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Abstract
In remote sensing, Digital Terrain Models (DTM) gen-

eration is a long-standing problem involving bare-terrain
extraction and surface reconstruction to estimate a DTM
from a Digital Surface Model (DSM). Most existing methods
(including commercial software packages) have difficulty
handling large-scale satellite data of inhomogeneous qual-
ity and resolution, and often need an expert-driven man-
ual parameter-tuning process for each geographical type of
DSM. In this paper we propose an automated and versa-
tile DTM generation method from satellite data that is per-
fectly suited to large-scale applications. A novel set of fea-
ture descriptors based on multiscale morphological analy-
sis are first computed to extract reliable bare-terrain eleva-
tions from DSMs. This terrain extraction algorithm is ro-
bust to noise and adapts well to local reliefs in both flat and
highly mountainous areas. Then, we reconstruct the final
DTM mesh using relative coordinates with respect to the
sparse elevations previously detected, and induce preser-
vation of geometric details by adapting these coordinates
based on local relief attributes. Experiments on worldwide
DSMs show the potential of our approach for large-scale
DTM generation without parameter tuning. Our system is
flexible as well, as it allows for a straightforward integra-
tion of multiple external masks (e.g. forest, road line, build-
ings, lake etc.) to better handle complex cases, resulting in
further improvements of the quality of the output DTM.

1. Introduction
Achieving automatic 3D modeling from remote sensing

imagery in a robust and scalable way remains a challenge.
With the development of earth observation techniques, a
multitude of data sources are available for 2D semantic
understanding and 3D reconstruction. Satellite data, com-
pared to aerial data, offer a complete worldwide coverage
with a daily revisit frequency: massive, easily-accessible
archives of satellite data provide a scale of coverage that
aerial data can not deliver. In order to leverage these
existing datasets, automatic 3D modeling from satellite
images requires two critical tasks: the generation of
Digital Surface Models (DSM) and Digital Terrain Models
(DTM). DTMs can seemingly be generated from DSMs

(c) DSM closeup

(d) DTM closeup(a) input DSM (b) our generated DTM

Figure 1. DTM generation. Our approach was run on a DSM of
Rio de Janeiro (Brazil) with urban areas on reliefs: (a) DSM in 1
meter resolution from satellite imagery, (b) resulting DTM without
user interaction, (c) and (d) closeups in a zone with dense building
areas on low-amplitude reliefs.

by removing the above-ground objects and reconstruct the
bare-earth terrain; consequently, height information of 3D
models can be obtained by subtracting the DTM from the
DSM. However, DSMs computed from various satellites
in different conditions have inhomogeneous quality and
spatial resolutions, bringing significant challenges for
automatic and robust generation of high-quality DTM.

Contributions. In this paper we propose a large-scale
DTM generation method capable of handling a variety of
spatial resolutions (0.5 to 30 m), quality and noise levels of
typical DSMs, either fully automatically or with user guid-
ance. Fig. 1 shows an example of DTM generation demon-
strating the potential of our method. Our contributions are
threefold:
• A novel multiscale morphological analysis of a DSM is

formulated to construct feature descriptors, from which
one can extract ground elevations reliably and accurately,
even in the presence of noise;

• DTM generation from scattered elevations is achieved
via the least squares solution of a sparse linear system
based on affine-invariant local coordinates, avoiding the
artifacts of interpolation based on differential equations;

• Our scalable method can integrate semantic masks to fur-
ther improve the quality of the generated DTM, which is
desirable for various industrial applications.
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Figure 2. Comparisons. DTMs generated from DSMs (left) by our method, compared to a manually produced DTM and the USGS NED
DTM (1 meter). Difference maps (right) were computed by subtracting the reference DTM from our DTM, and shown with a color ramp.

2. Related work
DTM generation from satellite data sources consists of

two important steps: ground/above-ground classification,
followed by surface interpolation. Scattered elevations are
extracted from the classification, from which a DTM sur-
face can be reconstructed by interpolating/approximating
these known elevations. Related works can be roughly di-
vided into three categories: rule-based terrain extraction,
learning-based terrain extraction and surface interpolation.

