
Compression of Time Varying Isosurfaces
Ilya Eckstein

University of Southern California
ilyaeck@usc.edu

Mathieu Desbrun
Caltech

mathieu@caltech.edu

C.-C. Jay Kuo
University of Southern California

cckuo@sipi.usc.edu

ABSTRACT

Compressing sequences of complex time-varying surfaces as gener-
ated by medical instrumentations or complex physical simulations
can be extremely challenging: repeated topology changes during
the surface evolution render most of the previous techniques for
compression of time-varying surfaces inefficient or impractical. In
order to provide a viable solution, we propose a new approach based
upon an existing isosurface compression technique designed for sta-
tic surfaces. We exploit temporal coherence of the data by adopting
the paradigm of block-based motion prediction developed in video
coding and extending it using local surface registration. The result-
ing prediction errors across frames are treated as a static isosurface
and encoded progressively using an adaptive octree-based scheme.
We also exploit local spatiotemporal patterns through context-based
arithmetic coding. Fine-grain geometric residuals are encoded sep-
arately with user-specified precision. The other design choices
made to handle large datasets are detailed.

Keywords: Surface Compression, Isosurface Compression, Dy-
namic Surface Compression

1 INTRODUCTION

The realm of dynamic surface compression, i.e., encoding and de-
coding of surface motion in space and time, has been receiving
much less attention than its static counterpart. In contrast, the field
of signal processing has witnessed a natural evolution from digital
images to digital video over the last decade, and as a consequence,
the digital encoding of video sequences is now common practice.
Now that dynamic 3D contents are generated at a fast growing rate
in various applications ranging from characters in movies and elec-
tronic games to scientific simulation, the need for dynamic surface
compression is becoming greater.

Not all dynamic 3D data need specific compression techniques.
Computer-generated movies, while extensively using 3D animated
models and gaining an unprecedented popularity, are treated as
video once produced: the specific camera position and lighting con-
ditions of each scene are parts of the artistic value of the movie, so
this content is rarely encoded in 3D. Another source of 3D data
is distributed electronic games, where characters are typically an-
imated using motion parameters (either precomputed or generated
at runtime) applied to a reference object: here again, there is no
specific need for dynamic surface compression.

There are, however, a number of other sources for which such
compression is vital. Scientific simulation data typically requires
significant computational resources to be generated (for fluid me-
chanics simulation for instance), and a vast amount of space to store
the results. Similarly, acquired dynamic data such as 3D medical
images and sequences of range scans demand a great deal of stor-
age space as well. Compressing this type of animated 3D content
is, in these cases, key to their proper handling.

Although some work has been done on compression of fixed-
topology mesh animation and time-varying volume data, we will
focus on a specific type of dynamic 3D data, namely time-varying
isosurfaces. Isosurfaces are a useful representation for visualizing
volumetric content, be it in scientific simulation or medical appli-
cations; this is particularly true for time-varying volumetric data,
where one is often interested in observing the evolution of one or
more specific iso-contours (corresponding to particular values of
intensity, density, etc.), rather than the volume in general. Unfortu-
nately, the size of the data often becomes the bottleneck, even once
the volume dataset has been converted to a polygonal mesh. In
particular, for applications involving remote data monitoring and
analysis, high-resolution isosurfaces become impractical without
efficient compression. The challenge in compressing isosurfaces
is to cope with the level of geometric and topological complex-
ity they often have, as deformation may be arbitrary and topology
can change over time. Consequently, none of the existing dynamic
mesh coding methods are applicable to this case as we explain next.

1.1 Background

Existing methods for compression of dynamic polygonal meshes
[1, 5, 9, 12, 14, 17] rely on known inter-frame vertex
correspondences—typically, the mesh connectivity is fixed in time.
This specificity renders those methods unsuitable in our context,
where not only the surface sampling but also the surface topology
may vary considerably between frames. Anuar and Guskov [2] pro-
posed to solve the correspondence problem by converting the input
meshes to adaptive signed distance volumes, followed by motion
estimation using optical flow. Consequently, motion is estimated as
a dense vector field, impractical for compression purposes.

