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A B S T R A C T

We introduce in this paper an operator-adapted multiresolution analysis for
finite-element differential forms. From a given continuous, linear, bijective,
and self-adjoint positive-definite operatorL, a hierarchy of basis functions and
associated wavelets for discrete differential forms is constructed in a fine-to-
coarse fashion and in quasilinear time. The resulting wavelets areL-orthogonal
across all scales, and can be used to derive a Galerkin discretization of the op-
erator such that its stiffness matrix becomes block-diagonal, with uniformly
well-conditioned and sparse blocks. Because our approach applies to arbi-
trary differential p-forms, we can derive both scalar-valued and vector-valued
wavelets block-diagonalizing a prescribed operator. We also discuss the gen-
erality of the construction by pointing out that it applies to various types
of computational grids, offers arbitrary smoothness orders of basis functions
and wavelets, and can accommodate linear differential constraints such as
divergence-freeness. Finally, we demonstrate the benefits of the correspond-
ing operator-adapted multiresolution decomposition for coarse-graining and
model reduction of linear and non-linear partial differential equations.

1. Introduction

The relevance of wavelets to the representation of integral and differential operators emerged very early on in the
development of multiresolution analysis (MRA) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Wavelets have not only been used for
the fast inversion of a given operator [12, 13] but also for its compression [14, 15, 16] and the analysis of solutions
for the corresponding operator equations [17, 18].

Towards operator-adapted wavelets. While first generation adaptive wavelets (such as bi-orthogonal wavelets [19])
can be constructed with arbitrarily high regularity, their shift and scale invariance prevents from adapting them to
irregular domains or non-homogeneous coefficients. This problem has stimulated the emergence of second generation
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wavelets [20, 21, 22, 23, 24] offering stronger adaptability. While much more versatile, these wavelets have found
greater adoption in signal processing than in other computational fields. In the context of numerical simulation, a
consensus has now emerged that the ideal notion of ”operator-adapted wavelets” should be have three properties: they
should be scale orthogonal with respect to the energy scalar product of the operator, the operator should be well-
conditioned within each sub-band defined by those wavelets, and they should be localized in space. These properties
are particularly desirable when wavelets are used as a basis of finite elements for the Galerkin discretization of the
operator as the resulting stiffness matrix becomes block-diagonal, with uniformly well-conditioned and sparse blocks.
Furthermore, these properties also imply that the wavelets can be used as Wannier functions as well [25, 26, 27] given
their dual localization in space and eigenspace. Recently, scalar-valued operator-adapted wavelets satisfying these
three properties for linear symmetric positive definite scalar differential operators have been formulated in [28, 29,
30, 31]. These so-called “gamblets” were derived from a game theoretic approach to numerical approximation [32],
and were shown to be efficiently computable in a fine-to-coarse fashion in quasilinear complexity.

Contributions. In this paper, we adopt a finite-element perspective to the development of an operator-adapted mul-
tiresolution analysis. After formulating a series of axiomatic properties to ensure a proper Galerkin discretization
tailored to a given continuous, linear, bijective, and self-adjoint positive-definite operator, we introduce a construc-
tion of operator-adapted basis functions and associated wavelets that matches the recent construction of gamblets
introduced in [28]. However, our resolute finite element approach extends seamlessly from scalar-valued functions
to differential forms, the building blocks of Cartan’s Exterior Calculus [33]. While Finite Element Exterior Calcu-
lus [34] and its underlying structure-preserving de Rham complex has been a recent topic of interest in computations,
the construction of form-based wavelets in this context has received little to no attention, even if wavelets for discrete
differential forms could be crucial to the discretization of linear and nonlinear partial differential equations (PDEs)
arising in, for instance, electromagnetics and fluid dynamics. We thus propose a constructive approach to multiresolu-
tion analysis of finite-element differential p-forms adapted to an exterior operator. As a result, we introduce the first
construction of vector-valued wavelets that block-diagonalize a given operator. We also show how to derive operator-
adapted wavelets restricted to a linear subspace satisfying a differential constraint, such as divergence-free wavelets.
We demonstrate that for time-dependent nonlinear systems (involving complex interactions between multiple scales
and domain geometry), our wavelets can be computed on the fly in quasilinear complexity through linearization of the
dynamics. In addition to our algorithmic presentation of the general construction of operator-adapted wavelets, we
discuss how an operator-adapted multiresolution analysis provides many opportunities to construct reduced models
or perform fast numerical integration.

2. From Classical to Operator-adapted Wavelet-based Finite Element Analysis

Before delving into our contributions, we provide background for our work by briefly discussing the usual wavelet-
Galarkin approach, and recent proposals on how to improve upon its foundations.

2.1. Wavelet-Galerkin Approach

Let H be a subspace of the Sobolev space Hs (defined as the closure of smooth functions compactly supported in
an open bounded domain Ω, with respect to the L2 norm of total derivatives of order s∈N∗), and let L : H→H∗⊂H−s

be a continuous, linear, bijective, and self-adjoint positive-definite operator used in a differential equation of the form

L u = g. (1)

A standard procedure to analyze and solve Eq. (1) involves expressing it in a weak form through the introduction
of a bilinear form (often called “energy scalar product”) L : H2 → R with L(u, v)B 〈u, v〉L =

∫
Ω

u·L v (where product
operation represents pointwise inner product) and a linear operator G : H → R as G(v)B 〈g, v〉L2 =

∫
Ω

g·v. Since
〈u, v〉L defines an inner product on H, the bilinear form is both continuous (i.e., L(u, v) ≤ C||u||L||v||L) and coercive
(i.e., L(u, u) ≥ C−1||u||2

L
). As a result, the celebrated Lax-Milgram theorem implies that the weak problem

L(u, v) = G(v), ∀v ∈ H (2)

has a unique solution for any right-hand side g ∈ H∗ of Eq. (1).
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The classical wavelet-Galerkin approach uses a compactly supported L2-orthogonal functional basis [35] to solve
Eq. (2). It proceeds by approximating the subspace H by a finite-dimensional solution space Vq and applying the
multiresolution construction as follows. First, a nested sequence of lower-dimensional (coarser) functional spaces
{Vk}

q−1
k=1 ⊂ H are defined such that

Vk ⊂ Vk+1 for k = 1 . . . q − 1.

Complementary wavelet spaces {Wk}
q−1
k=1 ⊂ H are then derived by enforcing

Vk+1 = Vk ⊕Wk for k = 1 . . . q − 1, (3)

where ⊕ denotes the direct sum of L2-orthogonal subspaces. Thus,Vq admits a multiresolution decomposition:

H ≈ Vq = V1 ⊕W1 ⊕W2 ⊕ ...Wq−2 ⊕Wq−1

On each resolution level k (corresponding toVk), suppose we have nk functions {ϕk
i }

nk
i=1 forming a basis ofVk and

Nk (pre-)wavelets {ψk
j}

Nk
j=1 forming a basis of the wavelet spaceWk, with NkBnk+1−nk due to Eq. (3). (Throughout the

paper, we will not require the wavelet basis elements of a fixed resolution k to be orthonormal; thus formally, {ψk
i }

Nk
i=1

are only pre-wavelets, although we will refer to them as wavelets for simplicity). The solution of Eq. (2) can now be
approximated by a function uq of the form:

uq =

n1∑
i=1

v1
i ϕ

1
i +

q−1∑
k=1

Nk∑
j=1

w k
j ψ

k
j (4)

Let NBn1+
∑q−1

k=1 Nk =nq be the total number of degrees of freedom associated with the wavelet decomposition ofVq,
and let w be the vector of coefficients (v1,w1, . . . ,w q−1) of uq of size N. The finite-dimensional weak problem can be
formulated as a linear equation:

Lw = g (5)

where L is the global N×N stiffness matrix

L =


A1 M(1,2) . . . M(1,q)

M(2,1) B1 . . . M(2,q)

...
...

. . .
...

M(q−1,1) M(q,2) . . . Bq−1


composed of an n1×n1 submatrix A1

i j B L(ϕ1
i , ϕ

1
j ) encoding the stiffness matrix of the coarsest basis functions, of a

series of Nk×Nk submatrices Bk
i jB L(ψk

i , ψ
k
j) that are the stiffness submatrices of wavelets for each resolution level,

and the off-diagonal block matrices M(r,s) describing interactions between bases of different resolution levels r and s:

M(1,s)
i j B L(ϕ1

i , ψ
s
j) = M(s,1)

ji for s > 1,

M(r,s)
i j B L(ψr

i , ψ
s
j) for r, s > 1.

The right-hand side g is defined in a similar fashion: if g1
i BG(ϕ1

i ) and bk
jBG(ψk

j) for k=1. . . q−1 and for j=1, . . . ,Nk,

g =


g1

b1
...

bq−1


This problem also admits a unique solution, inheriting this property from the continuous formulation sinceVq ⊂

H. Solving the linear system in Eq. (5), one obtains the set of coefficients w from which the approximate solution uq

is constructed through Eq. (4). This approach provides the same solution as if one had used a Galerkin approach at
the finest resolution Vq, just expressed in a different basis. The use of different resolutions brings, however, several
advantages over the single-resolution system of equations: applications such as preconditioning and adaptive mesh
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refinement can selectively adapt the number of wavelet coefficients to utilize. Yet, the matrix L is difficult to deal with
in practice. It is a large matrix with many non-zero off-diagonal elements, and with typically worsening condition
numbers for large values of q. This issue renders the wavelet-Galerkin discretization not substantially better than
the classical Galerkin discretization: in essence, many of the core properties of wavelets that make them extremely
useful in signal processing are not as relevant in the FEM context. In other words, the performance of wavelet-based
methods based on a multiresolution L2-orthogonal decomposition of the solution space [36, 37, 38] is affected by the
regularity of wavelet coefficients because the decomposition is not inherently adapted to the underlying PDE.

2.2. Towards Operator Adapted Wavelets

Shortcomings of the wavelet-Galerkin approach have generated a large body of work aimed at alleviating the
issues in solving Eq. (5) through the use of preconditioning, specific choices of wavelets to ease evaluation, small
subsets/subbands of wavelets, etc. However, and despite a series of efforts to link wavelets to operators [5, 1], the
foundations remained mostly unchanged in practical applications.

Operator-based multiresolution decomposition. In a sharp departure from the various palliative measures, Sudar-
shan [24] proposed to alter the nature of the multiresolution decomposition itself. He argued for what he called
scale-orthogonal wavelets, i.e., FEM wavelets that should:

(a). be operator-orthogonal to block-diagonalize the operator at play;
(b). produce well-conditioned stiffness matrices (i.e., A1 and Bk for k = 1. . . q−1 in the previous example);
(c). be localized or have fast decay for computational efficiency.

Property (a) implies a new multiresolution decomposition, no longer based on L2 orthogonality, but on an operator-
dependent notion of orthogonality: wavelets inWk should be L-orthogonal to the basis functions of their own reso-
lution and to all other wavelets. This implies that we now need to enforce:

Vk+1 = Vk ⊕LW
k,

where ⊕L denotes direct sum of L-orthogonal subspaces; the induced multiresolution decomposition becomes:

H ≈ Vq = V1 ⊕LW
1 ⊕L . . .W

q−2 ⊕LW
q−1

Numerical consequence of an operator-adapted decomposition. A wavelet-Galerkin treatment using such a decom-
position would result in a significantly simpler linear solve: discretizing the weak problem in Eq. (2) now produces
a linear system with the same structure as shown in Eq. (5), but the off-diagonal “inter-level” stiffness matrices all
vanish, i.e. M(r,s) =0 for r, s. In other words, the matrix L of the final linear system becomes block-diagonal. Conse-
quently, the full linear system reduces to a set of q small independent linear equations Bkwk = bk for k=1 . . . q−1 and
A1ν1 = g1, each corresponding to its own resolution level. Property (b) additionally guarantees that each of these lin-
ear systems can be solved easily and reliably (Riesz stability). Finally, the last property (c) ensures that within a given
resolution level, only nearby basis elements have non-zero contributions, rendering the matrices Bk sparse, and allow-
ing for highly efficient storage as well as fast computations. As with classical wavelets, one obtains a frequency-based
decomposition of the solution uq, except that now this representation is truly adapted to the operator: the coarser basis
functions derive from finer scales, changing their shapes accordingly to capture the eigenspaces of the corresponding
operator as well as possible while staying spatially localized.

Wavelet construction. However, scale-orthogonal wavelets are not nearly as simple to construct as their use is de-
sirable. A construction enforcing only (a) and (b) was proposed in [24]. A second construction was also offered in
the same publication, this time by relaxing the exact L-orthogonality of the decomposition, thus violating (a). How-
ever, this looser definition of wavelets leads to a construction involving Gram-Schmidt orthogonalizations of dense
matrices, failing to deliver a fast algorithm except in restricted cases such as when the solution has very few non-zero
wavelets coefficients. Recently, Owhadi [28] presented the first practical technique to achieve all three properties
(a)-(b)-(c), to create operator adapted wavelets referred to as gamblets (due to their game theoretic interpretation).
Gamblets have been used over the last year for alleviating the complexity bottleneck associated with parabolic and
hyperbolic PDEs [29], dense kernel matrices [31], denoising PDEs [39] and eigenpairs computation [40].
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2.3. Outline

In this paper, we revisit the recent work of Owhadi [28] and rederive his approach through an axiomatic derivation
from a Finite Element Analysis point of view. We then demonstrate that this construction is general enough to
handle functional spaces of differential forms based on Whitney basis functions [41, 42, 43] as well, thus offering
a multiresolution analysis of arbitrary p-forms adapted to a given exterior operator. With this framework, one can
construct novel computational tools such as vector-valued wavelets and divergence-free vector-valued basis functions
adapted to any continuous, linear, bijective, and symmetric positive-definite operator. We also provide a detailed
algorithmic description of our resulting construction of operator-adapted basis functions and wavelets of differential
forms, and review how to use them for multiresolution analysis by leveraging the fact that each sub-band of the
decomposition can be handled independently. Finally, we demonstrate the effectiveness of this fast computational
procedure for numerical tasks such as coarse graining and model reduction of linear and non-linear partial differential
equations.