Rule-based terrain extraction. Geospatial datasets
involve a huge variety of types of terrain and objects.
Many approaches [2, 18] apply rule-based methods to
classify ground/above-ground elevations from satellite
based DSMs. Most of these methods make two important
assumptions: (a) the terrain is continuous and rarely
contains sharp height differences locally; (b) the above-
ground objects (buildings, trees etc.) are usually not too
massive compared to the scale of terrain relief. Based
on these assumptions, different rules have been proposed
to classify ground/above-ground pixels by analyzing the
altitude difference with local neighbors, either through (a)
statistics of filtered results (e.g., through morphological
operations [16]) or (b) terrain propagation constrained by
a threshold on gradient values. Since filters are applied to
the whole scene, parameter tuning is usually painstakingly
difficult when various terrain types are present. Moreover,
the fact that the real terrain is not always flat or smooth
brings additional difficulties for pure rule-based methods.

Learning-based terrain extraction. With the rapid
development of deep learning techniques, learning-based
methods have become commonplace for object segmenta-
tion due to their impressive performance. For conceptually
well-defined tasks such as ”cats&dogs” [14] or object
instance segmentation [6], deep neural networks are able
to learn corresponding feature descriptors automatically
from high quality training data. In remote sensing,

particularly for DTM generation, deep-learning-based
algorithms have been formulated for LiDAR point clouds
[7], radiometric images (mostly aerial imagery) plus a
DSM raster [5, 20], and even for DSM tiles [13] to extract
ground/off-ground points—with decreasing performance
since less information is contained in a single satellite
DSM tile than in a dense LiDAR data. In sharp contrast to
object segmentation, current deep-learning-based terrain
extraction methods have not yet demonstrated superior
terrain extraction accuracy from satellite data [13, 20, 5].
Possible reasons include the lack of sharp contrast between
ground and above-ground regions, as well as the huge
variety of objects and relief types found in satellite DSMs.

Surface interpolation. Many interpolation methods such
as regularized splines [4], triangle-based piecewise cubic
polynomials [17], and ANUDEM (Australian National Uni-
versity Digital Elevation Modeling) [8, 9] are commonly
used for digital terrain surface reconstruction. In particu-
lar, ANUDEM applies an efficient morphological approach
to reconstruct a regular grid of elevations from scattered el-
evations. While a selection of streamlines is usually needed
to minimize terrain roughness, the approach is usually quite
robust to noise. Gridfit-based methods [12, 10, 3] generate a
surface approximation from a set of scattered points based
on a hierarchical partitioning of data space. However, re-
lying only on spatial regularization based on Laplacian (or
other differential operators) rarely results in a realistic as-
flat-as-possible DTM surface: even though a hierarchical
space partitioning operation can help reduce unwanted os-
cillations, the extreme sparsity of bare-terrain points often
leads to large artifacts in the reconstruction. In a very differ-
ent context, a recent approach to non-linear dimensionality
reduction proposed a new embedding approach from sparse
constraints: the spectral affine kernel embedding (SAKE)
method [1] uses a whole set of local relative coordinates of
points w.r.t. their closest neighbors to achieve an as-flat-as-
possible embedding robust to irregular sampling and noise,
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Figure 3. Multiscale morphological profiles. Examples of pro-
files based on {Ds

e} (left) and {Ds
op} (right); horizontal axis rep-

resents the 16 scales of analysis, vertical axis in meters.

yet only involving a sparse linear system—thus fitting the
requirements of DTM generation quite well.

In this paper, we introduce a new multiscale morpholog-
ical analysis to extract scattered ground elevations reliably,
followed by a modified SAKE interpolation (that we call
LAKE interpolation). We will show that this combination
of improvements over previous works offers a more flexible
and scalable DTM generation method that is adaptive to
different terrain types, thus allowing worldwide DTM
generation without user interaction.

