Go Green: General Regularized Green’s Functions for Elasticity Supplemental Material

JIONG CHEN, LTCI, Telecom Paris, Institut Polytechnique de Paris, France
MATHIEU DESBRUN, Inria / Ecole Polytechnique, France

A VOIGT NOTATION

For linear elastic material, the relation between the stress σ and the strain $\boldsymbol{\epsilon}$ is given by Hooke's law:

$$
\sigma=\mathrm{C}: \boldsymbol{\epsilon}, \quad \text { or equivalently } \quad \epsilon=\mathrm{S}: \sigma,
$$

where \mathbf{C} is the fourth-order elasticity tensor and S is its inverse, called the compliance tensor. Due to its major and minor symmetries, the tensor C only has 21 independent values. In Voigt notation, Hooke's law can be expressed in matrix form, i.e., $\sigma^{V}=\mathrm{C}^{V} \boldsymbol{\epsilon}^{V}$ with
$\sigma^{V}=\left[\begin{array}{l}\sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12}\end{array}\right], \epsilon^{V}=\left[\begin{array}{l}\epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ 2 \epsilon_{23} \\ 2 \epsilon_{13} \\ 2 \epsilon_{12}\end{array}\right], \mathbf{C}^{V}=\left[\begin{array}{llllll}C_{1111} & C_{1122} & C_{1133} & C_{1123} & C_{1131} & C_{1112} \\ C_{2211} & C_{2222} & C_{2233} & C_{2223} & C_{2331} & C_{2212} \\ C_{3311} & C_{3322} & C_{3333} & C_{3323} & C_{3331} & C_{3312} \\ C_{2311} & C_{2322} & C_{2333} & C_{2323} & C_{2331} & C_{2312} \\ C_{3111} & C_{3122} & C_{3133} & C_{3123} & C_{3131} & C_{3112} \\ C_{1211} & C_{1222} & C_{1233} & C_{1223} & C_{1231} & C_{1212}\end{array}\right]$.
For isotropic materials, the independent 21 coefficients reduce to two scalars, often parameterized by Young's modulus E and Poisson ratio v. For orthotropic materials, the material tensor has 9 independent coefficients involving 3 Young's moduli, 3 Poisson ratios, and 3 shear moduli, with a symmetric compliance matrix written as

$$
\mathrm{S}_{\text {orth }}^{V}=\left[\begin{array}{cccccc}
\frac{1}{E_{x}} & -\frac{v_{y x}}{E_{y}} & -\frac{v_{z x}}{E_{z}} & 0 & 0 & 0 \\
-\frac{v_{x y}}{E_{x}} & \frac{1}{E_{y}} & -\frac{v_{z y}}{E_{z}} & 0 & 0 & 0 \\
-\frac{v_{x z}}{E_{x}} & -\frac{v_{y z}}{E_{y}} & \frac{1}{E_{z}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{G_{y z}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{G_{z x}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{G_{x y}}
\end{array}\right] \text {, }
$$

where E_{i} is Young's modulus in direction $\mathbf{e}_{i}, v_{i j}$ is the Poisson ratio encoding the rate of contraction along \mathbf{e}_{j} for an extension along \mathbf{e}_{i}, and $G_{i j}$ is the shear stiffness for the plane spanned by \mathbf{e}_{i} and \mathbf{e}_{j}.

B SOLUTION FOR ISOTROPIC MATERIALS

For isotropic elastic materials, the elasticity tensor $C_{i j k l}$ only has two degrees of freedoms, the Lamé coefficients μ and λ. For such an isotropic elastic material, and if we consider a singular load (i.e., g_{ε} taken to be a Diract delta function), the radial term $R_{l}(r)$ in the Green's function reduces to

$$
\int_{0}^{\infty} j_{l}(|\mathbf{x}||\xi|) \mathrm{d}|\xi|=\frac{\sqrt{\pi} \Gamma((l+1) / 2)}{2|\mathbf{x}| \Gamma((l+2) / 2)},
$$

which is singular at the origin $\mathbf{x}=\mathbf{0}$. The overall expression of the Green's function is assembled from the only two non-vanishing

Authors' addresses: J. Chen, Telecom Paris (IP Paris), 19 Place Marguerite Perey, 91120 Palaiseau, France; M. Desbrun, Inria Saclay/Ecole Polytechnique (IP Paris), 1 rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France.
degrees ($l=0$ and $l=2$), yielding

$$
\begin{array}{r}
G_{11}(r, \theta, \varphi)=\frac{\sin ^{2}(\theta)(\lambda+\mu) \cos ^{2}(\varphi)+\lambda+3 \mu}{8 \pi \mu r(\lambda+2 \mu)}, \\
G_{12}(r, \theta, \varphi)=G_{21}(r, \theta, \varphi)=\frac{\sin ^{2}(\theta)(\lambda+\mu) \sin (\varphi) \cos (\varphi)}{8 \pi \mu r(\lambda+2 \mu)}, \\
G_{13}(r, \theta, \varphi)=G_{31}(r, \theta, \varphi)=\frac{\sin (\theta) \cos (\theta)(\lambda+\mu) \cos (\varphi)}{8 \pi \mu r(\lambda+2 \mu)}, \\
G_{22}(r, \theta, \varphi)=\frac{\sin ^{2}(\theta)(\lambda+\mu) \sin ^{2}(\varphi)+\lambda+3 \mu}{8 \pi \mu r(\lambda+2 \mu)}, \\
G_{23}(r, \theta, \varphi)=G_{32}(r, \theta, \varphi)=\frac{\sin (\theta) \cos (\theta)(\lambda+\mu) \sin (\varphi)}{8 \pi \mu r(\lambda+2 \mu)}, \\
G_{33}(r, \theta, \varphi)=\frac{\lambda \cos ^{2}(\theta)+\mu \cos ^{2}(\theta)+\lambda+3 \mu}{8 \pi \mu r(\lambda+2 \mu)},
\end{array}
$$

