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A VOIGT NOTATION

For linear elastic material, the relation between the stress o and the
strain € is given by Hooke’s law:

c=C:¢ orequivalently €=S:o,

where C is the fourth-order elasticity tensor and § is its inverse,
called the compliance tensor. Due to its major and minor symmetries,
the tensor C only has 21 independent values. In Voigt notation,
Hooke’s law can be expressed in matrix form, i.e., o =CVé with
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o12 2e12 Ci211 Cr222 Ci233 Ci23 Ciaz1 Cronz

For isotropic materials, the independent 21 coefficients reduce to two
scalars, often parameterized by Young’s modulus E and Poisson ratio
v. For orthotropic materials, the material tensor has 9 independent
coefficients involving 3 Young’s moduli, 3 Poisson ratios, and 3 shear
moduli, with a symmetric compliance matrix written as
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where E; is Young’s modulus in direction e;, v;; is the Poisson ratio
encoding the rate of contraction along e; for an extension along e;,
and G;j; is the shear stiffness for the plane spanned by e; and e;.

B SOLUTION FOR ISOTROPIC MATERIALS

For isotropic elastic materials, the elasticity tensor C;ji; only has
two degrees of freedoms, the Lamé coefficients y and A. For such
an isotropic elastic material, and if we consider a singular load (i.e.,
ge taken to be a Diract delta function), the radial term R;(r) in the
Green’s function reduces to

Var((1+1)/2)

/0 AIED ] = 3,

which is singular at the origin x=0. The overall expression of the
Green’s function is assembled from the only two non-vanishing
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degrees (I=0 and [ =2), yielding
sin®(0) (A + p) cos?(p) + A + 3y

onn = Sruriez

G12(r,0,¢) = Ga1(r, 0, 0) = Sinzw);/}r:rl&sinz(f)) COS(QD)’

Gi3(r. 6, 9) = G1(r.0,9) = =2 0807:,1(52;/1:25; COS(QD),
2 y

Gaz(r.0,9) = (9)(/;;5(;11 ;z)) +A+ 3

Go3(r,0,9) = G32(r, 0, ¢) = 20 ;(:;Efzﬁ:; Sin((p)’
2 2

Ga3(r, 6, 9) = Acos (9;;”;;31 (Zi))+ A+3pu

It is obvious that G is singular at the origin due to the non-regularized
load, and one can easily verify that this corresponds to the Kelvin
solution for isotropic linear elasticity given in [Cortez et al. 2005;
de Goes and James 2017] — namely, in Euclidean coordinates:

_|(a=-1b) b _
= ] I+ WXXT f = G(x)f,
where a=1/(4np), b=a/(4(1 = v)),and v=1/(2(g + A)). When

applying a smooth load, for instance g (r) =15¢*/(87) (r? + £2)~ : ,
whose Fourier transform is

u(x)

2 2
g = CIERatclE)

and K, is the modified Bessel function of the second kind, the radial
term in our Green’s function becomes
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where 3 F; is the regularized hypergeometric function. This integral,
when evaluated for degree 0 and 2, simplifies to:

V.4 (27“2 + 362) r?

Ro(r) = s Re(r) = ————7,
4(r? +52)3/2 4(r? +€2)3/2

where the singularities at r =0 has now disappeared. Now with this
regularized radial term, the Green’s function become:

r?sin?(0) (A + 1) cos® (@) + r2 (A +3p) + 2 (21 + 5p)
8rp(A+2p) (r+ 52)3/2 ,
r? sin?(8) (A + p) sin(¢) cos()
8rpu(A+2p) (r + 52)3/2
r? sin(8) cos(6) (A + p1) cos(p)
8ru(A+2p) (r? + 52)3/2

G11(r, 9, qﬂ) =

Gr2(r,0,9) = Ga1(r,0,9) =

Gi3(r,0,9) = G31(r,0,¢) =
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r? sin?(0) (A + p) sin® (@) + r2 (A +3p) + €2(24 + 5p)
8rp(A+2p) (r? + 52)3/2
r? sin(6) cos(0) (A + p) sin(p)
8rp(A+2p) (r2 + 6‘2)3/2

r? cos?(0) (A + p) + r2(A+3p) + £2(24 + 5)
3/2 :

Goa(r,0,9) =

5

Go3(r,0,¢) = G32(r,0,¢) =

Gs3(r,0,0) =

8rp(A+2p) (r2 + €2)

One can check analytically that this exactly reproduces the regu-
larized Kelvin solution proposed in [de Goes and James 2017].
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