLE (k=15) and SAKE (k=15,K=30). Results of
LTSA and HLLE are visually indistinguishable on this example.
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Note that these three first steps can be done in a massively parallel
way as they proceed independently on each neighborhood. Finally,
finding the (d+1) bottom eigenvectors of the sparse matrix Q re-
quires an expectedO(n1.5) number of operations (as already exper-
imentally found in [SM00] and confirmed in our tests). Assuming
that K is small compared to the number of input points, the SAKE
embedding algorithm scales much better than Isomap, and does not
suffer from any restriction on the geometric nature of the manifold.

3 Analysis
We provide an extensive analysis to clearly identify the properties
of SAKE, before presenting numerical tests to confirm our claims.
We used the SciKit Learn [Sci16] manifold learning implementa-
tion of Isomap, LLE, HLLE, LTSA and Laplacian Eigenmaps.

3.1 Comparisons to prior art in manifold learning

Before delving into numerical comparisons, we first detail how our
approach markedly differs from previous work. In particular, we
explicitly describe the key differences between SAKE and the two
most closely related approaches, HLLE and MLLE. In our discus-
sion of the computational complexity of the various existing meth-
ods, we will denote by k the average number of neighbors for each
input point xi to be consistent with our notation.

SAKE vs. Isomap. Besides its issues of computational complexity
and stringent limitation to simply connected patches, Isomap is not
robust to low sampling: shortest-path geodesic approximations can
become quite poor. Despite the existence of proofs of convergence
to the proper geodesic distances [DST02], the local differences be-
tween local geodesic distances are often very inaccurate. Our im-
provement through geodesic curvature correction allows for much
more robust results, see Figs. 4 & 5. While we use this distance cor-
rection only for local neighborhoods in the context of SAKE, the
same simple geometric insight can also enhance the approximation
of geodesic distances used in Isomap algorithm by performing this
correction over long geodesics through local corrections. Proper
testing of this local/global correction of Dijkstra’s shortest paths in
Isomap is left as future work.

SAKE vs. Laplacian Eigenmaps. The approach of Belkin and
Niyogi [BN01] rely on an eigenanalysis of the Laplacian operator.
However, the null space of this operator may contain much more
than linear functions: it includes all harmonic functions such as
f (x,y)=xy for instance. The final embedding is thus often polluted
by harmonic deformations, as observed in practice in Fig. 3. SAKE,
instead, reduces the kernel of its quadratic form by enforcing more
than a single linear equation per vertex, in order to guarantee a bet-
ter isometry of the final embedding. Moreover, the approximation
of the Laplacian in high dimension by a matrix L with entries Li j
proportional to exp(−‖xi−x j‖2) as proposed in Laplacian Eigen-
maps does not satisfy linear precision. Consequently, a flat mani-
fold would not even be properly mapped without distortion (Fig. 2),
while our approach returns the exact result in this case.

SAKE vs. Locally Linear Embedding. While LLE [RS00] does
not rely on the Laplacian operator, its foundations are quite simi-
lar to Laplacian Eigenmaps. The only difference in practice is that
the linear equation assembled per point xi is not derived from a lo-
cal Laplace estimate, but determined by solving a constrained least

squares problem to best capture the local linear structure: it com-
putes the linear combination of neighborhood points {x j} j∈N (i)
that best reconstructs xi. The first advantage of this modification is
that in the case of a flat manifold, this linear equation is exactly sat-
isfied by the input, so the result will be perfect. However, as soon as
the input manifold is curved, the lack of isometric unfolding of each
neighborhood and the reliance on a single linear equation per point
to find the final embedding renders the approach extremely brittle:
different samplings of a same manifold may result in dramatically
different embeddings, see Figs. 7 and 8. A follow-up work [GR08]
proposes to first project the neighborhood in d-dimensions through
PCA. While this tends to reduce the sensitivity to noise since reg-
ularization is no longer needed, this approach remains quite brittle
due to the reliance on a single linear equation per point.

