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Abstract
Manifold learning offers nonlinear dimensionality reduction of high-dimensional datasets. In this paper,

we bring geometry processing to bear on manifold learning by introducing a new approach based on metric
connection for generating a quasi-isometric, low-dimensional mapping from a sparse and irregular sampling
of an arbitrary manifold embedded in a high-dimensional space. Geodesic distances of discrete paths over
the input pointset are evaluated through “parallel transport unfolding” (PTU) to offer robustness to poor
sampling and arbitrary topology. Our new geometric procedure exhibits the same strong resilience to noise
as one of the staples of manifold learning, the Isomap algorithm, as it also exploits all pairwise geodesic
distances to compute a low-dimensional embedding. While Isomap is limited to geodesically-convex sam-
pled domains, parallel transport unfolding does not suffer from this crippling limitation, resulting in an
improved robustness to irregularity and voids in the sampling. Moreover, it involves only simple linear
algebra, significantly improves the accuracy of all pairwise geodesic distance approximations, and has the
same computational complexity as Isomap. Finally, we show that our connection-based distance estimation
can be used for faster variants of Isomap such as L-Isomap.

Keywords: Isomap, metric connection, parallel transport, high-dimensional data.

1 Introduction
With the avalanche of information in our big data era, the demand for numerical tools to analyze and classify
high-dimensional data has become paramount. Recognizing and exploiting hidden structures present in the
input is particularly desirable when reducing the dimensionality of the data [Vidal et al., 2016]. The mani-
fold assumption, which posits that many high-dimensional datasets actually live on much lower dimensional
curved spaces, has been proven surprisingly useful in a variety of contexts. Algorithms working towards
extracting reduced dimensional representations of data, also called manifold learning, produce a low count
of “intrinsic variables” to describe the high-dimensional input—with which markedly faster computations
can be performed in the context of machine learning (to address the “curse of dimensionality”), facial ani-
mation [Kim, 2007], skeletal animation [Assa et al., 2005], video editing [Pless, 2003], and nonlinear shape
editing [Budninskiy et al., 2017] to mention a few.

Perhaps the most popular algorithm for dimensionality reduction is Principal Component Analysis (PCA);
yet, it is only useful when data lie on or close to a linear subspace of the high-dimensional space. Manifold
learning algorithms can be viewed as nonlinear extensions to PCA: since data points are assumed to be
samples from a low-dimensional manifold that is embedded in a high-dimensional space, many nonlinear
dimensionality reduction algorithms attempt to uncover a quasi-isometric parametrization of this manifold.
More precisely, they seek an as-isometric-as-possible mapping from the input pointset in �D into a low-
dimensional space �d (with d � D) that represents a low-distortion unfolding of the original data. This
is, therefore, the high-dimensional counterpart of parameterization in computer graphics, a task that finds
a (u, v) parameterization for a two-dimensional patch embedded in 3D (e.g., to texture its surface) and for
which a variety of approaches exploiting the three-dimensional nature of the embedding space have been
proposed [Hormann et al., 2008, Desbrun et al., 2003, Mullen et al., 2008, Schmidt and Singh, 2009].

In this paper, we bring discrete differential geometry concepts to bear on this ubiquitous and inherently
geometric issue, and show how current limitations on geodesic convexity of the input manifold can be lifted
elegantly using the Levi-Civita connection, for the same computational complexity.

1.1 Previous Work
There are two distinct flavors of manifold learning in existing work: local methods, which only rely on local
measurements and sparse matrix eigenanalysis to recover the low-dimensional manifold, and global methods,
that leverage intrinsic measurements between all data points and involve eigenanalysis of a dense matrix.
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Figure 1: Correctly Unfolding Petals. For a 3D sampling of a 4-petal shaped portion of a sphere (left), Isomap (a staple
of manifold learning) fails to find a near isometric 2D parameterization (middle) due to geodesic non-convexity of the
intrinsic geometry. Our parallel transport approach, instead, handles this case as expected (right). Lifting the pointset to
much higher dimensions and applying random rotations and reflections would not change these results.

Local methods. Local embedding methods (e.g., Laplacian Eigenmaps [Belkin and Niyogi, 2001], Locally
Linear Embeddings [Roweis and Saul, 2000] and their many variants) consider local neighborhoods of input
points to infer the whole structure of the data through global stitching of these neighborhoods: for each of the
n input points, they determine its relative position with respect to its immediate surroundings, and then rely on
a sparse matrix eigenanalysis to deduce a global low-dimensional embedding that best preserves local relative
positions. While no restrictive assumptions on the geometry or topology of the manifold are required, this
approach to nonlinear dimensionality reduction often generates large distortion in the resulting embedding—
an issue fortunately addressed by enforcing local linear precision, see [Donoho and Grimes, 2003, Zhang
and Wang, 2007, Budninskiy et al., 2017]. The local nature of this family of methods typically implies a
computational complexity of O(n1.5) due to the sparsity of the matrix involved in the eigenanalysis. Yet this
same locality hampers its robustness: the presence of noise and outliers often leads to degenerate results [Van
Der Maaten et al., 2009]. Local embedding methods are thus general and efficient enough to handle arbitrary
inputs, but are often not resilient enough to noise to be practical (see Figs. 14 and 6 for instance).

Global methods. The Isomap technique [Tenenbaum et al., 2000] is a variant of MultiDimensional Scal-
ing (MDS) [Torgerson, 1965, Crippen and Havel, 1978] that attempts to reduce distortion in the mapping
by preserving pairwise geodesic distances between all data points as well as possible. After forming a k-
nearest neighbor graph of the data points as a representation of the input manifold, Isomap first solves the
all-pairs shortest path problem (using Dijkstra’s or Floyd-Warshall algorithm) to approximate geodesic dis-
tances between every pair of points in the graph. Finally, a low-dimensional embedding that best preserves
these pairwise distances is then constructed with MDS through eigenanalysis of the corresponding Gram
matrix [Borg and Groenen, 2005]. The high computational complexity due to the eigenanalysis of a dense
Gram matrix (in O(n3)) can be further improved through probabilistic linear algebra [Halko et al., 2011], vari-
ants such as L-Isomap [De Silva and Tenenbaum, 2002] or by exploiting various numerical improvements of
MDS [Harel and Koren, 2002, Brandes and Pich, 2007, Khoury et al., 2012] that approximate its solution in
near linear time. Since all pairwise geodesic distances are used, Isomap is particularly robust to noise, and
for this reason it remains one of the most popular algorithms used for manifold learning.

1.2 Shortcomings of Isomap
Despite its resilience to noise, Isomap lacks severely in generality: it can only handle geodesically convex
regions correctly. In particular, if the input sampling of the manifold has a large void, Isomap will significantly
overestimate geodesic distances since graph-based shortest paths for points on opposite side of the hole will
be forced to go around the empty region, thus resulting in a distorted embedding (Fig. 2). This issue is
all the more serious as it impacts irregular sampling in general: unlike PCA, Isomap fails to produce a
non-distorted embedding for a dataset lying precisely on a linear subspace of the ambient high-dimensional
space, since graph-based shortest paths are only approximations of true manifold geodesics, see Fig. 3. There
have been attempts to alleviate this limitation, such as the Topologically Constrained Isometric Embedding
(TCIE) approach [Rosman et al., 2010] which first tries to detect the boundaries of holes and the geodesic
paths that go through these boundaries, before constructing a map that ignores these biased geodesic paths.
However, the process of detecting boundaries is highly susceptible to noise, since it can often be unclear
whether an empty region delimits a “real” void or whether the local sampling is merely low. Moreover, the
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Figure 2: Holey S. Isomap (top right) fails to find a quasi-
isometric embedding of a uniformly sampled developable S-
shaped 2-manifold with a sampling void in the middle (left)
in 3D. Our approach (bottom right) unfolds it almost per-
fectly. A color ramp (blue: 0% error, to red: 15% error) is
used in the visualization of the two embeddings.

Figure 3: Linear Precision. Due to its reliance on graph-
based paths, Isomap distorts a flat 2D pointset embedded in
3D; instead, our connection-based approach (right) flattens
it exactly. A linear color ramp from blue (0% `2-error in
position relative to bbox size) to red (>1% error) is used in
the visualization of the two embeddings.

subsequent minimization is significantly more difficult to perform as it no longer relies on a simple partial
eigendecomposition. Consequently Isomap is often used in practice, even when the topology and geometry of
the sampled manifold are not known—because of the lack of another robust learning approach to use instead.