It is obvious that G is singular at the origin due to the non-regularized load, and one can easily verify that this corresponds to the Kelvin solution for isotropic linear elasticity given in [Cortez et al. 2005; de Goes and James 2017] - namely, in Euclidean coordinates:

$$
\mathbf{u}(\mathbf{x})=\left[\frac{(a-b)}{|\mathbf{x}|} \mathbb{I}+\frac{b}{|\mathbf{x}|^{3}} \mathbf{x} \mathbf{x}^{\top}\right] \mathbf{f} \equiv \mathrm{G}(\mathbf{x}) \mathbf{f},
$$

where $a=1 /(4 \pi \mu), b=a /(4(1-v))$, and $v=\lambda /(2(\mu+\lambda))$. When applying a smooth load, for instance $g_{\varepsilon}(r)=15 \varepsilon^{4} /(8 \pi)\left(r^{2}+\varepsilon^{2}\right)^{-\frac{7}{2}}$, whose Fourier transform is

$$
\widehat{g}_{\varepsilon}(|\xi|)=\frac{\varepsilon^{2}|\xi|^{2} K_{2}(\varepsilon|\xi|)}{2}
$$

and K_{α} is the modified Bessel function of the second kind, the radial term in our Green's function becomes
$R_{l}(r)=\frac{\sqrt{\pi}}{2} r^{l} \varepsilon^{-l-1} \Gamma\left(\frac{l+1}{2}\right) \Gamma\left(\frac{l+5}{2}\right){ }_{2} \widetilde{F}_{1}\left(\frac{l+1}{2}, \frac{l+5}{2} ; l+\frac{3}{2} ;-\frac{r^{2}}{\varepsilon^{2}}\right)$, where ${ }_{2} \widetilde{F}_{1}$ is the regularized hypergeometric function. This integral, when evaluated for degree 0 and 2 , simplifies to:

$$
R_{0}(r)=\frac{\pi\left(2 r^{2}+3 \epsilon^{2}\right)}{4\left(r^{2}+\epsilon^{2}\right)^{3 / 2}}, \quad R_{2}(r)=\frac{\pi r^{2}}{4\left(r^{2}+\epsilon^{2}\right)^{3 / 2}}
$$

where the singularities at $r=0$ has now disappeared. Now with this regularized radial term, the Green's function become:

$$
\begin{array}{r}
G_{11}(r, \theta, \varphi)=\frac{r^{2} \sin ^{2}(\theta)(\lambda+\mu) \cos ^{2}(\varphi)+r^{2}(\lambda+3 \mu)+\varepsilon^{2}(2 \lambda+5 \mu)}{8 \pi \mu(\lambda+2 \mu)\left(r^{2}+\varepsilon^{2}\right)^{3 / 2}}, \\
G_{12}(r, \theta, \varphi)=G_{21}(r, \theta, \varphi)=\frac{r^{2} \sin ^{2}(\theta)(\lambda+\mu) \sin (\varphi) \cos (\varphi)}{8 \pi \mu(\lambda+2 \mu)\left(r^{2}+\varepsilon^{2}\right)^{3 / 2}}, \\
G_{13}(r, \theta, \varphi)=G_{31}(r, \theta, \varphi)=\frac{r^{2} \sin (\theta) \cos (\theta)(\lambda+\mu) \cos (\varphi)}{8 \pi \mu(\lambda+2 \mu)\left(r^{2}+\varepsilon^{2}\right)^{3 / 2}},
\end{array}
$$

$$
\begin{array}{r}
G_{22}(r, \theta, \varphi)=\frac{r^{2} \sin ^{2}(\theta)(\lambda+\mu) \sin ^{2}(\varphi)+r^{2}(\lambda+3 \mu)+\varepsilon^{2}(2 \lambda+5 \mu)}{8 \pi \mu(\lambda+2 \mu)\left(r^{2}+\varepsilon^{2}\right)^{3 / 2}}, \\
G_{23}(r, \theta, \varphi)=G_{32}(r, \theta, \varphi)=\frac{r^{2} \sin (\theta) \cos (\theta)(\lambda+\mu) \sin (\varphi)}{8 \pi \mu(\lambda+2 \mu)\left(r^{2}+\varepsilon^{2}\right)^{3 / 2}}, \\
G_{33}(r, \theta, \varphi)=\frac{r^{2} \cos ^{2}(\theta)(\lambda+\mu)+r^{2}(\lambda+3 \mu)+\varepsilon^{2}(2 \lambda+5 \mu)}{8 \pi \mu(\lambda+2 \mu)\left(r^{2}+\varepsilon^{2}\right)^{3 / 2}} .
\end{array}
$$

One can check analytically that this exactly reproduces the regularized Kelvin solution proposed in [de Goes and James 2017].

REFERENCES

Ricardo Cortez, Lisa Fauci, and Alexei Medovikov. 2005. The method of regularized Stokeslets in three dimensions: analysis, validation, and application to helical swimming. Physics of Fluids 17,3 (2005), 031504.
Fernando de Goes and Doug L James. 2017. Regularized Kelvinlets: sculpting brushes based on fundamental solutions of elasticity. ACM Trans. Graph. 36, 4 (2017), 1-11.

