






This fact brings a series of theoretical and practical issues. First,
like in the primal case, there is no guarantee that such a procedure
can reach a tiling of the domain close to the optimal cell complex:
local flips can limit the exploration of connectivity. But more im-
portantly, the constant testing of potential flips to achieve energy
decrease is significantly slowing down the meshing process. Find-
ing a principled and robust approach allowing arbitrary anisotropic
metrics thus remains an open problem.

7 Conclusion and Perspectives
In this paper, we introduced the notion of anisotropic cell com-
plexes as an approximation theoretical dual to Optimal Delaunay
Triangulations. We showed how our formulation is a simple and
powerful extension to Centroidal Voronoi Tessellations, where now
shifted and weighted sites are used to derive first-type Bregman cell
complexes with controllable Hessian-based anisotropy and den-
sity. We contrasted our new, simple construction of polyhedral
meshes in 2D and 3D with recent anisotropic generalization of
Voronoi diagrams by pointing out that the resulting complex has
straight-edge convex cells, and admits a dual triangulation that is
combinatorially-regular. We also established tight approximation
error bounds for our optimal cells in terms of the function, dimen-
sion of the domain, and number of vertices. We believe that our
work opens a number of important avenues to explore.

Versatility of OVT. First, we note that our formulation can also be
used as foundations for other optimizations. For instance, one can
improve the quality of function approximation by shifting the local
tangent hyperplanes to reduce the � � (or even the Sobolev) norm
through post-treatment as in [App and Reif 2010]. Control over
anisotropy and volume of the convex cells are also bound to find
many applications given how CVT meshes have proven to be useful
in clustering, sampling, and information theory.

Generality of shifted power diagrams. Second, our introduction
of “shifted” power diagrams provides a practical backdrop to the
theoretical concepts proposed in [Memari et al. 2012]. Since power
diagrams have found recent adoption in graphics for diverse topics
from meshing [Mullen et al. 2011] and point sampling [de Goes
et al. 2012], to masonry [de Goes et al. 2013; Liu et al. 2013] and
fluid simulation [de Goes et al. 2015], this extension is bound to
lead to other probably unexpected applications.

Towards variational meshing for arbitrary metrics. Finally, an
important result of computational geometry is that every simple
cell complex in dimension � and above is a power diagram [Auren-
hammer 1987]. In arbitrary dimension, a primal-dual triangulation
� � � � � (i.e., a primal triangulation � and a dual cell complex � with
compatible connectivity) exists if and only if � is combinatorially-
regular. This implies that one can restrict a search for any notion

Figure 11: Anisotropic Kitten. The kitten model is decomposed
into cells, with increasing anisotropy (1:1, 2:1, 4:1, and 8:1).

Figure 12: Anisotropic Bimba. Bimba for � � � � � � � � � � � � � �
� � � �� � �� � � �� � �� � � �� � , with a neck-centered radial sizing field.
Various exterior and cutaway views to show anisotropy.

of optimal cell complex to shifted power diagrams only: in 3D,
this is in fact not a restriction but a convenient way to parameterize
the space of generic cell complexes, while in 2D it does reduce the
space of cell complexes slightly—but does guarantee the existence
of an associated primal triangulation. We plan to exploit this obser-
vation to construct a global approach to primal and dual anisotropic
meshing for arbitrary tensors, which would entirely bypass the typ-
ical (but costly) flip-based combinatorial search of optimal connec-
tivity for arbitrary input metrics.
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Figure 13: Quality measures during optimization. We track the
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after only 20 steps of interleaved refinement and optimization.

International Chair program and all the members of the TITANE
team for their support as well.

References
ALLIEZ, P., COHEN-STEINER, D., YVINEC, M., AND DESBRUN,

M. 2005. Variational tetrahedral meshing. In ACM SIGGRAPH,
vol. 24(3), 617–625.

APP, A., AND REIF, U. 2010. Piecewise linear orthogonal approx-
imation. SIAM J. Num. Anal. 48, 3, 840–856.

AURENHAMMER, F. 1987. A criterion for the affine equivalence
of cell complexes in Rd and convex polyhedra in Rd+1. Disc. &
Comput. Geom. 2, 1, 49–64.

BOISSONNAT, J.-D., COHEN-STEINER, D., AND YVINEC, M.
2006. Comparison of algorithms for anisotropic meshing and
adaptive refinement. Tech. Rep. ACS-TR-362603, INRIA.

BOISSONNAT, J.-D., WORMSER, C., AND YVINEC, M. 2008.
Anisotropic diagrams: Labelle-Shewchuk approach revisited.
Theor. Comput. Sci. 408, 2–3, 163–173.