1.3 Shortcomings of Isomap
Despite its resilience to noise, Isomap lacks severely in generality: it can only handle geodesically convex
regions correctly. In particular, if the input sampling of the manifold has a large void, Isomap will significantly
overestimate geodesic distances since graph-based shortest paths for points on the opposite side of the hole
will be forced to go around the empty region, thus resulting in a distorted embedding (Fig. 2). This issue
is all the more serious as it impacts irregular sampling in general: unlike PCA, Isomap fails to produce a
non-distorted embedding for a dataset lying precisely on a linear subspace of the ambient high-dimensional
space, since graph-based shortest paths are only approximations of true manifold geodesics, see Fig. 3. There
have been attempts to alleviate this limitation, such as the Topologically Constrained Isometric Embedding
(TCIE) approach [Rosman et al., 2010] which first tries to detect the boundaries of holes and the geodesic
paths that go through these boundaries, before constructing a map that ignores these biased geodesic paths.
However, the process of detecting boundaries is highly susceptible to noise, since it can often be unclear
whether an empty region delimits a “real” void or whether the local sampling is merely low. Moreover, the
subsequent minimization is significantly more difficult to perform as it no longer relies on a simple partial
eigendecomposition. Consequently Isomap is often used in practice, even when the topology and geometry
of the sampled manifold are not known—because of the lack of another available robust learning approach.

1.4 Overview and contributions
In this paper we introduce Parallel Transport Unfolding (PTU), a manifold learning technique that performs
nonlinear dimensionality reduction to produce a quasi-isometric, low-dimensional embedding of an arbitrary
set of high-dimensional data points. By simply replacing the Dijkstra path-based geodesic distance esti-
mates with parallel transport based approximations instead, our approach removes the geometric limitations
of Isomap: it can reliably handle arbitrary data with strongly irregular sampling while retaining its resilience
to noise. We show that this new geometric procedure no longer requires geodesic convexity of the domain
sampled by the input data, only involves simple linear algebra, significantly improves the accuracy of all
pairwise geodesic distance approximations, and does not change the overall computational complexity of
the original Isomap procedure. Moreover, our approach exploits the low dimensionality of the manifold by
using a connection on the d-dimensional tangent bundle for efficiency purposes: this markedly differs from
previous parallel transport based geodesic computations on 2-manifolds in 3D, where the codimension is
1 and thus, where either the normal field or 2D polar coordinates can be leveraged to derive fast geodesic
approximations [Schmidt et al., 2006, Melvær and Reimers, 2012, Schmidt, 2013]. Finally, we also demon-
strate that our connection-based distance estimation applies equally well to Landmark-Isomap [De Silva and
Tenenbaum, 2002], a variant offering significant improvements in computational time but suffering from the
same convexity limitation as Isomap.

1.5 Notations and assumptions
Throughout our exposition, we consider an input data set S = {xi}i=1..n of n points that irregularly sample
(possibly with noise) a connected compact d-manifoldM embedded in a D-dimensional metric space. While
the use of arbitrary kernels has been proposed as a unifying view [Ham et al., 2004, Weinberger et al., 2004],
we will assume the embedding space to be �D for simplicity, with d�D. We only assume thatM possesses
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Figure 4: Letter A. From 888 images (120×120 pixels) of rotated and resized letters ‘A’, both Isomap (red) and PTU
(blue) produce similar 2D embeddings (left, each dot indicating an image; insets show a subset of the images and their
embedding). However, if a part of these input images is removed (rendering the set non-geodesically-convex), Isomap
dramatically changes the embedding, while PTU properly reflects the missing images (right).

an atlas with a single chart, so that an injective d-dimensional parametrization of the manifold exists. Our
parallel transport based manifold learning algorithm seeks to find an as-isometric-as-possible d-dimensional
embedding of the input S as a pointset {zi}i=1..n⊂Rd. Finally, to simplify further expressions, we assemble
a D × n matrix X = (x1, ..., xn) from the input points and denote the final embedding as a d × n matrix
Z= (z1, ..., zn).

2 Primer on Isomap
Before describing our method in more detail, we first discuss the original Isomap algorithm.

2.1 Isomap at a glance
The Isomap algorithm [Tenenbaum et al., 2000] for finding a low-dimensional, quasi-isometric embedding
of a point set S consists of three steps:

1. Construct a proximity graph G over the point set S ;

2. Evaluate pairwise geodesic distances between elements of S via Dijkstra’s algorithm on G;

3. Perform MDS on the resulting distances to find a quasi-isometric d-dimensional embedding.

2.2 Computations involved
Each algorithmic step of Isomap involves simple computations that we review next.

Proximity graph. A graph is first constructed by creating undirected edges between neighboring input
points. Two simple ways have been proposed to define whether two points should be connected by an edge
of the neighborhood graph: the first (k-nearest neighbor, or k-NN) approach declares two points neighbors
iff one is among the k nearest neighbors of the other based on Euclidean distances in �D; the second (ε-ball)
approach declares two points neighbors iff the Euclidean distance between them is smaller than a user-defined
threshold ε. Both constructions can be done efficiently (typically, in O(n log n)) using a locality sensitive
hashing data structure for instance [Datar et al., 2004].

Geodesic distances. After setting edge weights to the Euclidean distances between corresponding pairs of
points, the next step is to run Dijkstra’s algorithm on the resulting weighted graph G to compute approxi-
mations of all pairwise geodesic distances between points of S in O(n2 log n). The squares of these pairwise
geodesic distances are then assembled into an n×n symmetric matrix D.

Multidimensional scaling. Finally, the (classical) MDS procedure is performed on D to obtain the low-
dimensional embedding that preserves these squared distances as well as possible. Namely, an n×n Gram
matrix G is constructed from D via “double-centering” [Borg and Groenen, 2005]; that is, denoting identity
matrix by I and the n-vector of ones by e, G =− 1

2 (I− 1
n e et) D (I− 1

n e et). (This Gram matrix may be further
altered to represent a proper kernel, see [Choi and Choi, 2007]). The final embedding Z is found as the
product of square roots of the d largest eigenvalues and corresponding eigenvectors of G:

Z =
√
Λd Qt

d

where G=QΛQt is the eigendecomposition of G, and (Λd,Qd) denote the truncated matrices containing only
the d largest eigenvalues and their corresponding eigenvectors respectively. Consequently, the embedding is
found by computing the d largest eigenvalues and their associated eigenvectors, a numerical task of expected
complexity O(n3) since the Gram matrix is dense. MDS is, in fact, a variational approach since the solution
is the minimizer over all matrices Z of the squared Frobenius norm ||ZtZ−G||2F subject to rank(Z) = d.
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2.3 Discussion
Despite the dense nature of the Gram matrix which implies a higher computational complexity than lo-
cal methods, manifold learning through Isomap is one of the most used nonlinear dimensionality reduction
methods because of its remarkable robustness to noise. Its entire reliance on graph-based shortest paths has,
however, far-reaching calamitous consequences. First, spurious geodesic curvature (i.e., zigzags) in the short-
est paths (seen as a piecewise linear curve in �D) between two nodes on the graph introduces inaccuracies
in the estimation of geodesic distances. In practice, this issue is exacerbated by the sparse sampling that real
applications often have to deal with, even if short paths can be locally rectified through a straightening pro-
jection [Budninskiy et al., 2017]. Worse, some computational accelerations of Isomap rely on a subsampling
of the initial data [De Silva and Tenenbaum, 2004], making this inaccuracy issue all the more limiting. More
importantly, Isomap can only provide a quasi-isometric low-dimensional mapping for geodesically convex
sets: the presence of hole(s) or non-convex boundaries in the domain sampled by the input pointset brings
significant overestimations of geodesic distances, thus distorting the results (see Fig. 2 and Fig. 4). Detecting
and correcting paths that go around small or large voids is difficult to perform reliably as voids can have a
variety of sizes and shapes when dealing with noisy and irregular sampling.

3 Parallel Transport Unfolding
We now present our Parallel Transport Unfolding (PTU) algorithm, which has a very similar structure to
Isomap since it comprises the following steps:

• Construct a proximity graph G of the pointset S and compute local tangent spaces at each point;

• Approximate all pairwise geodesic distances using parallel transport along (shortest) paths on G;

• Perform MDS to find a d-dimensional embedding that best preserves all the geodesic distances.

