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Fig. 1. Spatio-temporal super-resolution of a downsampled wind turbulence simulation around a high-rise building. Our new learning-based
framework supports high-resolution and high-frame-rate turbulent flow synthesis, and achieves strong generalization. Trained with small local patches
collected from the flow simulation around a ball in Fig. 3, our dictionary-based neural network can predict turbulent flow details from a low-rate, low-resolution
input. Bottom row shows two consecutive frames of the low-resolution input simulation (far left, far right), with two respective zoom-ins (framed through
solid lines); these same frames are spatially upsampled to the top leftmost and top rightmost frames, see also their corresponding zoom-ins (framed through
dotted lines). Top row shows temporal upsampling, with new middle frames interpolating between the two upsampled frames. Note the refinement of smoke
structures during spatial upsampling and their realistic temporal coherence, despite a very different training exemplar.

Predicting the fine and intricate details of a turbulent flow field in both space
and time from a coarse input remains a major challenge despite the avail-
ability of modern machine learning tools. In this paper, we present a simple
and effective dictionary-based approach to spatio-temporal upsampling of
fluid simulation. We demonstrate that our neural network approach can
reproduce the visual complexity of turbulent flows from spatially and tempo-
rally coarse velocity fields even when using a generic training set. Moreover,
since our method generates finer spatial and/or temporal details through
embarrassingly-parallel upsampling of small local patches, it can efficiently
predict high-resolution turbulence details across a variety of grid resolutions.
As a consequence, our method offers a whole range of applications varying
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from fluid flow upsampling to fluid data compression. We demonstrate the ef-
ficiency and generalizability of our method for synthesizing turbulent flows
on a series of complex examples, highlighting dramatically better results
in spatio-temporal upsampling and flow data compression than existing
methods as assessed by both qualitative and quantitative comparisons.

CCS Concepts: » Computing Methodologies — Neural Networks; Phys-
ical Simulation .

Additional Key Words and Phrases: Fluid Simulation, Dictionary Learning,
Neural Networks, Smoke Animation

ACM Reference Format:

Kai Bai, Chunhao Wang, Mathieu Desbrun, and Xiaopei Liu. 2021. Predicting
High-Resolution Turbulence Details in Space and Time. ACM Trans. Graph.
40, 6, Article 200 (December 2021), 16 pages. https://doi.org/10.1145/3478513.
3480492

1 INTRODUCTION

Be it in computer graphics (CG) or computational fluid dynamics
(CFD), efficiently predicting physically-consistent high-frequency
details from a spatially and/or temporally coarse (low-resolution)
input is extremely desirable in a variety of contexts — but such a
task is also acknowledged to be a very challenging problem, espe-
cially for turbulent flows. For instance, fluid simulation would be
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drastically faster if one could compute a coarse version of the simu-
lation followed by an efficient upsampling procedure that enriches
the input with physically-plausible fine details at very little cost;
a similar approach could also provide a viable solution for turbu-
lence modeling in CFD [Wilcox et al. 1998]. Variants of this concept
have been proven useful over the years: fluid super-resolution (up-
resing a spatially downsampled velocity field), fluid upsampling
(upresing a spatially or temporally low-resolution simulation to a
high-resolution one), fluid resimulation (slight editing to produce an-
other similar simulation very efficiently), and fluid data compression
(for efficient storage of time-varying velocity fields) can all benefit
from a faster or better prediction of finely-detailed fluid motion from
a coarse, low-resolution input. While a variety of techniques have
been proposed in the literature to address some of these applications,
very few approaches are available for temporal upsampling of fluid
flows, and handling both spatial and temporal upsampling of vary-
ing fluid flow behaviors within the same computational framework
is currently out of reach.

In this paper, we introduce a simple but effective learning-based
approach, which not only outperforms state-of-the-art methods for
spatial upsampling of velocity fields at high Reynolds numbers, but
also offers high-quality temporal upsampling of arbitrary fluid flows
using the same network structure. Building upon the recent work
of Bai et al. [2020] which argued that fine spatial structures of tur-
bulent flows are seemingly complex overall but locally simple, our
method for predicting turbulent flow details also relies on a localized
dictionary-based neural network that learns how to combine simple,
local structures to obtain fine details globally. However, in a marked
departure from [Bai et al. 2020], we show that additional filtering in
the process can dramatically improve the prediction quality of the
neural network, and that further augmenting the input with time
stamps also leads to high-quality temporal interpolation between
frames. As a result, our novel localized dictionary-based neural net-
work can efficiently synthesize turbulent flows both spatially and
temporally from coarse inputs as shown in Fig. 1. This approach can
be similarly applied to produce visually plausible turbulent flows for
amultitude of contexts in a highly generalizable manner, even when
only trained on a single fluid simulation dataset — a key feature that
none of the previous methods were able to offer. We test our method
on a series of complex real-world applications, highlighting dramat-
ically better results in spatio-temporal super-resolution/upsampling
and flow data compression than existing methods as assessed by
both qualitative and quantitative comparisons.

1.1 Related Work

We begin our exposition with a brief review of CG and CFD meth-
ods for producing fine details in fluid flows, to assess the different
existing approaches and their varying levels of accuracy.

Turbulence modeling in CFD. Fluid simulation has been studied
over decades in both CFD [Fadlun et al. 2000; Kim et al. 2001; Chessa
and Belytschko 2003; Geier et al. 2006; Versteeg and Malalasekera
2007; Sierakowski and Prosperetti 2016; De Rosis 2017] and CG [Selle
et al. 2008; Mullen et al. 2009; Zhu et al. 2013; de Goes et al. 2015;
Zhang et al. 2015; Zehnder et al. 2018; Qu et al. 2019; Li et al. 2020].
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Yet, accurately simulating turbulent flows is still resource- and time-
demanding due to their chaotic, small dynamic features that require
fine grid resolutions to resolve. Predicting from a simulation on a
coarse grid the averaged high-frequency fluctuations using a sim-
plified model is an attractive alternative used in turbulence mod-
eling: Reynolds-averaged Navier-Stokes (RANS) models [Alfonsi
2009], large-eddy simulation (LES) models [John 2003] or the hybrid
detached-eddy simulation (DES) models [Spalart 2009] are typical
examples of turbulence models. However, all these models involve
empirical parameters to adjust, and can still be quite slow if accuracy
is called for — see [Cécora et al. 2015] for a recent example.

Physically-based reduced models in CG. In order to bypass the
complexity of turbulence models, CG approaches to predicting fine
fluid structures rely instead on physically-inspired, but heavily-
simplified models. While they are often far from being physically
accurate, they add enough plausible visual complexity to improve
the overall flow motion details. Early models employed vorticity
confinement [Steinhoff and Underhill 1994; Fedkiw et al. 2001] and
vortex particles [Park and Kim 2005; Weifimann and Pinkall 2010;
Golas et al. 2012; Pfaff et al. 2012] to help add fluid details. Later
models include variants of noise-based methods [Bridson et al. 2007;
Kim et al. 2008] as well as simplified turbulence models [Schechter
and Bridson 2008; Pfaff et al. 2010] to more correctly capture flow de-
tails. Various other methods to capture fluid flow details have been
formulated as well; e.g., [Wicke et al. 2009] constructed a set of com-
posable reduced models or tiles, which capture spatially localized
fluid behavior, while [Kim and Delaney 2013] presented a subspace
integration method capable of efficiently adding/subtracting dynam-
ics from an existing high-resolution fluid flow simulation. Recently,
[Forootaninia and Narain 2020] suggested the addition of smoke
details by simply combining the high-frequency components of a
simulated fluid velocity with the low-frequency components of an
input guiding field, and [Sato et al. 2021] proposed to formulate
fluid guidance as a minimization problem in stream function space
to add turbulence details to low-resolution fluid flows. However,
due to physical inconsistency of the prediction induced by these
models, unrealistic phenomena are often observed in their results.

