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Visual quality, low computational cost, and numerical stability are foremost goals in computer

animation. An important ingredient in achieving these goals is the conservation of fundamen-
tal motion invariants. For example, rigid and deformable body simulation benefits greatly from

conservation of linear and angular momenta. In the case of fluids, however, none of the current

techniques focuses on conserving invariants, and consequently, they often introduce a visually
disturbing numerical diffusion of vorticity. Visually just as important is the resolution of complex

simulation domains. Doing so with regular (even if adaptive) grid techniques can be computa-
tionally delicate. In this paper, we propose a novel technique for the simulation of fluid flows.

It is designed to respect the defining differential properties, i.e., the conservation of circulation

along arbitrary loops as they are transported by the flow. Consequently, our method offers several
new and desirable properties: arbitrary simplicial meshes (triangles in 2D, tetrahedra in 3D) can

be used to define the fluid domain; the computations involved in the update procedure are effi-

cient due to discrete operators with small support; and it preserves discrete circulation avoiding
numerical diffusion of vorticity.

Categories and Subject Descriptors: I.3.6 [Computer Graphics]: Methodology and Techniques

Fig. 1: Discrete Fluids: we present a novel geometric integration scheme for fluids applicable to tetrahedral meshes of arbitrary domains. Aside
from resolving the boundaries precisely, our approach also provides an accurate treatment of vorticity through a discrete preservation of Kelvin’s
circulation theorem. Here, a hot smoke cloud rises inside a bunny shaped domain of 7K vertices (32K tetrahedra—equivalent complexity of a
193 regular grid), significantly reducing the computational cost of the simulation for such an intricate boundary compared to regular grid-based
techniques (0.47s/frame on a Pentium 4, 3GHz).

1. INTRODUCTION

Conservation of motion invariants at the discrete computational level, e.g., linear and angular momenta in solid me-
chanics, is now widely recognized as being an important ingredient in the construction of numerically stable simula-
tions with a high degree of visual realism [Marsden and West 2001]. Much of the progress in this direction has been
enabled by a deeper understanding of the underlying geometric structures and how they can be preserved as we go
from continuous models to discrete computational realizations. So far, advances of this type have yet to deeply impact
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fluid flow simulations. Current methods in fluid simulation are rarely able to conserve defining physical properties.
Consider, for example, the need in many methods to continually project the numerically updated velocity field onto
the set of divergence free velocity fields; or the need to continually reinject vorticity lost due to numerical dissipation
as a simulation progresses. In this paper we introduce a novel, geometry-based algorithm for fluid simulation which,
among other desirable properties, exactly preserves vorticity at a discrete level.

1.1 Previous Work

Fluid Mechanics has been studied extensively in the scientific community both mathematically and computationally.
The physical behavior of incompressible fluids is usually modeled by the Navier Stokes (NS) equations for viscous
fluids and by the Euler equations for inviscid (non-viscous) fluids. Numerical approaches in computational fluid
dynamics typically discretize the governing equations through Finite Volumes (FV), Finite Elements (FE) or Finite
Difference (FD) methods. We will not attempt to review the many methods proposed (an excellent survey can be found
in [Langtangen et al. 2002]) and instead focus on approaches used for fluids in computer graphics. Some of the first
fluid simulation techniques were based on vortex blobs [Yaeger et al. 1986], vortex particles [Gamito et al. 1995] and
Finite Differences [Foster and Metaxas 1997]. To circumvent the ill-conditioning of the latter approach for large time
steps and achieve unconditional stability, Jos Stam [1999; 2001] introduced to the graphics community the method of
characteristics for fluid advection and the Helmholtz-Hodge decomposition [Chorin and Marsden 1979] to ensure the
divergence-free nature of the fluid motion. The resulting algorithm, called Stable Fluids, is an extremely successful
semi-Lagrangian approach based on a regular grid Eulerian space discretization, that led to many refinements and
extensions which have contributed to the enhanced visual impact of fluid animations. Among others, these include
the use of staggered grids and monotonic cubic interpolation [Fedkiw et al. 2001]; improvements in the handling of
interfaces [Foster and Fedkiw 2001; Guendelman et al. 2005]; extensions to curved surfaces [Stam 2003; Shi and Yu
2004] and visco-elastic objects [Goktekin et al. 2004]; as well as goal oriented control of fluid motion [Treuille et al.
2003; McNamara et al. 2004; Pighin et al. 2004; Shi and Yu 2005].

1.2 Shortcomings of Stable Fluids

However, the Stable Fluids technique is not without drawbacks. Chief among them is the difficulty of accommodating
complex domain boundaries with regular grids, as addressed recently with hybrid meshes [Feldman et al. 2005]. Local
adaptivity [Losasso et al. 2004] can greatly help, but the associated octree structures require significant overhead. Note
that regular partitions of space (adaptive or not) can suffer from preferred direction sampling, leading to visual artifacts
similar to aliasing in rendering.

