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This supplemental material presents the rules needed to construct
the subdivision matrices for discrete 0-, 1-, and 2-forms using the
Loop scheme for triangle meshes and the Catmull-Clark scheme for
quadrilateral meshes. We provide both interior and boundary rules
for completeness. We denote by n the number of faces adjacent to
a vertex. Boundary vertices are marked in black, while interior ver-
tices are marked in white. Vertices without markers may be either
interior or on the boundary.

A Loop Subdivision Rules

This section describes the rules for triangle mesh subdivision based
on the Loop scheme. Following [Wang et al. 2006], we use the
standard Loop subdivision rules from [Biermann et al. 2000] for
0-forms (with γ= 3/8) and generalized half-box splines [Prautzsch
et al. 2002] for 2-forms.

The Loop subdivision rules for 0-forms are shown in Fig. 1. Since
we use the standard Loop subdivision rules, there is a single even
interior stencil and a single odd interior stencil. The even and odd
stencils for the boundary are simply the B-spline subdivision rules.
The values for α and β are given by:

α =

{
3/16, if n = 3
3/8n, otherwise

β =


1/12, if n = 3
1/8, if n = 4
1/4− 1/16 sin2(2π/5), if n = 5
1/4, if n ≥ 6

The Loop subdivision rules for 1-forms are given in Fig. 2. The
interior rules, both even and odd, have simple expressions. Subdi-
vided even edges on the boundary and subdivided odd edges adja-
cent to the boundary also have relatively simple expressions. The
even stencils for subdivided edges adjacent to the boundary, how-
ever, produce a much larger number of cases. These cases are de-
fined by n, the number of faces adjacent to the boundary vertex,
and how far the subdivided edge is from the boundary when walk-
ing counter-clockwise around the outgoing edges of the vertex.

The Loop subdivision rules for 2-forms at interior and boundary
faces are given in Fig. 3. Similar to the 1-form boundary rules,
the 2-form rules are defined by n and how far the subdivided face
is from the boundary when walking counter-clockwise around the
outgoing faces of the boundary vertex.

With these rules, subdivision commutes with exterior derivatives
for any valence and configuration.

B Catmull-Clark Subdivision Rules

This section describes the rules for quadrilateral mesh subdivi-
sion. We use the standard Catmull-Clark subdivision rules de-
scribed in [DeRose et al. 1998] for 0-forms and Doo-Sabin sub-
division rules [Wang et al. 2006] for 2-forms.

The subdivision rules for 0-forms are shown in Fig. 4. During sub-
division, a new vertex must be inserted for each vertex, edge, and

face of the unrefined mesh. These three cases are denoted, respec-
tively, as Vertex Vertex, Edge Vertex and Face Vertex. The boundary
rules simply reproduce the standard B-spline subdivision. Values
for β and γ are given by:

β = 3/2n, γ = 1/4n.

The subdivision rules for 1-forms are given in Fig. 6. The interior,
even boundary, and odd boundary-adjacent rules all have relatively
simple expressions. However, the even boundary-adjacent rules in-
clude several special cases. Expressions remain simple for n = 2
(two boundary faces), and for the case when the subdivided edge
is one-away from the boundary. The general case, on the other
hand, is parameterized by the edge index e of the subdivided edge
that indicates the number of edges when walking counter-clockwise
around the boundary vertex one-ring starting at the boundary. As
shown in Fig. 6, these subdivision rules involve three set of coeffi-
cients σ, ξ, and η. The vector of values for σ, ξ, and η for an edge
index e is computed recursively w.r.t. e, based on the coefficients
associated to the neighboring edge of index e+ 1. Base case is set
with e = n−2. We give pseudocode in Alg. 1 implementing this
recursive computation.

The subdivision rules for 2-forms are given in Fig. 5. Looking at
the faces in the coarse one-ring of the vertex corresponding to the
subdivided face (shown in black), the subdivision weights follow a
simple pattern: the face to be subdivided receives a weight of f0,
the left and right neighbors (in the one-ring) receive a weight of f1,
and all other faces receive a weight of f2. Note that, if there are only
three faces (n = 3), the weights are simply {f1, f0, f1} (no faces
have weight f2). The constant f0 is computed such that the sum
of all face weights is equal to 1/4. The boundary subdivision rules
for 2-forms follow the same pattern, e.g., if the subdivided face was
adjacent to the boundary, then the weights are {f0, f1, f2, . . . , f2}.