Learning-based models. As machine learning techniques grew in
popularity, they became useful to construct more accurate reduced
models. In CG for instance, they have been explored as a means to
synthesize either super-resolution or upsampling of fluid flows. For
super-resolution, the input velocity field is a downsampled version
of a high-resolution simulation, and generative neural networks [Xie
et al. 2018; Werhahn et al. 2019] or local dictionary-based neural
network [Bai et al. 2020] have been proposed to recover the missing
fine details. For fluid upsampling, the input is a fluid simulation
computed on a coarse grid, and methods to learn local patch de-
scriptors [Chu and Thuerey 2017] or the formation of small-scale
splashes [Um et al. 2018] have been formulated to enrich a sim-
ulation. The recent dictionary-based neural network of [Bai et al.
2020] can also handle fluid upsampling, but only for relatively re-
stricted scenarios. Note that other learning-based models related
to fluid simulation targeting the full synthesis of fluid flows rather
than high-frequency flow details [Jeong et al. 2015; Tompson et al.
2017; Guo et al. 2016; Kim et al. 2019] or the prediction of specific



physical quantities such as aerodynamic drag [Umetani and Bickel
2018] have also been proposed: a solver-in-the-loop approach for-
mulated correction functions to reduce numerical errors of iterative
PDE solvers [Um et al. 2020], but training has to be performed
on a case-by-case basis and is restricted to low Reynolds numbers
(less than 103), making this approach valuable only in the case of
re-simulation; Oh and Lee [2021] proposed a two-step temporal
interpolation network using forward advection to generate smoke
simulation efficiently, but cannot handle turbulent flows well. In
CFD, machine learning methods have also been studied as a new
alternative for turbulence modeling [Duraisamy et al. 2019]. For ex-
ample, [Long et al. 2019] proposed a deep neural network to discover
(time-dependent) PDEs from observed dynamic data with minor
prior knowledge on the underlying mechanism; [Obiols-Sales et al.
2020] introduced a physical simulation and deep learning coupled
framework to accelerate the convergence of Reynolds Averaged
Navier-Stokes (RANS) simulations; More recently, [Fukami et al.
2021] proposed a convolutional neural network to perform spatio-
temporal super-resolution, but only for flows with small Reynolds
numbers (Re < 200) and with up to weeks of training time, while
[Kochkov et al. 2021] used end-to-end deep learning to improve
approximations for two-dimensional turbulent flows.

Style transfer. Fluid style transfer has also been targeted in CG,
which at times requires predicting high-frequency flow details. For
example, Sato et al. [2018] extended example-based image synthesis
methods to handle velocity fields using a combination of patch-
based and optimization-based texture synthesis that can transfer the
turbulent style of an existing fluid simulation onto a new one; Kim
et al. [2019] introduced the Transport-based Neural Style Transfer
(TNST) algorithm, which can modify smoke simulations based on
natural images by extending traditional image-based neural style
transfer and reformulating it as a transport-based optimization. Most
recently, Kim et al. [2020] presented a neural style transfer approach
from images to 3D fluids which ensures temporal consistency of the
optimized stylized structures.

Compression. A wide variety of efficient compression schemes for
images and video sequences are available nowadays, see, e.g. [Joshi
etal. 2014; Ma et al. 2019]. However, most of these techniques cannot
be directly applied to the encoding of a time-varying velocity field,
explaining the relative dearth of works in the literature for fluid data
compression. One of the most frequently used techniques employs
the discrete wavelet transform [Kang et al. 2003] for each frame,
a direct extension of wavelet-based image compression. Quanti-
zation and entropy encoding can then be applied to the resulting
wavelet coefficients [Sakai et al. 2013; Kolomenskiy et al. 2019], but
this additional step can dramatically debase the vector field as it
trades details in the flow for lower bitrates. There are also pure
bitwise flow field compression techniques for lossless compression
of floating-point data based on predictive coding [Lindstrom and
Isenburg 2006] or for fixed-rate, near-lossless compression based on
block transforms and embedded coding [Lindstrom 2014]. Recently,
a few learning-based models have appeared which could potentially
be adapted for compressing fluid datasets to reach far better com-
pression ratios: Kim et al. [2019] proposed a generative CNN model
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which can synthesize fluid velocity fields based on scene setup pa-
rameters; Wiewel et al. [2019] proposed an LSTM-based approach
to predicting changes of pressure fields over time. However, they
are all global encoding models that restrict the resolution of the
input to be the same as the training set; they are thus less flexible for
compressing arbitrary flow fields, and are likely to be less efficient
at compressing turbulent flow datasets.

1.2 Overview

Despite a large amount of related work, learning the chaotic and
high-frequency structures of a turbulent flow both spatially and tem-
porally from a coarse resolution input is still a major challenge. In
this paper, we provide a unified learning-based approach to upsam-
pling coarse inputs, such that both spatial and temporal upsampling
can be performed efficiently. Moreover, we show that our approach
can handle very turbulent smoke flows (i.e., flows at high Reynolds
numbers) for a variety of contexts without generating visible arti-
facts even when using a very small training set, which opens up an
opportunity for supporting a wide range of applications — from fast
simulation to compression of turbulent flows — within the same
computational framework.

2 SPATIO-TEMPORAL UPSAMPLING

We now describe our entire learning-based framework for predicting
high-frequency flow structures, beginning with a brief summary of
the work we built upon, followed by a discussion of the numerical
experiments that set off our work, before detailing our various
contributions to spatial and temporal upsampling.

2.1 Recap of the original approach by Bai et al. [2020]

The dictionary-based neural network recently proposed by Bai et al.
[2020] lays the foundations of a very effective patch-based learn-
ing approach for predicting high-frequency flow structures — as
often present in turbulent flows — from which we will build our
own method. Their algorithm can be best understood as aiming to
decompose a small patch u of a high-resolution velocity field into
multiple components: u; + g, + up, + ... + g, where uj is a rough
approximation of the flow patch obtained by first downsampling
u, and then upsampling this coarse patch back to its original reso-
lution through trilinear interpolation (thus representing the input
patch without fine details), while uy,, ..., uy, are high-frequency
residual patches at n different scales (frequency bands) that a neural
network H based on sparse encoding with an over-complete dictio-
nary predicts from u}. With such a dictionary-based neural network,
given a low-resolution flow field, each of its local patches 1, is first
trilinearly upsampled to generate a high-resolution/low-frequency
approximation i, on which high frequency residual patches are
added; each residual patch i1y, of a given scale is then reconstructed
by a sparse linear combination of the learned dictionaries, resulting
in the prediction of flow details. More concretely, the architecture
of the neural network, illustrated in Fig. 2, takes an input vector
y,, (typically composed of a coarse patch at time t and at several
previous time steps to help prediction), and consists in the serial
application of sub-modules Hj, each taking the residual patch of
the previous scale as input: iy, = H;(©;, ity, , ), where iy, = y;.
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Fig. 2. The original neural network proposed by [Bai et al. 2020]. To
synthesize high-resolution velocity patches, multiple network sub-modules

are used to predict different residual patches from trilinear-upsampled input
velocity patches (denoted by the delta symbol) that are extracted from the
input vectors and the ground-truth high-resolution velocity patches, where
each sub-module H; is constructed by a dictionary-based neural network
illustrated in the upper rectangular region enclosed by dotted blue lines,
where B, S’ and B’ are network parameters and D' is the dictionary.

The vector ©; contains all the network parameters B/, ¢ and ﬁi
(for j € {1,2,.., T} indexing the T layers), as well as the learned
dictionaries D;l that are used in each sub-module to synthesize the
high-frequency residual patches. Note that it is easy to form i} by
first picking low-resolution velocity patch #; out of the input y;,
and then directly upsampling it by trilinear interpolation.