Additionally, the different variants of the original Stable Fluids algorithm [Stam 1999] are all based on a class of
discretization approaches known in Computational Fluid Dynamics as fractional step methods. In order to numer-
ically solve the Euler equations over a time step, they proceed in two stages. They first update the velocity field
assuming the fluid is inviscid and disregard the divergence-free constraint. Then, the resulting velocity is pro-
jected onto the closest divergence-free flow (in the L 2 sense) through an exact Helmholtz-Hodge decomposition.
Despite the simplicity of this fractional integration, one of its consequences is excessive numerical diffusion: ad-
vecting velocity before reprojecting onto a divergence-free field creates significant energy loss [Chang et al. 2002].
While this shortcoming is not a major issue in graphics as the visual impact of such a loss is not always signifi-
cant, another consequence of the fractional integration is an excessive diffusion of vorticity. This last issue affects
the motion significantly, since the presence of vortices in liquids and volutes in smoke is one of the most impor-
tant visual cues of our perception of fluidity. Vorticity confinement [Steinhoff and Underhill 1994; Fedkiw et al.
2001] was designed to counteract this diffusion through local reinjection of vorticity. Unfortunately, it is hard to
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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control how much can safely be added back without affecting stability or plausibility of the results. Adding vortex
particles can further reduce this loss [Selle et al. 2005], but adds computational cost to the Stable Fluids method.
One can understand this seemingly inevitable numerical diffusion through the following geometric
argument: the solutions of Euler equations are geodesic (i.e., shortest) paths on the manifold of
all possible divergence-free flows; thus, advecting the fluid out of the manifold (to simulate a
time integration over a small time step) is not a proper substitute to this intrinsic constrained
minimization, even if the post re-projection is, in itself, exact. For a more detailed numerical analysis of this flaw,
see [Chang et al. 2002].

1.3 Contributions

In this paper we show that a careful setup of discrete differential quantities, designed to respect structural relationships
such as vector calculus identities, leads in a direct manner to a numerical simulation method which respects the defining
geometric structure of the fluid equations. A key ingredient in this approach is the location of physical quantities on the
appropriate geometric structures (i.e., vertices, edges, faces, or cells). This greatly simplifies the implementation as all
variables are intrinsic. It also ensures that the approach works for curved manifolds without any changes. With the help
of a discrete calculus on simplicial complexes we construct a novel integration scheme which employs intrinsically
divergence-free variables. Thus, our time integration method removes the need to enforce the usual divergence-free
constraint: it preserves circulation (and consequently vorticity) by construction while being simple and numerically
efficient, achieving high visual quality even for large time steps. Although our approach shares the same algorithmic
structure as Stable Fluids based methods (use of backward path tracing and sparse linear systems), it fundamentally
differs from previous techniques on the following points:

• our technique is based on a classical vorticity formulation of the Navier-Stokes and Euler equations; unlike
most vorticity-based methods in CG, our approach is Eulerian as we work only with a fixed mesh and not a
Lagrangian representation involving vorticity particles (or similar devices);
• we adopt an unconditionally-stable, semi-Lagrangian backward advection strategy as in Stable Fluids; however,

in contrast to Stable Fluids, we do not point-sample velocity, but rather compute integrals of vorticity; this
simple change removes the need to enforce incompressibility of the velocity field through projection; note that
this convenient recourse to a vorticity-based formulation has been proposed by multiple authors (see, for instance,
[Weißmann 2006; Angelidis et al. 2006; Park and Kim 2005; Angelidis et al. 2005; E and Liu 1996b; E and Liu
1996a]).
• our strategy exactly preserves circulation along discrete loops in the mesh; capturing this geometric property

of fluid dynamics guarantees that vorticity does not get dissipated as is typically the case in Stable Fluids; con-
sequently no vorticity confinement (or other post processes) are required to maintain this important element of
visual realism;
• our method has multiple advantages from an implementation point of view: it handles arbitrary meshes

(regular grids, hybrid meshes [Feldman et al. 2005], and even cell complexes) with non-trivial topology; the oper-
ators involved have very small support leading to very sparse linear systems; all quantities are stored intrinsically
(scalars on edges and faces) without reference to global or local coordinate frames (unlike recent work on Finite
Volume fluid simulation [Wendt et al. 2005]). These novel features are achieved with a computational cost similar
to previous Stable Fluids approaches.