SAKE vs. LTSA. Local Tangent Space Alignment [ZZ04] pro-
ceeds by first constructing an approximation for the tangent space
at each data point, before aligning these tangent spaces to form
global coordinates. In essence, this approach is similar to ours; but
they instead directly enforce that transitions between neighborhood
charts be as affine as possible, and the initial construction of the
tangent space relies on PCA, which does not handle curved mani-
folds well. As a consequence, LTSA is quite successful at unfold-
ing nearly flat manifolds (Fig. 6) because it also relies on more than
a single linear equation per neighborhood (in fact, in many cases,
LTSA and HLLE have identical results); but LTSA systematically
fail on more challenging examples as demonstrated in Fig. 8.

SAKE vs. Multiple-weights LLE. A variant of the original LLE
method, named Multiple-weights LLE [ZW07], is worth discussing
further: the authors were the first to notice that the brittleness of
LLE-type methods is mostly due to their reliance on the enforce-
ment of a single linear equation per neighborhood. Consequently,
they added to the regularized set of weights that LLE uses all the
sets of weights corresponding to singular values close enough to
zero (requiring a user-specified threshold), which offered much im-
proved stability. However, just like LLE, the authors do not use a lo-
cal, as-isometric-as-possible embedding, so the kernel of their op-
erator is “polluted” by the way the manifold is embedded in higher
dimension. Consequently, the result of their dimensionality reduc-
tion is far from being isometric, even if the input is nearly devel-
opable. Additionally, consider the example in Fig. 6: while the re-
sult of MLLE may at first glance look best, close inspection reveals

Figure 8: Swiss roll with Gaussian noise. SAKE can handle strong noise
in the input. Here, points are sampled from a 2D Swiss roll embedded in
3D with added Gaussian noise along the normal (left, profile view). Results
of 2D embeddings (right, top to bottom): LLE (k= 15), HLLE/LTSA (k=
15), MLLE (k = 15) and SAKE (k = 15,K = 75). Again, LTSA and HLLE
return visually identical results, significantly deformed due to the instability
of PCA-based tangent plane approximation in presence of strong noise.
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that the mapped points are simply ignoring the curvature of the ini-
tial manifold. This non-isometric behavior thus obscures the nature
of the input data, and is hardly useful in concrete applications.

SAKE vs. Hessian-LLE. Hessian-LLE [DG03], shares also a close
relationship to our approach: the authors recognized the value of re-
producing affine functions on each chart of the manifold to find a
reliable embedding. Consequently, they propose to construct local
Hessian operators since their theoretical null space is restricted to
affine functions. They proceed by first unfolding each neighbor-
hood via PCA, which fails to be robust as soon as the input data
is a bit noisy, see Fig. 8. From the neighborhood projected onto a
low-dimensional tangent embedding, they construct a discrete ba-
sis of constant, linear, and quadratic functions (this last subspace
is constructed through pointwise product of linear functions). They
finally orthonormalize these bases through Gram-Schmidt. Thus,
their method requires O(ds2) more operations [GVL96], where
s=d(d+1)/2 is the dimensionality of the space of quadratic func-
tions. Additionally, we note that HLLE uses tangent planes at the
center of their local PCA as noticed in [XDW16]; however this
means that, for very irregular sampling, two vertices may lead to
nearly identical Hessian estimates, thus not providing added infor-
mation. In sharp contrast, our approach does not try to construct an
approximate Hessian, but an operator whose kernel contains only
affine functions—which can be done faster and is significantly less
sensitive to noise in the data, see Figs. 7 and 8 for example.

3.2 Synthetic 3D datasets

For the past decades, manifold learning approaches have used a
number of synthetic examples to demonstrate their results. We pro-
vide our results on a number of classical examples for comparison
purposes, with and without noise, for regular and irregular sam-
pling, and for low and high-dimensional datasets.