Training the whole network uses a loss function containing three
distinct error metrics. The ¢, synthesis error &, measures the dif-
ference between the predicted patch (taking y; as input) and the
ground-truth patch # from a training set containing K patches:

K
&= |lalx) - (@ () + Hye 0|5 s ()
k=1

the Sobolev synthesis error &; measures the Frobenius norm of the
gradient error between synthesized and ground-truth patches, i.e.,

K
&= |VIalx)] - VI () + Hye (s Of . @)
k=1

where V[-] is a component-wise gradient operator defined as V[x] =
[Vx1, Vxo, ..., Vxn]T; and the divergence synthesis error &; mea-
sures the divergence difference between synthesized and ground-
truth patches through

K
Eq= ) IV Tax)] = V- [} (xe) + H(yu () O [5 - 3)
k=1

The loss function combines these three error measurements via:
L7(©) = a8 + agEq + aqEq + e 1015 . (4)
where the last £, norm is used to prevent over-fitting during learning.
Parameters ay, ag, &g and ag help balance between training and test
losses, see [Bai et al. 2020] for details. Once trained, the resulting
dictionary-based neural network can perform spatial upsampling
effectively, and even temporal upsampling by interpolating the inter-
mediate frame patches that are taken as the network input. However,
the authors acknowledged the importance of the training set to the
success of the upsampling process due to limited generalizability;
and indeed, our own tests demonstrate that spatially upsampling
a high Reynolds number turbulent flow often exhibits blocking
artifacts, dramatically lacking the typical crisp contours that fine
simulations are known to produce, see the zoom-in view in Fig. 4
(i); additionally, temporal upsampling results are often poor as soon
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Fig. 3. Turbulent wake flow behind a ball. When air flows around a
ball at a relatively high speed, turbulence will be generated behind the
ball, creating fine chaotic structures visualized here through a cross-section
displaying the velocity field’s magnitude.

as one requires more than a two-fold increase in frame frequency
compared to the input sequence, see Fig. 7 (a).

Note finally that Bai et al. [2020] proposed a lot of different vari-
ants of this basic approach. As an example, the input y; can be
composed of three patches from the same spatial location (at frames
t,t—1, and t—2), and can even include vorticity patches to further
enrich the context from which prediction is learned. In our work,
we considerably simplify their approach by stripping out all these
variants, ending up in a simpler and more generic approach to spatio-
tempoal upsampling. For instance, we use only two frames as input
(the current frame and the previous frame), i.e., y, = [fl{, ﬁ{_l], as
our new approach gains little from including more context. In addi-
tion, we completely discard the space-time encoding proposed in
[Bai et al. 2020] as it does not offer enough generalizability, and we
only use n =2 submodules as we found it to be usually sufficient
to retain visual richness, even if the flow field is turbulent. We will
also drastically simplify the various training scenarios that depend
on the type of upsampling being sought after.

2.2  Motivations

Our novel contributions stem from experimenting with the learning-
based framework proposed by Bai et al. [2020] to better delineate
the issues that are limiting its applicability.

Characteristics of turbulent flows. Turbulent flows are ubiquitous
in nature, exhibiting chaotic and multiscale spatio-temporal struc-
tures [Clark di Leoni et al. 2015] that usually require high resolu-
tion simulations to resolve accurately. Predicting these fine, fast-
changing details from a low-frequency input in a physically con-
sistent manner is thus extremely difficult due to the very nature
of turbulence and its complex multiscale behavior, see Fig. 3 for
a typical turbulent wake flow behind a ball. Consequently, many
existing learning-based techniques such as convolutional neural
networks (CNN) that were designed to predict fine details in images
and videos may simply fail in this context. However, although the
global structure of a turbulent flow is complex, it is locally rather
simple due to the differential nature of its underlying dynamics: as
pointed out by [Bai et al. 2020], it is the intricate combination of
various locally simple structures from which global chaotic patterns
emerge. Thus, designing a localized learning-based algorithm is key
to the success of predicting high-frequency details in a turbulent
flow, especially when the grid resolution is high.

Influence of aliasing on learning. Given the specificity of fluid
flows, our initial attempts at flow upresing quickly honed in on the
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(0)

Fig. 4. Input filtering for a turbulent flow around a sphere. Top: downsampled input fields from a high-resolution simulation on which a Gaussian

filter was applied, with (a) o =0, (b) 0 =0.5, (c) 0 =2, and (d) o =4, which were used to prepare coarse input patches together with the corresponding
high-resolution goundtruth patches to train the neural network proposed by [Bai et al. 2020]. (e) to (h): the corresponding residual fields between the
ground-truth high-resolution simulation and the fields of (a) to (d) upsampled using trilinear interpolation; note different amounts of aliasing. (i) to (I):
synthesis results using the neural networks trained separately with the inputs from (a) to (d); note the blocking artifacts in (i) and over-smoothing in (I). (m) to

(p): the residual fields between synthesized high-resolution fields and the ground-truth field; note that a minimal error is obtained when an appropriate o

value is selected (here, =2 in (k) and (0)).

learning approach of [Bai et al. 2020] for its appealing properties
mentioned earlier. While testing their method, we observed that
the output quality of their neural network depends heavily on the
nature of input patches: very small differences in the training sets
can engender large variations in terms of both training time and
prediction accuracy. Out of sheer curiosity, we tried to experiment
with filtering of the training set: while their original method for super-
resolution use coarse-fine pairs of patches for training where the
coarse patches are obtained through direct downsampling of a fine-
resolution flow (computed through trilinear interpolations of node-
based velocities, followed by point-sampling at a coarser resolution),
we modified their downsampling process by first applying Gaussian
filtering to the fine-resolution flow before point-sampling the result
on the coarse grid, for varying values of standard deviation o —
see Fig. 4, which identifies that too little or too much filtering both
leads to larger prediction errors; instead, adding a specific amount
of filtering is drastically better. This experiment helped us realize
that an aliasing issue was happening: the downsampling employed
by [Bai et al. 2020] introduces aliasing artifacts in the input that
render learning of detail predictions more challenging than it should.
Indeed, the spurious high-frequency artifacts generated by their
unfiltered downsampling complicates the learning process due to
the added non-physical, incoherent structures. However, a proper
downsampling (involving filtering) that extracts the correct low-
frequencies of the fine resolution removes this issue to a large extent,
making the loss function easier to optimize. If too much filtering
is used instead, patches become less salient (as they are all washed
out), and the training becomes difficult again.

Impact of subgrid interactions. Another important observation we
made concerns how the training set should be prepared to improve
generalizability. In [Bai et al. 2020], the training pairs are mostly
prepared by collecting patches from low-resolution simulations and
their corresponding high-resolution simulations. As low-resolution
simulations of turbulent flows cannot resolve subgrid features (as-
suming a very simple turbulence model is used), they may deviate
quite significantly from the downsampled velocity fields of the
corresponding high-resolution simulations. These deviations are
usually difficult to predict, which is why a large number of turbu-
lence models were proposed in the literature, aiming at achieving
more accurate predictions. However, until now, there is no univer-
sal turbulence model which is sufficiently accurate for turbulent
flow simulations. Thus, involving such deviations into the learning
process can dramatically enlarge the function space that needs to
be learned and increase the total number of required training pairs,
making generalization much more difficult for a small training set
and with limited computational resources.

Design consequences. Motivated from our experimentation and
analysis described above, we can first trivially apply known signal
processing tools to properly filter a fine simulation into a coarse (low-
frequency) one in order to create better training sets: a Gaussian
filter, for instance, will enforce that no spurious high frequencies are
present in the result, while maintaining most of the low-frequencies
of the initial flow — thus ensuring efficient training and more coher-
ent outputs. But this realization also has further consequences: not
only can we better prepare training sets for super-resolution, but
we can also revise our neural network structure as well to learn an
additional adaptive filtering process (not just a Gaussian one) that
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helps differentiate low from high frequencies, and thus improve the
accuracy of the sparse coding that our neural network performs.
Moreover, our better understanding of the way training benefits
from the relationship between coarse and fine patches as described
in the previous paragraph suggests a very different strategy instead:
it is, in fact, far preferable to always train the dictionary-based neu-
ral network with properly downsampled fine simulations rather
than four different strategies as proposed in [Bai et al. 2020], leading
to better convergence and smaller training sets. Indeed, a coarse
simulator adds its own form of aliasing due to numerical errors and
improperly-resolved subgrid-scale details, with both issues wors-
ening as integration proceeds forward. Upresing should instead
be trained on “clean” pairs of patches, free of such artificial devia-
tions: training patches without spurious noise makes the training
much easier, leading to better convergence; assuming the training
set covers a sufficient space of simulation patches, upsampling pre-
dictions can be reliably achieved through sparse encoding even if
small “extrapolations” are encountered. We will demonstrate that
this observation brings significant improvements on predicting tur-
bulent flow details, both spatially and temporally, especially when
a low-resolution simulation input is fed into the network; it also
drastically improves generalizability, and simplifies the use of the
resulting neural network as its training always follows the same
procedure, making our approach much faster and simpler to use
than the approach upon which it is based.