The organization of this paper is as follows. In Section 2, we motivate our approach through a brief overview of the
theory and computational algorithms for Fluid Mechanics. We present a novel discretization of fluid mechanics and
a circulation-preserving integration algorithm in Section 2.2. The computational machinery required by our approach
is developed in Section 3, while the algorithmic details are given in Section 4. Several numerical examples are shown
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Fig. 2: Domain Mesh: our fluid simulator uses a simplicial mesh to discretize the equations of motion; (left) the domain mesh (shown as a cutaway
view) used in Fig. 1; (middle) a coarser version of the flat 2D mesh used in Fig. 7; (right) the curved triangle mesh used in Fig. 11.

and discussed in Section 5.

2. OF MOTION AND DISCRETE REPRESENTATIONS OF FLOWS

Before going into the details of our algorithm we discuss the underlying fluid equations with their relevant properties
and how these can be captured over discretized domains.

2.1 Geometry of Fluid Motion

Euler Fluids Consider an inviscid, incompressible, and homogeneous fluid on a domain D in 2 or 3D. The Euler
equations, governing the motion of this fluid (with no external forces for now, and slip conditions on boundaries), can
be written as:

∂u
∂ t

+u ·∇u = −∇p ,

div(u) = 0 , u ‖ ∂D .

(1)

We assume unit density (ρ = 1) and use u to denote the fluid velocity, p the pressure, and ∂D the boundary of the fluid
region D . The pressure term in Eq. (1) can be dropped easily by rewriting the Euler equations in terms of vorticity.
Recall that traditional vector calculus defines vorticity as the curl of the velocity field, ωωω = ∇×u. Taking the curl
(∇×) of Eq.(1), we obtain

∂ωωω

∂ t
+Luωωω = 0 ,

ωωω = ∇×u , div(u) = 0 , u ‖ ∂D .

(2)

where Luωωω is the Lie derivative, equal in our case to u ·∇ωωω −ωωω ·∇u. In this form, this vorticity-based equation
states that vorticity is simply advected along the fluid flow.1 Note that Equation (2) is equivalent to the more familiar
Dωωω

Dt = ωωω ·∇u, and therefore already includes the vortex stretching term appearing in Lagrangian approaches. Roughly
speaking, vorticity measures the local spin of a fluid parcel. Therefore, vorticity advection means that this local spin
moves with the flow.

1Note that this is a more canonical characterization of the motion than the velocity-based one: the latter was also an advection but under the
additional constraint of keeping the velocity field divergence-free, which is the reason for the gradient of pressure.
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Since the integral of vorticity on a given bounded surface equals (by Stokes’ theorem) the circulation around the
bounding loop of the surface, one can explain the geometric nature of an ideal fluid flow in particularly simple terms:
the circulation around any closed loop C is conserved throughout the motion of this loop in the fluid. This key result
is known as Kelvin’s circulation theorem, and is usually written as:

Γ(t) =
∮

C (t)
u ·dl = constant , (3)

where Γ(t) is the circulation of the velocity on the loop C at time t as it gets advected in the fluid. This will be the key
to our time integration algorithm.

Viscous Fluids In contrast to ideal fluids, incompressible viscous fluids generate very different fluid behaviors. They
can be modelled by the Navier-Stokes equations (compare with Eq. (1)):

∂u
∂ t

+u ·∇u = −∇p+ν∆u ,

div(u) = 0 , u|∂D = 0 .

(4)

where ∆ denotes the Laplace operator, and ν is the kinematic viscosity. Note that different types of boundary conditions
can be added depending on the chosen model. Despite the apparent similarity between these two models for fluid flows,
the added diffusion term dampens the motion, resulting in a slow decay of circulation. This diffusion also implies that
the velocity of a viscous fluid at the boundary of a domain must be null, whereas an inviscid fluid could have a non-zero
tangential component on the boundary. Here again, one can avoid the pressure term by taking the curl of the equations
(compare with Eq. (2)):

∂ωωω

∂ t
+Luωωω = ν∆ωωω ,

ωωω = ∇×u , div(u) = 0 , u|∂D = 0 .

(5)

2.2 Discrete Setup

For a discrete time and space numerical simulation of Eqs. (2) and (5) we need a discretized geometry of the domain
(given as a simplicial mesh for instance), appropriate discrete analogs of velocity u and vorticity fields ωωω , along with
the operators which act on them. We will present our choices before describing the geometry-based time integration
approach.

2.2.1 Space Discretization. We discretize the spatial domain in which the flow takes place using a locally oriented
simplicial complex, i.e., either a tet mesh for 3D domains or a triangle mesh for 2D domains, and refer to this discrete
domain as M (see Figure 2). The domain may have non-trivial topology, e.g., it can contain tunnels and voids (3D)
or holes (2D), but is assumed to be compact. To ensure good numerical properties in the subsequent simulation we
require the simplices of M to be well shaped (aspect ratios bounded away from zero). This assumption is quite
common since many numerical error estimates depend heavily on the element quality. We use meshes generated with
the method of [Alliez et al. 2005]. Collectively we refer to the sets of vertices, edges, triangles, and tets as V , E, F ,
and T .