We detail each step next, stressing the key differences with Isomap in the first two steps of the algorithm,
i.e., the use of approximate tangent spaces and of the Levi-Civita connection to better approximate intrinsic
geodesic distances.

3.1 Proximity graph
The construction of a proximity graph G on S proceeds similarly to the original Isomap algorithm: one can
link each point to its neighbors contained in an ε-ball, or to its k nearest neighbors—both based on Euclidean
distances in �D. Variants such as a mix of the two [Wang et al., 2006] or the mutual k nearest neighbors
approach [Brito et al., 1997] can also be used to naturally discard outliers. For clarity of presentation, we
will use a vanilla k-NN graph in our exposition and all of our tests. The value k should be chosen such
that the edges of the resulting graph are good approximations of geodesics between corresponding points;
we will typically set k around 4d to induce a valence greater than the usual connectivity of a regular grid
of the d-dimensional embedding (k = 2d), yet less than the number of 1-ring neighbors on that same grid
(k = 3d−1); but knowledge about noise levels in the input pointset can be employed to improve the graph
quality by varying the number of neighbors from point to point. Once the graph connectivity is defined, each
edge is assigned a weight equal to its Euclidean length in �D as an approximation of its geodesic length on
the manifoldM.

3.2 Tangent spaces and their orthonormal bases
For each input point xi, its K nearest neighbors on the proximity weighted graph (for K≥k) are used to define
a geodesic neighborhood. The matrix whose columns are the data points (centered by subtracting xi) in this
neighborhood induces, through its d left singular vectors corresponding to the d largest singular values, an
orthonormal basis Ti of d vectors in �D spanning the approximate tangent space:

Ti =
(
ti
1 · · · ti

d

)
∈ �D×d. (1)

While choosing K = k often suffices to provide a good estimate of local tangent spaces, using a value
of K distinct from k allows the definition of arbitrarily large geodesic neighborhoods (useful in the presence
of strong noise) around each point of S, while alleviating the traditional issue of “manifold shortcutting”
associated with increasing k [Budninskiy et al., 2017]. As a substitute to this frame construction via partial
SVD, note that an improved approximation of the local tangent spaces in the presence of strong noise and
outliers can also be computed via `1-based robust PCA (see, e.g., [Zhang and Lerman, 2014]).

With these orthonormal frames of tangent spaces in place, we can now discuss how to approach discrete
parallel transport and how to use it for geodesic length estimation.

5



3.3 Discrete Parallel transport
We now cover the core of our approach, i.e., exploiting parallel transport in high dimension to better evaluate
geodesic distances.

Parallel Transport in Differential Geometry. The notion of parallel transport plays a central role in dif-
ferential geometry. It induces a way to connect the geometries of nearby points, thus prescribing how a basis
of the tangent space at one point of a manifold should be adjusted to produce a “parallel” basis of another
tangent space at a nearby point. While this procedure is straightforward for flat spaces (it corresponds to a
simple translation), it becomes more involved for manifolds with non-trivial curvature. Its differential geo-
metric treatment involves the definition of a connection on the tangent bundle [Spivak, 1979, Frankel, 2011],
which represents an infinitesimal analogue of parallel transport. Most relevant to our work are metric con-
nections, i.e., connections such that the parallel transport they define preserves the intrinsic metric of the
manifold. The well-known Christoffel symbols are, in fact, the components of a particularly canonical metric
connection called the Levi-Civita connection, which we will leverage in our application. Another geometric
property we will exploit is the fact that geodesics, usually described through variational analysis as locally
shortest curves, can also be defined through parallel transport: a geodesic is a curve that parallel transports its
own tangent vector as directly implied by the geodesic equation [Spivak, 1979, Frankel, 2011]. This simple
property will guide our evaluation of geodesic distances.

Discrete Parallel Transport. Given points xi and x j sharing an edge in the proximity graph G, we define
the discrete metric connection between xi and x j as the orthogonal d × d matrix R j,i in O(d) representing the
change of basis that best aligns, in the Frobenius norm, the frames Ti and T j, i.e.,

R j,i = arg min
R∈O(d)

||Ti − T jR||2F (2)

By definition, Ri, j is the inverse of R j,i: Ri, j = R j,i
t . Note that we use the group O(d) of orthogonal matrices

because the SVD used in Sec. 3.2 produces arbitrarily-oriented tangent frames. A pre-processing of these
tangent bases could be performed (e.g., via a minimum spanning tree) if one wants to ensure that their orien-
tations are consistent, enforcing that the discrete connections are pure rotations (in SO(d)) as in the continuous
case. The transformation R j,i can thus be understood as a discrete equivalent to the Levi-Civita connection
induced by the metric on S inherited from the Euclidean space �D. It is also a high-dimensional extension
of previous discretization of metric connections on triangle meshes [Crane et al., 2010, Liu et al., 2016].

Computing this discrete connection is easily achieved via a singular value decomposition:
Proposition 1: Let Ti

tTj = UΣVt be the SVD. The discrete connection is expressed as:

R j,i = VUt. (3)

Proof: The definition of Ri, j in Eq. (2) maximizes Tr
[
Ti

tTjR
]

for R∈O(d) as the other terms do not depend
on R. Since Ti

tTjR = UΣVtR and given the invariance of the trace under cyclic permutations, the optimal
rotation maximizes Tr

[(
VtRU

)
Σ
]

for VtRU∈O(d). Consequently, one has VtRU = Id; so R j,i must be VUt.
One recognizes the Procrustes superimposition of two nearby frames [Kabsch, 1976], just extended to handle
arbitrary choices of frame orientation for tangent spaces. �

3.4 Local Path Unfolding via Parallel Transport
With a discrete metric connection, we can now “unfold” a polyline path on S (made out of a series of adjacent
proximity graph edges) into �d, i.e., we seek to map a polyline of graph edges into a flat d-dimensional
space while best preserving its metric properties such as length, intrinsic curvatures, etc. This process of
“unrolling” a curve onto a tangent space is known as Cartan’s development [Nomizu, 1978, Sharpe, 1997] in
differential geometry.

Two-edge Unfolding. Let us define how to unfold in �d a three-point (xi, x j, xk) polyline path onM, i.e.,
a path made of two adjacent edges of the proximity graph on S. Its extensions to arbitrary paths will be
straightforward. Without loss of generality, we can consider the unfolding to be happening in the tangent
space at xi, equipped with its orthonormal frame Ti. The first point yi of the unfolded polyline can be chosen
to be at the origin of this subspace, or coinciding with xi. The first edge, represented by the vector ei =x j−xi,
is projected (in the `2 sense) onto the tangent space at xi to form a d-dimensional tangent vector vi through:

vi = Tt
iei.
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Figure 5: Geodesic Distances. For a graph based on a triangulated spherical cap (left, 2 views), the average relative
error of pairwise Dijkstra-based geodesic distances is 5.6%; SAKE [Budninskiy et al., 2017] already reduces the error
to 0.8%, but PTU brings it down to 0.046%. Plots (right) show relative errors of pairwise distances as a function of their
number of edges.

This vector vi is then added to yi to form the point y j, thus defining the first unfolded edge. The second edge,
e j = xk−x j is similarly projected onto the local tangent space defined by frame T j at x j. The resulting vector
can then be parallel transported onto the tangent space at xi to become:

v j = Ri, j

[
Tt

je j

]
,

where the term in brackets is the `2 projection of e j onto T j. From this vector, now represented in the original
tangent frame at xi, we construct the final point of the unfolded polyline as: yk =y j + v j.

Preservation of geodesic curvature. Due to our use of a discrete metric connection, the unfolding proce-
dure we described has an important property: it nearly preserves the geodesic curvature of the initial curve.
Indeed, we used a discretization of the metric-preserving Levi-Civita connection, so the intrinsic angle be-
tween vectors ei and e j (meaning, the angle measured on the manifold S) is preserved by parallel transport,
and corresponds to the angle between (yi, y j) and (y j, yk) in �d—up to discretization errors. This means
that if the two-edge polyline were a good approximation of a geodesic on S, the unfolded polyline would
be (nearly) straight in �d since a geodesic curve parallel transports its tangent vector. As a corollary, the
Euclidean distance ‖vi + v j‖2 between yi and yk is a good approximation of the geodesic distance between xi

and xk along S—whether the polyline is an approximate geodesic or not.