2.3 Our New Learning Approach to Flow Upsampling

Based on our findings, we revisit the original dictionary-based neu-
ral network of Bai et al. [2020] and introduce two significant im-
provements as our contributions: the use of filtering (through a
low-pass filtering of the input in both training and prediction, as
well as an adaptive filtering within the neural network) to reduce
spurious high-frequency structures which typically prevent the net-
work from generating coherent predictions, and the introduction
of an input extension (through time-stamp augmentation between
neighboring frames) to provide accurate temporal upsampling. The
resulting modified dictionary-based neural network, containing ad-
ditional convolutional modules, provides a unified and effective
neural network architecture that leads to significantly improved
spatio-temporal upsampling of turbulent flows, with strong general-
ization ability to arbitrary fluid flow simulations even after training
on a single exemplar sequence.

Low-pass filtering. As discussed in Section 2.2, low-pass filtering
is needed before the input patches are processed by the dictionary-
based neural network to avoid downsampling artifacts. A simple
Gaussian filter is known to maintain low frequencies in the original
flow field while removing high frequencies [Marr et al. 1980]. The
key question is how to choose the actual value of the variance ¢ in
the Gaussian filter, which controls the sharpness of the filter shape.
To answer this question, we simply follow basic signal processing
principles. When a high-resolution field is downsampled by a factor
of r in each dimension (r =4 in most of our tests) the minimal cut-off
frequency for the downsampled field is f. =1/2r according to the
Nyquist sampling theorem. Since a Gaussian filter has a theoretical
cut-off frequency f7 = 1/270, we slightly round up the desired
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Fig. 5. Convolutional dictionary-based neural network. To enable bet-
ter prediction, we add two convolutional modules to the original dictionary-

>

based neural network proposed by [Bai et al. 2020]. The convolutional
module Cy uses the trilinear upsampled results from the input vector (de-
noted by the delta symbol) to produce i} in Fig. 2 in order to form a more
representative low-frequency flow component, and the convolutional mod-
ule C; provides a latent space that further filters the input and also makes
the input more identifiable.

coarse input
.

ground-truth high-res output [Bai et al. 2020]

Fig. 6. Learning with and without CNN modules. Top row: an input
velocity field, filtered by a Gaussian kernel with a variance o determined
as detailed in Sec. 2.3, is used for training. Second row: using filtered input
patches, we can already predict more coherent velocity fields using the
dictionary-based neural network in [Bai et al. 2020]. Third row: by aug-
menting their original neural network with two convolutional modules, the
prediction of turbulent flow details is significantly improved, see green box.
Bottom row: the corresponding ground-truth high-resolution simulation.

variance value in practice by selecting o=r/3. By applying such a
Gaussian filter before downsampling to create coarse input patches,
the training patches are spatially more coherent, leading to better
training convergence with improved prediction results. Note that
Fig. 4 (c) uses the closest value to the optimal Gaussian variance,
and indeed, it visually produces the best prediction result, with the
minimal residual error out of the other three variances.

Adaptive filtering. Although very effective and straightforward,
the above filtering applied to the input of the dictionary-based
neural network is based on a Gaussian prior, and is quite limited.
We can further improve the prediction quality by applying additional
filtering inside the network which is, this time, learned from the



our network using an example similar to Fig. 3 but with a vertical flow this time.

training set. First, we insert a convolutional neural network (CNN)
module (denoted as Cy in Fig. 5) to filter the coarse input, which is
then taken as the new base flow upon which the final synthesized
patch can be obtained. Note that the CNN module is a 3D CNN,
where each element (a high-dimensional vector) contains the low-
frequency, trilinearly-upsampled velocity fields at time ¢ and 1 that
are derived from the input vector y; . Second, since a neural network
based on a latent feature space usually leads to better prediction,
we add another CNN module (with the same input construction
as in Cp) to the coarse input (see C; in Fig. 5) in order to make
the input more “identifiable;” by the neural network, leading to
improved prediction result for the whole high-resolution output
patch. These CNN parameters are learned along with the other
network parameters during training. Fig. 6 shows an example of
synthesis result for a turbulent wake flow behind a ball from a
downsampled flow input (top row): while using the initial Gaussian
filter described in Sec. 2.3 to the input patches already leads to
realistic synthesized details (second row), the addition of CNN-
based filters (third row) leads to a finer prediction that is closer to
the ground-truth (bottom row); once it is used in rendering (e.g., by
advecting smoke), visual richness is also enhanced.

Input structure design. For either spatial or temporal upsampling,
interpolation of velocity fields is unavoidable if we directly use the
original dictionary-based neural network of [Bai et al. 2020]. For
spatial upsampling for instance, they first use a (tri)linear interpola-
tion to upsample a coarse low-resolution input field to the desired
high resolution before collecting patches to train the neural network
for high-frequency detail prediction; in the case of temporal upsam-
pling, they employ linear interpolation of two consecutive frames
in time before collecting patches from these in-between frames and
train the neural network to predict the temporal flow details. Note
that this type of interpolation may not have significant influence
on spatial upsampling since fluid structures remains fairly aligned
between the original and upsampled fields, but can be arbitrarily
bad for temporal upsampling as fluid structures can become highly
distorted due to the nonlinear dynamics of fluid flows, particularly
for turbulent flows. In order to obtain better temporal upsampling,
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Fig. 7. Temporal upsampling. Using two consecutive frames of a low framerate sequence, we can properly interpolate the velocity field over time to produce
intermediate frames coherently: (a) the neural network of [Bai et al. 2020] can produce in-between velocity fields through linear interpolation in time, but
this results in poor prediction as compared to the ground-truth shown in (d); (b) by modifying the input structure of the neural network of [Bai et al. 2020]
using the new design we propose, the prediction quality is dramatically improved, but some vortical structure are still not well preserved as compared to the
ground-truth, see the green box region; (c) by using our new dictionary-based neural network with two additional convolutional modules, the prediction
quality is further improved, now preserving small scale vortical structure well, see the green box region. Note that since this example is a vertical flow, we train

we propose a new input structure for the dictionary-based neural
network depicted in Fig. 5. Similar to the input augmentation pro-
posed in [Bai et al. 2020], we also include another input parameter
y € [0,1] that is added to the input vector y;, specifying the precise
time code of any frame to be predicted between the two consecutive
discrete frames; that is, the whole input vector is now changed to
Yy, = [ﬁf, ﬂi_l, v]. Once our new network is trained, we can then
better predict an intermediate frame by specifying the correspond-
ing y. Note that y; will be converted to the input of CNN modules,
where each element will be augmented with the parameter y. Note
also that y=0 and y =1 correspond to a reproduction of #/~! and
!, respectively; for a solely-spatial upsampling, we use y=1.

2.4 Velocity Field Upsampling

With our new learning-based approach described above, we are
now ready to train our neural network to perform spatial and/or
temporal upsampling of an input flow field as we describe next.

Spatial upsampling. For spatial velocity field upsampling, inde-
pendent of whether we plan to use inputs that are downsampled
from high-resolution simulations or directly from the output of low-
resolution simulations, we always prepare the training set using
patches sampled from high-resolution simulations and their filtered-
then-downsampled versions, but the precise ¢ value in the Gaussian
filter depends on the type of inputs, which will be clarified later
in the description of our results. Once the training is achieved, we
can now efficiently apply it to any low-resolution input field: we
simply prepare an input vector for each output patch, from which
our neural network will predict the added high frequency compo-
nent, before assembling all the patches to form the final output
velocity field. Fig. 6 shows a comparison of a 3D turbulent wake
flow synthesized from a downsampled coarse velocity field (top
row) that is 4 times smaller in grid samples along each dimension
(effectively 4x4x 4 =64 times smaller in the total number of grid
nodes), where proper Gaussian filtering is applied before downsam-
pling. It is visually striking that Bai et al. [2020] still lose details of
the turbulent flow (second row) even if the input is better prepared,
whereas our new model re-injects turbulence details (third row) in
close agreement with the ground-truth (bottom row).

ACM Trans. Graph., Vol. 40, No. 6, Article 200. Publication date: December 2021.