Other related work has been done in volumetric data compres-
sion. Mascarenhas et al. [19] suggest a streaming scheme for volu-
metric grids, where voxels are ordered to facilitate extraction of iso-
surfaces for subsequent isovalues, a very valuable feature for data
analysis. However, their approach does not support encoding of
specific (subset of) isosurface(s) and their motion in time, render-
ing it inefficient for our purpose. Guthe and Straßer [10], and Sohn
et al. [23] compress time-varying volumetric data using wavelet
transforms and motion estimation, but do not report compression
rates of single isosurfaces. Another recent work by Gregorsky et
al. [8] is concerned with the extraction of time-varying isosur-
faces from compressed volume data. There again, compression is
applied to the whole raw data, rather than just a single isosurface.
Finally, Ibarria et al. [11] suggest a method for out-of-core com-
pression of n-dimensional scalar fields, mostly applied to 3D and
4D datasets. Their main contribution is the so-called Lorenzo pre-
diction, which is a generalization of the parallelogram predictor to
an arbitrary dimension. While this predictor could in theory be used
to predict corresponding inside/outside grid values for two subse-
quent frames, they provide no evaluation for values with a binary
range.

1.2 Contributions

In this paper we extend the concept of block-based motion estima-
tion, traditionally used in video coding, for compression of dynamic



isosurfaces extracted from a series of uniformly sampled volumet-
ric grids. Leveraging the progressive encoding method of Lee et
al.[16] for static isosurface compression, we provide a codec al-
lowing rapid, progressive display of the sequence during decoding.
The unstructured nature of time-varying isosurfaces allows our al-
gorithm to deal naturally with surfaces of high geometric complex-
ity and dynamic topology, unlike any of the existing codecs.

Figure 1: Static Isosurface Compression: Each leaf of the in-
side/outside octree (left) intersects the isosurface, and the position
of the vertex (obtained through Dual Contouring) is encoded using
a sign-based local frame as detailed in [16].

2 THE STATIC ISOSURFACE COMPRESSION METHOD

Before delving into the details of the dynamic case, we first review
the static isosurface compression scheme that we will build upon,
and establish terminology. A more detailed coverage can be found
in the original paper [16].

Input We are given a 3D grid of uniformly sampled volume
data of size (2n +1)3, along with an isovalue which determines the
desired isosurface to encode.

Octree Generation and Surface Extraction Based on the input
grid values, a sign bitmap of the given volume (i.e., a binary grid of
inside/outside values) is generated. An octree representation of this
sign bitmap is then constructed bottom-up: whenever all eight child
cells are homogeneous (i.e., contains no sign change), they are
deleted. This results in a tree has two kinds of leaf nodes: (a) coarse
level leaves in the homogeneous regions; and (b) heterogeneous
leaves, corresponding to the original grid cells intersected by the
isosurface (the so-called narrow band). For surface extraction,
the Dual Contouring method [13] is applied, assigning a vertex
to each leaf cell, contrasting with the Marching Cubes algorithm
[18] which positions vertices at edge intersections instead. Dual
Contouring produces watertight meshes for any sparse or full
octree description of the original bitmap and can even handle sharp
features if necessary. In the remainder of this paper, we will call
connectivity the adjacency structure of the octree, and geometry the
positions of the vertices stored at the heterogeneous leaves of this
octree as they roughly correspond to the connectivity and geometry
of a usual polygonal mesh (see Figure 1).

Connectivity Encoding At this stage, the octree representation
of the sign bitmap is encoded in a breadth-first fashion. Eight
children of each cell correspond to 27 grid corners, each of
them encoded using a context based arithmetic coder. For each
homogeneous child, a leaf bit is encoded in a separate stream
indicating whether the corresponding cell is indeed a leaf node—to
let the decoder know that no subsequent data is needed for that
particular subtree of the sign bitmap.

Geometry Encoding The sign bitmap alone is often sufficient
to approximate the original surface, by simply applying Dual

Contouring after assigning +/-1 values to outside/inside grid cor-
ners. A useful feature of this approximation is that the distortion
(i.e., error introduced by the encoding process) is bounded by the
grid cell size. For some applications, this level of precision may
prove sufficient (surface smoothing techniques are often applied
to improve the visual quality and the quantization error in many
cases). Otherwise, local geometric residuals are encoded for each
leaf cell to provide the final vertex positions. Each residual vector
is encoded in a local coordinate frame, as the normal component
typically bears more information than the tangential components,
and therefore needs a better quantization accuracy. At each leaf
cell, the local frame is given by the binary sign configuration
of that cell (see Figure 1, right), leading to 256 possible cases,
precomputed offline.

Discussion This algorithm provides, to the authors’ knowledge,
the most efficient compression of static isosurfaces. As such, it
can be used on time-varying sequences on each successive isosur-
face. Obviously, this straightforward approach is rather limited as
no temporal coherence in the sequence can be either detected or
taken advantage of to reduce the bitrate. A modification of this
approach to render the compression method more efficient is pre-
sented next.