3. Construction of operator-adapted wavelets

We present an algorithmic construction of operator-adapted wavelets through an axiomatic derivation formulated
from a finite element perspective. The approach proceeds in a fine-to-coarse fashion, with locality and operator-
orthogonality imposed directly based on simple linear algebra. For completeness as well as to offer a deeper insight
into the optimality properties of our construction, we also provide in Appendix B a short summary of the alternative
interpretation from [28] derived from a game-theoretical view of functional approximation and conditional generalized
Gaussian processes.

3.1. Canonical multiresolution analysis

Our approach starts from an existing set of refinable basis functions whose spans form multiscale approximation
spaces. Each basis function in this sequence of q nested approximation spaces is associated with an element of a mesh
M k (1≤k ≤q), where meshesM1,M2, ...,Mq provide increasingly finer spatial discretizations of the domain Ω.

Refinable basis functions. Let {Vk}
q
k=1 ⊂ H∗ be a nested sequence of q functional spaces, where each space Vk is

spanned by nk compactly supported basis functions ϕk
i , i.e., Vk= span {ϕk

i }
nk
i=1. Each basis function ϕk

i is refinable for
1≤k <q, that is to say, ϕk

i can be written as a weighted sum of finer basis functions {ϕk+1
j }

nk+1
j=1 :

ϕk
i =

nk+1∑
j=1

Ck
i j ϕ

k+1
j (6)

Note that this relation between basis functions of two successive levels implies a specific topological refinement of the
meshM k at level k into a finer meshMk+1. We do not make any special assumption on how these meshes are related
(for instance, nested or not) as our construction is very general; as a consequence, we will rarely refer to these meshes,
even if the definition of the basis functions are often expressed, explicitly or implicitly, in terms of barycentric coordi-
nates over the elements of these meshes in practice. We do assume, however, that the refinement matrices Ck defining
the basis functions are sparse—and as we are about to see, we also require that there exists a sparse parametriza-
tion of their kernels. To distinguish these (user-specified) canonical basis functions from the operator-adapted basis
functions we will construct at each level of resolution, we refer to {ϕk

i }
nk
i=1 as test (or measurement) functions in the

remainder of this paper: they will only be used to integrate against at the finest level to kickstart our construction of
an operator-adapted multiresolution analysis.

Remark 1: Such a nested, or hierarchical, representation of the functional space Vq is typical of Multiresolution
Analysis (MRA) and wavelet-based adaptive solvers to allow for efficient handling of local refinements of the
solution: our test functions are simply their ‘scaling functions’ (or ‘father wavelets’) — and any existing such
function can be used in our construction. In practice, the finest functional space Vq giving rise to the hierarchy is
formed by the span of nq linearly independent functions in L2. The L2-orthogonal complement of Vk in Vk+1 is
typically called Wk, which is spanned by Nk wavelets {ψk

i }
Nk
i=1, with Nk B nk+1−nk to capture the details at level

k, i.e., the functions that are contained in Vk+1, but not in Vk. Note that only the test functions are needed in our
construction, although their associated wavelets are implicitly present as well, as we will discuss when relevant.
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Table 1: Summary of the main symbols used in our paper and their definitions.

Symbols Meaning
Vk Space of test functions on resolution level k, dimVk = nk .

{ϕk
i }

nk
i=1 Basis of the space of test functionsVk .

Ck Refinement nk×nk+1 matrix for test functions.

Vk Operator-adapted solution space on resolution level k, dimVk = nk . Note thatVq =Vq.

{ϕk
i }

nk
i=1 Operator-adapted basis functions spanning solution spaceVk . Note that ϕq

i =ϕ
q
i .

Ck Refinement nk×nk+1 matrix for operator-adapted basis functions, with ϕk
i =

∑nk
j=1 Ck

i j ϕ
k+1
j .

Wk Operator-adapted wavelet space on level k, withVk+1 =Vk ⊕LW
k; dimWk = NkBnk+1− nk .

{ψk
i }

Nk
i=1 Operator-adapted wavelet basis spanning wavelet spaceWk .

Wk Refinement kernel Nk×nk+1 matrices with Ck Wk,T =0, defining operator-adapted wavelets as ψk
i =

∑Nk
j=1 Wk

i j ϕ
k+1
j .

Ak Stiffness matrix of size nk×nk for operator-adapted basis functions on level k, Ak
i j = L(ϕk

i , ϕ
k
j).

Bk Stiffness matrix of size Nk×Nk for operator-adapted wavelet basis on level k, Bk
i j = L(ψk

i , ψ
k
j).

uq Finite-element solution of Lu=g (Eq.(1)) using finest solution spaceVq: uq =
∑n1

i=1 v1
i ϕ

1
i +

∑q−1
p=1

∑Np
i=1 wp

i ψ
p
i

uk Level-k approximation of uq: uk ∈ Vk and uk =
∑n1

i=1 v1
i ϕ

1
i +

∑k−1
p=1

∑Np
i=1 wp

i ψ
p
i

ωk Contribution to FEM solution from level-k wavelets: ωk ∈Wk and ωk = uk+1−uk =
∑Nk

i=1 wk
iψ

k
i

Refinement kernel. From a refinement matrix Ck, we define a sparse, Nk×nk+1 refinement kernel matrix Wk satisfying:

Ck Wk,T =0nk×Nk .

In other words, the Nk rows of Wk form a basis for Ker Ck, hence our naming convention. This matrix should only
have a few non-zero entries per row, corresponding to nearby test functions in the physical domain. In addition, the
condition number of Wk should be as close to 1 as possible to achieve lower condition numbers for the operator-
adapted stiffness matrices we will construct (corresponding to the Bk matrices in the previous section).

Remark 2: If the test (scaling) functions ϕk
i were L2-orthonormal, the matrix Wk would correspond to the refinement

relation of the wavelets associated to the scaling functions, i.e.,

ψk
i =

nk+1∑
j=1

Wk
i j ϕ

k+1
j .

Indeed, for a typical pair of mother and father wavelets, one has: 〈ϕk
i , ψ

k
j〉L2 =

∑
r,s Ck

ir 〈ϕ
k+1
r , ϕk+1

s 〉L2 Wk,T
s j . So if the

mass matrix at level k+1 of the test functions is the identity, the wavelets form precisely the L2-orthogonal subspace
Wk mentioned in Rmk. 1. However, our construction does not require L2-orthonormality of the test functions,
so the refinement kernel matrices Wk do not directly define L2-orthogonal wavelets: these matrices will be used
instead to parameterize the kernel of Ck in order to construct our operator-adapted basis functions and wavelets.

3.2. Setup for operator-adapted basis functions and wavelets
From the refinement equations of the user-selected test functions and a choice of refinement kernel matrices,

we wish to bootstrap a fine-to-coarse construction of operator-adapted basis functions and associated wavelets. We
begin by listing a minimal set of basic, desirable axiomatic properties that are formulated to enforce that the new
basis functions and wavelets define an operator-adapted multiresolution analysis of the solution space, and are easy
to construct via linear algebra.

Cardinality of degrees of freedom. Our first requirement is that our operator-adapted multiscale decomposition must
share the same cardinality as the canonical multiresolution analysis based on the test functions ϕk

i . Consequently,
for each level k = 1... q, we need to construct nk operator-adapted basis functions, which we will refer to as {ϕk

i }
nk
i=1,

spanning a functional space that we will denoteVk.

Collocation of degrees of freedom. One of the key properties of MRA is spatial localization: unlike operator eigen-
functions that are not attached to any particular spatial location, basis functions are always associated with a particular
element (which, consequently, makes the wavelets localized as well). We exploit the existence of the spatially-
localized canonical test functions ϕk

j by imposing a weak collocation of the operator-adapted basis functions (we use
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δi j to denote the Kronecker delta):

〈ϕk
i , ϕ

k
j〉L2 = δi j for all i = 1...nk, j = 1...nk, k = 1..q, (7)

which will ensure that our operator-adapted basis functions ϕk
i are similarly located in the domain.

Operator-adapted refinability. The new basis functions ϕk
i should be refinable to induce a hierarchy of nested func-

tional spaces. We denote by Ck the corresponding (unknown) refinement matrices in order to impose the following
refinement relation between levels:

ϕk
i =

nk+1∑
j=1

Ck
i j ϕ

k+1
j . (8)

Operator-adapted wavelets. We wish to construct wavelets as well, associated with the operator-adapted basis func-
tions. Let {ψk

i }
Nk
i=1 be the NkBnk+1−nk (pre-)wavelets defined at each level k, and letWk the corresponding functional

spaces they span. These wavelets should be L-orthogonal to the operator-adapted basis functions of the same level,
to enforce thatVk+1 =Vk⊕LW

k; consequently, one must have:

〈ϕk
i , ψ

k
j〉L = 0 for all i = 1... nk, j = 1...Nk, k = 1... q − 1. (9)

Wavelet refinability. Since we assumed thatWk
⊂Vk+1, our adapted wavelets at level k must also be a linear combi-

nations of adapted basis functions at level k+1. We require that the corresponding wavelet refinement matrices are, in
fact, the refinement kernel matrices Wk, that is,

ψk
i =

nk+1∑
j=1

Wk
i j ϕ

k+1
j . (10)

This particular choice of refinement matrix for our wavelets allows us to leverage the kernel of the canonical refine-
ment from which we derive the operator-adapted decomposition.

Stiffness matrices. By analogy to the L2-orthogonal case described earlier, we denote by Ak the stiffness matrix of
our new basis functions, and by Bk the stiffness matrix of the new wavelets. That is,

Ak
i j = L(ϕk

i , ϕ
k
j) , Bk

i j = L(ψk
i , ψ

k
j) . (11)

Note finally that our notational conventions were selected such that bold letters denote user-selected entities, while
outlined letters refer to entities we must construct. In particular, the operator-adapted refinement matrices Ck are the
key ingredients: computing them allows for the construction of adapted basis functions, which in turn leads to the
construction of their adapted wavelets, and thus of the induced stiffness matrices; see Table 1 for a review of the
various symbols and their definitions.

3.3. Resulting linear algebraic conditions

From the axiomatic characterization of ourL-adapted multiresolution analysis, we can easily derive linear algebra
conditions on the matrices involved in our construction so that Properties (a)-(c) from Section 2.2 are satisfied. Indeed,

• the collocation conditions expressed in Eq. (7) directly implies that

Ck Ck,T = �nk ; (12)

• due to Eq. (10), the L-orthogonality conditions expressed in Eq. (9) can be rewritten as:

Ck Ak+1 Wk,T = 0nk×Nk ; (13)

• finally, the stiffness matrices defined in Eq. (11) are linked through Wk due to Eq. (10):

Bk = Wk Ak+1 Wk,T . (14)
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From these conditions, we can establish a closed-form expression for Ck satisfying all of our requirements:

Proposition: For Eqs. (12), (13), and (14) to hold, one must have:

Ck = Ck,†
[
�nk+1 −Ak+1 Wk,T

(
Bk

)−1
Wk

]
, where Ck,† = (CkCk,T )−1Ck. (15)

Proof: Given that Ck Ck,T = �nk (Eq. (12)), the refinement matrices Ck must be of the form
Ck = Ck,† + ZWk,

where Ck,† denotes the pseudoinverse of Ck and Z is an arbitrary nk×Nk matrix: indeed, we saw in Section 3.1 that
the rows of Wk form a basis for Ker Ck so that WkCk,T = 0. Additionally, we must have Ck Ak+1 Wk,T = 0 (Eq. (13)),
implying that

(Ck,† + ZWk) Ak+1 Wk,T = 0 =⇒ Z = −Ck,†Ak+1Wk,T
(
WkAk+1Wk,T

)−1
.

Substituting Bk for WkAk+1Wk,T (Eq. (14)) and plugging Z back into the expression of Ck leads to the proposition.

3.4. Computational procedure for our operator-adapted walevet-Galerkin approach
Based on the closed-form expression of the refinement matrices Ck, we can now derive the computational proce-

dure to turn the weak form in Eq. (5) on the finest level Vq into q independent and well-conditioned linear systems
through our L-adapted MRA.

Bootstrapping the finest scale. In order to start our construction, we need to select the basis functions {ϕq
i }

nq

i=1 at the
finest level. We directly pick them to be the finest test functions unaltered, i.e., we set

ϕ
q
i =ϕ

q
i (16)

for simplicity, as it trivially enforces that these initial fine basis functions are attached to the same mesh elements as
their canonical equivalents. Note that this choice implicitly amounts to rescaling the test functions at the finest scale
through the inverse of the mass matrix, which is a valid alternative as it formally enforces Eq. (7); one can also see
this choice as a simple way to ensure that the finest basis functions are collocated with the test functions without
actually having to enforce Eq. (7). The resulting stiffness matrix Aq is then trivially evaluated as it is precisely the
usual finite-element stiffness matrix Aq, and the right hand side of the original problem is represented as a vector gq

by integrating g against these finest basis functions, i.e., gq
i =G(ϕq

i ).

Fine-to-coarse evaluation. Given our setup and the closed-form expression of the key refinement matrix, we can now
proceed hierarchically, in a bottom-up fashion, by evaluating relevant matrices and vectors in the following order:

Bk−1 = Wk−1AkWk−1,T

Ck−1 = Ck−1,†
[
�nk −AkWk−1,T

(
Bk−1

)−1
Wk−1

]
Ak−1 = Ck−1AkCk−1,T

bk−1 = Wk−1gk

gk−1 = Ck−1gk.

