
Subdivision Exterior Calculus for Geometry Processing
Supplemental Material: Subdivision Rules

Fernando de Goes
Pixar Animation Studios

Mathieu Desbrun
Caltech

Mark Meyer
Pixar Animation Studios

Tony DeRose
Pixar Animation Studios

This supplemental material presents the rules needed to construct
the subdivision matrices for discrete 0-, 1-, and 2-forms using the
Loop scheme for triangle meshes and the Catmull-Clark scheme for
quadrilateral meshes. We provide both interior and boundary rules
for completeness. We denote by n the number of faces adjacent to
a vertex. Boundary vertices are marked in black, while interior ver-
tices are marked in white. Vertices without markers may be either
interior or on the boundary.

A Loop Subdivision Rules

This section describes the rules for triangle mesh subdivision based
on the Loop scheme. Following [Wang et al. 2006], we use the
standard Loop subdivision rules from [Biermann et al. 2000] for
0-forms (with γ= 3/8) and generalized half-box splines [Prautzsch
et al. 2002] for 2-forms.

The Loop subdivision rules for 0-forms are shown in Fig. 1. Since
we use the standard Loop subdivision rules, there is a single even
interior stencil and a single odd interior stencil. The even and odd
stencils for the boundary are simply the B-spline subdivision rules.
The values for α and β are given by:

α =

{
3/16, if n = 3
3/8n, otherwise

β =


1/12, if n = 3
1/8, if n = 4
1/4− 1/16 sin2(2π/5), if n = 5
1/4, if n ≥ 6

The Loop subdivision rules for 1-forms are given in Fig. 2. The
interior rules, both even and odd, have simple expressions. Subdi-
vided even edges on the boundary and subdivided odd edges adja-
cent to the boundary also have relatively simple expressions. The
even stencils for subdivided edges adjacent to the boundary, how-
ever, produce a much larger number of cases. These cases are de-
fined by n, the number of faces adjacent to the boundary vertex,
and how far the subdivided edge is from the boundary when walk-
ing counter-clockwise around the outgoing edges of the vertex.

The Loop subdivision rules for 2-forms at interior and boundary
faces are given in Fig. 3. Similar to the 1-form boundary rules,
the 2-form rules are defined by n and how far the subdivided face
is from the boundary when walking counter-clockwise around the
outgoing faces of the boundary vertex.

With these rules, subdivision commutes with exterior derivatives
for any valence and configuration.

B Catmull-Clark Subdivision Rules

This section describes the rules for quadrilateral mesh subdivi-
sion. We use the standard Catmull-Clark subdivision rules de-
scribed in [DeRose et al. 1998] for 0-forms and Doo-Sabin sub-
division rules [Wang et al. 2006] for 2-forms.

The subdivision rules for 0-forms are shown in Fig. 4. During sub-
division, a new vertex must be inserted for each vertex, edge, and

face of the unrefined mesh. These three cases are denoted, respec-
tively, as Vertex Vertex, Edge Vertex and Face Vertex. The boundary
rules simply reproduce the standard B-spline subdivision. Values
for β and γ are given by:

β = 3/2n, γ = 1/4n.

The subdivision rules for 1-forms are given in Fig. 6. The interior,
even boundary, and odd boundary-adjacent rules all have relatively
simple expressions. However, the even boundary-adjacent rules in-
clude several special cases. Expressions remain simple for n = 2
(two boundary faces), and for the case when the subdivided edge
is one-away from the boundary. The general case, on the other
hand, is parameterized by the edge index e of the subdivided edge
that indicates the number of edges when walking counter-clockwise
around the boundary vertex one-ring starting at the boundary. As
shown in Fig. 6, these subdivision rules involve three set of coeffi-
cients σ, ξ, and η. The vector of values for σ, ξ, and η for an edge
index e is computed recursively w.r.t. e, based on the coefficients
associated to the neighboring edge of index e+ 1. Base case is set
with e = n−2. We give pseudocode in Alg. 1 implementing this
recursive computation.

The subdivision rules for 2-forms are given in Fig. 5. Looking at
the faces in the coarse one-ring of the vertex corresponding to the
subdivided face (shown in black), the subdivision weights follow a
simple pattern: the face to be subdivided receives a weight of f0,
the left and right neighbors (in the one-ring) receive a weight of f1,
and all other faces receive a weight of f2. Note that, if there are only
three faces (n = 3), the weights are simply {f1, f0, f1} (no faces
have weight f2). The constant f0 is computed such that the sum
of all face weights is equal to 1/4. The boundary subdivision rules
for 2-forms follow the same pattern, e.g., if the subdivided face was
adjacent to the boundary, then the weights are {f0, f1, f2, . . . , f2}.