200:8 .« Bai, K. etal

coarse input

high-res
output

ground-truth

Fig. 8. Spatial super-resolution. In this example, we demonstrate turbulent flow spatial super-resolution, where the input flow field (top row) is a
downsampled version of a high-resolution velocity field (bottom row). Training is performed using only the simulation shown in Fig. 3 and colored smoke
particles are advected in the resulting vector fields for visualization purposes. Our synthesis result (middle row) shows close resemblance to the ground-truth
(bottom row), indicating its ability for generalization — check out in particular the green box regions for detail preservation as compared to the ground-truth.

Temporal upsampling. For temporal velocity field upsampling, no
Gaussian filtering is required since the spatial resolution is unaltered,
but we must now train our network using a sequence of ground-
truth velocity fields that have higher frame rates than the expected
input velocity field sequence. Suppose that we aim at temporally
upsampling by an integer factor k; i.e., we want to add (k—1)
frames between two input frames. From a high framerate ground-
truth velocity field sequence (denoted Uj) with a time interval
Aty,, we construct a low framerate velocity field sequence (denoted
as U;) with a time interval of At; = kAt by picking only one
every k frames out of U},. Then, for any frame in U}, indexed by
i, € {0,1,2,...}, the input y is computed as y = iy, /k — | i, /k|, where
the two consecutive frames in U having an index of |iy/k] and
[ip,/K] are taken as the input patches @2/ ! and &’ in y, . The network
is then trained with this sequence. While the dictionary-based neural
network of [Bai et al. 2020] proposed space-time encoding which
could potentially be used for temporal prediction, it encodes the
whole sequence and cannot be easily generalized to different input
sequences. However, since our new input structure design only
relies on nearby local frames, our visual results end up being far
improved and with much stronger generalizability when compared
to [Bai et al. 2020] as demonstrated in Fig. 7, where we show an
example of a synthesized frame between two consecutive frames of
an input. If we simply linearly interpolate the intermediate frame
based on the y value and take it as input, the network of Bai et al.
[2020] returns the high frequency details in (a); comparing to the
ground-truth frame in (d), many important vortical structures are
missing (see the green box region). If we employ our new input
structure design in the original network of Bai et al. [2020], we
obtain much improved results as shown in (b), yet still imperfect
(e.g., the vortices in green box region are not well captured when
compared to the ground-truth). With adaptive filtering through
a convolutional module within the new dictionary-based neural
network, the prediction in (c) is further polished, preserving the
evolution of small-scale vortices far better.

Spatio-temporal upsampling. Naturally, our learning framework
can also support both spatial and temporal upsampling at once.
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To achieve this general case, we first decompose the upsampling
process into 1) a spatial upsampling from the coarse (low spatial
resolution) flow, followed by 2) temporal upsampling of the spatially-
upsampled velocity fields. These two upsampling processes being
independent, they can be decoupled to improve the efficiency of
the learning phase and of the synthesis phase. Note that we have
used two neural networks with the same architecture, but only
differing in input and output patches as well as y values that are
used during training; these two networks are trained separately as
described in the two paragraphs above, using training patches that
are collected from the same high-resolution simulation. Fig. 1 shows
a spatio-temporal upsampling result on a very complex geometry (a
high-rise building) with an output grid resolution of 800x320x 320,
which was achieved by directly applying the two networks after
training on a single jet flow simulation through a ball obstacle (with
a resolution of 600 X 320 X 320) shown in Fig. 3: despite the vast
difference in geometry between these two examples, our learning-
based approach provides a very detailed upsampling of turbulent
flows in both space and time of this particular input.

2.5 Fluid Data Compression

In addition of spatio-temporal upsampling, our learning-based ap-
proach to predicting high-resolution flow details is also very useful
for the compression of time-varying flows, e.g., to efficiently store
on disk time sequences of discrete velocity fields issued from large-
scale numerical simulations of fluid flows: our proposed dictionary-
based neural network can be seen as a patch-based encoder of
high-frequency details over both space and time. To achieve spa-
tial compression, one simply applies Gaussian filtering (without
downsampling) to an input high-resolution simulation to turn the
original velocity field into a low-frequency field, which can then
be more efficiently compressed using the traditional wavelet-based
approach; in addition, all the parameters © of our neural network
serve as an encoding of the high-frequency components. Now for
temporal compression, we can just downsample the whole fluid
sequence to a lower frame-rate, e.g., keeping only one frame out of
ten, and save all the network parameters for a decoder to be able
to predict the intermediate frames based on the key frames that
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Re=100,000
Fig. 9. Fluid data compression at different Reynolds numbers. Top row: the input velocity fields are filtered with a Gaussian kernel. Second row: the fluid

data reconstruction using the original neural network proposed by [Bai et al. 2020] using these filtered fields as input. Third row: the fluid data reconstruction
using our new proposed method for the same input. Bottom row: ground-truth frames from a fine simulation. Clearly, our new method preserves turbulence

details very well, leading to better reconstruction especially for flows at higher Reynolds numbers. The compression ratios and relative reconstruction errors
are as follows: for Re = 4,000 with a compression ratio of 160, the relative reconstruction error for [Bai et al. 2020] is 0.509% while our method’s is 0.486%; for
Re = 20, 000 with a compression ratio of 80, the relative reconstruction error for [Bai et al. 2020] is 1.88% while our method’s is 1.13%; for Re = 100, 000 with a
compression ratio of 50, the relative reconstruction error for [Bai et al. 2020] is 2.2% and ours is 1.63%. Note that the relative errors are measured with the
£-norm, where small differences may indicate large deviation in small-scale turbulence structures.

are spatially encoded. By saving only the wavelet coefficients of
the filtered velocity field at low-frame rate along with the network
parameters for both spatial and temporal upsampling, we effectively
offer an efficient learning-based codec (encoder/decoder) for fluid
flows. Note that the parameters © could have been trained using an
exemplar simulation, different from the velocity field to encode; if
high-quality compression is desired, one could also re-train these
default parameters using the actual sequence to compress (thus in-
creasing compression times) in order to improve the rate distortion
function, as we will demonstrate in Sec. 3.

Ablation tests show that our learning-based codec offers only
marginal improvement compared to a direct wavelet encoding when
a single frame is encoded: we get on average only 1.5 times bet-
ter compression rates for equivalent reconstruction errors at the
Reynolds number of 100,000. However, the situation is drastically
different as soon as a time-varying velocity field sequence needs
to be compressed. For turbulent flows, our compression rates are
usually improved by an order of magnitude compared to a frame-
by-frame wavelet compression for the same reconstruction error,
with even higher rates for low Reynolds number flows. Although
wavelet-based compression combined with motion compensation
can improve compression ratio as frequently leveraged in video
compression [Metkar and Talbar 2010], this improvement is typ-
ically small in the case of turbulent flows due to the existence of
chaotic high-frequency structures that are poorly amenable to mo-
tion compensation. Note that the original approach by Bai et al.
[2020] did not exploit their approach for compression, partly due
to lacking sufficient accuracy and generalizablity; but because our
new approach dramatically improves accuracy for both spatial and
temporal upsampling while being generalizable, we will show in
Sec. 3 that compression rates are much better with our new im-
proved dictionary-based neural network than what they could have

achieved — see Fig. 9 comparing flow field reconstructions at dif-
ferent Reynolds numbers (using only spatial compression since Bai
et al. [2020] does not support temporal compression) for the same
compression ratios, demonstrating the quality of our codec.

3 RESULTS AND DISCUSSIONS

We now discuss the specific implementation of our learning-based
fluid flow synthesis algorithm, before reviewing results on a variety
of application scenarios and comparisons.