Length rescaling. In case of highly-irregular samples with small or no noise, it can be beneficial to preserve
the length of each edge ei once it is projected onto the corresponding frame, as the projection vi on the tangent
space can be shortened if the manifold is curved. This adjustment is easily achieved by, for instance, setting

vi = Tt
iei
‖ei‖2

‖Tt
iei‖2

. (4)

If strong noise and/or outliers are present, this modification should be avoided as it tends to overestimate
local distances around noisy points. We only used this length rescaling procedure in Figs. 4 and 13 to slightly
improve the results in these extreme cases.

3.5 Distance approximation via Parallel Transport
The unfolding procedure we just introduced can be used to evaluate pairwise geodesic distances without the
traditional shortcomings of Dijkstra’s algorithm for graphs over an irregular sampling.

Correcting shortest paths. Consider a Dijkstra shortest polyline
(
xi1 , ..., xim

)
. Using the unfolding proce-

dure into Ti1 , we iteratively project the edges eis = xis+1 − xis onto the tangent space spanned by Tis , before
parallel transporting the resulting vector back to the original tangent space, i.e.,

vis =

( ∏
j=1..r−1

Ri j,i j+1

)[
Tt

is
eis

]
. (5)

After accumulating the results into a single vector v=
∑

s=1..m vis , we set the approximate geodesic distance
between xi1 and xim to be its length ||v||2: as discussed above, the span of the unfolded path is a better
approximation of the geodesic distance between the end points of the initial path as it ignores the intrinsic
twists and turns that the path went through. Since our estimate of the geodesic distance from xp to xq is in
general not the same as the estimate from xq to xp due to the asymmetry of the discrete parallel transport, we
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Figure 6: Noisy Petals. Given a 3D sampling of a 4-petal shaped portion of a sphere (see Fig.1) with added Gaussian
noise in the normal direction (σ: 3% of sphere radius, middle), PTU recovers an almost perfect quasi-isometric 2D
parametrization, while Isomap still fails (right). Local methods, not exploiting large geodesic distances, fail even worse
(left) with the notable exception of SAKE that performs better than Isomap.

average the two spans in a final post-processing step to determine all the pairwise geodesic lengths. Fig. 5
demonstrates an improvement of over two orders of magnitude compared to Dijkstra’s approach to estimating
geodesic distances.

Leveraging unfolded paths. While we only need the Euclidean distance between the two end points of
the unfolded path in �d to perform nonlinear manifold learning, the unfolded path can also be useful for
gathering additional information. For instance, the largest distance between the straight line between the two
end points and the actual unfolded path indicates how far off the path is from being a geodesic. A large value
is a typical telltale of the presence of a large void in the data within the manifold, which can be exploited to
suggest where to insert new samples in order to improve the results. Similarly, a large difference between the
distance estimates computed from one end point to the other and in the opposite direction implies potential
issues with sampling density of the data compared to the local curvature of the manifold.

Connection-based Dijkstra’s algorithm. Finally, we point out that our parallel transport approach to es-
timating geodesic distances could be done along approximately-shortest polyline between a given pair of
points: fast approximations of shortest paths could thus be used to lower this O(n2 log n) step without signifi-
cant effect on the results. However, the longest the polyline, the more likely numerical inaccuracies induced
by repeated alignment of frame fields will accumulate. Since Dijkstra’s algorithm is not the computational
bottleneck in Isomap, we decided to utilize graph-based shortest paths: in fact, our construction can be neatly
incorporated within the dynamic programming approach that Dijkstra’s algorithm uses—i.e., storing the pre-
decessor to each point in the shortest path found thus far. Parallel transport unfolding only requires the
insertion of six lines in the original Dijkstra’s algorithm in order to reduce the unnecessarily repeated cal-
culations that result from the fact that sub-paths of shortest paths are also shortest paths. Specifically, every
time a point is removed from the priority queue (i.e., every time the algorithm finds a shorter path to a point),
we can compute the corresponding vector vi, before storing the cumulative connection (i.e., the product of
connection matrices along the path) to be the cumulative connection of the predecessor multiplied by the local
discrete connection. Proceeding in this way guarantees that the calculations are performed without redundan-
cies, adding a negligible amount of computational time to the traditional Dijkstra’s algorithm. Pseudocode is
given in Alg. 2. We note finally that our approach of incorporating an intrinsic connection into the classical
Dijkstra algorithm can be seen as a variant of the so-called vector-valued Dijkstra methods [Schmidt et al.,
2006, Campen et al., 2013].

3.6 MDS
Finally, once we evaluated all pairwise geodesic distances, the results can be processed through MDS: double-
centering the matrix of squared distances produces the Gram matrix, whose partial eigendecomposition re-
turns the final embedding as in Sec. 2.2. Numerical improvements (see [Harel and Koren, 2002, Brandes and
Pich, 2007, Halko et al., 2011, Khoury et al., 2012]) can be applied to reduce the cubic complexity of this
stage. Note that robust alternatives to classical MDS could also be used here (e.g., [Cayton and Dasgupta,
2006, Kovnatsky et al., 2016]) to offer resilience to outliers, but at higher computational cost.

3.7 Discussion
We conclude this section with a few properties worth mentioning.

Proposition 2: Unlike Isomap, PTU is linearly precise as long as one uses a proximity graph G where each
sample point has enough neighbors to span a d dimensional subspace: assuming the pointset S samples a
linear d-dimensional subspace R of RD, the PTU embedding Z is isometric to X.
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Proof: When the sampled data lie on a linear subspace of dimension d, each orthonormal frame Ti, com-
puted using SVD as described in Sec.3.5, forms a basis for R. Moreover, every pair Ti and T j are perfectly
aligned by the discrete connection R j,i (Eq.(2)). As a result, unfolding a polyline

(
xi1 , ..., xim

)
reduces to

rewriting it in the basis Ti1 and our geodesic length estimation recovers the exact (Euclidean) distance be-
tween xi1 and xim , independent of the sampling irregularities or of the geodesic convexity of the domain. PTU
thus becomes equivalent to classical MDS, producing a d-dimensional embedding Z that is isometric to X by
construction. �

Proposition 3: Under mild assumptions on the regularity of a manifold M and assuming that the input
pointset S samplesM finely enough with potential sampling voids over regions of small (sectional) curva-
ture of the manifold, the PTU estimate dPTU(xi, x j) of the geodesic distance between points xi and x j based
on a Dijkstra (shortest) polyline (xi, ..., x j) computed on the proximity graph G of S approximates the real
geodesic distance dg(xi, x j).

Discussion: We quantify this proposition more rigorously in App. A by providing a concrete error bound
(and its proof) between dPTU and dg. Our bound relies on three key components: 1) if the pointset S is
dense enough, then for appropriate choice of parameters k and K the discrete tangent spaces approximate
their continuous equivalents, and the resulting discrete connection converges to the Levi-Civita connection
in the sampling limit as proved in [Singer and Wu, 2012], where the authors used an equivalent notion of
parallel transport to define and study a discrete connection Laplacian; 2) sampling voids in S are allowed
as long as the integral of the intrinsic sectional curvature ofM over the regions of the underlying manifold
corresponding to these voids is small—in other words, we will assume that a Dijkstra polyline lies within a
tubular neighborhood of its corresponding geodesic, for a tubular diameter less than O(1/

√
κs) where κs is the

local maximum absolute value of the sectional curvature ofM; and 3) for a dense enough sampling ofM,
a straight �n vector between two nearby points xi and x j onM has approximately the same a length as the
Cartan development of the geodesic between them on the tangent space TiM at xi. Note that our statement
involves no geodesic convexity requirement.

The benefit of using parallel transport over regular Dijkstra geodesic length approximation is thus clear:
our construction eliminates spurious geodesic curvature that graph approximations inevitably suffer from,
bringing significant improvement even for well sampled domains (see Fig. 5). It also allows for almost per-
fect recovery of pairwise geodesic distances for developable manifolds (κs =0) with arbitrary topology in the
sampling limit, even if the sampled manifold is not geodesically convex. When voids are present in pointsets
that sample non-developable manifolds, PTU computes approximate geodesic distances without having to
explicitly fill in the voids. Instead, it extracts geometric information from paths surrounding each hole to
recover high accuracy geodesic estimates on the manifold, provided that the voids were not over regions with
large curvature.