3. Core foundations
Two core components of our approach – one for terrain

extraction, the other for interpolation – are introduced next.

3.1. Morphological operation

Morphology filters [19] are commonly used to remove
above-ground objects from DSM data [21]. Two basic op-
erations are involved in morphological filtering: erosion and
dilation. For a DSM raster denoted as D, its erosion is de-
noted as De while Dd represents its dilation. Eroded and
dilated rasters are easily evaluated as:

De(i) = min
j∈w(i)

D(j), Dd(i) = max
j∈w(i)

D(j), (1)

where i denotes a pixel index located at (xi, yi) in D, j de-
notes one of its neighbors with coordinates (xj , yj), and
w(i) denotes a fixed-size neighboring window around i.
The erosion (resp., dilation) extracts the minimum (resp.,
maxixum) from the set of values within the window around
a pixel. From these two simple operations, we can also gen-
erate an “opening” morphological operation defined as:

Dop = De ◦Dd. (2)
Since above-ground objects in a DSM raster (such as

trees and buildings) are usually higher than surrounding
elevations, an opening operation removes above-ground
objects whose size is smaller than the operation window
w. However, applying this morphological operation
negatively affects the mountain relief: any non-constant
local slope will be altered by such morphological filtering.
In this paper, we propose to apply De and Dop on a
sequence of window sizes to classify which DSM pixel is
ground-level and which is above-ground, instead of using
the eroded/dilated DSM to prevent elevation errors. A

multiscale approach removes the need for fine-tuning a
single window size of erosion/dilation, and provides rich
statistics on the topography even in the presence of noise.

3.2. Spectral affine-kernel embedding

A recent non-linear dimensionality reduction SAKE [1]
appraoh aims at embedding irregular and noisy data on
smooth low-dimensional manifolds. As it turns out, their
approach is particularly appropriate to construct a DTM as a
bare-terrain can be thought of as a smooth two-dimensional
embedding in 3D of a surface given as a few scattered el-
evations. Originally, SAKE formulates the 2D embedding
problem as a non-linear deformation that only requires the
construction of local affine-invariant coordinates, followed
by sparse matrix eigenanalysis. Spatial relationship be-
tween neighboring points is built through an affine-precise
linear combination of the singular vectors of a relative coor-
dinates matrix. More precisely, for a point pi with coordi-
nates Xi = (xi, yi) and its neighbors in a K-neighborhood
with coordinates Xjk = (xjk , yjk) for k ∈ [1,K], the rela-
tive coordinate matrix Ei is defined as

Ei = (Xj1 −Xi; Xj2 −Xi; ... XjK −Xi). (3)

The basis of the kernel of matrix Ei can be constructed
through Singular Value Decomposition (SVD): they are the
last K − 2 right singular vectors {wq ∈ R2}q=1...K−2 of
unit lengths. Then by definition of the kernel, Xi can be
written as a linear combination of its neighbors Xj through(∑

j [wq]j
)
Xi =

∑
j [wq]jXj ∀q ∈ [1...K − 2],

where [wq]j represents the jth coordinate of the vector wq .
These weights can be understood as the generators of all
possible ways to express a point pi as a linear combina-
tion of its K-neighbors. The set of K − 2 linear com-
binations of neighbors summing up to the original point
can thus be written in a matrix form as LiX = 0, where
X=(XiXj1 Xj2 ... XjK )

T and the matrix Li is written as:

Li=
( ∑

j [w1]j
∑
j [w2]j ...

∑
j [wK−2]j

−w1 −w2 ... −wK−2
)T
. (4)

The authors of SAKE argued that using a basis of all such
combinations is more geometrically meaningful than using
one single local linear relationship per data point (like in
the case of Laplacian regularization): in essence, SAKE
constructs a “multi-Laplacian” quadratic form assembled
based on the neighborhood geometry, which penalizes
any embedding that is not locally affine. The resulting
reconstruction, based on a sparse-matrix eigenanalysis of
the sum of all local quadratic forms, offers an as-rigid-as-
possible interpolation between scattered anchor points [1]
that is particularly appropriate for DTM generation from
sparse bare-terrain elevations. In this paper, we further
simplify SAKE to transform it into a least-squares problem
instead, in order to improve computational efficiency.