(17)

Resulting weak form. Once these evaluations have been done all the way to level 1, the weak form in Eq. (5) is, by
construction, equivalent to q independent (and, as detailed later, well-conditioned) linear systems: A1 v1 = g1

Bk wk = bk for k = 1... q − 1
(18)

from which the level-k FEM solution uk ∈ Vk for k = 2... q can then be evaluated via

uk =

n1∑
i=1

v1
i ϕ

1
i +

k−1∑
p=1

Np∑
i=1

wp
i ψ

p
i ; (19)

compare to the large linear system in Eq. (5) using the usual L2-orthogonal MRA. In particular, due to the indepen-
dence of the linear systems in Eq. (18), one can easily compute approximations of the fine solution uq by solving only
the first k linear systems (instead of the full q linear systems) and returning uk using Eq. (19).
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3.5. Properties of the construction
As mentioned earlier, the fine-to-coarse construction we derived above from basic desirable axioms is, in fact,

equivalent to the work of [28], originally developed from a game-theoretical approach to optimal functional ap-
proximation. They argued that the optimal operator-adapted basis functions should satisfy a variational definition,
formulated as:

ϕk
i = argmin

φ∈H
||φ||2L s. t. 〈φ, ϕk

j〉L2 = δi j for j = 1 . . . nk (20)

This variational formulation implies that the basis functions ϕk
i can also be identified as optimal recovery splines

in the sense of [44], and viewed as a generalization of energy minimizing splines in the sense of [45], variational
multiscale (or LOD) basis functions in the sense of [46, 47] and polyharmonic splines in the sense of [48, 49, 50].
For completeness we provide a short summary of their arguments leading to this definition in Appendix B. From this
variational definition, they derive a construction for operator-adapted basis functions and wavelets that mirrors ours,
reinforcing the fact that our axiomatic characterizations are quite natural. As a consequence, we inherit the properties
of the functions resulting from Eq. (20) as well. These properties include in particular:

• the condition numbers of stiffness matrices Bk are uniformly bounded for all k;

• the resulting basis functions ϕk
i decay exponentially fast under reasonably mild assumptions on the interactions

between test functions and operator;

• operator-adapted basis functions allow for small approximation errors even if high frequencies (i.e., fine levels)
are ignored, confirming their coarse-graining properties.

We provide a summary of the analysis leading to these conditions in Appendix B too, in order to make the underlying
conditions and the actual properties more explicit, but interested readers should refer to the original paper [28] and
to [32] for rigorous proofs. Note that we will numerically verify these properties in our context, and will explain the
practical implications of their assumptions.

3.6. Practical implementation
While the fine-to-coarse construction described in Sec. 3.4 is simple, it fails to be efficient to implement as is

since many of the matrices involved are not sparse in general. Yet, the fact that operator-adapted basis functions are
decaying exponentially fast can be leveraged to enforce sparsity throughout the construction. Additionally, we did not
explicitly describe how the L-adapted basis functions and wavelets are constructed in practice to recover the solution
from Eq. (19), so we now go over implementation details of the fine-to-coarse construction procedure.

Algorithm 1 Operator-Adapted Basis and Wavelet Construction

Input: Basis matrix Φq and associated stiffness matrix Aq on finest resolution level, refinement matrices {Ck,Wk}
q−1
k=1 .

for k = q to 2 do
Φk−1,Ψk−1,Ak−1,Bk−1 ← Per-level Coarsening Step (Φk,Ak,Ck−1,Wk−1)

end for
Output: Operator-adapted bases {Φk}

q
k=1, pre-wavelets {Ψk}

q−1
k=1 , and their stiffness matrices {Ak}

q
k=1 and {Bk}

q−1
k=1 .

Basis functions and wavelets. Once the finest L-adapted basis functions {ϕq
i }

nq

i=1 have been defined (Eq. (16)), it is
clear from Eq. (8) and Eq. (10) that all other basis functions and wavelets are simply linear combinations of these fine
functions. Therefore, we can store them as just the coefficients of the fine basis functions they are made of. To simplify
the notation, we assemble a (sparse) vector Φk of operator-adapted basis functions (with nk rows) and a (sparse) vector
Ψk of pre-wavelets (with Nk rows) for each resolution level k to keep track of these linear combinations:

Φk =
[
ϕk

1 ϕk
2 . . . ϕk

nk

]T
, Ψk =

[
ψk

1 ψk
2 . . . ψk

Nk

]T
,

where each ϕk
i and ψk

j is discretized as coefficients associated to all the nq basis functions of the fine mesh. During the
fine-to-coarse construction, these vectors are trivially assembled starting from the finest level basis {ϕq

i }
nq

i=1 and onto
coarser resolutions via the refinement relations of Eqs. (8) and (10). The pseudocode for computing adapted basis
functions and corresponding wavelets is given in Alg. 1.
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Algorithm 2 Per-level Coarsening Step

Input: Basis matrix Φk and its stiffness matrix Ak on k-th resolution level, refinement matrices Ck−1, Wk−1.
Compute wavelet stiffness: Bk−1 ←Wk−1AkWk−1,T

Compute pseudoinverse Ck−1,† ← (Ck−1Ck−1,T )−1Ck−1

Compute intermediate matrix Z through Bk−1ZT = −Wk−1AkCk−1,†T (fast solve through localization)
Compute adapted basis refinement matrix: Ck−1 ← Ck−1,† + ZWk−1

Compute adapted wavelets on level (k−1): Ψk−1 ←Wk−1Φk

Compute adapted basis on level (k−1): Φk−1 ← Ck−1Φk

Assemble stiffness matrix for lower resolution level: Ak−1 ← Ck−1AkCk−1,T (sparsified through truncation)
Output: Operator-adapted basis matrix Φk−1, pre-wavelets Ψk−1, stiffness matrices Ak−1, Bk−1 and refinement Ck−1.

Sparsification. As a consequence of the exponential decay of operator-adapted basis functions discussed in Sec. 3.5,
we can reduce computational complexity without sacrificing numerical precision by working with sparse matrices
throughout the fine-to-coarse construction. Thresholding near-zero values will have no significant numerical effects,
and will allow for efficient sparse computations; we refer the reader to [28, 32] for a thorough discussion of accuracy
and error propagation across scales induced by this procedure. In the coarsening algorithm from level k to level k−1,
we thus sparsify both matrix Ck−1 and matrix Ak−1 through simple truncation.

Fast evaluation of Ck−1. Seemingly, the most tedious part of the coarsening procedure is the computation of the
L-adapted refinement matrix Ck from Eq. (15). Evaluation is done in two stages: one linear solve to derive an
intermediate matrix Z (used in the proof of the Proposition in Sec. 3.3), then the final expression based on Z, Ck−1,†,
Ak and Wk−1, see Alg. 2. In [28], Z is evaluated efficiently through localization, and we adopt the same approach
here: in order to efficiently solve the linear system Bk−1ZT = −Wk−1AkCk−1,†T , we localize both Bk−1 and the right
hand side by exploiting the sparsity of Wk−1. We compute each i-th column Zi of ZT by solving a small linear system
as follows. Since the column Zi corresponds to the i-th element of the coarser mesh, consider all mesh elements that
are less than three element away1, inducing a small region R of the domain. We first assemble a set of indices S
such that ` ∈ S iff the `-th row of Wk−1 has at least one non-zero coefficient on one of the finer mesh elements in
R. We then assemble a matrix B which is a submatrix of the stiffness Bk−1 using only the rows and columns whose
indices are in S (this is a reduced stiffness matrix of the wavelets around i whose support intersects R). We also
assemble a vector zi by subsampling the i-th column of Wk−1AkCk−1,†T using the indices from S . Now entries of Zi

with indices from S , assembled in a vector zi, are evaluated by solving the small linear system: B zi = −zi, while all
other entries of Zi are set to zero. This procedure to compute Z is significantly faster than a full-blown SparseLU or
Preconditioned Conjugate Gradient solve as it only involves linear solves of small size, and less prone to inaccuracies
than a truncation-based sparsification of the various matrices involved. In addition, it promotes sparsity for Z and of
all subsequent operations, e.g., for the refinement matrix Ck−1 and the basis functions stored as Φk−1.

Complexity. Exploiting sparsity makes the construction extremely efficient: in dimension d, it has computational
complexity of O(nq log2d+1 nq) [28, 32] if one uses a fine grid with nq degrees of freedom. Our timing tests confirm
this expected complexity of our algorithm with fast evaluation of Ck. However, we observed that our python imple-
mentation can produce slightly worse timings for nq < 103 compared to regular sparse solvers combined with naive
threshold-based sparsification: our fast evaluation only pays off for large enough problems.

3.7. Discussion

Pseudocode of the numerical procedure to compute an operator-adapted decomposition is given in Algs. 1 and 2.
Notice that since the operator-adapted basis functions and wavelets are stored as linear combinations of the original
test functions on the finest levelMq, their evaluation at any point of the domain is fast as it only involves a few local
evaluations of test functions. Consequently, all the regular finite-element approaches used to solve partial differential
equations can be applied at any level of approximation—except that our “operator-aware” basis functions are used in
lieu of the usual polynomial basis functions, just like in other works which derive tailored shape functions to improve

1Note that this spatial extent can be adapted on a per-level basis to tailor the sparsity vs. accuracy balance of the decomposition.
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Algorithm 3 Linear Solve

Input: Basis matrix Φq and its stiffness matrix Aq on finest resolution level, refinement matrices {Ck,Wk}
q−1
k=1 , right-

hand side gq in basis Φq.
for k = q to 2 do

Φk−1,Ψk−1,Ak−1,Bk−1,Ck−1 ← Per-level Coarsening step (Φk,Ak,Ck−1,Wk−1)
Find wavelet coefficients wk−1 by solving Bk−1wk−1 = Wk−1gk

Assemble level (k−1) wavelet solution ωk−1 ← Ψk−1,T wk−1

Coarsen right hand side gk−1 ← Ck−1gk

end for
Final coefficient solve A1v1 = g1

Assemble final solution uq ← Φ1,T v1 + ω1 + ... + ωq−1

Output: Solution to finite element problem uq.

Algorithm 4 Nonlinear Solve

Input: Basis matrix Φq, refinement matrices {Ck,Wk}
q−1
k=1 , stopping time MaxIter and basis recomputation rate m.

for s = 0 to MaxIter do
Compute stiffness Aq of linearized operator at current time step in basis Φq

Compute right hand side gq at current time step in basis Φq

if (s mod m == 0) then
Compute operator-adapted bases/wavelets Φ1, {Ψk}

q−1
k=1 and stiffness matrices A1, {Bk}

q−1
k=1 .

Optional: perform model reduction by selecting a subset of operator-adapted wavelets as active.
end if
Find solution uq(s) at current time step using most recent active operator-adapted wavelets.
s← s + 1

end for
Output: Solution to finite element problem uq(s).

accuracy on coarse grids [51]. The whole decomposition (or, for a fast approximation, part of the decomposition)
can also be used to solve a linear differential equation like Eq. (1) by adapting the wavelet-Galerkin approach to our
framework, as explicitly described in Alg. 3. Finally, non-linear differential equations such as L(u) = g can also be
solved efficiently with our approach: by linearizing the non-linear operator at the current estimate of u and using
the associated adapted basis functions and wavelets, one can iteratively improve the approximation of the solution as
described in Alg. 4.

While we implicitly assumed that our test functions are traditional node-based and scalar-valued functions, we
next describe how all the expressions given thus far actually apply to a much larger class of finite elements: our
decomposition applies to differential forms and linear self-adjoint positive-definite exterior operators.

4. Operator-adapted Wavelets for p-Forms

Finite element formulations have most commonly used node-based basis functions to discretize both scalar func-
tions and the coordinates of vector fields. A growing trend in recent years consists in employing mixed finite element
methods, where basis functions are associated with arbitrary mesh elements (vertices, edges, faces, and cells for 3D
grids). These methods have been instrumental in promoting the use of finite dimensional spaces of differential forms
for coordinate-free computations with scalar and vector fields. We demonstrate in this section that our wavelet con-
struction extends to the multiresolution analysis of differential p-forms adapted to a given continuous, linear, bijective,
and self-adjoint positive-definite exterior operator (see three examples in Fig. 1). We also exhibit basis functions and
wavelets of p-forms adapted to common operators.

4.1. Finite element differential forms
In Cartan’s “Exterior Calculus” [33], differential forms are used as the building blocks of differential and integral

calculus in arbitrary dimension. For computational purposes, a number of efforts have been dedicated to derive a
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Fig. 1: Characteristic Solutions. Elements of the solution spaces of the 1-form Laplacian (left), the modified 1-form Laplacian (middle, see
Eq. (28)) and the advection-diffusion (right, see vector field of the advection in Fig. 19(top)) operators, computed by solving Lu = g for the same
right-hand side 1-form g (depicted far left).

discrete version of this coordinate-free calculus through the use of finite dimensional approximation of differential
forms.

Differential forms for computations. Mixed finite elements were introduced in the mid-1970s as an effort to build
mixed discrete formulations for second order elliptic operators [52, 53]. The realization that they, in fact, were
finite element spaces of differential forms came only later in [54]. At the root of these discrete differential forms is
algebraic topology: cochains (resp., chains) provide a natural discretization of differential forms (resp., domain of
integration) [55, 56]. Since a set of scalar values on vertices, edges, faces, and cells are proper discrete counterparts
of respectively pointwise function evaluations, line integrals, surface integrals, and volume integrals [41], one can
emulate exterior calculus on finite grids through the construction of finite-element differential forms [57]. This point of
view naturally encompasses the use of volume integrals in finite volume methods and scalar functions in finite element
methods, and also includes non-conforming “edge elements” and “facet elements” which are conforming in the spaces
Hdiv and Hcurl [53, 58]. Generalized basis functions that span the spaces of differential forms are particularly attractive
as many important scalar and vector calculus properties and invariants of the continuous setting directly carry over
to the discrete world in a coordinate-free manner, culminating in a discrete Hodge theory [43, 57, 34]. The resulting
finite-element framework for differential forms provides a powerful tool for solving a wide range of partial differential
equations, which has been proven useful in a variety of applications such as computational electromagnetism [41, 59],
fluid simulation [53, 60, 61, 62, 63], quadrangle meshing of curved manifolds [64], and computer vision [65] to
mention a few.