3.1 Implementation Details
For reproducibility and clarity, we discuss a few crucial details first.

Training set. First, in order to show the superiority of our novel
approach to upsampling through a dictionary-based neural network,
most of the results shown in this paper were synthesized based on
the training patches issued from a single high-resolution simulation
of a flow around a ball (see Fig. 3), whose time-varying velocity field
was provided by Li et al. [2020] and computed at a grid resolution of
600 %320 % 320. We use a downsampling ratio of 4 in each dimension
to prepare the low-resolution input. While many previous works
demonstate results based on training of very similar simulations,
our method learns very fine turbulent flow details from a single
exemplar simulation, and manages to properly reinject a similar
type of high-resolution vortical details on coarse inputs representing
very different flows with different obstacle geometries. Of course,
our method can be trained with more training examples covering
different types of fluid flows that are put altogether as an entire
large training set, if needed, to further improve prediction accuracy
and generalizability; it can also use any grid-based fluid flow solver
as inputs as nothing in our approach is solver-specific, see Fig. 15.
Once a training set is ready, we sample patches from equally-spaced
frames (in our tests, we use 100 equally-spaced frames) over the
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Fig. 10. Spatial Upsampling. In this example, we demonstrate turbulent flow spatial upsampling where the input flow field (top row) is a low-resolution
simulation. Training is performed using only the simulation sequence shown in Fig. 3, and our synthesis result (third row) shows much closer resemblance to

the ground truth (bottom row) compared to [Bai et al. 2020] (second row), indicating a strong capacity for generalization.

whole fluid flow sequence, and select 4M patches via importance
sampling from those frames as used in [Bai et al. 2020] to train our
new dictionary-based neural network for prediction.

Network setting and training. The convolutional module Cy (see
Fig. 5) has three layers, all using a kernel with a size of 3, and has the
following specific settings: the first layer has an input/output dimen-
sion of 7/16 with a stride of 2; the second layer has an input/output
dimension of 16/32, with a stride of 1; and the third layer has an
input/output dimension of 32/3, with a stride of 1. The activation
functions for the first two layers are both hyperbolic tangent (tanh)
whereas the third layer has a linear activation function. The convo-
lutional module C; has only two layers, which are constructed as
follows: the first layer has an input/output dimension of 7/5 with a
kernel size of 3, a stride of 2 and a linear activation function, while
the second layer is a fully-connected network whose output dimen-
sion is 625, which is the latent space vector. Our hyper-parameters
of the loss function are chosen differently from [Bai et al. 2020]: we
pick ap=1.0, ag=0.1, 23=0.1 and ag = 107°. Note that the regular-
ization parameter ag is very small compared to theirs: we just need
to ensure that no network parameters having large absolute values
are learned, in order to prevent overshooting; larger regularization
may, in fact, introduce smoothing in the result. Due to improved
coherence, our new network does not require the type of strong
regularization that Bai et al. [2020] used, hence preserving high-
frequency details in the output. Finally, we initialize our network
parameters with random numbers that are generated from a normal
distribution, and the Adam optimization algorithm [Kingma and Ba
2014]is employed to train the network with a learning rate of 1074,
We use 90% of the training patches for learning and the remaining
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10% for validation. The network batch size is set to 4096, and we
stop training when the validation loss no longer decreases during
one epoch, which usually takes up to two million iterations.

System configuration. Our learning algorithm was implemented
with TensorFlow [Abadi et al. 2016] and trained on a server with an
Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz CPU, with 256GB RAM, and
an NVIDIA P40 GPU with a total memory of 24GB. The synthesis
process was implemented on a normal workstation equipped with
an NVIDIA RTX3090 GPU with 24GB of memory. Spatial training
takes approximately 3 days to finish, while temporal training takes
approximately 5 days; note that prior work often report more than
a week of training in comparison, see [Xie et al. 2018; Fukami et al.
2021] for instance. Synthesis usually takes 6 to 90 seconds per frame
depending on the output resolution. Table 1 provides statistics for
the various synthesis results shown in this paper.

Rendering. Aside from the 2D cross-section speed-colored visual-
izations of the high-resolution vector fields we generate, we also use
these fields to advect smoke particles and use the GPU-based Red-
shift rendering software [Maxon 2021] for final rendering, which
takes between 2 to 10 minutes per frame depending on the grid
resolution and the complexity of the scene.

3.2 Synthesis Results

We now review a series of concrete results based on our learning
approach for various applications, with smoke rendering or cross-
section velocity field visualization to show our synthesis results.

Spatial super-resolution. Spatial super-resolution of a flow field
refers to the spatial upsampling of a velocity field which was down-
sampled from the original high-resolution counterpart (to reduce



storage size for instance). As mentioned in Sec. 2.4, training pairs for
all of our super-resolution examples were prepared from the same
high-resolution simulation of a jet flow blowing over a ball (for a
Reynolds number of 20,000) as depicted in Fig. 3 and their down-
sampled versions after Gaussian filtering. Fig. 8 shows snapshots of
our spatial super-resolution result for a simulation of the turbulent
air flow around a car for a Reynolds number of 20,000, where our
trained network was directly applied to the downsampled velocity
field sequence (top row) to obtain the synthesized result (middle
row). Very detailed smoke patterns statistically consistent with the
ground-truth original simulation (bottom row) are observed.

Spatial upsampling. Spatial upsampling of a flow field takes a
low-resolution fluid simulation sequence as input and returns a
high-resolution output sequence with fine details added. As argued
earlier in Sec. 2.2, we remove the impact of most-probably erroneous
subgrid scale details in the training process by assembling training
pairs from the high-resolution simulation in Fig. 3 and their down-
sampled versions, but using a Gaussian filter with a larger parameter
o (e.g., 0 =r in our experiment): as the mean flow is usually not
perfectly resolved in a low-resolution simulation of a turbulent flow,
it is better to prepare an input flow field that is more aggressively
smoothed to mimic a directly downsampled velocity field using the
Gaussian filter described in Sec. 2.3. This depends, however, on how
accurate the turbulence model that the low-resolution simulation
employs is. If the turbulence model can predict the downsampled
velocity field accurately, o can still be chosen to be r/3 or slightly
above. Fig. 10 shows the spatial upsampling result (third row) with a
Reynolds number of 50,000, where our trained network was directly
applied to a flow passing through a very complex geometry (here,
an F18 fighter airplane). Compared to [Bai et al. 2020] (second row),
turbulent flow details are much better preserved as can be observed
when compared to the ground-truth (bottom row).

Temporal upsampling. Our dictionary-based neural network ex-
cels at temporal upsampling, where a sequence of three-dimensional
velocity fields with a relatively low frame-rate (e.g., 30 fps in our
test) is refined into another sequence of velocity fields with a higher
frame-rate (e.g., 450 fps). Here also, we only use the high-resolution
simulation from Fig. 3 (computed at two different frame rates) to
prepare the training set in the manner introduced in Sec. 2.4. Fig. 11
shows a temporal upsampling result for a plate falling in the cen-
ter of a static smoke ring to generate a complex turbulent wake
flow, where the snapshots marked by the red boxes are from the
original low frame-rate sequence, while all the other snapshots are
synthesized by our network; note the temporal coherence of the
synthesized sequence. In Fig. 12, we compare our approach to the
state-of-the-art temporal upsampling work of [Jiang et al. 2018],
which is only a 2D upsampling method rather than a full 3D syn-
thesis approach like ours. Our supplementary video shows very
obvious temporal artifacts engendered by [Jiang et al. 2018] which
are difficult to evaluate just from still frames; instead, our network
predicts 3D intermediate fields with near perfect preservation of
vortical structures. In addition, even though [Jiang et al. 2018] could
technically be extended to 3D, it is a global learning approach, which
considerably limits its applicability, while our patch-based approach
scales nicely to high-resolution turbulent flow field synthesis.
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Spatio-temporal upsampling of a turbulent flow. Due to its im-
proved treatment of spatial upsampling and its excellent ability to
also interpolate between frames, our learning-based approach also
excels at spatio-temporal upsampling, where a spatial network and
a temporal network are trained separately but applied in concert to
a space-and-time-coarse input: given a low-resolution input veloc-
ity field sequence with low frame-rate, we can first upsample the
velocity field spatially using the spatial upsampling network, and
then temporally based on the spatially upsampled low frame-rate
sequence using the temporal upsampling network. Fig. 1 shows
the spatio-temporal upsampling for a very complex turbulent flow
through a large high-rise building. High-frequency turbulent flow
details, well structured and far richer than typical wavelet-based
noise due to their emergence from the actual fluid motion, can be
observed both spatially and temporally; here again, still frames do
not really do justice to the temporal coherence of our upsampled
result, so we refer the reader to our supplementary video.