3 VIDEO VS. DYNAMIC 3D SURFACE CODING

Recall that the input to our algorithm is a series of 3D volumetric
frames {Fi}, all sampled uniformly at the same resolution 2n + 1,
paired with isovalues {αi} determining the desired isosurfaces. The
naı̈ve choice of frame-by-frame compression mentioned above does
not take advantage of the temporal coherence. We thus propose
to rely on the paradigm of block-based motion prediction used in
video coding to exploit both geometrical and temporal coherence.

3.1 Video Coding

In video coding (e.g., in the MPEG format), a common approach
to encode a single frame at time t in a given video sequence is as
follows (Figure 2):
• predict frame t based on frame t-1 through motion prediction of

small pixel clusters called macroblocks;
• encode the estimated motion of each block;
• encode the prediction error image (i.e., the error between the pre-

diction and the actual frame).
The prediction error image is encoded using JPEG (i.e., block-

based DCT) or JPEG2000 (i.e., wavelets), two of the most effi-
cient algorithms in image compression. Note that if two successive
frames are too different as it happens in movies when a scene ends
and another one starts, the motion prediction and correction can
cost more than a direct encoding of the new frame; to deal with this
case, each frame is labeled as an I-frame or a P-frame: I-frames are
Individually encoded, while P-frames are Predicted from previous
frames.

3.2 From Video to Dynamic 3D Isosurfaces

We now wish to mimic the approach used in video compression
by first splitting the surface in small block-like parts, estimating
local motion of the isosurface parts from the previous isosurface,
then encoding the difference between the resulting prediction and
the exact shape in a compact bitstream. The most delicate step in
this encoding process is the motion estimation between two con-
secutive frames. Indeed, compression rates will be directly affected
the quality of the estimation. Additionally we have to deal with
3D shape matching instead of pixel comparisons, rendering the is-
sue significantly more complex. One simple strategy is to restrict



Figure 2: Illustrating differential prediction vs. block-based predic-
tion in MPEG: instead of recovering a video frame (top left) from
the previous one (top middle) with a difference image (top right), a
more efficient approach is to partition the new frame in blocks (bot-
tom left), and track these blocks onto the previous frame to their
best matching position (exaggerated in that figure for illustrative
purposes): the encoding of the few block motion vectors and the
resulting difference image (with much less range) requires less bits
due to the strong temporal coherence present in usual video se-
quences.

our attention to changes in the sign bitmap over time, thus reducing
the problem to motion search in three-dimensional binary images.
Then, for each macroblock in the predicted frame, we can search
for the best matching block in the previous frame, within a limited
search range. Matching error can be measured as the sum of ab-
solute differences (SAD) over all the values in a macroblock, just
as it is done in video compression. Alas, in general this approach is
not very effective. To see why a more complex solution is needed,
we have to understand the challenges that are specific to our prob-
lem:
• Lack of Correspondence: Since each isosurface is extracted inde-

pendently, there are no correspondences between vertex positions
of two consecutive shapes. As a result, even for a simple global
translation between two subsequent frames, new vertex positions
never reproduce the underlying motion exactly. Moreover, con-
nectivity often changes from frame to frame, which makes track-
ing vertices impossible in practice.

• Frame Difference: In the case of 2D video, the difference be-
tween two almost similar frames Ft−1 and Ft will typically pro-
duce an error image with a lower dynamic range compared to the
original Ft , that is, an image much cheaper to encode. Unfortu-
nately, this is no longer the case in our setting. Bear in mind that
when encoding a isosurface, we are basically working with a bi-
nary inside/outside function. Consequently reduction of dynamic
range is simply impossible: the difference between two frames
Ft −Ft−1 is equivalent to the exclusive “or” between the two. In
fact, the naı̈ve approach of subtracting two binary images and
encoding the resulting contour typically increases the amount of
information to be encoded, as shown in Figure 3 (left).

• Temporal Resolution: Unlike most video codecs which assume a
high frame rate (typical standards are 24-30 frames/second), here
we have to deal with arbitrary time step, thus arbitrary deforma-
tion.

• Improving the geometric rate/distortion curve: Although the
sign bitmap data provides a bounded-error approximation of the
shape, overall compression rates are dominated by the geometric
residuals (about 90%). Therefore, to achieve a significant com-
pression gain, we need to focus on the latter component.

3.3 General Approach

With the above considerations in mind, we propose the following
principles for compression of time-varying isosurfaces:

• Motion estimation needs to be as accurate as possible, and not
limited by the grid resolution. We therefore cast this task as
a local surface registration problem. As we are only interested
in high quality prediction, low-confidence estimates will be dis-
carded, and static encoding will be used in those regions instead.
Details are discussed in section 4.2.