Whitney forms as basis functions of differential forms. The simplest basis of finite-element differential forms happen
to correspond to a construct in algebraic topology known as Whitney forms [54]. Their initial purpose was to relate the
de Rham sequence of smooth differential forms to simplicial cochain sequences in order to prove de Rham’s theorem,
which states that these sequences have isomorphic cohomology groups [66, 67]. But in a computational setting, they
can be seen as low-order “basis functions” that turn values on mesh elements into differential forms: given a vector
U = (u1, ..., un)T of real values on all the n p-dimensional elements {σi}

n
i=1 of a mesh, one can construct a p-form u as

a linear combination of the Whitney forms (φ[p]
1 , ..., φ

[p]
n ) associated with these mesh elements through

∀x∈Ω, u(x) =
∑n

i=1 ui φ
[p]
i (x) = Φ[p]U, (21)

where Φ[p] stores all the Whitney p-forms as a row vector. In other words, there is one Whitney p-form for each p-
dimensional element of a given meshM, and their span generates a finite-dimensional space of differential p-forms.
A Whitney p-form φ

[p]
i is expressed in terms of the barycentric coordinates of the associated p-element σi, and its

integration over this (oriented) p-element is ∫
σ j

φ
[p]
i = δi j, (22)

making it “histopolating”—an extension of the notion of pointwise interpolation where integrals of a function over
given regions match a prescribed set of values, see, e.g., [68, 69, 70]. When a metric is introduced on the ambient
space, Whitney forms can be expressed as either scalar-valued (for p = 0 and 3 in �3) or, via musical isomorphisms
([ and ], see [71]), vector-valued (for p=1 and 2 in �3) functions with local support.
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From low-order to high-order Whitney forms. While Whitney forms provide low-order interpolation of cochains (in
particular, 0-forms are piecewise linear on a triangulation and trilinear on a cubical grid), a number of higher-order
variants of these bases of differential forms have since then been proposed over simplicial or polytopal meshes [72,
73, 74, 75, 34, 76, 77, 78, 79, 80], some even with spectral accuracy [81, 82]. Their constructions vary greatly: a
few are derived from tensor products of Whitney forms, while others follow the traditional approach of using higher
“moments” to define various degrees of freedom associated to mesh elements in order to raise the order of the bases
of differential forms while enforcing proper continuity across elements. Such high-order basis functions are carefully
designed to span finite-dimensional differential p-form spaces Λp that form a de Rham complex,

Λ0(M)
d
−−→
(∇)

Λ1(M)
d
−−−→
(∇×)

Λ2(M)
d
−−→
(∇·)

Λ3(M)→ 0, (23)

in which the fundamental differential operators gradient, curl, and divergence are unified as the exterior derivative d
(which satisfies d◦d = 0), to offer structure-preserving finite element computations.

4.2. Refinable test functions for differential forms
The notion of refinability of basis functions [83] is crucial to the generation of wavelets, and even our multires-

olution analysis requires an existing set of refinable test functions to bootstrap the bottom-up construction of our
operator-adapted wavelets. Alas, refinability is a property rarely sought after or even discussed in the context of basis
functions of differential p-forms: while the original Whitney forms are in fact refinable as pointed out in [75], most
higher-order extensions are not known to have this property. As a consequence, the construction of wavelets for
differential forms remains a challenge despite obvious applications for efficient numerical computations in electro-
magnetism and other computational fields. To the authors’ knowledge, the only arbitrary-order Whitney bases that
are refinable by construction on both simplicial and polytopal meshes are the subdivision-based forms defined in [75]
and extended in [84]. We thus review their construction, usage, and properties as this particular family of refinable
basis functions of differential forms and their associated mesh hierarchy will be used as test functions for differential
forms in our multiresolution analysis.

4.2.1. Mesh hierarchy
Due to the large body of known sudivision schemes for simplicial or polytopal meshes of arbitrary manifold

domains [85], any (nested or non-nested) hierarchy of meshes for which subdivision schemes exist could be used for
our construction. However, regular (Cartesian) grids are undeniably simpler due to their tensor product nature, and
often more amenable to efficient implementation. Consequently, for simplicity of presentation, we will only consider
Cartesian meshes of simply connected domains in our explanations.

M1

M2

...

Mq

We thus assume that the computational domain is a d-dimensional cube in
�d (for d = 1, 2, or 3), over which a nested hierarchy of regular grids {M k}

q
k=1

is defined, withMk+1 being twice as fine asM k such that each p-dimensional
mesh element of M k is the union of 2p p-dimensional mesh element of Mk+1

for p = 1, 2, or 3 (see inset for a 2D example of such a hierarchy). Each mesh
element is given an arbitrary orientation, so that the boundary of any element
is a linear combination of its faces with coefficients ±1 based on whether the
relative orientations match [86]. Considering only a simple d-dimensional cube
domain is not a very restrictive assumption: we will show that our construction
can not only homogenize operators, but also the spatial domain over which they are applied, making this simpler case
sufficient to deal with complex domains (see Figs. 8 & 9 and Sec. 4.5)—but for accurate boundary handling, meshes
conforming to curved boundaries (e.g., [87]) are obviously preferable.

4.2.2. (Low-order) Whitney forms φ as test functions
Whitney bases for p-forms on cubical grids have been know for decades [41]: Whitney 0-forms φ[0] associated

to vertex values are the standard trilinear functions over each hexahedral element, Whitney 1-forms φ[1] associated
with integrals over edges span the Hcurl-conforming space, while Whitney 2-forms φ[2] associated with integrals over
faces span the Hdiv-conforming space. Finally, Whitney 3-forms φ[3] associated with integrals over cells are equal to
the indicator function of their associated cell. As noted in [88], these low-order Whitney forms are in fact refinable.
Therefore, the Whitney forms φ[p] for p=0, ..., 3 can be used as test functions at any level of the mesh hierarchy, with
one Whitney test function φ[p]

i for each i-th p-element: the finite-dimensional differential p-form space Λp plays the
role of the functional space of test functions at any level.
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4.2.3. Design of higher-order Whitney forms through subdivision
From these low-order original Whitney forms, higher-order refinable Whitney forms can be constructed as well

using the concept of “subdivision” [88]. A subdivision scheme for p-forms maps scalar coefficients on p-elements
from a coarse mesh Mk to the p-elements of a refined mesh Mk+1 through a subdivision matrix R[p],k, converg-
ing to a p-form in the limit of refinement. The original Whitney forms on cubical grids correspond to a particular
choice of subdivision matrix R[p],k between two consecutive mesh levelsMk andMk+1 [88], as illustrated in 2D in
Fig. 3(middle). Since a given subdivision scheme can be turned into a subdivision scheme of higher regularity through
convolution along grid directions [75], subdivision-based high-order Whitney forms can be derived from the original
low-order Whitney forms, as long as the associated p- and (p+1)-form subdivision schemes are treated in pairs to en-
force that their subdivision matrices commute with the discrete exterior derivatives—thus ensuring a proper de Rham
complex for the resulting finite element spaces spanned by these higher-order Whitney forms. For instance, in 2D,
one such regularity-raising convolution results in bicubic splines for 0-forms and biquadratic splines for 2-forms as
described in [84] (see Fig. 3(right)); the more convolutions one uses, the smoother the associated Whitney forms are
and the larger their supports become. The higher-order Whitney p-form φ

[p],k
i associated with the i-th p-element σk

i at
level k can thus be conceived as the limit of repeated subdivisions of an initial assignment of scalar values δi j on the
p-elements σk

j, i.e.,
φ

[p],k
i = lim

m→∞
R[p],m R[p],m−1...R[p],k+1 R[p],k ek

i ,

where the vector ek
i of real values on elements of the meshMk contains a single 1 corresponding to element σk

i and
zero on all other p-elements.

4.2.4. Properties of subdivision-based high-order Whitney forms
The resulting higher-order Whitney forms have also a few key distinguishing features that we summarize here, as

these properties coming from their subdivision nature will be heavily exploited later on.

Fig. 2: Chain complex. Diagram depicting the chain com-
plex of a cube element with the boundary operator: from
the cube, to its square oriented faces, to their oriented
edges, and to their vertices.

Simple degrees of freedom. While finite element exterior calcu-
lus methods use local polynomial shape functions associated with
various degrees of freedom per mesh element [57, 80], our frame-
work uses only the p-dimensional cells of a mesh to discretize a
p-form. Consequently, the subdivision-based de Rham complex is
simply the complex of the original low-order Whitney forms, i.e,
the dual of the usual chain complex (see Fig. 2).

Finite-element spaces of differential forms. High-order Whitney forms φ[p],k
i can still be used to construct differential

p-forms from mesh values through Eq. (21); the associated finite element spaces of differential forms on the level-k
meshMk are, for p=0, . . . , 3,

Λk
p = span

{
φ

[p],k
i

}nk

i=1
=

{ i=nk∑
i=1

ui φ
[p],k
i (x) | ui ∈� is associated to p-element σk

i ∈M
k ∀i

}
; (24)

that is, they define “basis functions” for p-forms that use only degrees of freedom associated with p-dimensional
elements, but are of higher regularity than Whitney’s original p-form basis, and with a larger spatial support. They
can be used as test functions in our operator-adapted wavelet construction, i.e., we can setVkBΛk

p for p-forms.

Refinement property. The built-in refinablity of high-order Whitney p-forms implies

φ
[p],k
i =

nk+1∑
j=1

R[p],k
ji φ

[p],k+1
j , (25)

that is, if all the Whitney forms of level k are stored in a row vector Φ[p],k, one has Φ[p],k = Φ[p],k+1R[p],k.

Commuting with exterior derivative. If we denote by ∂k
p (p=0, . . . , 2), the matrix of signed incidence between p- and

(p+1)-elements of meshMk implementing the continuous boundary operator ∂ described in Fig. 2, then its transpose
Dk

pB
(
∂k

p
)T represents the discrete exterior derivatives acting on finite-element forms and implements the continuous

derivative d [43], satisfying Dk
p+1Dk

p = 0 by construction. The subdivision matrices of high-order Whitney forms are
chosen so that they commute with the discrete exterior derivatives [88]:

Dk+1
p R[p],k = R[p+1],kDk

p .

That is, subdividing a discrete p-form on level k followed by application of the exterior derivative on level k+1 is the
same as first applying the exterior derivative on level k followed by the subdivision scheme for (p+1)-forms.
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Fast pointwise and integral evaluations. Exact pointwise evaluation of the resulting high-order basis functions (which
are piecewise polynomial for our regular meshes) at arbitrary parameter locations can be done efficiently [89]. More-
over, for each subdivision scheme based on a subdivision matrix R[p],k, there is an associated limit stencil operator
S[p],k defined through its matrix representation as:

S[p],k
i j =

∫
σk

i

φ
[p],k
j . (26)

With this limit stencil, one can evaluate the integral of a finite-dimensional p-form on all the p-elements of a mesh:
indeed, from a vector of real values Uk on the p-elements {σk

i }
nk

i=1 of meshMk, the p-form u∈Λk
p(M) defined through

u(x) = Φ[p],kUk

integrated on a mesh element σk
` is a local linear combination of the entries of Uk equal to the `-th entry of the vector

S[p],kUk, that is, ∫
σk
`

u =
[
S[p],kUk]

`.

Since the high-order Whitney forms are localized, S[p],k is sparse; moreover, the non-zero values of this matrix can
be evaluated in closed form through eigenanalysis of the subdivision matrix R[p],k [75, 84], making the evaluation
of integrals over mesh elements of any finite-element differential forms particularly efficient. Note that the original
Whitney forms satisfy S[p],k

i j =δi j (see Eq. (22)) due to their histopolation property; hence, the values of the vector
Uk are directly the integrals of the continuous form. This histopolation property is no longer true for a higher-order
Whitney form, but its limit stencil encodes precisely the map between degrees of freedom and local integrals of the
corresponding finite-element p-form.

Discrete Stokes’ theorem. Due to the commutativity with discrete exterior derivatives and the existence of limit
stencils, high-order Whitney forms induce a discrete variant of Stokes’ theorem,

∫
R

du=
∫
∂R

u for any region R and
p-form u: for a vector of real values Uk on the p-elements {σk

i }i of meshMk,

Dk
p S[p],kUk = S[p+1],k Dk

pUk. (27)

In other words, Stokes’ theorem holds over every mesh element in our finite-dimensional setting.
In the remainder of our exposition, we will often omit the order [p] of the Whiney forms or even the level k over

which it is defined to improve legibility, when this does not lead to any ambiguity. Therefore, high-order Whitney
forms will often be simply referred to as φ.

Fig. 3: Refinement matrices for subdivision-based Whitney forms. We provide the refinement rules in 2D and for 0-, 1- and 2-forms for (left)
Dirac-Whitney, (middle) original Whitney, and (right) “bicubic” Whitney forms. For a k-element on a twice-refined grid, the refinement rules use
a simple linear combination of nearby coarse elements to define a refinable k-form basis.

4.2.5. Finest discretization through Subdivision-based Exterior Calculus
Consider a continuous, linear, and bijective exterior operator L that acts on differential p-forms and returns p-

forms as well. In addition, we assume it is local, self-adjoint and positive-definite with respect to L2 inner product on
differential forms (formally defined as 〈u, v〉L2 =

∫
Ω

u∧?v ). Note that the bijectivity condition is needed to ensure the
inverse is well-defined: in practice a differential operator is combined with suitable boundary conditions to give rise to
a well-defined problem. Given such an operator, the differential equation Lu=g must first be discretized on the finest
meshMq. Many finite element based discretizations can be applied for this step. The computational foundations of
Finite Element Exterior Calculus [57], Discrete Exterior Calculus [43], and Mimetic (or Compatible) Operators [90]
differ in how they deal with the discretization of PDEs: for instance, some define a discrete operator corresponding to



16 Max Budninskiy et al. / Journal of Computational Physics (2019)

the Hodge star ?, while other prefer to bypass the creation of a discrete Hodge star by directly computing a discrete
version of the codifferential δ = (−1)n(k−1)+1?d? to enforce adjointness with the exterior derivative d; boundary
treatments are also often different as a consequence.

In our context, we remain agnostic vis-a-vis the discretization process of the weak form of the equation Lu = g.
The only requirement is that our subdivision-based Whitney forms must be used as finite-element basis functions
of differential forms, so that we can leverage their refinability with simple element-based degrees of freedom and
structural properties (de Rham complex, Hodge decomposition, Stokes’ theorem, etc.) to construct operator-adapted
wavelets. For illustration purposes and numerical tests, we adopt the Subdivision-based Exterior Calculus framework
(SEC [84]) based on the finite element spaces of differential forms {Λk

p}p defined in Eq. (24) to provide a discretization
of exterior operators in this paper, but variants can be easily substituted.