Compression of time-varying vector fields. Finally, our method
handles fluid flow compression, and performs particularly well for
lossy compression of vector fields corresponding to turbulent flow
simulations containing high-frequency chaotic structures. While
the previous applications we demonstrated thus far do not neces-
sarily need very accurate synthesis result as visual plausibility is
paramount, accuracy is usually important in fluid flow data compres-
sion: terabytes or even petabytes of raw data can be generated by
a high-resolution direct numerical simulation (DNS) of fluid flows,
requiring good codecs to store efficiently without losing important
details. As a consequence, training using only the flow field shown
in Fig. 3 may not be sufficient, especially for temporal prediction. In
order to improve accuracy, we need either to increase the training
set by involving more simulation scenarios (thus requiring more
computational resources and time), or to refine the network for
the specific compression task by retraining the network, using the
existing trained network parameters as initialization. Note that we
can either retrain both spatial and temporal upsampling networks or
only retrain the temporal upsamling network; we adopt the second
approach in our examples. Fig. 13 compares the fluid data compres-
sion using the traditional wavelet approach and our refined network,
where we used an air flow simulation around a simpler car to retrain
the network. (Note that we could use the actual F1 simulation to
retrain the temporal upsampling process; we avoided using the same
sequence to show how general our approach is in practice: we only
need to retrain the model using a similar type of animation). The
whole encoding, i.e., wavelet coefficients for Gaussian filtered fields
and network parameters for spatio-temporal prediction, results in
a compression ratio of 600 compared to the actual uncompressed
input fluid flow sequence (last row), with a relative reconstruction
error of only 3% in terms of #,-norm for our method (third row); a
similar reconstruction error using lossy wavelet compression only
achieves a compression ratio of 60 (second row), indicating a 10x
improvement in compression. Note finally that wavelet encoding
with a compression ratio of 600 results in a relative reconstruction
error of 7% instead in terms of £;-norm, as it misses many turbulence
details (top row), which clearly demonstrates the efficiency of our
approach to compressing turbulent fluid flow datasets.
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Fig. 11. Temporal upsampling. In this example, we demonstrate turbulent flow temporal upsampling, where the input flow field frames (left column,

surrounded by red boxes) are a low-frame-rate velocity field sequence. Training is performed using only the simulation shown in Fig. 3, and our temporal
synthesis results (all snapshots without a red border) show very smooth transition between the input frames. Our supplementary video shows a comparison to

the ground-truth animation so that the synthesis quality can be better assessed.

3.3 Discussions

There are several important aspects related to our learning algorithm
that deserve further discussions based on our practical experience.

Prediction accuracy. In order to further demonstrate higher ac-
curacy compared to the original dictionary-based approach of Bai
et al. [2020], we also plotted in Fig. 14 the energy spectra of the syn-
thesized high-resolution flow fields compared to their ground-truth
versions: it confirms that our approach predicts high-frequency
details of turbulent flows far better. Note in particular that while
their original method improves quite a bit when we properly filter
its input (a fact that we reported in Sec. 2.2 as the motivation be-
hind our novel approach), our other changes and addition to their
approach brings about a spectrum that matches the ground-truth
one much closer. After experimenting with our approach, we rec-
ommend the use of turbulence models such as [Alfonsi 2009; Liu
et al. 2015] in low-resolution simulation of flows: since spatial up-
sampling relies on the “mean” flow provided as an input, the better
the low-resolution simulation is able to stay close to a downsam-
pled version of the equivalent high-resolution simulation, the more
accurate the synthesized result will be. Of course, if visual plausi-
bility is more important than physical accuracy, then our approach
can upsample coarse simulations from any fluid solver. In addition,
we found that Gaussian filtering together with CNN modules have
higher prediction accuracy than CNN modules alone.

Generalization. Our new learning-based approach for predicting
turbulent flow details exhibits far improved generalizability than
prior work: one can train the network with a particular fluid flow
simulation and apply the trained network to a very different style
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[Jiang et al. 2018] our result ground-truth
Fig. 12. Comparison for temporal upsampling. We apply the recent
work of [Jiang et al. 2018] to upsample in time the rendered cross-section
velocity field image in 2D (left) and compare the rendered cross-section
velocity field from our 3D temporal synthesis (middle). Compared to the
groundtruth (right), the method of [Jiang et al. 2018] show inconsistent
temporal prediction, creating artifacts as shown in the green rectangle
box, while our method always has consistent temporal prediction. Our

supplementary video demonstrates these temporal artifacts more obviously.

of simulation. Recall that Figs. 1, 8, 10 and 11 were all synthesized
with the spatial and temporal training based on the dataset prepared
from a single high-resolution fluid flow simulation, shown in Fig. 3;
these are rather extreme cases of generalization compared to the
reported results in many state-of-the-art methods, particularly for
more physically consistent synthesis [Um et al. 2020; Fukami et al.
2021], for which a specific training must be performed for each
different type of simulation scenarios. While these results show
that any training can already enable plausible synthesis, training
examples that are closer to the simulation to upsample are obviously
able to further improve accuracy — in particular, for temporal up-
sampling: this is why we switch the training exemplar for Fig. 7 to
another upward flow over an obstacle (the usual training exemplar
from Fig. 3 does not fully capture the type of vertical flow present
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Fig. 13. Fluid data compression. We compare our learning-based compres-
sion with a traditional wavelet-based compression. Given a high-resolution
velocity field sequence (bottom row), we can compress the whole sequence
600x with a relative reconstruction error of 3% (third row); a similar re-
construction error using wavelet compression only leads to a compression
ratio of 60 (second row). To reach a compression ratio of 600 (first row),
wavelet compression has now a relative reconstruction error of 7%. The error
is measured in the f,-norm, and note that a small increase in this error
measurement may dramatically degrade the reconstruction quality visually,
as compared to the input ground-truth sequence.

in Fig. 7), and why we used a typical car simulation (using a simpler
vehicle than the F1 car) to refine our temporal synthesis network
in the compression example of Fig. 13. This possibility for added
accuracy through more targeted training could be useful in a wide
range of fluid flow synthesis applications, from editing turbulence
details for artistic control to more accurate turbulence synthesis for
fast computational design. Note that when the training examples are
too different from the upsampling scenario, blocking artifacts may
occur in the synthesized high-resolution velocity field. However,
these issues are effectively filtered out when particle tracing for
smoke visualization is performed: this is why the temporal synthe-
sis of a vertical motion in Fig. 11 using the horizontal flow around a
ball from Fig. 3 for training still leads to a visually pleasing smoke
temporal interpolation.

Filter selection. Recall that the Gaussian filter parameter o has
different roles in different types of application scenarios: for spa-
tial super-resolution, the variance o should be selected in the way
described in Sec. 2.3; for spatial upsampling, o should be larger to
compensate for inaccurate frequencies of low-resolution simulation,
but its precise value depends on how accurate the turbulence model
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Fig. 14. Comparison of energy spectra. Here, we plot the energy spectra
for both spatial super-resolution (left) shown in Fig. 6 and temporal upsam-
pling (right) shown in Fig. 7. It is apparent that both spatial super-resolution
and temporal upsampling show better spectrum distribution than [Bai et al.
2020], indicating more accurate high-frequency structure prediction. In tem-
poral upsampling, even though the method of [Bai et al. 2020] is improved
with our new input design to avoid direct linear interpolation, it does not
show as good of a match in spectrum as our entire learning approach, which
is a very close fit to the groundtruth spectrum.

used in low-resolution simulation (if any) is. In practice, we select
the variance within the range o € [r/3,r] for an upsampling factor
of r in each dimension to prepare the training set, where higher
values are used for very inaccurate inputs; this value can also be
considered as a valuable tool for artistic control of fluid flow details.
In addition to Gaussian filter, there are also other filters that could
potentially be used. We experimented with some of them, such as
Mitchell [Mitchell and Netravali 1988] and windowed sinc [Presti
2000] filters, as they are often better at preserving structures in the
input in general, but our tests showed very limited improvement;
so we kept a simple Gaussian filter.