• Instead of attempting to track the isosurface directly, we adopt
an indirect approach in which we track the surface distance field.
Then for each voxel in the narrow band, we use the estimated
distance values on its corners to predict a vertex position. See
section 4.3 for details.

• As motion prediction errors tend to follow a different distribution
from the static residuals, different categories of errors are quan-
tized and encoded separately, as shown in section 4.4.

4 COMPRESSION THRU BLOCK-BASED PREDICTION

We begin describing our contribution by providing a simplified
overview of the encoding/decoding scheme:

ALGORITHM:
Given two consecutive isosurfaces Si and Si−1

Estimate motion vectors M from Si−1 to Si (encoder only)
Encode/decode M
Predict Si based on Si−1 and M
Encode/decode prediction residuals.

We now describe the various steps of our encoding/decoding al-
gorithm, pointing out the choices we made to render the technique
as scalable as possible.

4.1 Isosurface Macroblocks

We chose to treat each frame as an array of macroblocks of user-
defined size (e.g., 8×8×8 voxels in most of our tests), and encode
one set of motion parameters per macroblock. Note that while us-
ing simple blocks for motion prediction may be very suboptimal in
some 3D animation scenarios, it becomes a practical choice when
dealing with time-varying topology.

4.2 Motion Estimation

While video coding algorithms typically use pixel-based trans-
lational motion of blocks (i.e., displacements with granularity
defined by a fixed fraction of the pixel size), this fixed granularity is
too limiting in our context as our type of data carries also sub-voxel
information. To achieve better motion estimation through accurate
geometric fitting, we change the approach as follows.

Splitting the Grid in Blocks Given an isosurface Si to be pre-
dicted at time step i, let Bi be the set of heterogeneous macroblocks
intersected by Si. We first partition the surface Si into block-sized
regions Pj such as

⋃
j Pj = Si and Pj ∩Pk = /0 for any j 6= k. That

is, for each macroblock b j ∈ Bi, we define Pj the subset of vertices
of Si that are in b j.

Block Backtracking The goal of the next step is to find a region
of the previous surface Si−1 (that both the coder and the decoder
know at this point) that best approximate the shape present in a
given block. As the deformation field between two successive
frames can be arbitrary, we cannot expect to find a “perfect fit”
between the shape of the surface within a block and a part of the
previous surface. We will therefore only look for a good-enough
fit; in other words, we wish to find a translation Tj for each block
b j that minimizes the squared distance metric between TjPj and
a region of Si−1 (see Figure 3). Note that we restrict our search
to translational transformation for the same reasons that video



compression techniques use translation only: this simple temporal
domain prediction technique (known as motion predictive coding
in the context of video) is adopted because of its computational
simplicity as well as its coding gain (very few parameters need to
be sent). Since prediction is applied to local blocks in temporally
adjacent frames, the union of translations provides a reasonable
approximation.

Block-based Shape Matching To find the best local fit for each
Pj, we employ a local registration approach where each mac-
roblock patch is registered against the previous isosurface through
the geometric optimization procedure proposed by Mitra et al. [21].
This method is a generalization of the Iterative Closest Point algo-
rithm [7], offering improved stability and convergence rate. Al-
though the original technique is designed for registration of point
clouds, we adapted the algorithm to handle our isosurface shape
matching as follows:

1. Given the previous isosurface Si−1 (as known to the decoder),
construct an approximation d̃2 of the square of the distance to
Si−1. To achieve a high-quality approximation, we sample the
squared distance to Si−1 at twice the original grid resolution.

2. Given the set of vertices Pj in the macroblock b j, find a

translation T that minimizes d̃2(T (Pj),Si−1). This is done
by a Gauss-Newton optimization procedure, employing
a gradient descent step at each iteration [21]. Note that
d̃2 gives us a closed form quadratic error potential for
every point in space: as a result, a gradient descent di-
rection can be easily found for every point q ∈ Pj, and a
general minimization step can be computed by solving a
least-squares linear system (see Appendix A for more details).