4. Multiscale morphological analysis
Morphological filtering as described in Sec. 3.1 can

remove small above-ground objects, but may significantly
affect the elevations of the DSM in the process. In this
section, we propose to use morphological operations at var-
ious scales, not as a way to filter out above-ground objects
as in [22], but as a classifier of ground/above-ground pixels
in the DSM. Our approach is inspired by [16], but adapted
to elevation maps by using erosion and opening (instead of
opening/closing) operations, and with feature descriptors
better adapted to remote sensing.

Multiscale erosion and opening operations. First, we
perform erosion and opening operations on S different
scales. This simply amounts to evaluating De and Dop

for different window sizes w (see definition in Eq. (1)).
Let’s denote by s the (integer) scale level, varying from a
smallest widow size at scale s = 1 to the largest window
size at scale s = S where S is the total number of scales
we use. Typically, we use S = 16 with window sizes of
10m, 20m, 30m, ..., and 160m for high resolution DSMs;
low-resolution DSMs (10m accuracy and above) require
less scales. For each scale s, we perform on the original
DSM D the two morphological operations, which we
denote by Ds

e and Ds
op respectively. For conciseness, we

define D0
e ≡ D0

op ≡ D, i.e., the zero scale morphological
operations are defined to be the original DSM.

Multiscale spatial profile. From these series of multi-
scale morphological operations, we deduce two “profile”
vectors Pe and Pop of size |Pe| = |Pop| = S for each DSM
pixel, encoding its neighborhood at various scales. For pixel
i, the profile vector is simply defined as:

Pe(i)=
(
D1
e(i)−D0

e(i);D
2
e(i)−D1

e(i); ...;D
S
e(i)−DS−1

e (i)
)
,

and similarly for Pop; i.e., the profile vectors represent the
change between two consecutive scales of the results of
the morphological operations. Note that as a consequence,
these profiles only measure relative spatial properties
present at different scales. Fig. 3 shows the intuition behind
the profiles derived from erosion and opening.

Feature vectors. From the multiscale spatial profiles Pe
and Pop, we further extract feature descriptors as follows:
• F̄e, Fmin

e , Fmax
e , F var

e denote respectively the mean, mini-
mum, maximum and variance of a given profile Pe(i),
measuring the distribution of elevation changes in the
multiscale erosion operations. Similarly, F̄op, Fmin

op ,
Fmax
op , F var

op are computed from Pop(i).
• δFe and δF var

e are the mean and variance of the vector of
differences between adjacent elements ofPe(i), reflect-
ing the distribution of consecutive differences of eleva-
tion changes. Same for δFop and δF var

op .
• F sum

e denotes the sum of the maximum change Fmax
e and

of the two values of the profile with indices immediately

adjacent (on each side) to the index of the maximum.
This feature computes the integral of erosion changes on
three consecutive scales around the maximum, helping
better distinguish above-ground objects when no sharp
elevation step is visible due to noise. Same for F sum

op .
• F flat

e and F flatσ
e denotes the mean and standard devia-

tion of the values in Pe(i) after removing the maximum
value and the two values with immediately adjacent in-
dices. As the window size increases, an above-ground
object will be eventually filtered out, so the profile ex-
hibits a series of major drops surrounded by flat zones
since most above-ground objects appear on a fairly flat
terrain. This feature thus helps distinguish the presence
of above-ground objects. Same for F flat

op and F flatσ
op .