3D-to-2D datasets. Fig. 5 shows that SAKE can handle the usual
“Swiss roll” example that all other methods use in their tests, even
with highly irregular sampling. Note that our geodesic curvature
correction makes a big difference on such an example: if the regu-
lar, non-corrected Isomap is used to unfold every neighborhood,
trying to make the final coordinates affine in these distorted lo-
cal coordinates induces a large global distortion, confirming that
our correction is crucial in our approach. Fig. 3 shows the noise-
free ‘S-shape’, with a uniform sampling and a hole in the middle.
As expected, Isomap cannot unfold this non-simply connected do-
main without distortion. The Laplacian eigenmap is surprisingly
deformed, most likely due to the presence of harmonic functions.
In sharp contrast, HLLE and LTSA return very similar (and cor-
rect) results, and SAKE matches these results. Fig. 6 shows as-
isometric-as-possible flattenings of a noise-free two-bump height
function sampled on a regular grid. On this example, LLE creates
foldovers on the bumps. HLLE and LTSA are once again visually
indistinguishable, but exhibit shrinkage on the two corners near the
bumps. MLLE keeps the symmetry of the domain perfectly; but the
curvature of the bumps is totally ignored, amounting to a orthog-
onal projection onto the support plane—hence creating significant
metric distortion between the original manifold and its 2D parame-
terization. SAKE captures the domain and its symmetries, with the
expected metric-preserving parameterization of the bumps. Fig. 2
exhibits how even an irregularly sampled simple plane fails to be

Figure 9: Embedding errors. For the SAKE results shown in Fig. 8 (top)
and Fig. 7 (bottom), we show the local reconstruction errors in pairwise
distances (MDS errors, left) and in relative l2 position errors (right).

correctly captured by a Laplacian eigenmap, while SAKE guaran-
tees perfect projection. Note that Isomap would also fail to keep the
original sampling since shortest distances are computed on a graph,
which creates zigzagging (thus, inaccurate) geodesics.

Noisy datasets. Testing robustness to noise is also informative. We
tried the well-known ‘Swiss roll’ with noise “peppered” around:
only 10% of the points are being displaced with a uniform noise dis-
tribution along the surface normal of the roll to simulate inaccurate
samples, see Fig. 7. LLE already suffers from this noise (other val-
ues of k result in worse deformation), and so are HLLE and LTSA
to a lesser extent. MLLE and SAKE return very similar and visually
plausible results. If we now try the Swiss roll with Gaussian noise
(standard deviation of 0.28) as shown in Fig. 8, HLLE and LTSA
fail entirely, while LLE is still quite deformed. MLLE appears rela-
tively good, although the right end of the strip is squeezed in a way
similar to LLE, but with a less pronounced effect. SAKE remains
best among all the methods. We analyze two types of error, aris-
ing from the MDS and the global embedding construction steps of
SAKE respectively: one corresponds to local distance preservation
computed pointwise as the relative 2-norm of the rank d approxi-
mation of the Gram matrix Gi, while the other measures the quality
of the local relative positions as the 2-norm of the changes in rel-
ative positions ||LiSiZ||2. Looking at Fig. 9, we see that Gaussian
noise results in small, uniform reconstruction and distance errors,
while sparse outliers do not disrupt the non-noisy parts of the do-
main, proving robustness to various types of noise.

Handling large density variations. We also tried significant varia-
tions in sampling density (in addition to noise) to test the robustness
of various manifold learning approaches in Fig. 10. Here again,
SAKE matches or surpasses other results, which prove to be ex-
tremely dependent on the number of neighbors used. Note that we
did not try to adapt the value of k and K based on density (which
would improve accuracy) to offer a fair comparison.

Handling large noise and outliers. While previous methods rarely
discuss the issue of outliers and large amounts of noise, SAKE of-
fers a number of opportunities to derive more robust strategies to
noise and outliers. As we discussed in Sec. 2.2, one can tweak our
use of k closest neighbors to remove obvious outliers and noise: for
instance, the authors of [PZZK04] propose a weighted local linear
smoothing and one-ring minimum spanning trees (to detect signif-
icantly large edge size in the neighborhood, a tell-tale for outliers)
for noise reduction and outlier handling. The choice of K geodesic
neighbors may also be made adaptive by using iterative robust
PCA [XDW16] instead, to select the number of neighbors based
on a local noise level estimate. Finally, our curvature corrected ap-
proach to intrinsic distances can also be extended to “smooth out”
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Figure 10: S-shaped manifold with variable density and Gaussian noise. SAKE is also robust to variable density in the input. A non-uniformly sampled ‘S’
shape is embedded in 3D with Gaussian noise added (left, profile views). We compare our results with other existing approaches, for various parameters.