Algorithmic Details To compute and store the d̃2 field, we use
the d2Tree octree-based structure [21], where each cell stores the
polynomial coefficients of the locally fitted quadratic approximant.
The fitting process involves solving a local linear least-squares
system for each relevant cell, making the evaluation of d̃2 the
most computationally demanding step in the encoding process.
However, we render the process efficient by restraining the
computations to within a fixed distance from the block: a perfect
match with the previous surface is most unlikely to be at a long
range, but rather nearby the block’s spatial position. Moreover,
we implemented a lazy evaluation of d̃2, i.e., approximants are
evaluated on demand only, thus avoiding unnecessary computations
for cells that are not used during the registration process. Finally,
the least-squares matrix is the same for all non-boundary cells
(one other advantage of only using translations!), and therefore
we precompute its inverse once and for all. These optimizations
save a significant amount of computation and memory, making the
approach practical yet still robust.

Checking Quality of Match The best fit is only valid if it is a
good-enough estimate; otherwise, sending the motion estimate
followed by a large error correction may be require more bits than
sending the right shape in the first place. Consequently, in cases
when the final registration error of a block exceeds an acceptable
threshold, we discard the prediction and issue a “no-motion” flag
instead. The corresponding macroblock is then treated by the
decoder as an I-block, i.e., encoded by the static method.

Handling Fast Motion So far we have assumed only moderate
inter-frame deformations, i.e., low-speed motion. Naturally, the
above algorithm can handle faster motion by simply increasing the

approximation coverage around the surface. In practice, however,
this change turns out to be too computationally extensive. An alter-
native approach is to find a coarse motion vector by a simple voxel-
based search (MPEG-style) over the distance field which needs to
be evaluated anyway, then refine the motion estimate step using the
registration-based local search. Our fast voxel-based motion search
extends the method of Chalidabhongse and Kuo [6] to the 3D case.

Figure 3: Left, for a surface slightly shifted (here, a disk moved to
the right), the difference contour between two time steps is more
verbose than each of the steps. Right, shown is a local (i.e., block-
sized) surface motion between two subsequent frames, and the re-
sult of a local registration procedure.

4.3 Motion Compensation

From the previous frame and the motion vectors, the decoder must
now start deducing the new frame: this process is typically referred
to as motion compensation in video coding. We now review the
main steps involved in our 3D extension.

Connectivity Encoding/Decoding We first proceed by sending
the connectivity (i.e., the inside/outside function of all grid nodes)
of the new frame using the static encoding described in [16].
Our tests has shown that there is very little to gain to try to
predict connectivity from the motion vector, as the encoding of
the full-blown information only requires a few bits (connectivity
typically represents 10% of the total bitstream). This design choice
also allows rapid progressive display of the decoded isosurface,
which is not possible when connectivity and geometry bitstreams
are interleaved.

Vertex Position Prediction Given the correct connectivity, the de-
coder knows that each heterogeneous cell needs to find an inside
vertex position. As stated earlier, due to connectivity changes and
sampling artifacts we cannot in general trace vertex positions di-
rectly. We therefore proceed on a cell-by-cell basis, trying to make
a good prediction of each vertex position given the previous frame,
the new motion vectors, and the new, correct connectivity. Two
cases can happen:

Figure 4: Predicting vertex position. The grey vertex is extracted
from the predicted distance function. The likelihood ellipsoid is
aligned with the local frame, describing the expected error distri-
bution. Using the motion vector, the position is mapped back to
the previous frame and the prediction is refined using the nearest
original vertex within the likelihood ellipsoid.



• First, a prediction on the vertex position of a heterogeneous cell
is used only if the predicted distance values in the narrow band
agree with the actual connectivity. Otherwise, we know that any
temporal prediction of the new vertex position is pointless: too
much deformation has happened locally. Note that this case hap-
pens quite often for fast motion. For those unpredictable posi-
tions, the decoder simply expects the coder to send the correct
position using the spatial encoding used in [16], i.e., using a nor-
mal and tangential components from a prediction purely deduced
from the connectivity.

• Otherwise, the decoder first extracts a vertex position x1 from the
predicted distance function. The final predicted position is ob-
tained as follows. Using the motion vector, we map x1 back to
the previous frame, and find the vertex x2 closest to it within the
likelihood ellipsoid. The ellipsoid is defined in the local frame (as
defined by the voxel connectivity) with its radii being parameters
specified a-priori. These correspond to typical standard devia-
tions of the error in the normal/tangential directions. If there is
no such vertex, prediction is discarded. Otherwise, x2 is the pre-
dicted position. This heuristic has been, in all our tests, the most
reliable way to filter out predictions that do not help reduce the
total entropy. See Figure 4 for an illustration.

In fact, whether or not a prediction is available, our tests has
shown that the tangential components of the prediction are mostly
noise (therefore, not helpful for prediction): the decoder thus only
uses the normal component of the prediction. Finally, we encode,
send, and decode the geometric residuals, i.e., geometry predic-
tion error, using the static approach from [16] (as we have already
exploited temporal coherence), which completes the process. The
next section focuses on arithmetic coding of different data compo-
nents.