Proposition 4: Just like Isomap, the complexity of PTU is O(n3).
Proof: Our approach does not change the computational complexity of the various steps compared

to Isomap: the proximity graph construction is still O(n log n), the construction of tangent planes takes
O(n D K2), our Parallel Transport Unfolding using Dijkstra shortest paths is in O(n2 log n) (the unfolding
process part itself requires O(n2(Dd2 + d3) to perform matrix multiplications and SVDs), while the partial
eigendecomposition of a dense matrix is expected to take O(n3) operations. �

Additional control. Compared to Isomap, our parallel transport based approach has a few extra parameters
that can be exploited to offer more control over the manifold learning process:

• Since we compute local tangent spaces at each input point, the neighborhood size K can be adapted
(either globally or locally) to the input. While using K =k is sufficient in most cases (see our examples),
raising this value can help deal with very noisy inputs as mentioned in Sec. 3.2.

• Similarly, local PCA of these neighborhoods may not lead to the best estimations of tangent spaces
in extreme cases: robust PCA, or even local averaging of the PCA estimates1 can help manage large
amounts of noise and outliers. Again, we did not have recourse to these variants to prove the robustness
of PTU in its default form; but they can be easily incorporated in a practical implementation of our
approach to add flexibility.

1As a side note, having a discrete connection makes the local averaging of vectors or frames particularly simple, as neighboring
values can be parallel transported to a common point, where a pointwise average is computed.
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Figure 7: Digit zero. The 3000 images of handwritten zeros (with a resolution of 28x28 pixels) from the MNIST dataset
are mapped quite similarly by both Isomap and PTU for the first two most significant coordinates (here, d =4 was used).
A few images are displayed next to their corresponding 2D point for visualization purposes.

• Finally, our parallel transport estimation of geodesic lengths assumes the knowledge of the dimension
d of the data, just like Isomap requires as well—and many approaches have been proposed to estimate
this dimension directly from the data, see, e.g., [Pettis et al., 1979, Levina and Bickel, 2004]. Yet,
this intrinsic dimension can, in fact, differ from the dimensionality of the visualization one wishes to
produce. Fig. 7 illustrates this point: dimensionality reduction approaches applied on the MNIST dataset
of digits often use a 2D illustration of their results for easy visual display; however, local analysis of the
dimensionality of the zero digit image set indicates an intrinsic dimension of d =4, reflecting the variety
of ways to pen a zero (slant, thickness, smoothness, ...). While this information cannot be exploited in
Isomap if a 2D depiction is desired, PTU can exploit this estimate of d for its parallel transport procedure,
but use only the first two eigenvectors of the Gram matrix—essentially showing a 2D projection of a
4D parameterization of the dataset. Fig. 11 shows another example of a 2D visualization of an intrinsic
parameterization for d =3.

Related geometric methods. Note finally that two related works have proposed using parallel transport
for data analysis, albeit for different purposes. Vector diffusion maps (VDM [Singer and Wu, 2012]) also
exploit parallel transport, but focus instead on computing a low-dimensional embedding that preserves vec-
tor diffusion distances derived from a connection Laplacian, not true geodesics (see their Figs. 6.2 & 6.3).
Parallel vector field embedding (PVF [Lin et al., 2013]) proposes a different discretization of the connection-
Laplacian relying on an extrinsic definition of the covariant derivative. Coordinates of an embedding are
constructed via Poisson solves, so that the coordinate lines in �d are mapped to parallel vector fields on the
original data. Just like our approach, PVF perfectly recovers an isometric parametrization if the manifold is
developable, since it is then isometric to a subset of�d. However, for non-developable manifolds, coordinate
lines of the resulting parameterization do not correspond to geodesic curves on the original manifold. While
they provide a valid definition of an embedding, PVF look for a low-dimensional “quasi-parallel” embed-
ding. PTU, instead, targets the same goal as Isomap, i.e., a quasi-isometric mapping for arbitrary sampled
manifolds.

3.8 Acceleration via landmarks
A particularly simple way to accelerate Isomap is through the use of “landmarks” [De Silva and Tenenbaum,
2002], a small fraction of samples of the original pointset: the MDS procedure is applied just to the landmarks
to find their quasi-isometric embedding Z in �d, before positioning all other points relative to those land-
marks in linear time, significantly reducing computational complexity. This approach, however, often fails in
practice: the sensitivity of the original Isomap method to poor sampling quality makes the low-dimensional
embedding of a few landmarks very brittle.

Given its much greater robustness to irregular sampling, PTU is particularly amenable to this landmark-
based acceleration without any other alteration than replacing distance estimation by our parallel transport
approach. If ` landmarks are used, the amount of computations can decrease quite dramatically: the MDS
complexity (which was the bottleneck for Isomap and PTU) changes from O(n3) to O(`3). Let us briefly
discuss the implementation of such an L-PTU variant.

Setup. From the n original points, we extract ` landmarks with `�n, used as a coarse approximation of the
input geometry. Landmark selection is not a sensitive part of our approach as long as the landmarks provide
a good spatial coverage of the initial pointset. Note also that we compute our discrete connection for the
entire pointset, since 1) it is not the computational bottleneck of the original PTU treatment, and 2) we need
the distance from every data point to every landmark in order to compute the final embedding anyway. The
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(a) 9 and 19 landmarks on Petals (b) 5, 10 and 15 landmarks on letter A

Figure 8: Landmark-PTU. Combining parallel transport unfolding with the landmark-based approach of L-
Isomap [De Silva and Tenenbaum, 2002] drastically reduces computational times, with only small differences in the
embedding: (top) for 9 (left) and 19 (right) landmarks, results on the Noisy Petals dataset are visually indistinguishable
from the full treatment (see Fig. 6); (bottom) for the Letter A dataset, 5 landmarks (left) already capture the proper em-
bedding, but 10 (middle) and 15 (right) landmarks result in a better approximation of the full treatment found in Fig. 4
(landmarks are in red).

choice of computing a “full resolution” connection guarantees accurate estimation of geodesic distances even
if very few landmarks are used.

From landmark embedding to pointset embedding. After computing a low-dimensional embedding of
the ` landmarks using PTU as described in Sec. 2.2 through

Z =
√
�dQ

t
d,

(where now �d and Qd are the d largest eigenvalues stored in a diagonal matrix and corresponding eigen-
vectors of the Gram matrix derived from the ` × ` matrix D of the squared geodesic distances between
landmarks only), the embedding of the remaining points can be performed using its pseudoinverse Z† and
the knowledge of geodesic distances between input points and landmarks. The pseudoinverse of Z has an
explicit formulation due to its basic form, requiring no additional computations:

Z† = Qd

√
�d
−1

Denote by d the columnwise mean ofD (i.e., dp = 1
`

∑
qDpq). Then as described in L-Isomap [De Silva and

Tenenbaum, 2002], the position of a non-landmark point xi ∈ S in the low-dimensional embedding can be
directly computed using a vector di of squared geodesic distances from xi to the ` landmarks through:

zi =
(
Z†

)t (d − di)

That is, knowing how distant a point is from the landmarks originally, we deduce its final position based on
the low-dimensional embedding of the landmarks in O(`2). Consequently, the proposed L-PTU procedure
(consisting of computing all pairwise geodesic distances between ` landmarks and all input points, con-
structing embedding of the landmarks via MDS, and enriching it with non-landmarks through matrix-vector
multiplications) brings the complexity down to O(`n log(n)+`n(Dd2 +d3)+`3 +`2n). As Fig. 8 demonstrates,
this simple variant returns nearly the same embeddings as full PTU with as little as 0.1% to 0.5% of the points
used as landmarks. More results using L-PTU are available in the Supplementary Material.

4 Results
We now discuss implementation details and provide a series of tests, on synthetic and real datasets, to compare
our parallel transport approach to the original Isomap and other nonlinear dinensionality reduction methods.

4.1 Implementation details
Our implementation follows the steps described in the previous sections as summarized in Alg. 1. We use a
modified Dijkstra’s algorithm to compute shortest paths and find geodesic distances concurrently, as detailed
in Alg. 2 (the only new lines of code to handle connections are in blue). The final partial eigensolve was
implemented using the Spectra C++ library [Qiu et al., 2015]. If the dimension D is high (i.e., larger than
100), vectorizing matrix-matrix and matrix-vector multiplications is crucial for efficiency.