• FmaxZ
e denotes the maximum standard score (i.e., z-

score) of the elements in the profile Pe(i). This feature
helps confirm the presence of an above-ground object by
checking if Fmax

e is a salient change in the profile. This
feature distinguishes above-ground objects from moun-
tainous reliefs as a mountain terrain does not change as
sharply as man-made objects or trees.

Classification through erosion and opening. Based on
the set of features above, we perform a rule-based classifi-
cation of all pixels of the input DSM as follows. For each
pixel i, we assign a label `e(i) based on the features derived
from Pe(i) as follows:

`e =



flat if (Fmax
e <θ1) & (Fe<θ2) & (|Fe|<θ3)

& (F var
e <θ4) & (δFmax

e <θ5);

slope if
[
(Fmin
e <θ6) & (Fmax

e <θ7)
]

|
[
(Fe>θ8) & (δFe>θ9) & (δF var

e <θ5)
]

|
[
(FmaxZ
e >θ10) & (F flat

e >θ11)
]
;

object if
[
(Fmax
e >θ7) & (FmaxZ

e >θ13)
]

|
[
(F sum
e >θ14 & F flat

e <θ11
& F flatσ

e <θ12)
]
;

other otherwise.

We define the various thresholds as follows: {θi}i=1..14 =
{1, 1, 1.5, 3, 3, 92, 5, 3, 5, 3, 0.5, 1, 2, 1.5}. Given that we
always considered relative profiles, these parameters are ro-
bust to very different types of DSMs with arbitrary quality
and do not require tuning. The rules were derived from the
following observations: (a) flat: the distribution of the pro-
file is almost uniform around 0 at all scales, indicating a
rather flat bare-terrain; (b) slope: if there is a large differ-
ence between max and min and no large jumps, or if the av-
erage score is large, or if there are both large jumps and no
big flat regions, then the pixel is in a mountainous region;;
(c) objects: if the profile exhibits both large max and stan-
dard score, or a large jump across multiple scales followed
by flat regions, then the pixel is above-ground (presence of
building, tree, etc). If none of these cases happen, we clas-
sify the pixel as other (which typically applies to between



(a) classification map from Ge (b) classification map from Gop (e) closeup of DSM

(c) mountain map generated from (a) (d) fused classification map (f) closeup of classification map

Figure 4. Classification maps. Results of our erosion-based classification `e (a) and opening-based classification `op (b), mountain map
(c) and the final classification ` (d), along with closeups of the DSM (e) and of the final classification map (f). Color convention: green
(flat), violet (slope), red (object) and black (other).

1% to 3% of the DSM pixels). The associated parameters
used in these rules were found after exploring statistics from
a number of input DSMs in order to find reliable thresholds.

Finally, the same classification process (with identical
thresholds) is achieved based on the multiscale opening-
based feature Pop(i) of each pixel of the DSM, leading to a
second classification `op(i) of the initial DSM as well.

5. Classification map
The multiscale morphological analysis we introduced

above results in two different classications, `e and `op,
based on a rule-based analysis of the feature descriptors
derived from erosion and opening operations. While many
pixels in the DSM end up with the same classification in
both (Fig. 4(a)&(b)), there are discrepancies that need to be
resolved to get a single, high-quality classification map.

5.1. Fused classification

Based on our experiments, multiscale erosion analy-
sis is particularly sensitive to elevation changes, and thus
most accurate at detecting above-ground objects; multiscale
opening analysis, on the other hand, is better at detecting
bare-terrain pixels, be they classified as flat or slope. There-
fore, we perform a fusion of the two classifications into a
final classification ` as follows:

∀i, `(i) =

{
object if `e(i) is object,
`op(i) otherwise.

That is, we trust the object labels detected by `e foremost,
and otherwise use the resulting classification from `op. This
simple fusion allows us to obtain an accurate fused classifi-
cation ` containing sharp transitions between above-ground

pixels and bare-terrain pixels (see Figs. 4(d) and closeup
(f)) rivaling with (and often outperforming) state-of-the-art
results from deep learning DTM generation computed from
far less noisy LiDAR data in [5]: we significantly reduce
the typical “ambiguity” regions around above-ground
objects, allowing for a proper treatment of complex scenes,
e.g. dense building areas with narrows streets.