Performance. Due to its use of local velocity field patches, our
method is particularly amenable to the synthesis of high-resolution
turbulent flows. Many of our synthesized velocity fields have very
high resolutions — for instance, Fig. 10 where the grid is 1000 x
400 x 400. Even with the fastest GPU-based turbulent flow solvers
currently available [Li et al. 2020; Chen et al. 2021], a direct high-
resolution numerical simulation requires about 11 minutes per
frame, see Table. 1. With our learning-based approach, we achieve an
equally compelling result for smoke synthesis in almost an order of
magnitude shorter time. Moreover, this resolution is very difficult to
achieve for many learning-based approaches currently available in
the literature, as most of them adopted global learning approaches;
ours is much more scalable to large grid sizes. Note that our cur-
rent timings do not use specific GPU optimizations, so performance
could be further improved with a more careful implementation.

Applicability to other fluid solvers. Although all the above results
were obtained using training and input sequences computed via a
kinetic-based fluid solver provided by [Li et al. 2020], our method is
not restricted to any specific type of fluid flow solvers. In Fig. 15,
we show an example where both the training sequence and the
coarse low-res input (left) were generated by a recent Navier-Stokes
solver (the reflection-advection MacCormack solver of [Zehnder
et al. 2018]). The high-res turbulent smoke result (middle) exhibits
the same type of plausible smoke details as the ground-truth simu-
lation (right), proving that our approach is mostly agnostic to the
solver used to generate simulation data.
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Table 1. Statistics and performance. We provide in this table the parameters and timings per frame for various flow field synthesis examples shown in this
paper. Note that all the simulations are computed using [Li et al. 2020] since their method currently offers the fastest and accurate GPU-based turbulent flow

solver in graphics, to demonstrate our efficiency even when compared to their timings.

high-res

Figs input type o6k  inputresolution output resolution Re prepalxgx{-i‘(‘)is time  simulotion time  Prediction time  speed-up

Fig. 1 do}g;;vsgnag}gc{?;;ut 14 10 200%X80X80 800X320X320 50,000 n/a 256.9 sec. 44.3 sec. 5.8
Fig. 6 downsampled input 14 n/a 1508080 600X320X320 20,000 n/a 170.4 sec. 33.9 sec. 5.0
Fig. 7 low firna}ggg rate 00 10 320X480X320 320X480X320 20,000 n/a 140.6 sec. 28.5 sec. 4.9
Fig. 9 (left)  Gaussian filteredinput 2.0 n/a  600X320X320 600X320%320 4,000 n/a 170.4 sec. 33.9 sec. 5.0
Fig. 9 (middle)  Gaussian filtered input 2.0 n/a 600X320X320 600%320X320 20,000 n/a 170.4 sec. 33.9 sec. 5.0
Fig. 9 (right) Gaussian filtered input 2.0 n/a 600X320X320 600X320X320 100,000 n/a 170.4 sec. 33.9 sec. 5.0
Fig. 8 downsampled input 14 n/a 180X60X60 720%240X240 20,000 n/a 154.1 sec. 20.4 sec. 7.6
Fig. 10 simullgg(;l;flsjqput 40 n/a 250X100X100 1000%400%400 50,000 6.1 sec. 678.3 sec. 93.2 sec. 6.8
Fig. 11 low fiﬁ,af,ﬁ‘f rate 00 15 320X160X320 320X160X320 30,000 n/a 59.7 sec. 6.8 sec. 8.8
Fig. 13 GauQly frame tfnput 20 10 600X200X250 600X200%250 100,000 n/a 93.5 sec. 13.7 sec. 6.8

low-res input high-res output

ground-truth

Fig. 15. Applicability to semi-Lagrangian solver. While most our results
were generated and trained from the output of a kinetic fluid solver, we
tested training and prediction using a Navier-Stokes solver (here, the Mac-
Cormack solver of [Zehnder et al. 2018]). Left: a low-resolution input; middle:
our synthesis result using a training sequence still based on a turbulent flow
passing through a ball depicted in Fig. 3; right: ground-truth simulation.
Each image represents a simulation result produced by advecting smoke
density using the corresponding velocity field.

Comparison with other fluid flow synthesis approaches. A few other
fluid flow synthesis approaches related to our work in graphics de-
serve further discussions. For super-resolution, tempoGAN [Xie
et al. 2018] is also a patch-based approach which can achieve rela-
tively strong generalization. However, [Bai et al. 2020] showed that
its ability to handle turbulent flows is very limited. In addition, it
synthesizes smoke density rather than a velocity field, which was
shown in [Forootaninia and Narain 2020] to lead to a smoke visual
complexity no better than a direct trilinear velocity field upsam-
pling followed by smoke advection. We argue that synthesizing
velocity field for smoke animation is always better than directly
synthesizing smoke density field as the velocity field is richer in
details, enabling very complex smoke motions; smoke advection
will in fact automatically filter small errors in the velocity field,
producing a very coherent smoke synthesis result. Fig. 16 shows a
comparison of smoke synthesis between tempoGAN and our neural
network, proving that more faithful fine turbulent flow details can
be achieved with our method; note that our training set is still based
on the flow simulation from Fig. 3. Regarding smoke detail addi-
tion, [Forootaninia and Narain 2020] proposed a simple approach
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through frequency-domain synthesis. However, this recent work
becomes very slow for high-resolution flow field synthesis. In addi-
tion, the authors point out that local editing of fluid details cannot
be achieved. Finally, these two related works offer neither accuracy
in their synthesis nor temporal upsampling, and are thus unlikely
to be applicable to fluid data compression.

3.4 Limitations

Despite greatly improved upsampling results, our method still suf-
fers several limitations. First, while we demonstrated that spatial
upsampling can benefit even from a training set quite distinct from
the type of simulation scenario to upscale, temporal synthesis still
exhibits only relatively limited generalizability; even if we offer
much improved results over previous works, there likely exists a
better representation of the dynamics which would produce plau-
sible temporal upscaling even from quite unrelated training data.
Second, if physical accuracy is a must, a coarse solver that takes
turbulence modeling into account is required: otherwise, the mean
flow that we feed to our network is simply too off to expect that
our upsampling approach would result in the correct physical be-
havior in practice. Third, since dictionary patches are learned from

Fig. 16. Comparison with tempoGAN. Given a low-resolution one-way
coupled fluid-solid simulation where a falling solid plate is creating a tur-
bulent flow (a), we synthesize high-resolution fluid flow simulations using
tempoGAN [Xie et al. 2018] (b) vs. our dictionary-based neural-network (c)
trained from the simulation in Fig. 3. Compared to the ground-truth (d), our
neural network captures better and finer structures.



the training patches selected via importance sampling, some input
sequences may contain local regions that are far from a sparse inter-
polation of dictionary patches, hence leading to bad “extrapolation”.
Obviously, increasing the number and variety of training patches as
well as the number of input sequences can remedy this issue, but at
the price of extended training time and larger memory size. Finally,
due to our added CNN modules, our flow synthesis time ends up
being slightly slower than [Bai et al. 2020], but with significantly
improved high-resolution flow synthesis.

4 CONCLUSION

In this paper, we have introduced a simple, yet effective learning-
based approach to predicting high Reynolds number turbulent flow
details. Our approach is not only more accurate than the state-of-
the-art patch-based method by [Bai et al. 2020], but also much more
generalizable for both space and time upscaling. Its core idea re-
lies on a sparse dictionary-based encoding using small patches to
make the upscaling very scalable, and from an explicit and adaptive
filtering strategy that not only provides more coherent input data
with reduced aliasing, but also produces a latent feature space that
makes the input patches more identifiable. In addition, our new
network design also facilitates temporal prediction of flow details
by avoiding unnatural and aliasing-prone temporal linear interpola-
tion. The two neural networks (a spatial upsampling network and a
temporal upsampling network) of our approach were trained and
applied to a variety of turbulent flow synthesis applications, hinting
at the wide applicability of our technique. Finally, comparisons with
state-of-the-art techniques in various applications were performed
to highlight many advantages of our method.

We wish to pursue a number of future work. We believe that find-
ing another approach to temporal prediction without time stamps
is worthy of investigation: obtaining the same level of generaliz-
ability in time as in space would open up an even larger range of
applications. Applying some of our compression ideas for videos
or time-varying MRI datasets may also be fruitful. Finally, deriving
a low-resolution solver which, once paired with our network, can
produce high-resolution simulation accurately but at a fraction of
the time that a DNS solution requires is another exciting direction
of research to explore.
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