4.2 Simulated Datasets
We first test the performance of PTU on artificial datasets (embedded in 3D or higher) to quantifiably evaluate
its behavior.
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(a) 3D torus in 4D (b) Curved torus in 4D

Figure 9: Tori embedded in 4D. (a) From a 3D pointset filling up a toroidal domain that we trivially embedded in 4D by
adding an extra constant coordinate, the 3D embedding computed via Isomap leads to an unexpected global distortion
due to the manifold being not convex. Instead, PTU is nearly perfect: Isomap has a normalized average relative error
of 40.6%, while PTU is 0.06%. (b) A mildly curved torus in 4D is obtained by mapping a set of points (x, y, z) ∈ T 2 to
(x, y, z, (x2 + y2)/2). Now it has non-zero curvature as a manifold in 4D. 3D Isomap embedding still suffers from similar
global distortion (left); PTU recovers the torus very well (right) despite the non-trivial curvature.

Linear Precision. A nonlinear extension to PCA should, at the very least, be linear-precise, i.e., input data
lying on a flat d-manifold in �D should be isometrically mapped to �d. From an input pointset densely
sampling a flat square shape embedded in 3D space, we compare the performance of Isomap and PTU (with
k = K = 10) in Fig. 3: we visualize the error for each point based on the normalized distance between
ground truth and its embedding location. As expected PTU recovers the data exactly (to numerical precision),
while Isomap introduces distortions due to its use of graph-based distances. We also use a 4D pointset that
randomly samples a 3D torus in Fig. 9a, with the embedding space being 3-dimensional. Unlike Isomap,
which introduces severe distortion because of the non-convexity of the sampled domain, PTU (k = K = 10)
perfectly reproduces the torus. This last example also proves that Isomap can significantly distort data (in
unexpected ways) in higher dimensions.

Non-Geodesically-Convex Domains. An S-shaped manifold with a rectangular void (see Fig. 2) is well
parameterized by PTU, while Isomap introduces spurious distortion associated with biased geodesic distance
estimations around the void. Since this S-shaped manifold is isometrically developable, we can compare
errors in parameterization on a per-point basis: Isomap reaches 15% of relative error, while PTU (still using
k = K = 10) stays below 0.2%. The effect of non-geodesically-convex domains is even more pronounced in
higher dimensions: Fig. 1 shows a 3D pointset sampling four petals from a surface of a sphere in 3D; this
pointset is then lifted to D=100 dimensions and rotated by a random orthogonal transformation. The resulting
non-developable and non-convex 100D dataset is then embedded in 2D by Isomap, clearly demonstrating
that graph-based distances bias results dramatically. Our algorithm, run with k= K =10, correctly unfurls the
petal-like set.

Non-developable manifolds. We also demonstrate our results on highly non-developable manifolds. Fig. 10
shows a dense, noise-free pointset that is sampling a 2D height field with two Gaussian bumps. The differ-
ences between Isomap and PTU (k =8) are small with such a dense dataset. This example also demonstrates
that the size of the geodesic neighborhood used for tangent space estimation does not dramatically affect the
quality of results: PTU outputs for K = 8 and K = 24 are visually indistinguishable. We also test an input
pointset sampling a slightly curved 3D torus in 4D: from the 3D torus in Fig. 9a, each point (x, y, z) is mapped
in 4D to (x, y, z, (x2+y2)/2). While Isomap gets even more distorted, PTU (k= K =10) still produces a toroidal
3D embedding, see Fig. 9b.

Geodesic distance estimation. We also compare the accuracy of Dijkstra, PTU, and SAKE-corrected [Bud-
ninskiy et al., 2017] estimations of geodesic distances, by applying these 3 methods to a low-density, regular
sampling of a spherical cap in Fig. 5 so that geodesic distances are known analytically. PTU geodesics are
over 120 times more accurate than Dijkstra’s, and more than 20 times better than the local geodesic correction
method used in SAKE [Budninskiy et al., 2017] (where the whole cap is treated as a single neighborhood).
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Figure 10: Gaussian landscape. For a noise-free dense sampling of a non-developable height field (left), Isomap and
PTU return comparable quasi-isometric 2D parameterizations. Using K =8 or K =24 neighbors (right) does not visually
affect the result of the PTU embedding.

Figure 11: Faces Dataset. For the classical Faces dataset (known to be, by construction, of intrinsic dimension 3), the
first two coordinates of both Isomap and PTU are quite similar. Left: 2D parameterization; right: a few of the face
images are shown at their actual positions to better understand the parameterization.

Figure 13: Varying Density S. For a widely varying den-
sity of points (left), Isomap (top right) introduces large
spurious distortions, unlike PTU (middle right).

Sensitivity to Irregular Sampling. For a highly ir-
regular sampling of a simple S-shaped dataset, the ro-
bustness of PTU is shown in Fig. 13. Observe that
Isomap completely collapses a section of the data in
the right bottom corner, while PTU correctly captures
the features of the input data even for a non-adapted
choice of neighborhood parameters (k=K=10), intro-
ducing only small distortion throughout the domain.
These two behaviors are visualized by the error plots
using a linear color ramp from blue (0% error) to red
(10% error).

Figure 14: Failure of Local Methods. For the very noisy
Swiss Roll example of Fig. 12b, none of the local manifold
learning methods returns a decent parameterization, as no
large intrinsic distances are exploited.

Sensitivity to Noise. Figs. 12a &12b verify that
PTU (with k = 10) is as resilient to strong
noise and outliers as Isomap even without lo-
cally adapting neighborhood sizes (K = 25 was
used in the Gaussian noise case, and K = 10
in the case of sparse noise). Local methods
such as LLE [Roweis and Saul, 2000], Hessian
LLE [Donoho and Grimes, 2003], LTSA [Zhang
and Zha, 2004], MLLE [Zhang and Wang, 2007] or
SAKE [Budninskiy et al., 2017] (with k = 10 for fairness of comparison) fail to unwrap noisy datasets (see
Fig. 14) as they do not exploit the geodesic distance estimates between pairs of points that are far apart. Fig. 6
shows that adding noise to the petals dataset from Fig. 1 does not alter the result of our approach significantly
(we used k=10,K =30); yet, Isomap remain unable to unfurl the data properly, and on this seemingly simple
data, all local methods fail, at times spectacularly. Please refer to the Supplemental Material for more system-
atic testing of the effect of noise levels on both local and global methods; as expected, PTU is systematically
as good or better than all other methods.

Timing. A performance analysis of our algorithm shows perfect agreement with the expected time complex-
ity orders: the eigensolve dominates the computational time and scales as O(n3), parallel transport Dijkstra
scales as O(n2 log n), and graph construction as O(n log n), while tangent estimates are linear in n. Examples
of timings on an Intel i7 2GHz, 8 GB RAM laptop are 6.4s for the petals parametrization in Fig.1,10.9s for
the irregular sampling of S-shaped manifold in Fig. 13, and 9.8s for the noisy Swiss roll in Fig. 12b (with
n = 2000). Note that these timings are for the full-blown MDS procedure, with roughly half of time spent on
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(a) Sparse noise (b) Gaussian noise

Figure 12: Noisy Swiss rolls. (a) If one adds noise to the Swiss Roll dataset in the normal direction by displacing 10%
of points with a uniform distribution of amplitude equal to 8% of the max bounding box size and adding a Gaussian
noise to the other points with standard deviation equal to 0.4% of the bounding box (see two views of the 3D dataset on
the left), Isomap accentuates a few low sampled regions compared to PTU. (b) For a strong Gaussian noise (standard
deviation equal to 2% of the max bounding box size), Isomap suffers from clear visual artifacts while PTU returns a good
parameterization without the need for robust estimations.

the other steps. Using the L-PTU variant with 0.05%-0.1% of the points as landmarks improved the efficiency
of the MDS step by 500 to 5000 times on tested datasets, with virtually no visual difference compared to the
full treatment, see Fig. 8 and App. B.

4.3 High-dimensional datasets
We also present results on a number of real and/or high-dimensional datasets. While no ground truth is
available for these examples, they allow us to compare PTU and Isomap on inputs that may not even satisfy
the (single-chart) manifold assumption.

Faces Dataset. On this classic set of 698 images of 64x64 pixels, PTU and Isomap recover the same two
characteristic features of the data: Fig. 11 shows that both arrange the images based on the azimuth and
elevation of the camera, with a fairly similar global structure (2D visualization, d =3, k=6, and K =18).

Digit zero. When applied to 3000 digit zero images (28x28 pixels) from the MNIST dataset, both PTU
and Isomap create a parameterization of the different ways people write a zero, separating left-leaning from
right-leaning and circular from oval zeros as shown in Fig. 7 (2D visualization, d =4, k= K =10).