Once this discretization is done on the finest level q, the rest of the operator-adapted multiresolution construction
is mostly unchanged as we review next.

4.3. Operator-adapted wavelets
While the subdivision-based Whitney forms naturally lead to a L2-orthogonal notion of wavelets for any differ-

ential p-form by exploiting the difference between two consecutive approximation spacesVkBΛk
p and Vk+1BΛk+1

p

on two mesh levels M k and M k+1, the induced multiresolution decomposition leads to the same shortcomings as
for the wavelet-Galerkin approach—but this time in the context of finite-element differential forms. In this section,
we discuss how to construct operator-adapted wavelets in order to block-diagonalize a self-adjoint, positive-definite
operator L acting on differential p-forms.

Bottom-up construction of wavelet p-forms. Since the construction provided in Sec. 3 made no assumption on the
choice of mesh hierarchy or basis functions, it applies nearly as is for arbitrary p-forms. Because the notion of
“refinement” and “subdivision” are in fact equivalent (inasmuch as they both define linear relationships between
functions at two consecutive levels), one simply has to:

1. set nq to be the number of p-elements in the finest meshMq;
2. bootstrap the construction by replacing the finest scale basis functions ϕq

i by Whitney p-forms φq
i (of any chosen

smoothness order) on meshMq, and compute the corresponding stiffness matrix AqBAq;
3. use refinement matrices Ck as the transpose of the subdivision matrices Rk associated with the selected Whitney

p-forms, i.e., CkBRk,T , which in turn impose wavelet refinement matrices Wk.

Everything else remains unchanged if the indices used in the procedure are understood to refer to an enumeration of
the p-cells of each mesh; in particular, the number Nk of wavelet coefficients at level k remains equal to nk+1−nk as it
represents the dimension of the finite-element p-forms that are inVk+1 but not inVk. The resulting operator-adapted
basis functions and wavelets will thus be linear combinations of Whitney p-forms on the finest grid, and can thus be
stored as a sparse row vector per level as described in Sec. 3.6.

Choice of refinement matrix. As we just noted, a natural choice for a refinement matrix Ck to be used in our operator-
adapted wavelet construction is (the transpose of) the subdivision matrix Rk associated to Whitney p-forms of a
chosen regularity order. This includes the subdivision matrices of the original Whitney p-forms (see Fig. 3(middle)),
as well as any of the higher order Whitney subdivision matrices (see an example in Fig. 3(right)). Since the refinement
matrix describes how a form basis element at level k can be written as a linear combination of the form basis elements
at level k+1, the sparsity of Ck = Rk,T decreases with the smoothness order of the corresponding Whitney forms, in
turn impacting the sparsity and locality of Wk.

Remark 3: Observe that the multiresolution construction could use a given subdivision-based Whitney p-form at
the finest scale, whose regularity impacts the quality of the discretization Aq of operatorL, paired with an arbitrary
refinement matrix Ck. This choice of refinement, instead, impacts the regularity of test functions on coarser levels
depending on the spatial size of the refinement stencil. As demonstrated in [32], approximation qualities of test
functions in the weak H−s-norm carry over to approximation qualities of the resulting operator-adapted wavelets
in stronger energy norm. This means that using a simpler (i.e., sparser) refinement matrix Ck often turns out to be
sufficient to obtain a high-quality operator adaptation, while offering a simplified computational procedure, faster
decaying basis functions, and better condition numbers as we will demonstrate later. On the other hand, such
simplified refinement rule obviously weakens the homogenization effect and thus, reduces the efficiency of model
reduction. Considering Ck and Rk decorrelated just offers added flexibility to our construction.
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Fig. 4: Dirac-Whitney basis functions adapted to elliptic operators.
Vertical components of 1-form basis functions ϕk

i adapted to different
elliptic operators using the Dirac-Whitney refinement 1-form rule and
associated with horizontal edges (in thick black) are visualized at three
different resolution levels (2×2, 4×4, and 8×8 grids) using a linear red-
to-blue colormap: (a)-(c) Identity operator; (d)-(f) 1-form Laplacian;
(g)-(i) modified 1-form Laplacian (see Eq. (28)).
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Fig. 5: Whitney basis functions adapted to elliptic operators. Ver-
tical components of 1-form basis functions ϕk

i adapted to different el-
liptic operators using the original Whitney refinement 1-form rule and
associated with horizontal edges (in thick black) are visualized at three
different resolution levels (2 × 2, 4 × 4, and 8 × 8 grids) using a linear
red-to-blue colormap: (a)-(c) Identity operator; (d)-(f) 1-form Lapla-
cian; (g)-(i) modified 1-form Laplacian (see Eq. (28)).

Dirac-Whitney refinement matrix. While the original (low-order) Whitney forms lead to the sparsest refinement ma-
trices in the subdivision-based Whitney family, an even sparser choice of refinement matrix is worth mentioning: be-
cause our mesh hierarchy is nested, the p-elements of meshM k can be written as linear combinations of p-elements
of mesh Mk+1. This linear relationship can be seen as the refinement rule for the basis of chains or, equivalently,
of cochains. One can thus see these refinement matrices as defining a dual basis to currents: they are measure-
based Whitney forms that include, e.g., a Dirac delta function per vertex for 0-forms, and an indicator function of
each 3-cell for 3-forms. For this reason, we refer to these sparsest refinement matrices as Dirac-Whitney refinement
matrices (see Fig. 3(left)). While the corresponding (generalized) test functions are not quite useful in numerical
applications (and would clearly be a poor choice of test functions), our construction can, in fact, use these refinement
matrices: when paired with any subdivision-based Whitney forms on the finest level q to bootstrap the construction
as discussed in Rmk. 3 above, our resulting operator-adapted basis functions and wavelets will have very localized
refinement matrices, but they will all be linear combinations of Whitney forms defined on mesh M q. As we will
demonstrate in Sec. 5, this approach still leads to operator adaptation, with increased efficiency due to the sparsity of
the Dirac-Whitney refinement matrices (see Fig. 4 vs. Fig. 5).

4.4. Divergence-free operator-adapted wavelets

Oftentimes, differential equations of the form of Eq. (1) must be solved within a given linear subspace. This is the
case, for instance, for incompressible fluids or solids where the additional incompressibility condition ∇·u = 0 plays
a crucial role in the resulting dynamics. Enforcing this constraint has a long history in finite elements [91]. We show
here that our operator-adapted wavelet construction can accommodate this case quite simply as well. We first focus
on the case in which original Whitney forms are used, before extending it straightforwardly to higher-order Whitney
forms.

Discrete divergence. Stokes, Euler or Navier-Stokes equations in fluid dynamics are conveniently expressed with
differential forms [58, 63, 60]. A typical discretization is to consider the velocity field as a 2-form in 3D, i.e., as a
flux through each face of a 3D grid so that no-flux boundary conditions are trivially enforced [92]. A set of discrete
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fluxes Uq = (uq
1 . . . u

q
nq )T on the finest resolution levelMq are converted into a continuous form u using the face-based

low-order Whitney basis functions {φq
i }

nq

i=1, where nq is the total number of 2-cells in Mq. Note that the integral of
the resulting continuous 2-form u on a face is precisely the flux initially stored on that face due to the histopolation
property of linear Whitney forms (see Eq. (22)). The 2-form u (or, equivalently, the correspond-
ing vector field (?u)] obtained by lowering the indices of the form once a metric is given) is
divergence-free if and only if du = 0, where d is the exterior derivative operator. In our finite
dimensional setting, it simply implies that the sum of the (oriented) fluxes leaving any 3-cell
of the mesh (see inset) is zero, which is denoted as Dq

2 Uq = 0, where Dq
2 is the discrete exte-

rior derivative operator (the transpose of the boundary (incidence) operator acting on 3-cells,
see [43] for instance) at level q.

Divergence-free test forms through stream functions. Instead of enforcing the linear divergence-free constraint on Uq,
one can instead work in the reduced space of divergence-free vector fields. Because the whole setup of finite-element
exterior calculus offers a discrete de Rham complex and since we assume our domain to be of trivial topology (no
harmonic terms), we can consider instead a set of 2-forms, one per edge ofMq, that spans this reduced space. This
basis of divergence-free 2-form is defined as

Ξq = ΦqDq
1,

where Ξq denotes the row vector of edge-based 2-forms {ξq
i }i andΦq is, similarly, the row vector

of all face-based Whitney 2-forms {φq
i }i. Hence, each 2-form ξ

q
i is a linear combination of local

Whitney 2-forms with coefficients based on the discrete exterior derivative Dq
1, a matrix whose

rows and columns correspond to faces and edges of meshMq respectively. For instance, for a
regular 3D grid, each 2-form ξ

q
i associated with the i-th edge is simply the signed sum of the

Whitney basis functions on the four faces adjacent to the edge (see inset). By construction,
each edge-associated 2-form is divergence-free since Dq

1 is in the kernel of Dq
2 (i.e., Dq

2Dq
1 = 0

corresponding to the continuous property dd = 0). Hence, the finite dimensional vector space spanned by {ξq
i }i (they

form a basis of this space due to their linear independence) represents the set of all 2-forms (or equivalently, vector
fields) that are divergence-free in the discrete sense. This is nothing else but the differential form equivalent of defining
the velocity through the curl of a stream (vector-valued) function: the degrees of freedom are thus edge-based values
{si}i representing the local integrals of the stream function along edges, while

∑
i si ξi is the discrete divergence-free

2-form.

Operator-adapted divergence-free wavelets. The bottom-up approach described in Sec. 4.3 can now be applied di-
rectly with the divergence-free 2-form basis Ξq used as test functions at the finest scale to bootstrap the construction.
The only difference is that nq is now the number of edges (since it represents the number of degrees of freedom in
this divergence-free case) and one must use a refinement matrix C[1],k corresponding to 1-forms, even though we are
constructing 2-form wavelets. With this approach, we work directly in the space of divergence-free fields without
the need for reprojection steps: both operator-adapted bases and wavelets will be divergence-free by construction,
since they are linear combinations of the elements of {ξq

i }
nq

i=1. Note that in 2D, the stream function is a 0-form and
fluxes through edges are 1-forms, so the construction must be altered to use linear combinations of edge-based basis
functions per vertex instead, but the overall approach is identical otherwise.

Higher order bases. While the divergence-free construction we just described assumes that the refinement matrices
corresponding to the original Whitney forms are used, the same construction applies to higher order Whitney forms
as well. Indeed, when using subdivision-based Whitney bases, the integral of the reconstructed continuous 2-form u
over an oriented face is always a local linear combination of the initial face values {uq

i }i, called the limit stencil S[2],q

(see Eq. (26)). Therefore, the vector of divergences over all 3-cells is given by Dq
2 S[2],q Uq, which by Eq. (27) (discrete

Stokes’ theorem), is also equal to S[3],q Dq
2 Uq. Enforcing Dq

2Uq = 0 thus implies discrete divergence-freeness of the
resulting 2-form, and the construction carries over as is, even in this high-order case.

Non-trivial topology. If the domain has non-zero genus and requires a non-regular grid, the space of divergence-free
forms/fields needs to account for harmonic forms. Thankfully, computing these additional basis functions is a well
studied problem which can be achieved by leveraging the homology generators of the domain, see for instance [43].
As long as all the meshesM k in the hierarchy have the same number of boundaries and the same genus (that is, they
all capture the proper topology of the domain), these extra topological degrees of freedom are present at each level
and are thus trivially added to the reduced bases of divergence-free forms at each level.
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Fig. 6: Operator-adapted divergence-free bases. We visualize vec-
tor fields corresponding to divergence-free 1-form basis functions ϕk

i
adapted to various operators and associated to several spatial locations
on three different resolution levels. Divergence-free basis functions re-
tain a characteristic vortical appearance; however, the differences in
their shapes reflect their ability to capture representative features of the
associated solution spaces: they are smooth for the 1-form Laplacian
(top), have high frequency oscillations for the modified 1-form Lapla-
cian (middle, see Eq. (28)), and stretched along the advecting velocity
field (from Fig. 19(left)) for the advection-diffusion operator (bottom).

(a)Adapted basis (with Dirac) (b)Adapted basis (withWhitney)

(c) x and y components (d) x and y components

Fig. 7: Adapted basis for advection-diffusion. We visualize a coarse-
edge (in thick black) basis function ϕk

i adapted to advection-diffusion,
where the advecting velocity field is shown in the top-left inset. Instead
of the first-order upwind discretization used in other figures, an energy-
preseving discretization of the advection operator [93] is employed here.

4.5. Embedding complex domains on Cartesian grids

While unstructured meshes can conform to arbitrary domains, regular grids require simpler data structures and
simpler refinement stencils which make them highly desirable when efficiency is paramount. However, handling
complex domains clashes with the simplicity of regular grids.

Recently, in the context of DEC discretization of differential
calculus, a local numerical homogenization of the diagonal Hodge
star to capture sub-grid resolution was proposed in [61]. It ex-
tended to arbitrary k-forms the approach of [94], which offered a
robust and second-order convergent pressure projection over an ar-
bitrary domain Ω using a regular computational grid. While stan-
dard diagonal entries of the standard diagonal Hodge p-star are defined as the ratios of volumes of primal p-element
and its dual element [54], the key idea of the improved boundary treatment is to account for the parts of the regular
grid that are outside the domain Ω by altering the discrete diagonal Hodge star accordingly: partial lengths, areas, or
volumes of primal elements that are within the domain Ω are used in the evaluation of the diagonal Hodge star, see
inset. Topological operators like the exterior derivative remain unchanged. This method can be used in our context as
well: one can construct arbitrary operator-adapted basis functions and wavelets on a regular grid while conforming to
a smaller domain Ω by modifying the Hodge star operator on the finest meshM q: as Figs. 8 and 9 demonstrate, an
operator L involving Hodge stars in its exterior calculus expression will be properly handled over the actual domain
Ω as long as it is covered by the computational grid. Note that this approach, which homogenizes both space and
operator over the regular grid, is currently limited to a low-order approximations of the Hodge star. Future extensions
to higher-order approximations of Hodge stars may provide more accurate sub-grid accuracy.

4.6. Discussion

A few remarks are in order about our extension to multiresolution analysis of differential forms.