BOISSONNAT, J.-D., NIELSEN, F., AND NOCK, R. 2010. Breg-
man Voronoi diagrams. Disc. & Comput. Geom. 44, 2, 281–307.

BOISSONNAT, J.-D., SHI, K.-L., TOURNOIS, J., AND YVINEC,
M. 2014. Anisotropic Delaunay meshes of surfaces. ACM Trans.
Graph..

BOSSEN, FRANK, J., AND HECKBERT, P. S. 1996. A pli-
ant method for anisotropic mesh generation. In Int. Meshing
Roundtable, 63–76.

CGAL. 2016. CGAL 4.8 User and Reference Manual. CGAL
Editorial Board, http://www.cgal.org.

CHEN, L., AND HOLST, M. J. 2011. Efficient mesh optimization
schemes based on Optimal Delaunay Triangulations. Comput.
Methods Appl. Mech. Engrg. 200, 967–984.

CHEN, L., AND XU, J. 2004. Optimal Delaunay triangulations. J.
of Comp. Mathematics 22, 2, 299–308.

CHEN, L., SUN, P., AND XU, J. 2007. Optimal anisotropic sim-
plicial meshes for minimizing interpolation errors in Lp-norm.
Math. of Comput. 76, 257, 179–204.

CHEN, Z., WANG, W., LVY, B., LIU, L., AND SUN, F. 2014.
Revisiting Optimal Delaunay Triangulation for 3D graded mesh
generation. SIAM J. Sci. Comput. 36, 3, 930–954.

CHEN, L. 2004. Mesh smoothing schemes based on Optimal De-
launay Triangulations. In Int. Meshing Roundtable, 109–120.

CHENG, S.-W., DEY, T. K., RAMOS, E. A., AND WENGER, R.
2006. Anisotropic surface meshing. In Symp. Disc. Alg., 202–
211.

DASSI, F., SI, H., PEROTTO, S., AND STRECKENBACH, T. 2015.
Anisotropic finite element mesh adaptation via higher dimen-
sional embedding. Procedia Engineering 124, 265–277.

D’AZEVEDO, E. F., AND SIMPSON, R. B. 1989. On optimal
interpolation triangle incidences. SIAM J. Sci. Stat. Comput. 10,
6, 1063–1075.

DE GOES, F., BREEDEN, K., OSTROMOUKHOV, V., AND DES-
BRUN, M. 2012. Blue noise through optimal transport. ACM
Trans. Graph. 31, 6, Art. 171.

DE GOES, F., ALLIEZ, P., OWHADI, H., AND DESBRUN, M.
2013. On the equilibrium of simplicial masonry structures. ACM
Trans. Graph. 32, 4, Art. 93.

DE GOES, F., WALLEZ, C., HUANG, J., PAVLOV, D., AND DES-
BRUN, M. 2015. Power particles: An incompressible fluid solver
based on power diagrams. ACM Trans. Graph. 34, 4, Art. 50.

DU, Q., AND EMELIANENKO, M. 2006. Acceleration schemes
for computing centroidal Voronoi tessellations. Numer. Linear
Algebr. 13, 2–3, 173–192.



DU, Q., AND WANG, D. 2005. Anisotropic centroidal Voronoi
tessellations and their applications. SIAM J. Sci. Comp. 26, 3,
737–761.

DU, Q., FABER, V., AND GUNZBURGER, M. 1999. Centroidal
Voronoi tesselations. SIAM Review 41, 4, 637–676.

FREY, P., AND ALAUZET, F. 2004. Anisotropic metrics for mesh
adaptation. In Comput. Fluid Solid Mech., K. Bathe, Ed., 24–28.

FU, X.-M., LIU, Y., SNYDER, J., AND GUO, B. 2014.
Anisotropic simplicial meshing using local convex functions.
ACM Trans. Graph. 33, 6, Art. 182.

GAO, Z., YU, Z., AND HOLST, M. 2012. Quality tetrahedral
mesh smoothing via boundary-optimized Delaunay triangula-
tion. Comput. Aided Geom. Design 29, 9, 707–721.

GEORGE, P., FREY, P., AND ALAUZET, F. 2002. Automatic gener-
ation of 3D adapted meshes. World Congress on Comput. Mech..

KUZMIN, D. 2010. A Guide to Numerical Methods for Transport
Equations. University of Erlangen-Nuremberg.

LABELLE, F., AND SHEWCHUK, J. R. 2003. Anisotropic Voronoi
diagrams and guaranteed-quality anisotropic mesh generation. In
Symp. Comp. Geom., 191–200.

LEE, C. 1991. Regular triangulations of convex polytopes. Applied
Geom. & Disc. Math. 4, 443–456.
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