Knights. We tried our approach on the dataset from [Budninskiy et al., 2017] of reflectance fields captured
using the Light Stage apparatus [LightScape, 2016]. A static character (in a knight costume) was captured
in 608×456 RGB images under 221 individual lighting directions covering a large sphere of illumination.
From this pointset in �831744, Isomap and PTU learn a flat 2D manifold that best fits this high-dimensional
dataset. The result for d =2 and k= K =8, shown in Fig. 15, recovers positions related to light angles without
any knowledge of the setup; the highly distorted results of local approaches on this dataset can be found
in [Budninskiy et al., 2017]. The black background of each image was removed for clarity.

Letter A. From an input set of 888 images with 120x120 pixels of a rotated and resized letter ‘A’ , the
structure of this intrinsically 2-dimensional manifold in 14400 dimensional space revealed in PTU (k = 8,
K = 32) and Isomap embeddings in Fig. 4 (left) is very intuitive. However, when a section of the data is
removed (right), Isomap suffers from its characteristic global distortion, caused by the presence of the hole;
instead, the structure of PTU embedding remains basically the same.

Algorithm 1 Dimensionality reduction via parallel unfolding

Input: Pointset S = {xi ∈ �
D}i=1..n

1: Construct proximity graph G of S, and pairwise Dijkstra’s shortest paths (Sec. 3.1)
2: Compute tangent frames {Ti}i=1..n (Sec. 3.2)
3: Compute geodesic distances D via parallel transport (Sec. 3.5)
4: Perform MDS on D to obtain Z (Sec. 2.2)

Output: Low-dimensional embedding Z = {zi ∈ �
d}i=1..n
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Figure 15: Knights. From 221 RGB images of 608×456 pixels (10 examples shown on the right) of an actor captured
in full costume from different lighting directions, a 2D embedding is computed solely based on local pixel differences
using Isomap and PTU (left). Both methods find a parameterization of the images corresponding to lighting direction
and intensity (the knight images correspond to black dots).

5 Conclusions
The use of parallel transport on high-dimensional datasets remedies an important limitation of the Isomap
approach: unfolding paths between pairs of points based on the Levi-Civita connection significantly improves
the estimation of geodesic distances and removes the restriction for geodesic convexity of the input data. We
demonstrated on a series of examples that our approach does indeed recover similar unfolding to Isomap for
geodesically convex inputs of low- and high-dimensional data, but neither overestimates geodesic distances if
large voids are present, nor suffers from large deformation in the case of non-geodesically convex inputs. This
property is particularly crucial to the success of our landmark-based variant, L-PTU, which can efficiently
approximates the low-dimensional embeddding of a large datasets in O(n2 log n), even in the presence of
noise.

Our work offers multiple opportunities for future research. First, connections and parallel transport are
rarely used in data analysis (a notable exception being in unsupervised domain adaptation [Shrivastava et al.,
2014]), so other applications of this common concept of geometry processing may be found valuable as well,
including the use of Levi-Civita connections for arbitrary, non-Euclidean metrics. Additionally, we have
assumed that the input data lie on a manifold of a given dimension d; but real data is sometimes better captured
by a CW complex, i.e., a set made out of regions of different dimensionality glued together. Being able to
handle geodesic distances in this case would be a nice and useful extension. Exploiting current algorithmic
work in approximating shortest paths on graphs could also be valuable to replace Dijkstra’s algorithm; maybe
the geodesics in heat approach [Crane et al., 2013] could, similarly, be extended to high-dimensional datasets
for the same purpose. Finally, manifold learning concepts can also be extended to achieve clustering and
classification of unlabeled data; using our improved geodesic distances (and potentially, its extension to CW
complexes) may help provide better algorithms for these tasks, pointing to the relevance of connections in
other fields of applications.
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A Formal Statement of Proposition 3
Before formulating a precise error bound on our geodesic approximation to quantify Proposition 3, we first
review existing results and state a few reasonable assumptions on the sampling S of the manifoldM.

A similar notion of discrete parallel transport was considered by the authors of [Singer and Wu, 2012]
in order to define and prove convergence of a connection Laplacian operator. We will make use of one of
the theorems they proved towards their goal, with a proof (omitted here) relying on geometric properties
of parallel transport and probabilistic guarantees (obtained through Bernstein’s inequality) on the quality of
tangent bases approximation. Following their notations, let ϕ : M ↪→�D be the embedding of a smooth and
compact Riemannian d-manifoldM with its metric induced from the embedding space �D. Points from S
are considered to be sampled from M according to a probability density function p ∈ C3(M). Denote the
tangent bundle of M by TM, the tangent space at point xi by TiM, the differential of the embedding at xi
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by dϕi : TiM 7→�
D and the parallel transport operator from x j to x j along a geodesic connecting them by

Pi, j : TjM 7→ TiM. Let ε be the maximum radius of the geodesic K-neighborhoods used to construct our
approximate tangent bases {Ti}

n
i=1 (see Eq. (1) and its description) and finally, let εg > 0.

Theorem (from [Singer and Wu, 2012]). Assume ε = O(n−
1

d+2 ) and consider two points xi and x j ofM, such
that the geodesic distance between them is O(εg). Then for any vector u j ∈ T jM, with high probability:

Ri, jT
t
jdϕ j

[
u j

]
= Tt

idϕi

[
Pi, ju j

]
+ O(γi, j) (6)

where γi, j =ε
3+ε3

g if xi and x j are at least ε-away from the boundary ofM and γi, j =ε+ε3
g otherwise.

In addition to this theorem, we will use two more assumptions:

I. Let cp = (xi1 , ..., xim ) be the shortest polyline connecting xi1 and xim in the proximity graph G. First, we
assume that the polyline is included in an εd-thickening of the real geodesic cg connecting the same
endpoints, where εd is a positive constant such that ε2

dκs � 1, with κs denoting the maximum absolute
value of intrinsic sectional curvature ofM. Note that this condition is less stringent than the one used
to prove convergence of Dijkstra polylines to geodesic curves [Tenenbaum et al., 2000]: sampling voids
of maximum geodesic diameter εd are allowed in the input pointset S.

II. Let gis be a tangent vector in TisM that connects the endpoints of the Cartan development of the geodesic
curve between xis and xis+1 onto TisM. Denoting eis = (xis+1−xis ), we will also assume:

Tt
is

dϕis gis = Tt
is

eis + O(γis,is+1 ) (7)

This condition links local curvature and sampling density: the projection of eis onto the approximate
tangent basis Tis must be close to the unwrapped geodesic in the same basis. Note that the length
rescaling step (Eq. (4)) can help in practice to tighten the error bound O(γis,is+1 ).

Proposition 3 revisited: Under assumptions I, II and the assumptions of the theorem, the PTU estimate dPTU

of the geodesic distance between points xi1 and xim , based on a Dijkstra shortest polyline cp = (xi1 , ..., xim )
on G, provides an approximation of the length dg of the geodesic curve cg with the same endpoints in the
following sense:

dPTU(xi1 , xim ) = dg(xi1 , xim ) + O(δ),
where O(δ) is between O(m2(ε + ε3

g + εgε
2
dκs)) and O(m2(ε3 + ε3

g + εgε
2
dκs)) depending on how many polyline

segments are close to the manifold boundary.
Proof: First, observe that condition (7) implies:

vis =

 r−1∏
j=1

Ri j,i j+1

 [T t
ir eis

]
=

 r−1∏
j=1

Ri j,i j+1

 [T t
ir gis

]
+ O(ε3

g)

Using Eq. (6) repeatedly, we obtain that vis is approximately equal to gis parallel-transported to Ti1 along a
piecewise-geodesic curve cpg passing through the points (xi1 , ..., xim ), i.e.:

vis = Ti1 dϕi1

 s−1∏
j=1

Pi j,i j+1

 [gis

]
+ O

 s−1∑
j=1

γi j,i j+1

 + O(ε3
g)

Denoting the first term of the right-hand side by wis and calling w =
∑m

s=1 wis , we obtain:
m∑

s=1

vis =

m∑
s=1

wis + O(γ) , i.e., v = w + O(γ)

where O(γ) takes value between O(m2(ε + ε3
g)) and O(m2(ε3 + ε3

g))
depending on how many polyline segments are close to the bound-
ary; note that w is the vector connecting the endpoints of Cartan’s
development σpg ∈ Ti1M of the piecewise-geodesic curve cpg inter-
polating the polyline vertices (see inset, bottom right). To show that
the curve σpg stays close to Cartan’s development σg of the geodesic
cg, recall that for a patch of M with diameter O(εd), the change in
direction of a vector parallel-transported along different paths within
the patch is bounded by O(κsε