L2-adapted case. When the identity operator is used along with Whitney p-forms at the finest level and their cor-
responding refinement matrices, one may expect that the resulting operator-adapted basis functions ϕk will simply
be the same Whitney p-forms on each p-element of the mesh M k at each level k. However, as Rmk. 2 in Sec. 3.1
pointed out, this would only be true if these Whitney forms were L2-orthonormal in the first place, which is not the
case. However, the induced L2-orthonormal basis functions ϕk share a close resemblance to the Whitney forms from
which the refinement matrix derives, as Fig. 5 demonstrates.
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(a) (b)

(c) (d)

Fig. 8: Laplace-adapted basis functions on grid-embedded domains.
Discretization of the 1-form Laplace operator on a regular grid can be
adjusted to account for an arbitrary computational domain, like a US
map or a fish: using a finest grid of 256 × 256 elements, two resulting
coarse (4 × 4 level) operator-adapted basis functions ϕk

i (one in red, one
in blue) are displayed in (a-b), and all the basis functions at the level for
which the grid is 8 × 8 are shown using different colors in (c-d).

Fig. 9: Divergence-free adapted basis functions on grid-embedded 
domains. Using the same setup as Fig. 8, we now show the divergence-
free basis function adapted to the 1-form Laplacian restricted to complex 
embedded domains. Various basis functions on a coarse (4 × 4) and a 
finer (8 × 8) level are shown using different colors in: three coarse and 
four fine basis functions for the US map, and three coarse and one fine 
basis functions for the fish.

Impact of refinement matrix choice. Having the finest basis functions used to bootstrap the construction and the
actual refinement matrix Ck being decorrelated as noted in Rmk. 3 of Sec. 4.3 offers much flexibility in practical
computations. Dirac-Whitney refinement matrices will have operator-adapted basis functions and wavelets with the
smallest support, and this support will grow with the smoothness order of the Whitney forms that the refinement
matrix corresponds to. Higher-order Whitney forms are advisable from a functional approximation point of view
as they induce lower approximation errors for a given resolution level. If, instead, lowering computational cost is
paramount, then low-order Whitney forms are preferable. In particular, Dirac-Whitney refinement matrices typically
induce lower condition numbers of matrices Ak and Bk: their associated refinement kernel matrix Wk have optimal
condition numbers, i.e., cond Wk =1, while the use of higher-order Whitney forms leads to higher (but still bounded)
condition numbers.

Linear differential constraints. While we only gave details for the case of divergence-free vector fields, the construc-
tion of a basis of differential forms in a given linear subspace is possible for many typical differential constraints in
physical systems: one only has to find a set of localized linear combinations of Whitney forms that creates a basis of
the kernel of the linear operator at play in the constraint.

5. Applications and Numerical Tests

In this section, we discuss potential applications of our operator-adapted decomposition of differential forms and
present a number of numerical experiments to illustrate our contributions. Since our work extends the recent work

Quiver plot vs. LIC visualization

of Owhadi et al. [28, 29, 30, 31, 32] on operator-adapted decompositions of
scalar functions, we focus on examples involving one-forms (instead of zero-
forms) to highlight the novelty of our work, even if our approach applies to
arbitrary forms. We will depict one-forms using a variant of Line Integral Con-
volution (LIC [95], implemented in [96]), which offers a more expressive visu-
alization than the traditional quiver plot of vectors (see inset) through the use of
integral lines and greylevel coloring to encode direction and length respectively.

5.1. Elliptic operators

We first show examples of operator-adapted basis functions and wavelets for typical linear operators. In these
three examples, the original Whitney 1-forms are used at the finest level to bootstrap the decomposition.
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Identity operator. As a trivial example, we can run our algorithm on 1-forms for L = �. As expected, using a
Dirac-Whitney refinement matrix leads to nearly edge-based Dirac basis functions, while using a low-order Whitney
refinement matrix engenders an L2-orthogonal basis of 1-forms resembling the edge-based Whitney forms, see Figs. 4
and 5 (top row).

Laplace–de Rham operator. For the 2D Laplacian L = ?1d0 ?
−1
0 dT

0 ?1 + dT
1 ?2 d1 of one-forms with zero Dirichlet

boundary conditions (corresponding to the vector Laplacian ∇∇ · −∇× ∇× in vector calculus), the adapted basis
functions look much smoother (see Figs. 4 and 5 (middle row)). This is to be expected due to the obvious link
between the Dirichlet energy (a common measure of smoothness) and the Laplace–de Rham operator: as indicated
by the variational definition in Eq. (20), they are, in fact, the smoothest localized functions.

General elliptic operator. Our approach applies to any elliptic operator, such as the general diffusion operator ∆σ,
where the vector Laplacian (with zero Dirichlet boundary condition) uses an arbitrary conductivity tensor σ. We
demonstrate this property by using L = ?̃1d0 ?

−1
0 dT

0 ?̃1+ dT
1 ?2 d1 on one-forms, where the Hodge star of 1-forms is

altered by making it dependent on a spatially-varying metric µ of the same form as proposed in [50]:

µ(x, y) =

(
α(x, y) 0

0 1

)
with α(x, y) =

4∏
k=0

(
1 + 1

5 cos(2kπ(x + y))
) (

1 + 1
5 sin(2kπ(x − 2y))

)
. (28)

We denote the resulting modified Hodge star as ?̃1. Figs. 4 and 5 (bottom rows) show the resulting operator-adapted 1-
form basis functions, reflecting the highly-oscillatory modification from the vector Laplacian that the metric µ creates.
We will show in Sec. 5.5 that these basis functions allow proper homogenization of this elliptic operator and lead to
bounded stiffness condition numbers. One can thus see our decomposition as an extension of the numerical methods
for scalar-valued homogenization of the operator ∇ · σ∇, such as [50].

5.2. Advection-diffusion operator
Our approach can handle non-elliptic operators just as well: we demonstrate it by constructing a wavelet decom-

position adapted to the well-studied advection-diffusion equation (with zero boundary flux and free-slip along the
boundary):

∂u
∂t

+ a · ∇u − ν∆u = b

where a,b ∈ �2 are given vector fields, ν ∈ �+ is a viscosity parameter and u ∈ �2 is the unknown, time-varying
velocity field. In general, this equation describes the transport and diffusion of physical entities such as the ozone in
the atmosphere or pollutants in oceans. Using its exterior calculus equivalent for one-forms (i.e., u=u[), a trapezoidal-
based time discretization for a time step τ leads to the following implicit scheme (using un+ 1

2
as a shorthand for

1
2 (un+1+un)):

un+1 − un

τ
+ £a un+ 1

2
− ν ∆un+ 1

2
= b[ =⇒

[
� + 1

2τ £a −
1
2τν ∆

]
un+1 =

[
� − 1

2τ £a + 1
2τν ∆

]
un + b[

where the operator £a encodes the (Lie) advection of a form by the vector field a. Observe that since the continuous
form of the advection-diffusion equation mixes the skew-symmetric advection operator and the self-adjoint diffusion
operator, the operator ` =

[
� + 1

2τ £a −
1
2τν ∆

]
is not necessarily symmetric and positive-definite. We thus compute

the basis functions adapted to the symmetrized operator L = `T` instead. In our results, we discretize the advection-
diffusion operator ` using a first-order upwind approach [97] for most numerical tests involving advection-diffusion;
the only exception is in Fig. 7 where we use the antisymmetric and conservative discretization provided in [93], which
leads to similar results once symmetrized: the adaptation to the operator L manifests itself in the “advected” shape of
the resulting basis functions, see Figs. 6, 7 and 19.

5.3. Embedded domains
By exploiting the domain adaptation of the Hodge star explained in Sec. 4.5, we can construct operator-adapted

basis functions over complex domains while still using Cartesian computational grids. Figs. 8 and 9 show vector-
Laplacian-adapted edge functions over fish-shaped and US-shaped domains. Far away from the boundary, the edge
functions are virtually unchanged, but they nicely adapt to the convoluted boundary for surrounding edges. While
more precisely conforming edge functions could be constructed from a triangle or quadrangle mesh approximation of
the shape, our sub-grid accurate treatment of arbitrarily-shaped domains over regular grids is trivial to implement and
properly converges as the grid is refined [94, 61].
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With operator-adapted bases

With L2-orthogonal bases

Fig. 10: Homogenization Effect. We demonstrate decay of the homogenization error — i.e., the energy norm of the approximation error between
the fine FEM solution u and its level-k operator-adapted approximation uk (see Eq. (A.1)) — as a function of k; for each of the test operators (1-form
Laplacian, modified 1-form Laplacian and advection-diffusion), the solution u is visualized in Fig. 1, to which the uk approximant is compared.
The red line depicts the optimal slope of the approximation error obtained by using eigenfunctions as basis functions (the so-called Kolmogorov
n-width). Our operator-adapted Dirac-Whitney (top left) and original Whitney (top right) wavelets lead to exponential decay of the error for the
three operators, demonstrating the expected numerical homogenization effect. In contrast, operator-independent wavelets based on Dirac-Whitney
(bottom left) and original Whitney (bottom right) refinement rules fare significantly worse, both leading to unconvincing decay; these wavelets are
L2-orthogonal between scales, i.e., adapted to the Identity operator, see Figs. 4 & 5 (top) for their associated basis functions.

5.4. Divergence-free basis functions
The construction of divergence-free vector-valued basis functions is an important computational need in many

practical applications. While multiscale analysis approaches using divergence-free L2-orthogonal wavelets have been
proposed (in both the tensor and non-tensor product cases) [98, 99], none have been offered in the more general case
of operator-orthogonality. As detailed in Sec. 4.4, our approach lends itself quite straightforwardly to this case. We
demonstrate the divergence-free basis functions adapted to three differential operators in Fig. 6 on a simple domain.
We also leverage the domain adaptation of the Hodge star in Fig. 9 to provide divergence-free bases on complex
domains: using only a Cartesian grid, we construct a hierarchy of divergence-free vector-Laplacian-adapted basis
functions that are restricted to a spatial domain with complex boundaries and with zero normal components at the
boundary. One can clearly see the effects of the boundary in the way the basis functions associated to edges of various
hierarchy levels are shaped through the domain.

5.5. Approximation properties
We demonstrate the coarse-graining properties of our operator-adapted basis functions through the analysis of

approximation errors. The notion of numerical homogenization is characterized by the following bound on the energy
norm of the difference between a solution u to Eq. (1) and its operator-adapted level k approximation uk (see Table 1
for definition):

||u − uk ||L ≤ 2−ksC (29)

for the case of our 2D regular mesh hierarchy, where the constant C > 0 does not depend on the choice of operator
(see Appendix A or [28] for the general case).

Using high resolution FEM solution of Eq. (1) as a proxy for u, and the right hand side of Eq. (29) as a reference
slope, we plot the decay of the energy norm of approximation error as a function of k in Fig. 10 (top row) for several
examples. The slopes of resulting curves follow the theoretical bound of Eq. (29) for three test operators, with original
Whitney refinement rule leading to a faster error decay compared to Dirac-Whitney. If non-adapted wavelets are used
instead (see Fig. 10 (bottom row)), the approximation errors deteriorate significantly and even display some growth
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With operator-adapted bases

With L2-orthogonal bases

Fig. 11: Approximation Errors. Using the same setup as Fig. 10, we now measure the approximation error using the L2 norm instead of the
energy norm. With this norm, it is known that non adapted bases may also exhibit convergence, but their rate of convergence can be arbitrarily
bad [100]. While the decay rate is improved for all curves compared to Fig. 10, operator-adapted wavelets (top row) still perform significantly
better than non-adapted ones (bottom row); Dirac refinement rules (left column) lead to slower decay than Whitney (right column), as expected
due to smaller stencil. Note that the red curve representing the theoretical rate of convergence here is two times steeper than before.

with k for Dirac-Whitney refinement rule. For completeness, we also provide a similar plot in Fig. 11, where now the
L2-norm is employed to measure approximation error instead of the energy norm. Operator-adapted construction still
exhibits much faster decay compared to non-adapted version.

The coarse-graining properties of our basis-functions imply that only a subset of adapted wavelets can be used
to produce a high-quality approximation of the solution space of their associated operator, thus naturally opening
possibilities for efficient model reduction. The visualization of multiresolution decomposition of uq for the 1-form
Laplace operator in Figs. 17 and 18 also confirms that insight and reiterates that finer resolution levels correspond to
high-frequency components of the solution, albeit they look quite different for the original Whitney vs. the Dirac-
Whitney refinement rules: the former has better homogenizing properties due to larger support, which results in its
ability to carry over more information to coarser resolutions. Indeed, using only the 3 coarsest levels of Whitney
wavelets leads to a smaller approximation error than using the 5 coarsest levels of the Dirac-Whitney construction;
the Whitney-based construction allows to capture 99.9% of energy content with only 112 adapted wavelets, while
Dirac-Whitney needs 1984 adapted wavelets to achieve the same energy content; for reference, a full solution uq has
32512 degrees of freedom.

We finally note that our level k approximations uk are in fact optimal both in Galerkin and game-theoretical sense,
see Appendix B for more details.

5.6. Eigen ranges and condition numbers

An important measure of performance for our multiscale construction involves a spectral analysis of the resulting
wavelet stiffness matrices Bk. In Fig. 12, we show that the condition numbers of the stiffness matrices Bk are much
smaller than their counterparts Ak—from two to six orders of magnitude for high frequencies. Moreover, in Fig. 13
we also show that the ranges of eigenvalues of the matrices Bk overlap for consecutive values of k, reconstructing the
full eigenvalue range of the input stiffness matrix Aq (evaluated with non-adapted basis on the finest resolution q),
confirming the proper capture of the operator solution space at various spatial resolutions. Note that performing the
same numerical tests for divergence-free bases lead to very similar results, see Fig. 14.
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Fig. 12: Condition numbers. We compare the condition numbers (in log scale) of stiffness matrices Ak of 1-form basis functions (in blue) and
their associated wavelets Bk (in orange) for our operator-adapted multiresolution decomposition with q=7 resolution levels (finest grid is 128×128
cells) for three operators: 1-form Laplacian (top row), modified 1-form Laplacian (middle row, see Eq. (28)), and advection-diffusion (right row).
The Dirac-Whitney refinement rule (left column) tends to produce slightly better condition numbers for matrices Bk compared to the original
Whitney rule (right column) as expected, but in both cases they remain bounded and often peak on intermediate resolution levels. In particular,
condition numbers of the wavelet stiffness matrices Bk are up to 3 orders of magnitude smaller than those of Ak for large k (i.e., on finer scales).