Figure 11: Faces dataset. From 698 images representing the same 3D face
from different viewpoints (each image is a point in R4096, see [TSL00]),
we compute the 2D SAKE (k=6,K=36) embedding purely based on local
pixel-per-pixel distances of the images. The result parameterizes the camera
angle quite accurately, with no a-priori knowledge. Examples of the origi-
nal face images are given for the 20 red dots (image backgrounds removed
for clarity). Other methods give markedly more distorted results (bottom).

(through a curve straightening flow) the geodesic curves obtained
by our process if noise is significant. These add-ons are trivial to
incorporate, but a full assessment of how they fare on real defect-
ladden data is out of the scope of this paper. We favored instead a
parameter-free SAKE, which is already more noise-resilient than
the existing methods we tested.

3.3 High-dimensional datasets

We also ran our SAKE algorithm on the classical ‘Faces’ datasets,
where grayscale pictures with 64×64 pixels capture the same face
from different viewpoints [TSL00]. From this set of 698 images,
each represented as a point in R4096 (one dimension per pixel), we
can ask SAKE to reduce the dataset to a 2D projection purely based
on pixel-per-pixel differences between pairs of images. Fig. 11
shows the result, where the points are clearly embedded in a po-
sition dependent on the left-right, up-down angle of view. For com-
parison purposes, we also show the results of a few other methods
for this dataset on the same figure.

We also tried to our approach on a dataset of reflectance fields cap-
tured using the Light Stage apparatus [Lig16]. A static character
(in a knight costume) was captured under 221 individual lighting
directions covering a large sphere of illumination. Once again, we

use all 608×456 RGB images (given in random order) stored as
points in R831744 and try to learn a flat 2D manifold that best fits
this high dimensional dataset. The result, shown in Fig. 1(top), re-
covers positions related to light angles without any knowledge of
the setup, while other approaches lead to (sometimes severely) dis-
torted embeddings, see Fig. 12. Note that the black background of
each image was removed for clarity of the figure.

4 Mesh and Pointset SAKE Deformation
While we detailed how high dimensional datasets can be most-
isometrically mapped into low dimensions, our embedding ap-
proach has a simple, yet highly-relevant application to geometry
processing: it allows for efficient non-linear shape deformation.

4.1 Non-linear deformation as an embedding problem

Mesh deformation has a long history in geometry processing as
it is one of the most important tools in practical graphics appli-
cations [Sor05]. One can understand mesh editing methods as also
being embedding methods, but for D=d=3 (the term reduction be-
comes hardly appropriate in this case) and with added embedding
constraints in the form of user-specified handles to control how to
deform the shape—see, e.g., [SZT∗07,HTZ∗11,HSTP11]. In fact, a
simple non-linear 3D modeling approach known as ARAP [SA07]
(for as-rigid-as-possible) is precisely a special case of Local Tan-
gent Space Alignment (LTSA) restricted to special orthogonal
transformations: both the local alignment from the original shape
to the final embedding through SVD and the alternating optimiza-
tion between fixed rotations and positions were already spelled out
in the Appendix of [ZZ04]. The only differences in the mesh case of
ARAP reside in the choice of local neighborhoods (mesh one-rings
for ARAP vs. K nearest neighbors in LTSA) and the additional con-
straints controlling the coordinates of the few handles. Based on
these similarities, it is clear that we can leverage our new SAKE
embedding approach to provide an alternative mesh (or pointset)
deformation technique, where a standard off-the-shelf eigensolver
can be used to solve the resulting non-linear optimization.