4.4 Context-based Arithmetic Coding

Further reduction in bit rates are obtained using context-based
coding as explained next.

Motion Vector Encoding
As motion vectors represent the least dominant component in the
overall bit rate, we use a straightforward encoding scheme. For
each macroblock, a single bit flag is first generated, indicating
if the block has a motion vector. Then for each motion vector,
X, Y and Z components are uniformly quantized and encoded
separately, using a context-based arithmetic coder. The context
for each component is based on the values of the already encoded
motion vectors of the immediate neighbors.

Connectivity Encoding
Our connectivity encoding scheme uses exactly the same context as
the one for static isosurfaces [16]: based on our tests, this context
appears to be superior to others.

Geometry Encoding
Geometric information, i.e., the positions of the vertices inside het-
erogeneous cells can also benefit from context encoding. The re-
sults reported in this paper have been generated by separating the
encoding of the residuals for predicted vs. unpredicted vertices (see
Section 4.3). Indeed, they show very different distributions, and are
therefore better encoded using two streams. The stream for pre-
dicted vertices is best encoded using a Lloyd quantization on the
residual, as the error distribution shows a significant peak with few
outliers. Finally, the context used in both cases is the connectivity-
based, 8-bit context used in [16].

Figure 5: Fluid simulation with falling droplets generating ripples
and splashes.

Figure 6: Another simulation of splashing fluid, with high topolog-
ical complexity.

5 RESULTS

We are faced with the same issues as the authors from [16] re-
ported: we are not aware of any existing compression techniques
for time-varying isosurfaces, and comparing our compression per-
formance with methods for different data modalities (e.g., volumes)
is bound to be biased. This makes the comparisons of our results
quite challenging. For a fair assessment of the performance of our
motion-prediction technique (MP), we compare it to the frame-by-
frame approach (FF) where each frame uses the progressive encod-
ing of [16] with the best published rates for an isosurface encoder.
We focused our tests on highly dynamic models (fast motion and/or
evolution of the surfaces) as it is the most challenging type of mo-
tion compression: obviously, a simple translation motion of an ob-
ject can be achieved with extremely low rates, but such encoding is
not as interesting.

To demonstrate our results, we used three challenging
datasets:
• DROPLETS Dimensions: 2573 × 20. A fluid simulation with

topology changes (see Figure 5).
• FLUIDSPLASH Dimensions: 2573 × 20. Another fluid simula-

tion, this time of a splash with a high topological complexity (see
Figure 6).

• HEADSCAN Dimensions: 2573 × 36. An MRI head scan, sam-
pled at different isovalues to visualize different tissues (see Fig-
ure 7, left).
Figure 8 illustrates the rate/distortion (R-D) performance of both

methods. Table 1 provides some concrete rates for the median quan-
tization parameters. The results of our dynamic surface encoder on
such fast-pace animation exhibit a typical gain of 12% to 18% over
the best frame-by-frame encoding method. It can be seen from the
R-D curves that the highest gain is achieved for lower rates, reflect-



Figure 8: Rate/distortion curves for the two fluid sequences and the MRI headscan sequence. We compare compression with motion prediction
to frame-by-frame encoding for different quantizations. The x-axis represents the number of bytes, while the y-axis represents the L 2 distance
between the decompressed version and the original sequence (obtained by summing each L 2 distance for each frame) as measured by
MESH [4].

Figure 7: MRI headscan sequence (the visible human dataset sam-
pled at different iso-values). Note the amount of noise and topolog-
ical complexity in the middle frame.

ing the well known fact that fine detail is hard to encode. On the
other hand, it is precisely the high frequency data that dominates
the bit rate, hence the moderate overall gain.

This leads us to the important question of the most appropriate
distortion measure for isosurfaces. Minimizing the L 2 distance to
the originally extracted isosurface (a usual quality criterion) turns
out to be quite costly. The reason is that we are forced to encode
the exact vertex coordinates, as chosen by the extraction procedure.
The actual ground truth, however, is the original volume itself, and
various contouring algorithms exist to extract the actual surface.
Therefore, using the volume data for error assessment may be the
right choice for many applications. Designing a codec with such
error in mind would allow more freedom in vertex placements—
thus greatly reducing the bitstream size.