5.7. Exponential decay of basis functions

As we discussed in Sec. 3.5, our operator-adapted basis functions decay exponentially fast as long as some mild
assumptions on the interaction between test functions and operator hold (see Appendix A). Figs. 15 and 16 corrobo-
rate this statement in the case of exterior operators, even if divergence-free constraints are imposed.

5.8. Sparsity patterns

We finally provide an evaluation of the sparsity of the stiffness matrices resulting from our multiresolution con-
struction. In Fig. 20, we visualize diag[A1,B1, ...,B6], a principal submatrix of the global multiresolution matrix L
(Eq. (5)) using the Laplace operator on 1-forms. A straighforward implementation of Alg. 2 using an off-the-shelf
linear solver combined with a pruning of all entries of Bk that are less than 1e−15 in absolute value results in al-
ready sparse matrices. However, our fast solve through spatial localization produces even sparser matrices with a
limited impact on accuracy: the relative L2 error in the resulting operator-adapted basis functions ψk

i introduced by
this sparsification does not exceed 0.75% (as discussed in Sec. 3.6, we used 3-element-wide neighborhoods local-
ization for Dirac-Whitney refinements, and 4-element wide for Whitney to account for larger support). Observe that
in this example using 1-forms, each Bk is represented by two blocks corresponding to horizontal and vertical edges
respectively.

5.9. Examples of applications

Our construction of fine-to-coarse operator-adapted basis functions and wavelets have many potential applications
in numerical contexts. We cite a few important examples next.

Model reduction. Operator-adapted basis functions are particularly relevant in numerical simulation: as we discussed
early on, they offer a finite-dimensional basis of locally-supported functions that captures the eigenspace of the cor-
responding operator as well as possible. Therefore, they are particularly relevant in the context of model reduction
and adaptive refinement, much more so than classical wavelets. We discuss next a few approaches to leverage our
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Fig. 13: Eigenranges. We show that the eigenvalue ranges of 1-form wavelet stiffness matrices Bk are (overlapping) subbands of the eigenvalue
range of the input stiffness matrix Aq = Aq (evaluated with non-adapted basis on the finest resolution) for three test operators: 1-form Laplacian (top
row), modified 1-form Laplacian (middle row, see Eq. (28)) and advection-diffusion (bottom row); each horizontal segment covers the spectrum of
the associated stiffness matrix (A1,B1,B2,B3,B4,B5,B6, and A7.). Both Dirac-Whitney (left column) and Whitney (right column) refinement rules
produce operator-adapted wavelets that capture frequencies associated with respective resolution levels; the degree of overlap generally depends
on the operator and tends to be smaller for Dirac-Whitney refinement due to its small spatial support.

operator-adapted multiresolution analysis to either improve accuracy for the same number of degrees of freedom, or
reduce the number of degrees of freedom for a given accuracy.

• Resolution reduction. The simplest way to reduce the number of degrees of freedom in the discretization of
a differential equation with limited impact on accuracy is to omit high frequencies (i.e., the “details” of the
solution corresponding to finest operator-adapted wavelets) while retaining wavelets spanning the p coarsest
resolution levels for p < q. Since our bottom-up construction accumulates information from finer scales to
derive coarser basis functions, this simple approach allows to capture most of the solution without a large
amount of fine scale wavelets.

• Goal-driven model reduction. While the previous approach is intuitive and simple, it fails at providing a clear
assessment of the error induced by the removal of the finest details. Goal-oriented adaptive refinement tech-
niques aim, instead, at selecting a subset of wavelets from each resolution level leading to a computationally
efficient and high quality estimation of a particular output functional [101], typically defined as a linear func-
tional Q. This is easily achieved in our framework: after computing wavelet coefficients wk on level k via a
sparse linear solve, the least contributing wavelets {ψk

j}
Nk
j=1 are found by checking if

|Q(wk
j ψ

k
j)| ≤ εmax

1≤p≤k
1≤i≤Np

|Q(wp
i ψ

p
i )|

for a small ε>0. These wavelets can be safely eliminated to reduce the number degrees of freedom and make
the matrices Bk sparser while insuring that the quantity of interest Q can still be well approximated. Note that
the error in Q incurred by removing the weakly contributing wavelets can be evaluated on the fly.

• Norm-driven reduction. Yet another strategy to drop degrees of freedom is to remove those that least contribute
to the operator-norm of the solution. Since our wavelets are well localized, interactions between them tend to
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Laplacian Modified Laplacian Advection-Diffusion

Fig. 14: Eigenanalysis of operator-adapted divergence-free basis. We demonstrate spectral properties of stiffness matrices corresponding to
the 1-form divergence-free wavelets and basis functions adapted to 1-form Laplacian (left colum), modified 1-form Laplacian (middle column,
see Eq. (28)) and advection-diffusion (right column): condition numbers (top row) and eigenrange subband structure (bottom row) have the same
qualitative properties as for unconstrained operator-adapted multiresolution constructions, see Figs. 12&13. Note that the range of eigenvalues for
the top level is degenerate (hence the short orange bar): since there’s only one vertex at the coarsest level, the stiffness matrix becomes just a scalar.
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Fig. 15: Localization of Laplacian-adapted bases. We demonstrate
the exponential decay of basis functions ϕk

i adapted to the 1-form
Laplacian using Dirac-Whitney (top), original Whitney (middle) and
divergence-free (bottom) refinements, normalized to have unit maxi-
mum value, using log-scale contour plots. Examples of edge-based basis
functions from five different levels of the mesh hierarchy are shown.

D
ir

ac
-W

hi
tn

ey
W

hi
tn

e y
D

iv
-f

re
e

Fig. 16: Localization of advection-diffusion-adapted bases. We
demonstrate the exponential decay of basis functions ϕk

i adapted to
the advection-diffusion (discretized through first-order upwind approx-
imation) using Dirac-Whitney (top), original Whitney (middle) and
divergence-free (bottom) refinements, normalized to have unit maxi-
mum value, using log-scale contour plots. Examples of edge-based basis
functions from five different levels of the mesh hierarchy are shown.

be limited. Therefore, a wavelet ψk
j at level k can be considered negligible in its impact on the solution if

||wk
jψ

k
j ||

2
L ≤ ε max

1≤`≤k
1≤i≤N`

||w`
iψ

`
i ||

2
L

for a small ε>0. However, since the operator norm of the solution

||uq||2L =

n1∑
i, j=1

u1
i u1

jA
1
i j +

q−1∑
k=1

Nk∑
i, j=1

wk
i wk

j B
k
i j

has non-negligible wavelet interaction terms associated with off-diagonal elements of the stiffness matrices, this
simple heuristic can be made more robust by measuring the importance of a particular wavelet ψk

j through its
full contribution to the norm, expressed as ∣∣∣∣∣wk

j

Nk∑
i=1

wk
i Bk

i j

∣∣∣∣∣.
Thresholding these contributions results in a well-approximated solution in the operator norm with typically
very few coefficients.

Efficient Navier-Stokes simulation. Our approach also applies to nonlinear equations such as the Navier-Stokes equa-
tions for incompressible fluids:

∂u
∂t

+ u · ∇u − ν∆u = 0

∇ · u = 0
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u = u1 + ω1 + ω2 + ω3 + ω4 + ω5 + ω6

Fig. 17: Operator-adapted multiresolution decomposition through Dirac-Whitney refinement.: For the 1-form Laplace operator, an element
of its solution space 1-form u defined via edge values on a 128×128 grid (left, LIC-visualized as its equivalent vector field) can be efficiently
decomposed into a sum of a coarse 1-form u1 described via edge values on a 2×2 grid, and all the wavelet contributions ω1, ω2, ω3, ω4, ω5, ω6 of
the mesh hierarchy. Since our vector visualization does not convey relative magnitude, we also indicate the relative energy content (as a percentage)
of each component. Compare with Fig. 18.

u = u1 + ω1 + ω2 + ω3 + ω4 + ω5 + ω6

Fig. 18: Operator-adapted multiresolution decomposition through original Whitney refinement. For the 1-form Laplace operator, an element
of its solution space 1-form u defined via edge values on a 128×128 grid (left, LIC-visualized as its equivalent vector field) can be efficiently
decomposed into a sum of a coarse 1-form u1 described on a 2×2 grid, and all the wavelet contributions ω1, ω2, ω3, ω4, ω5, ω6 of the mesh
hierarchy. Since our vector visualization does not convey relative magnitude, we also indicate the relative energy content (as a percentage) of each
component. Compare with Fig. 17.

Multiresolution analysis of incompressible fluids is an important topic in computational fluid dynamics, but an ef-
ficient construction of wavelets that are truly adapted to the fluid dynamics has remained elusive. Our construction
offers such a tool, and could be extremely useful to turbulence analysis and efficient simulation.

For simple integrators where the update rule is linear in the next velocity un+1, our approach can be used as is
where the operator corresponds to the update rule just like we showed in Sec. 5.2 in the case of advection-diffusion.
For instance, using a trapezoidal temporal discretization with operator splitting, we obtain the following Implicit-
Explicit numerical scheme involving the usual pressure projection step:[

� + 1
2τAdv(un) −

1
2
τν∆

]
u∗n+1 =

[
� −

1
2
τAdv(un) +

1
2
τν∆

]
un

∆pn+1 = ∇ · u∗n+1

un+1 = u∗n+1 − ∇pn+1

If the velocity u is treated as a two-form (flux ?u[) and the pressure p as a three-form (integral per cell), the advection
terms Adv can be discretized to produce the traditional Harlow-Welsh scheme [92] as discussed in [93]. Alas, this type
of simplistic integration scheme is only relevant for low Reynolds numbers. For more involved non-linear integrator
schemes, our construction of operator-adapted basis functions can still pay off significantly: one can linearize the
integrator, use only a reduced basis of divergence-free velocity fields (in order to bypass the pressure projection
altogether), and construct operator-adapted basis functions at the current time step in almost linear time; from these
basis functions, the non-linear update rule can be solved efficiently by picking only the most relevant degrees of
freedom as discussed earlier, which cuts down on the computational time of the simulation significantly (see Alg. 4).
In addition, other simple heuristics can be applied; for instance, one could omit wavelets that are far enough from
certain areas of interest in physical space. Finally, note that fluid simulations generally require high resolutions to
accurately resolve interactions between small and large scale structures. They often benefit from subgrid models,
aimed at modeling small scale effects without explicitly resolving them, thus reducing the dimensionality of the
system. Our operator-adapted bases also provide a framework to directly modulate particular frequency subbands
(with localization in physical space if needed) by appropriately varying the corresponding wavelet coefficients in
order, for instance, to reproduce Kolmogorov’s law of energy cascading. The same idea can also be applied in the
more general context of fluid or smoke simulations in graphics by locally exciting or repressing certain frequencies
of a simulation to produce a visually richer and/or desired look: the tools afforded by our operator-adapted basis
functions and wavelets can help with a large spectrum of numerical tasks. A thorough investigation of operator-
adapted wavelets for fluid dynamics is left to future work.
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6. Conclusions

In this paper, we have introduced an operator-adapted multiresolution analysis for differential forms. Building
over the recent notion of “gamblets”, we presented an efficient fine-to-coarse construction, in log-linear time, of a
hierarchy of basis functions for differential forms and associated wavelets tailored to a given differential operator.
Our numerical procedure involves only linear algebra, and can thus be easily implemented. This construction can be
leveraged in finite element analysis for model reduction, numerical homogenization, or simply to provide a Galerkin
discretization of an operator such that the resulting stiffness matrix becomes block-diagonal, with uniformly well-
conditioned and sparse blocks. Our method also leads to what we believe is the first constructive approach to obtain
vector-valued wavelets that block-diagonalize a given continuous, linear, bijective, positive-definite and self-adjoint
operator, where vector fields are expressed through their covariant counterparts, i.e., one-forms. Our construction
is very general: it applies to various types of computational grids, different smoothness orders of refinable basis
functions, many strategies of sparsification, etc. Depending on the precise application that one targets, this flexibility
is beneficial as it can accommodate a variety of specific numerical requirements.

Future work. Besides the large number of potential practical applications that this efficient construction of operator-
adapted wavelets could impact, a few obvious theoretical developments are worth investigating. For instance, our
construction assumes that the operator L is self-adjoint and positive-definite—otherwise, we use LTL. This fallback
symmetrized operator implies a doubling of the condition number, which may not be optimal. Also, our treatment
of arbitrary domain shapes within the computational grid is currently restricted to a low-order approximation of the
Hodge star on the finest level. Finding higher-order spatial homogenizations of the Hodge star may be valuable to
allow for broader applications. Finally, while we described our approach on “flat” domains, the notion of forms
carries over naturally to non-flat domains (defined for instance through subdivision of cell complexes) as well, and
a proper numerical treatment of the resulting Riemannian metric induced by the embedding space can be efficiently
achieved via a push-pull quadrature of the Hodge star at the finest level [84]. This should allow an even more general
treatment of operator-adapted wavelets. In particular, the construction of scale spaces (multiresolution descriptions)
of geometric shapes based on the Laplace-Beltrami operator for instance could also have important applications for
geometric encoding [102], without requiring a global parameterization.