Figure 12: Knights. Examples of results for the knights images (see Fig. 1
for comparison). Other methods give markedly more distorted results;
HLLE, in particular, fails to return a valid parameterization.
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4.2 Geometry deformation through eigenanalysis

We propose to use the SAKE framework to achieve mesh deforma-
tion with handle position constraints. Notably, we aim at formulat-
ing a non-linear deformation approach that only requires a sparse
matrix eigenanalysis—instead of relying on customized non-linear
solvers with often slow convergence properties. This is trivially
achieved (and without the need for as-isometric-as-possible unfold-
ing of neighborhoods in this pure 3D case) by leveraging and ex-
tending our multi-Laplacian operator and its affine kernel: we ac-
cumulate constraints for the 3D points to stay close to their original
positions with respect to their neighbors, and treat user-provided
absolute handle positions by systematically replacing them by po-
sitions relative to other handle positions. We thus bypass the use of
absolute position constraints or local rotations, and can thus invoke
a regular eigensolver instead. This allows us to efficiently accom-
modate deformation properties of the 3D volume defined by the
input geometry that are typically desirable in surface editing tools
such as low local stretching and low volume dilation.

Surface and volume neighborhoods. In order to make our expla-
nations valid for meshes and pointsets alike, we will use the term
“point” to refer either to a point within a pointset, or to a vertex
of an input mesh. For each point xi of the input, we fix a set of K
neighbors x j for indices j in N (i) just like in Sec. 2.2—if we are
dealing with an input mesh, the neighbors can also be defined via a
fixed number of rings around the ver-
tex instead. We also add a few in-
ternal points that are coarsely sam-
pling the skeleton (also called me-
dial axis) of the input geometry; this
is easily achieved by, e.g., comput-
ing a Voronoi tessellation of the in-
put points and extracting a subset of
the inside poles [AB99] that form a
discrete approximation of the skele-
ton. Each of these sparsely inserted
skeletal points are then given a neighborhood which consists of
their immediate skeletal neighbors and the few closest input points
(i.e., on the medial ball [AB99]) along with their associated neigh-
borhoods: these neighborhood can be understood as forming an in-
ternal set of radial trusses (see inset) for which we will also im-
pose isometry preservation during the deformation—thus avoiding
local collapses of the initial volume as much as possible. This is
very much in the spirit of the volumetric graph Laplacian approach
in [ZHS∗05] where a sparse sampling of the interior of a mesh is
also used to prevent local volume loss. Finally, the user picks a sub-
set of input points {xh} as “handles” for which she assigns target
positions x̄h to guide the deformation. For clarity thereafter, we de-
note by X the set of indices of the input points that are not handles,
V the set of indices of the added inner skeletal points, and H the
set of indices of the handles.

Multi-Laplacian assembly. For every point xi (be it a handle, reg-
ular, or skeletal point) and its associated set {x j} j∈N (i) of neigh-
bors, we assemble the multi-Laplacian matrix Li as described
in Sec. 2.4. Moreover, we also assemble an additional multi-
Laplacian, denoted Hh, per handle point as follows: we assign for
each handle xh(h∈H) the set of indicesN(h)=H\{h} containing

all the other handles (or only the K nearest handles when the num-
ber of handles is large). The matrix Hh is then defined as a regular
multi-Laplacian, but for this virtual neighborhood made of handles
only, and for the user-prescribed target positions x̄h instead of the
original positions xh. The linear equations encoded by this matrix
will force the handle positions to be placed, relative to each other,
the way the user asked for.

Quadratic form to enforce constraints. We can now formulate
our geometry deformation approach as a special instance of SAKE
where we look for the vertices z satisfying

z = argmin
y s.t. yt y=Id

Tr
[
ytQ y

]
,

where the quadratic form Q is defined through:

Q = ∑
i∈X
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The form Q thus enforces the linear constraints of not only the sur-
face neighborhoods (first term and part of the second term, where
handle neighborhoods are scaled by wH to strengthen the local
rigidity around handles), but also of the volume neighborhoods
(third term, with a specific volume control coefficient wV ), and of
the handles with respect to each other (final part of the second term,
using a strength wC for these constraints).

Final shape extraction. Finding the final deformed shape is
achieved by extracting the first four eigenvectors qm corre-
sponding to the lowest eigenvalues of the sparse SPD matrix
Q (the first one being constant and corresponding to the zero
eigenvalue, see Sec. 2.6). Because the eigensolver returns the
positions up to a rigid transform and up to scale, we must com-
pute a global affine transform to map these resulting positions
where they need to be. Denoting the resulting handle positions
ph = (1,(q2)h,(q3)h,(q4)h)

t for h ∈H, we find through a least
squares solve the affine transformation encoded by a 3×4 matrix
A such that Aph best fits the user-prescribed x̄h. Then the final,
deformed geometric positions are simply set via

zi = A
(
1 (q2)i (q3)i (q4)i

)t
.