With these rules, subdivision commutes with exterior derivatives
for any valence and configuration.

References

BIERMANN, H., LEVIN, A., AND ZORIN, D. 2000. Piecewise
smooth subdivision surfaces with normal control. In ACM SIG-
GRAPH, 113–120.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision
surfaces in character animation. ACM SIGGRAPH, 85–94.

PRAUTZSCH, H., BOEHM, W., AND PALUSZNY, M. 2002. Bezier
and B-Spline Techniques. Springer-Verlag New York, Inc.

WANG, K., WEIWEI, TONG, Y., DESBRUN, M., AND
SCHRÖDER, P. 2006. Edge subdivision schemes and the con-
struction of smooth vector fields. ACM Trans. Graph. 25, 3,
1041–1048.



Figure 1: Loop subdivision rules for 0-forms.

Figure 2: Loop subdivision rules for 1-forms.

Figure 3: Loop subdivision rules for 2-forms.



Figure 4: Catmull-Clark subdivision rules for 0-forms.

Figure 5: Catmull-Clark subdivision rules for 2-forms.

See Alg. 1

Figure 6: Catmull-Clark subdivision rules for 1-forms.



Algorithm 1 Computing coefficients of Catmull-Clark subdivision
rules for 1-forms at even boundary-adjacent edges.

Routine GETWEIGHTS(e, n):
// e is the index of the outgoing even boundary-adjacent edge.
// n is the number of faces incident to the boundary vertex.
// for 1 ≤ e ≤ n - 1 and n ≥ 2

Initialize σi=0, for 0≤ i≤n
Initialize ηi=ξi=0, for 0≤ i<n
if n == 2 then

σ1=3/8; ξ0=1/16; η1= - 1/16;
return {σ, ξ, η }

end if

f2=γ/4
f1=1/32 + γ/4
f0=1/4 - 2f1 - (n - 3)f2

if e == 1 then
σ0=3/16-f0; σ1=1/4+f0-f1; σ2=1/16+f1-f2; σn=f2-1/8;

ξi=


1/4-f0, for i = 0
1/16-f1, for i = 1

-f2, otherwise
ηi=


3/16-f0, for i = 0

-f1, for i = 1

-f2, otherwise
else if e == n - 1 then

σn=3/16-f0;σn-1=1/4+f0-f1;σn-2=1/16+f1-f2;σ0=f2-1/8;

ξi=


f0-3/16, for i = n-1
f1, for i = n-2
f2, otherwise

ηi=


f0-1/4, for i = n-1
f1-1/16, for i = n-2
f2, otherwise

else
{A, B, C } = GETWEIGHTVECTOR(e,n)

σ0=A[0]; σe-1=A[1]; σe=A[2]; σe+1=A[3]; σn=A[5];

if n > 4 and e < n-2 then
σe+2=A[4]

end if

ξi=



B[0], for 0≤ i≤e-2
B[1], for i=e-1
B[2], for i=e
B[3], for i=e+1
B[4], otherwise

ηi=



C[0], for 0≤ i≤e-2
C[1], for i=e-1
C[2], for i=e
C[3], for i=e+1
C[4], otherwise

end if
return {σ, ξ, η }

SubRoutine GETWEIGHTVECTOR(e, n):
// for 2 ≤ e ≤ n - 2 and n ≥ 3

f2=γ/4; f1=1/32 + γ/4; f0=1/4 - 2f1 - (n - 3)f2;

if e == n - 2 then
// Base case, edge two-away from boundary
A[0]=γ/2-1/8; A[1]=f1-f2+1/16;
A[2]=f0-f2+1/4; A[3]=f1-f2+1/16;
A[4]=0; A[5]=1/8-f0-2f1+f2;
B[0]=γ/2; B[1]=f1+f2;
B[2]=f0+f1-3/16; B[3]=f0+2f1-f2-1/4;
B[4]=0

else
// Recursive case
{ Ã, B̃, C̃ } = GETWEIGHTVECTOR(e + 1, n)

A[0]=Ã[0] + f2; A[1]=f1 - f2 + 1/16;

A[2]=Ã[1] + f0 - f1 + 3/16 A[3]=Ã[2] + f1 - f0 - 3/16;

A[4]=Ã[3] + f2 - f1 - 1/16; A[5]=Ã[5] - f2

B[0]=B̃[0] + f2; B[1]=B̃[0] + f1;
B[2]=B̃[1] + f0 - 3/16; B[3]=B̃[2] + f1 - 1/16;

B[4]=B̃[3] + f2
end if
C[0]=B[0] C[1]=B[1] - 1/16 C[2]=B[2] - 1/16
C[3]=B[3] C[4]=B[4]

return {A, B, C }