Cleanup. Further cleaning up of the final classification
map can be performed for added robustness. Through
region growing, we identify isolated regions of either flat
or slope pixels of total areas below a certain size; pixels
in these regions are simply classified as other, as they are
likely to be the results of noise or of an ambiguous case.

5.2. External mask integration and user integration

Since false-positive and true-negative errors are un-
avoidable in large-scale scenarios containing a large variety
of different terrains and cities, external masks such as
road lines, forests, lakes, or buildings, are always helpful.
With the rapid development of semantic classification (in
particular using deep learning techniques), an increasing
number of masks are becoming available. Our system is
flexible enough to integrate such masks into our classi-
fication map in a straightforward fashion. For example,
road lines help get more bare-terrain information in dense
inhabited areas over hilly regions by labeling roads as
ground while avoiding object areas. Similarly, a forest map
can help disambiguate the challenging scenario of a large,
dense forest which may be erroneously recognized as flat
through automatic analysis. Semantic masks thus always
improve the quality of the generated DTMs in large-scale



applications. Moreover, an expert can further modify
manually the labeling established by our algorithm.

5.3. Mountain map

Sometimes, establishing specific maps (such as a moun-
tain map) is a desirable task that our multiscale analysis
also helps with. We found that a simple post-processing
of the erosion-based classification `e (see Fig. 4(a)) leads
to very clean mountain maps: we simply detect regions of
object pixels surrounded by flat pixels and convert them to
flat; same for regions of object pixels surrounded by slope,
which we convert to slope; and finally, regions of object
pixels surrounded by a mixture of flat and slope pixels are
turned into other. The result, shown in Fig. 4(c), nicely
delineates flat from mountainous regions, at very little
additional computational cost.

6. Surface interpolation through LAKE
As briefly discussed in Sec. 2, the SAKE approach to

surface interpolation removes many of the issues plaguing
typical DEI interpolation methods by enforcing a series
of local linear combinations between nearby points to
penalize all non-linear slopes. In this section, we propose a
simpler expression of SAKE, coined LAKE as the Spectral
solve involved in the original approach is replaced by a
faster Least-squares solve. We then apply this technique
to create a DTM map, of the same size as the input DSM,
that interpolates the ground elevations (read from the input
DSM) of the pixels labeled as either flat or slope.

6.1. Least-Squares Affine-Kernel Embeddings

To find the elevation h(i) of each pixel i not classified
as flat or slope in the DTM, we proceed in three steps.

Assembling the quadratic form Q. Just like in the orig-
inal SAKE approach, we first construct a sparse quadratic
form Q based on the local weights derived from the right
singular vectors of Eq. (3) for each pixel neighborhood
as summarized in Sec. 3.2. This quadratic form can be
thought as a penalty on elevations to force them to be
as locally linear as possible, which will help regularize
the interpolation. Since we wish to construct a regular
grid of elevations (i.e., the final DTM), the construction
of the weights based on the neighborhood of each pixel
can be precomputed very efficiently. Compared to SAKE,
however, we consider size-varying neighborhoods: for
every pixel, we use its one-ring neighborhood (i.e., the 8
pixels touching it) by default, but use a larger two-ring
neighborhood (i.e., the 24 closest pixels) if the pixel is
labeled as slope. This modification of the original approach
(which uses a constant neighborhood size) is particularly
important in our case: it indirectly adds local rigidity of the
interpolation in steep areas, thus preventing the appearance
of small spikes which sparse constraints typically generate.

(a) DSM (inset) and classification (b) direct low-res LAKE DTM

(c) direct high-res LAKE DTM (d) hierarchical LAKE DTM
Figure 5. Hierarchical DTM generation. (a) Initial sparse bare-
terrain model from classification; (b)DTM solved in a lower reso-
lution; (c) DTM by LAKE directly from the bare-terrain model;
(d) DTM by hierarchical LAKE with elevations from low-res
DTM added in large empty zones of the bare-terrain model.