4.3 Implementation details

Our approach is rather simple as it only requires the assembly a
large, sparse, and symmetric matrix Q and the use of sparse ma-
trix eigenanalysis tool—we use the Spectra library [QGN15] in our
implementation. Aside from the modeling parameters to influence
the way a shape deforms (we use wH =5, and wC =wV =1 in all
3D examples in this paper, but other choices including geometry-
dependent coefficients can be used to achieve desired effects), there
is no need for a customized numerical technique to solve for our
non-linear deformation. Note that if the total number of handles is
4 or less, we cannot express their target 3D locations as linear com-
binations of the others as we did in Eq. (1) since their edge matrices
Eh will have trivial kernels. We thus create weaker constraints by
enforcing that only one or two of the handle coordinates are linear
combinations of the other handles’ coordinates.
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original [SCOL∗04] [BK04] [LSLCO05] [BPGK06] SAKE, no medial points SAKE

Figure 13: Bending bars. We compare our approach (with and without added medial points for clarity) with a number of existing deformation methods on the
120◦ bend example with handles (marked in red on the original mesh) taken from [BS08]. Note the absence of artifacts near the pinned extremities for SAKE.

Figure 14: Zoo. We use our SAKE editing approach on a few basic 3D mod-
els. Light blue markers indicate handle vertices (held fixed or displaced).
All models use the same editing parameters; a subsampled medial axis was
only added to the octopus model (20 added points) to increase the volume
rigidity of the long and thin tentacles.

Possible variants. More specific deformation behavior of the in-
put geometry can be also easily added; for instance, a shell-like
behavior can be incorporated by adding offset points along the pos-
itive and/or negative normal direction to the surface to mimic the
way PRIMO [BPGK06] was adding bending rigidity. While we de-
scribed how to apply SAKE to surfaces, discrete volumes (given as
meshes or pointsets) are handled in exactly the same way. Addition-
ally, notice that our multi-Laplacian based quadratic form can also
be used to achieve realtime deformation using handle constraints
as in [WJBK15]: substituting the modified natural boundary Lapla-
cian used in their approach by our multi-Laplacian will add rigid-
ity as our multiple relative coordinates capture the original geom-
etry more tightly. However, requiring every handle position to be
exactly satisfied can inherently lead to a loss of local smoothness
(see, for instance, artifacts near pinned extremities [WJBK15] com-

pared to our results in Fig. 13), an issue that our spectral approach
avoids—without significant computational overhead. Finally, we
note that our treatment of handles through relative coordinates can
also turn their work into a spectral approach.

Computational efficiency. Once an input geometry is given, one
can compute the local multi-Laplacian operator for each neigh-
borhood as a preprocessing step. When the handles have been se-
lected and positioned as desired, the small matrices Hh can be com-
puted on the fly and the corresponding terms added to the quadratic
form according to Eq. (2). Assembling Q is done in O(n) as in
any other mesh deformation method. An eigensolver can then be
used on Q to find its lowest eigenvectors, and the undeformed
positions can be used as a good initialization. On a Intel R© dual-
core Core i7 powered laptop, creating and Choleski-factorizing the
quadratic form takes 5 seconds on a 10kV mesh like the bunny
with a straightforward non-optimized code, while the eigensolver
returns the proper embedding in 0.2 seconds. Note that the result
of the deformation could be updated quite efficiently as the handles
are moved if realtime editing is needed: low-rank update of the par-
tial eigendecomposition of our symmetric matrix Q can be lever-
aged [BNS78, Bra06] since only the matrices Hh are changing—
although we did not need to implement this variant given the cur-
rent timings. Finally, note that control over rigidity could have been
achieved by changing the locality of the neighborhoods: the larger
they are, the more rigid the local volumes become. Our addition of a
few points along the skeleton was preferred to offer rigidity control
by only marginally increasing the size of the matrix, but without
impacting its sparsity. The user can easily add more constraints by
inserting extra rows and columns in Q.