With these rules, subdivision commutes with exterior derivatives
for any valence and configuration.
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Figure 1: Loop subdivision rules for 0-forms.

Figure 2: Loop subdivision rules for 1-forms.

Figure 3: Loop subdivision rules for 2-forms.



Figure 4: Catmull-Clark subdivision rules for 0-forms.

Figure 5: Catmull-Clark subdivision rules for 2-forms.

See Alg. 1

Figure 6: Catmull-Clark subdivision rules for 1-forms.



Algorithm 1 Computing coefficients of Catmull-Clark subdivision
rules for 1-forms at even boundary-adjacent edges.

Routine GETWEIGHTS(e, n):
// e is the index of the outgoing even boundary-adjacent edge.
// n is the number of faces incident to the boundary vertex.
// for 1 ≤ e ≤ n - 1 and n ≥ 2

Initialize σi=0, for 0≤ i≤n
Initialize ηi=ξi=0, for 0≤ i<n
if n == 2 then

σ1=3/8; ξ0=1/16; η1= - 1/16;
return {σ, ξ, η }

end if

f2=γ/4
f1=1/32 + γ/4
f0=1/4 - 2f1 - (n - 3)f2

if e == 1 then
σ0=3/16-f0; σ1=1/4+f0-f1; σ2=1/16+f1-f2; σn=f2-1/8;

ξi=


1/4-f0, for i = 0
1/16-f1, for i = 1

-f2, otherwise
ηi=


3/16-f0, for i = 0

-f1, for i = 1

-f2, otherwise
else if e == n - 1 then

σn=3/16-f0;σn-1=1/4+f0-f1;σn-2=1/16+f1-f2;σ0=f2-1/8;

ξi=


f0-3/16, for i = n-1
f1, for i = n-2
f2, otherwise

ηi=


f0-1/4, for i = n-1
f1-1/16, for i = n-2
f2, otherwise

else
{A, B, C } = GETWEIGHTVECTOR(e,n)

σ0=A[0]; σe-1=A[1]; σe=A[2]; σe+1=A[3]; σn=A[5];

if n > 4 and e < n-2 then
σe+2=A[4]

end if

ξi=



B[0], for 0≤ i≤e-2
B[1], for i=e-1
B[2], for i=e
B[3], for i=e+1
B[4], otherwise

ηi=



C[0], for 0≤ i≤e-2
C[1], for i=e-1
C[2], for i=e
C[3], for i=e+1
C[4], otherwise

end if
return {σ, ξ, η }

SubRoutine GETWEIGHTVECTOR(e, n):
// for 2 ≤ e ≤ n - 2 and n ≥ 3

f2=γ/4; f1=1/32 + γ/4; f0=1/4 - 2f1 - (n - 3)f2;

if e == n - 2 then
// Base case, edge two-away from boundary
A[0]=γ/2-1/8; A[1]=f1-f2+1/16;
A[2]=f0-f2+1/4; A[3]=f1-f2+1/16;
A[4]=0; A[5]=1/8-f0-2f1+f2;
B[0]=γ/2; B[1]=f1+f2;
B[2]=f0+f1-3/16; B[3]=f0+2f1-f2-1/4;
B[4]=0

else
// Recursive case
{ Ã, B̃, C̃ } = GETWEIGHTVECTOR(e + 1, n)

A[0]=Ã[0] + f2; A[1]=f1 - f2 + 1/16;

A[2]=Ã[1] + f0 - f1 + 3/16 A[3]=Ã[2] + f1 - f0 - 3/16;

A[4]=Ã[3] + f2 - f1 - 1/16; A[5]=Ã[5] - f2

B[0]=B̃[0] + f2; B[1]=B̃[0] + f1;
B[2]=B̃[1] + f0 - 3/16; B[3]=B̃[2] + f1 - 1/16;

B[4]=B̃[3] + f2
end if
C[0]=B[0] C[1]=B[1] - 1/16 C[2]=B[2] - 1/16
C[3]=B[3] C[4]=B[4]

return {A, B, C }