Constraints. We then assemble a sparse diagonal matrix
C that encodes the elevation constraints we wish to impose.
Matrix C has a non-zero value Cii only if pixel i of the
classification map is `(i)=flat or slope. We use Cii=α for
flat elevations and Cii = 2α for slope elevations to allow
for a closer fit of constrained elevations in mountainous
regions and a more relaxed fit in nearly flat regions to
more efficiently reduce noise in flat parts. We also as-
semble a vector b containing the elevations of the DSM
for pixels labeled flat or slope, and 0 otherwise. We use
α=(10m/resolution)2 in all our results in this paper.

Solve. We now wish to find elevations, stored as a vec-
tor H containing the elevation h(i) of every pixel, such that
the constraints are satisfied (CH=b) while minimizing the
quadratic formHTQH . While the original SAKE proposes
an eigensolve, we found much more efficient (and still accu-
rate enough) to simply use a least-squares solution of the set
of linear equations: QH= 0 and CH= b. This is achieved
by solving the linear system:

(QTQ+ CTC)H = CT b,
which can be efficiently evaluated through Conjugate Gra-
dient using the DSM as initialization. The result of this lin-
ear solve is our final DTM.

6.2. Hierarchical DTM generation

As a way to both accelerate the linear solve of LAKE
and improve robustness to extreme sparsity of constrained
elevations (often present for satellite stereo pairs because of
occlusions in dense urban areas or in agricultural fields with
repetitive texture), we propose a hierarchical DTM gen-
eration process that can handle DSMs with very different
quality and geographical scenarios. If the constraints given



(a) PCI Geomatics (b) our reconstruction
Figure 6. Visual Comparison. For the Côte d’Azur DSM, the PCI
result of [15] with careful hand-tuning by an expert (left) removes
the relief details over urban regions, while our automatic result
captures a proper elevation map (see DSM in inset).

to LAKE contain large empty regions where no elevations
are available (for example, no elevation points detected
in a zone of 500×500 m2, that is, 500×500 pixels in a
DSM with 1-meter resolution), the flatness prior used in
SAKE may create too much of a bowl-shaped depression or
bump in this region. So we compute first a low-resolution
DTM for which this artifact will be absent or negligible
(because the surface tension induced by the quadratic form
is stronger and prevents sagging); from this reference
DTM, we then insert the computed ground elevations into
the large empty zones to evaluate the fine DSM. Much like
a multigrid approach, this two-step technique converges
also slightly faster as a coarse solution is used to drive the
finest solution. Fig. 5 shows the difference between a direct
LAKE solve (c) and a hierarchical LAKE solve (d).

7. Experiments
The DTM generation pipeline we just described was

implemented in C++, and all experiments were done on an
Intel Core i7 clocked at 4.1GHz with 64GB RAM. Figures
shown in this paper were created straight from input DSMs
with no parameter tuning and no external masks. Table 1
provides input sizes and running times for all examples
shown in this paper.

Times Rio Buenos Aires Toulon Panama Hatta
(in min.) (516M) (116M) (87M) (41.6M) (35M)
analysis 18 5.1 5.1 4.3 8
classif. 1.9 0.8 0.1 0.1 0.1
DTM gen. 21 10 10 2.5 2
total time 40.9 15.9 15.2 6.9 10.1

Table 1. Performances on DSMs of different types and sizes (Rio
from Fig. 1, others from Fig. 2) in terms of running times (for
multiscale morphological analysis, classification, DTM generation
through LAKE, and total time). Times are expressed in minutes,
while sizes are mentioned in number of DSM pixels.