Finally, we note that our compression technique is also progres-
sive “in space”: as more bits come in, the decoder can visualize
a progressive refinement of the next frame. It was our initial goal
to send the animation frame by frame to get a nicely progressive
codec; however, we believe that using fully space-time compres-
sion, where the user cannot visualize the whole result until the
whole sequence is sent but for which more freedom in the way we
compress the space-time data is available, could give dramatically
better compression. Unfortunately, this approach does not lend it-
self to streaming, while our presented method does.

Dataset # frames FF MP Gain

Droplets 20 1528932 1343131 12%
FluidSplash 20 2196948 1841577 16%
Headscan 36 7185869 5935626 18%

Table 1: Comparing compression performance of motion prediction
vs. frame-by-frame mode. Rates are shown in bytes.

6 DISCUSSION AND FUTURE WORK

We have presented an approach to encoding time varying isosur-
faces inspired by the simple framework used in video encoding.

Mixed with the progressive encoding method of Lee et al.[16] for
static isosurface compression, we provided a codec allowing rapid,
progressive display of the sequence during decoding. The unstruc-
tured nature of time-varying isosurfaces allows our algorithm to
deal naturally with surfaces of high geometric complexity and dy-
namic topology, unlike any of the existing dynamic 3D geometry
codecs. Although beyond the scope of this paper, the method may
also prove useful to encoding of additional surface properties, such
as normals, color, texture, or in the context of fluid simulation, den-
sity and velocity fields: the latter is of particular interest here, as it
eliminates the need for motion estimation.

Further potential improvements are numerous: nearly all opti-
mization ideas that have been proposed for MPEG and H.264, such
as the use of bi-directional prediction (B-frames), variable mac-
roblock size, etc. can all be added to our framework. Our algo-
rithm could also gain from improving the efficiency of the local
registration method. Finally, extending our method to other non-
conformal representations of time-varying geometry, such as mov-
ing point sets and free-viewpoint video could also be of interest.

ACKNOWLEDGEMENTS

We are grateful to Haeyoung Lee, Sanjit Patel and Yiying Tong
for their insights and to Santiago Lombeyda, Andreas Söderström,
Adam Bargteil and Richard Keiser for their data sets. The research
has been funded in part by the Integrated Media Systems Center (a
National Science Foundation Engineering Research Center, Coop-
erative Agreement No. EEC-9529152), and by DOE (DE-FG02-
04ER25657) and NSF (CCR-0133983, DMS-0453145) grants.

REFERENCES

[1] Marc Alexa and Wolfgang Müller. Representing animations by prin-
cipal components. Computer Graphics Forum, 19(3), 2000.

[2] Nizam Anuar and Igor Guskov. Extracting animated meshes with
adaptive motion estimation. In Vision, Modeling, and Visualization,
pages 63–71, 2004.

[3] Adam W. Bargteil, Tolga G. Goktekin, James F. O’Brien, and John A.
Strain. A semi-lagrangian contouring method for fluid simulation.
ACM Transactions on Graphics, 25(1), 2006.

[4] MESH : Measuring Error between Surfaces using the Hausdorff dis-
tance. http://mesh.epfl.ch.

[5] Hector M. Briceo, Pedro V. Sander, Leonard McMillan, Steven
Gortler, and Hugues Hoppe. Geometry videos: a new representa-
tion for 3d animations. In SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer animation, pages
136–146, 2003.

[6] Junavit Chalidabhongse and C.-C. Jay Kuo. Fast motion vector es-
timation using multiresolution-spatio-temporal correlations. IEEE



Trans. on Circuits and Systems for Video Technology, 7(3):477–488,
1997.

[7] Yang Chen and Gérard Medioni. Object modelling by registration of
multiple range images. Image Vision Comput., 10(3):145–155, 1992.

[8] Benjamin Gregorski, Joshua Senecal, Member-Mark A. Duchaineau,
and Member-Kenneth I. Joy. Adaptive extraction of time-varying iso-
surfaces. IEEE Transactions on Visualization and Computer Graph-
ics, 10(6):683–694, 2004.

[9] Sumit Gupta, Kuntal Sengupta, and Ashraf A. Kassim. Compression
of dynamic 3d geometry data using iterative closest point algorithm.
Comput. Vis. Image Underst., 87(1-3):116–130, 2002.

[10] Stefan Guthe and Wolfgang Straßer. Real-time decompression and
visualization of animated volume data. In VIS ’01: Proceedings of
the conference on Visualization ’01, pages 349–356, Washington, DC,
USA, 2001. IEEE Computer Society.

[11] Lawrence Ibarria, Peter Lindstrom, Jarec Rossignac, and Andrzej
Szymczak. Out-of-core compression and decompression of large n-
dimensional scalar fields, 2003.