Velocity field

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 19: Advection-diffusion adapted basis functions. We visual-
ize the vertical components of 1-form basis functions ϕk

i adapted to an
(upwind-evaluated) advection-diffusion operator and associated to var-
ious horizontal edges (in thick black) from 3 resolution levels using a
linear red-to-blue color ramp: using Dirac-Whitney refinement at (a)
level k =1, (b) level k =2, (c)-(d) level k =3; using the original Whitney
refinement at (e) level k = 1, (f) level k = 2, (g)-(h) level k = 3. The ad-
vecting velocity field (left) is reflected in the shapes of the adapted edge
basis functions.
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Fig. 20: Sparsity. We visualize the sparsity pattern of the block-
diagonal stiffness matrix diag[A1,B1, ...,B6] obtained via Alg. 1 when
a simple linear solver with threshold-based (< 1e−15) pruning (left)
vs. fast localized solve (right) is used, for a 1-form Laplace operator
adapted decomposition using Dirac-Whitney (top) and original Whit-
ney (bottom) refinement rules. Fast localized solves decrease sparsity
(proportion of non-zeros) from 6.58% to 0.51% for Dirac-Whitney,
and from 10.96% to 3.63% for original Whitney.
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Appendix A. Properties of the bottom-up construction

In this first appendix, we briefly review the properties of the (scalar-valued) gamblets construction derived in [32],
as they apply to our extension as well. Readers are referred to [32] for rigourous proofs: we only provide a summary
of the properties, along with the key conditions required.

Bounded condition numbers. Let ||·||L−1 be the norm of H∗ defined as the dual to the energy norm ||·||L. The condition
numbers of stiffness matrices Bk and A1 are uniformly bounded, provided the spans of the test functions {Vk}

q
k=1 are

regular and weakly aligned with the eigensubpaces of L−1 in the following sense: there exists a constant c1, such that

• the coarsest test functions can capture the eigenspaces of L, i.e.,

sup
x,y∈Rn1 ;|x|=|y|=1

‖
∑n1

i=1 xiϕ
1
i ‖L−1

‖
∑n1

i=1 yiϕ
1
i ‖L−1

≤ c1;

• the condition numbers of the wavelet refinement matrices are bounded for k = 1, . . . , q − 1:

cond
(
WkWk,T

)
≤ c1;

• the refinement matrices of test functions are bounded for k = 1, . . . , q − 1:

‖Ck‖2 ≤ c1;

• eigensubspaces of L and test functions must be weakly aligned for k = 2, ..., q, i.e.,

sup
x∈Ker Ck−1,|x|=1

inf
y∈Rnk−1

∣∣∣∣∣∣∣∣∑nk
i=1 xiϕ

k
i −

∑nk−1
j=1 y jϕ

k−1
j

∣∣∣∣∣∣∣∣2
L−1

infz∈Rnk ,|z|=1
∣∣∣∣∣∣∑nk

i=1 ziϕ
k
i

∣∣∣∣∣∣2
L−1

≤ c1.

This inequality can also be interpreted as a bound on the relative gap between information that is lost vs. the one that
is propagated during transition from fine to coarse levels. Note that slightly stronger versions of all these conditions
can provide bounds for the minimum and maximum eigenvalues of matrices Ak and Bk, revealing that the eigenranges
of Bk correspond to k frequency subbands of the original stiffness matrix Aq corresponding to the finest level.

Exponential decay. The fast decay of our operator-adapted basis functions on a given resolution level k follows from
the localization properties of both the underlying operator and of the test functions. For each i = 1..nk, define τk

i ∈ Ω

to be a small convex region including the support of the test function ϕk
i , containing a ball of radius hk, and being

contained in a ball of radius δhk for some constants δ, hk ∈ [0, 1]. Let Ωk
i be a small neighborhood of τk

i , such that
Ω = ∪

nk
i=1Ωk

i , and the distance between τk
i and complement of Ωk

i is between δh and h. Denoting the standard Sobolev
norm (with appropriate boundary conditions) on H(Ω) by || · ||H(Ω) and its dual norm on H∗(Ω) by || · ||H∗(Ω), the
key (sufficient) condition required for exponential decay of operator-adapted basis is the existence of two constants
0 < cmin ≤ cmax < ∞ that satisfy the following frame inequality for all v ∈ H∗(Ω):

cmin inf
ϕ∈Vk
||v − ϕ||2H∗(Ω) ≤

nk∑
i=1

inf
ϕ∈Vk
||v − ϕ||2H∗(Ωk

i ) ≤ cmax inf
ϕ∈Vk
||v − ϕ||2H∗(Ω)

The exponent of the decay rate depends on cmin, cmax and the locality of the operator L. This condition, describing
the localization of test functions in the dual norm, is in fact implied by three simple and natural inequalities (for some
finite constant c2 > 0):

• Poincaré inequalities: any ϕ⊥ from the L2-complement of test functionsVk,⊥= {v ∈ H : 〈v, ϕk
i 〉L2 =0∀ϕk

i ∈ V
k}

has bounded derivatives: ∣∣∣∣∣∣Dtϕ⊥
∣∣∣∣∣∣

L2(Ω) ≤ c2 hs−t
k ‖ϕ

⊥‖Hs
0(Ω) ∀t ∈ {0, . . . , s};

• Frame inequalities (boundedness of test functions):
nk∑

i=1

〈ϕk
i , f 〉2L2 ≤ c2

s∑
t=0

h2t
k ‖D

t f ‖2L2(Ω) ∀ f ∈ Hs
0(Ω)

• Inverse Poincaré inequalities:
h2s

k ≤ c2‖ϕ
k
i ‖

2
H∗(τi) ∀i ∈ {1, ..., nk}.

Note that these conditions, obtained in [32, 30], provide a generalization of [47, 28, 103].
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Homogenization property. The operator-adapted basis functions on coarser levels carry over information from finer
scales, nicely approximating the operator eigensubspaces of corresponding frequencies. Indeed, their resulting shape
better captures the operator on a given resolution level than generic polynomial finite-element basis functions, with a
bound proven analytically in [32] for several cases. More concretely, the solution u to Eq. (1) and its operator-adapted
level-k FEM approximation uk (Eq. (19)), assembled using k coarsest resolution levels, satisfy the following inequality
for some constant c > 0:

||u − uk ||L

||g||L2
≤ chs

k (A.1)

where the right-hand side is independent of L, where hk characterizes the radius of support of a test functions of
level k. This last inequality implies that most of the “energy” concentrates on coarser resolutions and serves as one
of the key reasons behind the homogenization properties of operator-adapted multiresolution analysis and its ability
to use only a few discretization levels to get good approximate solutions: it guarantees that omitting (some or all)
information from higher resolution levels does not degrade accuracy too much.

Appendix B. Variational definition

We briefly summarize in this appendix the original motivation of the operator-adapted decomposition proposed
in [28, 29]. Since it matches our construction in the case of scalar-valued basis functions, it is interesting to understand
the functional approximation roots of their approach to contrast it with our finite element perspective.

Optimal choice of basis functions. Consider the solution u to Eq. (1), and a finite set of measurements mi = 〈u, ϕk
i 〉L2 on

a fixed level k obtained by integrating u against a set of test functions {ϕk
i }

nk
i=1. In a context of functional approximation,

a natural thing to ask is: what is the optimal selection of “adapted” basis functions ϕk
i , such that the approximation

error between u and ũk =
∑nk

i=1 miϕ
k
i is minimized, for any choice of u.

Game theoretical insight. This functional approximation problem can be formalized as a zero-sum game between
two players as follows: player I chooses an arbitrary function uI ∈ H from the solution space of Eq. (1); player II
constructs an approximation uII of uI from partial information, only having access to the measurements {mi}

nk
i=1 of

player I’s function; the utility that player I aims to maximize and player II to minimize is given by:

V(uI, uII) =
||uI − uII||L

||uI||L
. (B.1)

This game has a solution in mixed strategies, with mixed optimal strategy for player I, and pure optimal strategy for
player II [28]. In particular, optimal strategy for player I consists in drawing uI at random from a weak Gaussian
distribution ζ of covariance L−1, while a minimax strategy for player II reduces to computing deterministic function
uII as the conditional expectation of ζ given the measurements {mi}

nk
i=1.

Variational formulation. The optimal basis functions {ϕk
i }

nk
i=1 corresponding to the minimax strategy are, in fact, solu-

tions of following variational problem:

ϕk
i = argmin

φ∈H
||φ||2L s. t. 〈φ, ϕk

j〉L2 = δi j for j = 1 . . . nk (B.2)

Using this formulation, [28] shows that since the test functions were chosen to be refinable, the optimal basis functions
are refinable as well:

ϕk
i =

nk+1∑
j=1

Ck
i jϕ

k+1
j ,

where entries of the refinement matrix Ck
i j correspond to conditional expectations of finer test measurements 〈ϕk+1

j , ζ〉L2

given a single non-zero coarser level measurement 〈ϕk
l , ζ〉L2 = δil for l = 1 . . . nk. To find the explicit expression of

the refinement matrix, we can rewrite the problem (B.2) in matrix form, and using earlier notation Ak
i jB 〈ϕ

k
i , ϕ

k
k〉L, we

obtain: Ck = argmin
X∈Rnk×nk+1

Tr
[
XAk+1XT

]
s. t. X Ck,T = �nk

The solution to this constrained minimization is precisely Eq. (15), which demonstrates the equivalence of variational
formulation of Eq. (B.1) to our axiomatic construction (Sec. 3) and implies that resulting operator-orthogonal basis
functions are optimal in the game-theoretical functional-approximation sense of Eq. (B.1).
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They are also optimal in the Galerkin sense on any resolution level k [28]: for any u ∈ H and its approximation
uk =

∑nk
i=1 mi ϕ

k
i , we have

‖u − uk‖L = inf
v∈V

k
‖u − v‖L

In other words, uk is the L-orthogonal projection of u ontoVk.

Acknowledgments

H. Owhadi gratefully acknowledges support by the Air Force Office of Scientific Research and the DARPA
EQUiPS Program under award number FA9550-16-1-0054 (Computational Information Games), as well as the Air
Force Office of Scientific Research under award number FA9550-18-1-0271 (Games for Computation and Learning).
M. Desbrun gratefully acknowledges partial support from Pixar Animation Studios, and thanks Jiong Chen and Yiying
Tong for various discussions on the topic.

References

[1] Y. Meyer, Wavelets and Operators, volume 1, Cambridge university press, 1995.
[2] G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Communications on Pure and Applied Mathe-

matics 44 (1991) 141–183.
[3] E. Bacry, S. Mallat, G. Papanicolaou, A wavelet space-time adaptive scheme for partial differential equations, in: Progress in Wavelet

Analysis and Applications, Frontières, 1993, pp. 677–682.
[4] S. Dahlke, I. Weinreich, Wavelet-Galerkin methods: an adapted biorthogonal wavelet basis, Constr. Approx. 9 (1993) 237–262.
[5] S. Dahlke, I. Weinreich, Wavelet bases adapted to pseudodifferential operators, Appl. Comput. Harmon. Anal. 1 (1994) 267–283.
[6] S. Bertoluzza, Y. Maday, J.-C. Ravel, A dynamically adaptive wavelet method for solving partial differential equations, Comput. Methods

Appl. Mech. Engrg. 116 (1994) 293–299. ICOSAHOM’92 (Montpellier, 1992).
[7] B. Engquist, S. Osher, S. Zhong, Fast wavelet based algorithms for linear evolution equations, SIAM Journal on Scientific Computing 15

(1994) 755–775.
[8] O. V. Vasilyev, S. Paolucci, A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a

finite domain, J. Comput. Phys. 125 (1996) 498–512.
[9] G. Chiavassa, J. Liandrat, A fully adaptive wavelet algorithm for parabolic partial differential equations, Appl. Numer. Math. 36 (2001)

333–358.
[10] A. Cohen, W. Dahmen, R. DeVore, Adaptive wavelet methods for elliptic operator equations: convergence rates, Math. Comp. 70 (2001)

27–75.
[11] W. Dahmen, A. Kunoth, Adaptive wavelet methods for linear-quadratic elliptic control problems: convergence rates, SIAM J. Control

Optim. 43 (2005) 1640–1675.
[12] R. Stevenson, Adaptive wavelet methods for solving operator equations: an overview, in: Multiscale, Nonlinear and Adaptive Approxima-

tion, Springer, 2009, pp. 543–597.
[13] T. Gantumur, R. Stevenson, Computation of differential operators in wavelet coordinates, Mathematics of Computation 75 (2006) 697–709.
[14] G. Beylkin, On multiresolution methods in numerical analysis, Doc. Math., Extra 3 (1998) 481–490.
[15] D. Gines, G. Beylkin, J. Dunn, LU factorization of non-standard forms and direct multiresolution solvers, Applied and Computational

Harmonic Analysis 5 (1998) 156–201.
[16] W. Dahmen, H. Harbrecht, R. Schneider, Compression techniques for boundary integral equations—asymptotically optimal complexity

estimates, SIAM Journal on Numerical Analysis 43 (2006) 2251–2271.
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[87] L. Feng, P. Alliez, L. Busé, H. Delingette, M. Desbrun, Curved optimal Delaunay triangulation, ACM Trans. Graph. 37 (2018) Art. 61.
[88] K. Wang, A subdivision approach to the construction of smooth differential forms, Ph.D. thesis, Applied Mathematics, California Institute

of Technology, 2008.
[89] J. Stam, Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values, in: Proceedings of SIGGRAPH Conference,

1998, pp. 395–404.
[90] P. B. Bochev, J. M. Hyman, Principles of mimetic discretizations of differential operators, in: D. N. Arnold, et al. (Eds.), Compatible Spatial

Discretizations, Springer New York, 2006, pp. 89–119.
[91] P. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, 2002.
[92] F. H. Harlow, J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids

8 (1965) 2182–2189.
[93] D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden, M. Desbrun, Structure-preserving discretization of incompressible fluids, Physica

D: Nonlinear Phenomena 240 (2011) 443–458.
[94] Y. T. Ng, C. Min, F. Gibou, An efficient fluid-solid coupling algorithm for single-phase flows, J. Comput. Phys. 228 (2009) 8807–8829.
[95] B. Cabral, L. C. Leedom, Imaging vector fields using line integral convolution, in: Proceedings of SIGGRAPH Conference, 1993, pp.

263–270.
[96] D. Rufat, Licpy: Line integral convolution with python, 2018. https://github.com/drufat/licpy.
[97] P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J. E. Marsden, M. Desbrun, Discrete Lie advection of differential forms,

Foundations of Computational Mathematics 11 (2011) 131–149.
[98] K. Urban, On divergence-free wavelets, Advances in Computational Mathematics 4 (1995) 51–81.
[99] E. Deriaz, V. Perrier, Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows, Journal

of Turbulence 7 (2006) N3.
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