We ran a large number of automatic DTM generations
from DSMs of different quality and noise levels, from
all over the world. Fig. 8 shows a selection of examples
for difficult regions, mixing significant relief and urban
structures. Fig. 1 shows Rio de Janeiro as another difficult
example. These results offer a visual estimation of the
quality of our generated DTMs when no human interaction
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Figure 7. Error plots. From a manually-produced DTM used as
groundtruth (a), we compare the errors of PCI [15] (b) vs. our
DTM generation (c), using the same color ramp as in Fig. 2.

is provided. Note that computational times for these DTMs
vary from 15 minutes for Toulon to 41 minutes for Rio, av-
eraging 8.93M pixels per min on average. Since every step
of our pipeline is easily parallelizable, these timings can be
reduced dramatically for machines with more processing
power. Our experiments indicate that our morphological
analysis takes about 40% of the total time, suggesting that
a faster implementation of this part could further reduce the
overall computational time. We also measured the quality
of our DTMs in Fig. 2 by comparing with two type of
ground-truth references: (a) a manual DTM generated by
applying progressive filtering of carefully user-segmented
regions, and (b) the USGS National Elevation Dataset
(NED). After computing the difference between our results
and the ground-truth references, we visualized the elevation
difference using a corlormap covering from -5 meters
to 5 meters. The average absolute error is 1.28 meters
over the entire 125km2 testing areas, and most of the
errors are located in mountainous regions and man-altered
regions such as bridges. We also compared our results to
the current state-of-the-art commercial product from PCI
Geomatics [15] in Fig. 6. While this tool generates equally
good results in flat urban areas and slightly better on
unhabited mountainous regions compared to our method, it
fails completely when urban structures or trees are present
on rolling hills while our approach continues to perform
adequately even in this case.

Note that our approach has been used for the past year
by LuxCarta [11] as part of their digital map production
pipeline with success, proving its robustness.

8. Conclusions
In this paper, we presented an approach for automati-

cally generating DTMs from arbitrary DSMs. Our method
relies on a novel multiscale morphological analysis of the
DSM to classify each pixel, and on a subsequent interpola-
tion of reliable elevations through a least-squares smooth
embedding approach which does not suffer from the typical
oscillations of interpolation methods based on differential
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Figure 8. Generality. Our method adapts to DSMs of arbitrary terrain types: Hatta, United Arab Emirates, DSM with 0.5 meter spatial
resolution from Pleiades; Côte d’Azur, France, DSM with 1 meter from Pleiades; Buenos Aires, Argentine, DSM with 2 meters from SPOT
6; Panama City center, Panama, DSM with 30 meters from ALOS.

equations. We demonstrated that this combination of tools
can produce reliable and accurate large-scale DTMs from a
large variety of DSMs of various qualities and resolutions,
often improving upon state-of-the-art results without any
user interaction.

Limitations. While we have been able to successfully
construct DTMs of a wide variety of world regions, small
relief details on mountains and rocky shores are sometimes
mislabeled as objects due to their shape similarity with
man-made buildings at low resolution. Post-treatment
using a mountain map or sea map can help fix these
issues, but finding a fully automatic and reliable solution
without any additional map would be useful. Moreover,
our morphological analysis only focuses on a limited
range of scales; we may thus mislabel a wide and dense
forest as flat. A larger filtering window would remove this
issue, but currently, it would come at the cost of slower
performances; accelerating the multiscale analysis (e.g.,
using GPU) could thus be a valuable direction to explore
in order to improve both timings and classification accuracy.

Future work. Currently, the labeling of the DSM
pixels is done independently for each pixel, allowing
embarrassingly-parallel workload. However, the quality of
the results (validity of labels and frequency of other labels)

could be further improved if our rule-based classification
considers a small neighborhood, without significantly re-
ducing the efficiency of the classification. Our attempts at
implementing this idea never produced much better results,
confirming the adequacy of the features derived from our
multiscale morphological analysis. Maybe a hybrid method
mixing these features with learning-based approaches could
be proven useful. Finally, applying our approach to LIDAR
is also straightforward, but proper evaluation was not per-
formed due to limited access to large datasets.
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