[12] Lawrence Ibarria and Jarek Rossignac. Dynapack: space-time
compression of the 3d animations of triangle meshes with fixed
connectivity. In SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer animation, pages
126–135, 2003.

[13] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual contour-
ing of hermite data. ACM Trans. Graph., 21(3):339–346, 2002.

[14] Zachi Karni and Craig Gotsman. Compression of soft body animation
sequences. Computers & Graphics, 28:25–34, 2004.

[15] Liu Kwan-Ma, Diann Smith, Ming-Yun Shih, and Han-Wei Shen. Ef-
ficient encoding and rendering of time-varying volume data. Technical
report, 1998.

[16] Haeyoung Lee, Mathieu Desbrun, and Peter Schröder. Progressive
encoding of complex isosurfaces. ACM Trans. Graph., 22(3):471–
476, 2003.

[17] Jerome Edward Lengyel. Compression of time-dependent geometry.
In SI3D ’99: Proceedings of the 1999 symposium on Interactive 3D
graphics, pages 89–95, 1999.

[18] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In Computer Graphics
(Proc. of SIGGRAPH), volume 21, pages 163–169, 1987.

[19] Ajith Mascarenhas, Martin Isenburg, Valerio Pascucci, and Jack
Snoeyink. Encoding volumetric grids for streaming isosurface ex-
traction. In 3DPVT ’04: Proceeding 2nd International Symposium
on 3D Data Processing, Visualization and Transmission, 2004, pages
665–672, 2004.

[20] Alexander McKenzie, Santiago Lombeyda, and Mathieu Desbrun.
Vector field analysis and visualization through variational clustering.
In Eurographics - IEEE VGTC Symposium on Visualization 2005,
2005.

[21] Niloy J. Mitra, Natasha Gelfand, Helmut Pottmann, and Leonidas
Guibas. Registration of point cloud data from a geometric optimiza-
tion perspective. In SGP ’04: Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, pages 22–
31, New York, NY, USA, 2004. ACM Press.

[22] Ariel Shamir and Valerio Pascucci. Temporal and spatial level of de-
tails for dynamic meshes. In VRST ’01: Proceedings of the ACM
symposium on Virtual reality software and technology, pages 77–84,
New York, NY, USA, 2001. ACM Press.

[23] Bong-Soo Sohn, Chandrajit Bajaj, and Vinay Siddavanahalli. Feature
based volumetric video compression for interactive playback. In VVS
’02: Proceedings of the 2002 IEEE symposium on Volume visualiza-
tion and graphics, pages 89–96, Piscataway, NJ, USA, 2002. IEEE
Press.

[24] Stephan Würmlin, Edouard Lamboray, and Markus Gross. 3d video
fragments: Dynamic point samples for real-time free-viewpoint video.
In VRST ’01: Proceedings of the ACM symposium on Virtual reality
software and technology, pages 3–14, Amsterdam, The Netherlands,
2004. Elsevier Ltd.

APPENDIX A

For completeness, we provide a derivation of the geometric opti-
mization procedure used for macroblock registration. Due to lim-
ited space, we only explain the process in 2D; details can be found
in the original paper [21].
For an isosurface Si, the local squared distance approximant d̃2 at
point p = (x,y) is given by

d̃2(p) = Ax2 +Bxy+Cy2 +Dx+Ey+F,

where A,B,C,D,E,F are the approximant coefficients, valid locally
around p. Note that for any point q on Si, d̃2(q) = 0 by defini-
tion. Now, given a set of points {p j} on isosurface Si+1, we find a
translation T that aligns them best with Si by iteratively minimiz-
ing ∑ j d̃2(p j + T ). In each iteration (x j,y j) 7→ (x j + tx,y j + ty): if

for a small translation (tx, ty), d̃2(p j) stays approximately fixed, the
residual error for (p j) is given by

ε(tx, ty) =
[

x j + tx y j + ty 1
]
Wp j[

x j + tx y j + ty 1
]t

,

where Wp j is a matrix representing the approximant d̃2 around p j.
Setting ∇ε to zero, we obtain the linear system:[

∑
j

(
2A B
B 2A

)][
tx
ty

]
=

−

[
∑

j

(
2Ax j +By j +D
Bx j +2Cy j +E

)]

This system is solved at each iteration of the gradient descent
process, until a convergence criterion is satisfied or the maximum
number of iterations is reached.
The approximant d̃2(.) is fitted locally by solving another least-
squares system. The corresponding matrix does not depend on
a global coordinate system and therefore can be precomputed for
most cases.