Numerics. Our approach uses an eigensolve to handle fully non-
linear mesh deformation. Compared to other non-linear methods,
solving an eigenvalue problem is simple and efficient: many off-
the-shelf libraries exist as well, offering efficient eigensolvers on
multi-core architectures with convergence guarantees (often lack-
ing both in theory and in practice for other non-linear methods)
even for significant deformations.

4.4 Results

We present examples of deformation in Fig. 14 on the bunny, ar-
madillo, and octopus meshes. In each example, the same default
values for the weights in Eq. 2 are used. We only used inside
poles on the octopus (20 virtual points) to add volume rigidity to
the tentacles. We also provide comparisons with previous defor-
mation techniques on a simple cylinder mesh (Fig. 13) based on
handle constraints provided in [BS08]; without inside poles, the

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



M. Budninskiy et al. / Spectral Affine-Kernel Embeddings

surface deformation is isometric but the resulting shape exhibits
local volume change (it behaves like an inextensible shell). With
just 10 inside poles added as virtual points, the bar keeps its round
section through the whole cylinder length. Contrary to the results
of [LSLCO05, BPGK06, WJBK15] in Fig. 13, our approach does
not exhibit smoothness artifacts near the pinned extremities of the
tube. We also tested twisting the bar
from [BS08] without poles, see inset; note
that the resulting shape does not depend on
the quality of the triangulation: both the mesh
and a refined version with nearly degenerate
elements (closeups) lead to the same twisted
shape. With our eigensolver, user-defined
handle positions were always matched within
10−3 by the reconstruction for normalized
bounding boxes, and further reduced to 10−5 if the handle weight
wH is raised to 50. Finally, we note that one can think of our SAKE
deforming tool for 3D shapes as a multi-cage approach: every
point is considered as part of a local cage as it is expressed as a lin-
ear combination of neighbors like in a conventional cage-based de-
formation method. The only difference is that the final embedding
is found via a non-linear solve involving a global, sparse eigenvalue
problem to satisfy all cage constraints as well as possible.

5 Conclusions
In this paper, we introduced an approach for finding a low dimen-
sional embedding of a d-manifold originally embedded in a high
dimension. A global embedding in Rd is found such that its coor-
dinates are as affine as possible within the local isometric parame-
terization of each small neighborhood, enforcing a most-isometric
map. In the process, we revisited a variety of well-established man-
ifold learning approaches, providing geometric improvements such
as local linear precision to these nonlinear reduction methods. We
formulated a spectral affine-kernel embedding framework, based
on local eigenanalysis of each neighborhood followed by a global,
sparse spectral solve to find the best low-dimension embedding,
which is significantly more robust to irregular sampling and to rea-
sonable amounts of noise than previous methods. We also proposed
a spectral as-rigid-as-possible deformation tool for 3D data which
leverages our SAKE approach to offer non-linear shape editing
without having to resort to dedicated non-linear solvers.

With the increasing interest in data-driven computations, further
extending current geometry processing tools to analyze, encode,
and edit high dimensional datasets as we started in this paper is
an interesting direction of future research. Improved robustness to
noise and outliers could be studied by leveraging the various “Ro-
bust PCA” methods within each step of our approach—but a thor-
ough evaluation of its adequacy for various contexts is an endeavor
in itself. Targeting other parameterization properties (such as con-
formality, measure preservation, etc) may also improve generality.
Directly guessing the dimensionality of the input data (see Fig. 15)
has been studied in many contexts [PBJD79, CH04, LB04], but an
approach using local scale selection like in [Bra03] or [GCSA13]
could also prove valuable. Spectral clustering [NJW01], in which
an embedding is used as an intermediate step, may also bene-
fit from SAKE. Finally, out of sample extensions [BPV∗03] and
consolidation of high-dimensional datasets (where high dimen-

sional points are denoised, resampled, and even inserted based on
the voids in the reduced embedding as is commonly used for 3D
pointsets [ABCO∗03]) may be worth exploring as well.
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