2
d) (this result relies on a bounded cur-

vature transformation, which in turn follows from our bound on ab-
solute value of sectional curvature from Assumption I). Using As-
sumption II, we can cut the geodesic cg connecting xi1 and xim into
curved segments with vertices x̃ik , such that dg(x̃ik , xik ) = O(εd) for
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k = 2, . . . ,m−1 (we set x̃i1 = xi1 and x̃im = xim for notational consistency). Because the geodesic length of
xik+1 xik is O(εg), the diameter of a patch enclosed by four geodesic segments xik xik+1 , x̃ik+1 x̃ik , x̃ik xik and xik+1 x̃ik+1

is O(εg+εd) = O(εd) assuming εg . εd (see inset). Thus the result of parallel transporting a vector along 3
geodesic segments x̃ik xik , xik xik+1 and xik x̃ik deviates in direction from parallel transporting the same vector
along geodesic segment x̃ik x̃ik+1 by O(κsε

2
d). Summing up contributions from all the patches for k = 1, . . . , `,

and taking into account cancellations from segments xik x̃ik and x̃ik xik for k = 2, . . . , `−1, the directional error
in parallel transporting a vector along the piecewise geodesic curve xi1 xi2 . . . xi` x̃i` compared to its transport
along the true geodesic segment xi1 x̃i` becomes O(`κsε

2
d). As a result, performing Cartan’s development

patch by patch, the final discrepancy between the endpoint positions of σpg and σg incurred by developing
them using parallel transport along piecewise-geodesic curve cpg vs. the true geodesic cg is O(m2κsεgε

2
d), as

it combines the cumulative directional errors of parallel transported tangent vectors and the lengths of the
corresponding segments.

Given that Cartan’s development of a geodesic curve is a straight segment, we conclude that ||w||2 =

dg(xi1 , xim ) + O(m2κsεgε
2
d). By construction, we have dPTU(xi1 , xim ) = ||v||2, implying that:

dPTU(xi1 , xim ) = dg(xi1 , xim ) + O(δ),

where O(δ) = O(m2εgε
2
dκs+γ). Note that our discrete unfolding of any polyline converges to the correspond-

ing Cartan’s development; however, in general it has to be a (nearly-)shortest polyline for its extremities to be
at a distance approximating the proper geodesic length, as geodesic curves are only locally (and not globally)
shortest. �

Finally, we note that while our assumptions are weaker that the ones used to prove convergence of Dijkstra
polylines to geodesic curves [Tenenbaum et al., 2000], the error for graph-based distance approximations has
linear dependence on the number of polyline segments, while our bound depends quadratically on the number
of segments. However, in practice our parallel transport based method consistently outperforms Dijkstra path
approximation (see Fig. 5), potentially pointing to the existence of tighter bounds.

B Additional Results
This last appendix contains additional results to provide further tests of the Parallel Transport Unfolding
(PTU) approach and comparisons to other existing Manifold Learning algorithms.

B.1 PTU vs. Local Methods
One of the key advantages of Parallel Transport Unfolding is its resilience to noise: like Isomap [Tenenbaum
et al., 2000], PTU uses all geodesic distances to embed a dataset into a low-dimensional space, which allows
for a much increased robustness to noise and outliers. In this section, we provide further numerical tests to
confirm this statement.

Petals dataset. First off, the noiseless Petals dataset makes clear that Isomap fails due to the obvious
geodesic non-convexity while PTU has no problem finding the proper four petals as demonstrated in Fig. 1.
In this noiseless case, it turns out that most local methods, such as Modified LLE [Zhang and Wang, 2007],
Hessian LLE [Donoho and Grimes, 2003], and SAKE [Budninskiy et al., 2017], do also remarkably well (see
Fig. 16), as convexity (or lack thereof) plays basically no role in their embeddings.

Figure 16: Local Methods for Noiseless Petals. From a 3D sampling of 4-petal shaped portion of a sphere (see Fig. 1),
local methods such as Modified LLE [Zhang and Wang, 2007], Hessian LLE [Donoho and Grimes, 2003], or SAKE [Bud-
ninskiy et al., 2017] have no issue with the non-convexity of the intrinsic geometry (unlike Isomap), and give results nearly
equivalent to PTU. A notable exception is LLE [Roweis and Saul, 2000], which returns a near degenerate solution.

However, if a bit of noise is added to this example, local methods fail (at times spectacularly): for a
moderate Gaussian noise with a standard variation of 3% of the radius of the sphere on which the petals
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lie, Fig. 6 shows that local methods all fail while PTU keeps a very similar embedding since it relies on all
pairwise geodesic distances—Isomap too to a certain extent, even if it is clearly more deformed than in the
noiseless case.

Study of noise effects on local and global methods. In order to better demonstrate the robustness of global
methods to noise, we use the simple (and very widely used) Swiss Roll dataset, and use both local and global
methods on this dataset with an increasing amount of Gaussian noise along the normal of this roll (varying
the standard deviation from 0 to 2.8% of the bounding box size). The number of neighbors is set to 10 for all
methods to offer a fair comparison. As Fig. 17 clearly shows, the best local method (SAKE on this example)
starts failing at half of the maximum standard deviation that global methods can handle. When the standard
deviation of the noise reaches 2.8%, even global methods fail as the proximity graph starts having numerous
connections across branches: pairwise geodesic distances will have too many incorrect values to be able to
recover a decent embedding. Note that at this level of noise, the dataset is far from the manifold assumption
we are making about input data.

Figure 17: Effects of noise on local and global methods. Using the Swiss Roll dataset, Gaussian noise with standard
deviation given as a percentage of the bounding box of the original noiseless swiss roll is added along the normal. We
use the same number of neighbors (10) for local methods to provide a fair comparison (it prevents shortcutting as much
as possible; using larger values would make the local methods fail earlier). Local methods all failed around σ = 1.3%,
while global methods (Isomap and our approach) fare well until 2.7%. At 2.8%, the neighbors of a datapoint may belong
to several different branches of the roll, which makes it impossible even for global methods to handle.

B.2 Landmark-PTU
Fig. 18 provides more results for L-PTU: in order to complement Fig. 8, we also provide the results for
landmarks on the noiseless Petals dataset, as well as on the highly-irregular S-shaped dataset from Fig.13.
Here again, less than 1% of landmarks is enough to capture the shape almost perfectly.
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Algorithm 2 Parallel Transport Dijkstra

Input: Pointset S, proximity graph G, tangent frames {Ti}i=1..n
1: Create minimum priority queue P
2: for i∈ [1, n] do
3: R[i]← identity matrix, v[i]← 0
4: for all x j adjacent to xi in G do
5: Pred[ j]← i
6: dist[ j]← |x j − xi|

7: P.push(dist[ j], j)
8: while not P.isEmpty() do
9: xr ← P. pop min()

10: q← Pred[r]
11: US Vt ← SVD(Tq

tTr)
12: R[r] = R[q] · UVt

13: v[r] = v[q] + R[q] · Tt
q(xr − xq) (Eq. (5))

14: geo dist[r] = |v[r]|
15: for all x j adjacent to xr do
16: temp dist ← dist[r] + |x j − xr |

17: if temp dist < dist[ j] then
18: dist[ j] = temp dist
19: Pred[ j] = r
20: P.update(dist[ j], j) . update() inserts j < P
21: D[i, 1 : n]← geo dist[1 : n]
22: Symmetrize distance matrix D← (D + Dt)/2
Output: Pairwise geodesic distance matrix D ∈ �n×n

22


	Introduction
	Previous Work
	Shortcomings of Isomap
	Shortcomings of Isomap
	Overview and contributions
	Notations and assumptions

	Primer on Isomap
	Isomap at a glance
	Computations involved
	Discussion

	Parallel Transport Unfolding
	Proximity graph
	Tangent spaces and their orthonormal bases
	Discrete Parallel transport
	Local Path Unfolding via Parallel Transport
	Distance approximation via Parallel Transport
	MDS
	Discussion
	Acceleration via landmarks

	Results
	Implementation details
	Simulated Datasets
	High-dimensional datasets

	Conclusions
	Formal Statement of Proposition 3
	Additional Results
	PTU vs. Local Methods
	Landmark-PTU