We will also need a dual mesh. It associates with each original simplex (vertex, edge, triangle, tet, respectively) its
dual (dual cell, dual face, dual edge, and dual vertex, respectively—see Fig. 3). The geometric realization of the dual
mesh uses tet circumcenters as dual vertices and Voronoi cells as dual cells; dual edges are line segments connecting
dual vertices across shared tet faces and dual faces are the faces of the Voronoi cells. Notice that storing values on
primal simplices or on their associated dual cells is conceptually equivalent, since both sets have the same cardinality.
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We will see in Section 3 that corresponding primal and dual quantities are related through a simple (diagonal) linear
operator.

Fig. 3: Primal and Dual Cells: the simplices of our mesh are vertices, edges, triangles and tets (top); their circumcentric duals are dual cells, dual
faces, dual edges and dual vertices (bottom).

2.2.2 Intrinsic Discretization of Physical Quantities. In order to faithfully capture the geometric structure of fluid
mechanics on the discrete mesh, we define the usual physical quantities, such as velocity and vorticity, through integral
values over the elements of the mesh M . This is the sharpest departure from traditional numerical techniques in CFD:
we not only use values at nodes and tets (as in FEM and FVM), but also allow association (and storage) of field
values at any appropriate simplex. Depending on whether a given quantity is defined pointwise, or as a line, area or
volume density, the corresponding discrete representation will “live” at the associated 0, 1, 2, and 3 dimensional mesh
elements. With this in mind we use a simple discretization of the physical quantities of fluid mechanics based on fluxes
associated to faces, reminiscent of Finite Volume methods (see also [Nicolaides and Wu 1997] for a similar setup for
Div-Curl equations).

Velocity as Discrete Flux To encode a coordinate free (intrinsic) representation of velocity on the mesh we use flux,
i.e., the mass of fluid transported across a given surface area per unit time. Note that this makes flux an integrated, not
pointwise, quantity. On the discrete mesh, fluxes are associated with the triangles of the tet mesh. Thus fluid velocity
u is treated as a 2-form and represented as a vector U of scalar values on faces (size |F |). This coordinate-free point
of view, also used in [Feldman et al. 2005], is reminiscent of the staggered grid method used in [Fedkiw et al. 2001]
and other non-collocated grid techniques (see [Goktekin et al. 2004]). In the staggered grid approach one does not
store the x,y,z components of a vector at nodes but rather associates them with the corresponding grid faces. We may
therefore think of the idea of storing fluxes on the triangles of our tet mesh as a way of extending the idea of staggered
grids to the more general simplical mesh setting. This was previously exploited in [Bossavit and Kettunen 1999] in
the context of E&M computations. It also makes the usual no-transfer boundary conditions easy to encode: boundary
faces experience no flux across them. Encoding this boundary condition for velocity vectors stored at vertices is far
more cumbersome.

Divergence as Net Flux on Tets Given the incompressibility of the fluid, the velocity field must be divergence-free
(∇ ·u = 0). In the discrete setting, the integral of the divergence over a tet becomes particularly simple. According
to the generalized Stokes’ theorem this integral equals the sum of the fluxes on all four faces: the discrete notion of
divergence is therefore simply the net flux for each tet. Divergence can therefore be stored as a 3-form, i.e., as a value
associated to each tet (a vector of cardinality |T |). The notion of incompressibility becomes particularly intuitive:
whatever gets in each tet must be compensated by whatever comes out (see Fig. 4).

Vorticity as Flux Spin Finally we need to define vorticity on the mesh. To see the physical intuition behind our
definition, consider an edge in the mesh. It has a number of faces incident on it, akin to a paddle wheel (see Figure 4,
right). The flux on each face contributes a torque to the edge. The sum of all these, when going around an edge, is
the net torque that would “spin” the edge. We can thus give a physical definition of vorticity as a weighted sum of
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 4: Discrete Physical Quantities: in our geometric discretization, fluid flux lives on faces (left), divergence lives on tets (middle), and vorticity
lives on edges (right).

fluxes on all faces incident to a given edge. This quantity is now associated with primal edges—or, equivalently, dual
faces—and is thus represented by a vector Ω of size |E|. Note that we will talk about discrete vorticity from now on
to mean “area integral of the vorticity vector field”, or equivalently, “integral of the vorticity seen as a 2-form”.

In Section 3, we will see that these physical intuitions can be formally derived from simple algebraic relationships.

2.3 Geometric Integration of Fluid Motion

Since we are using the vorticity formulation of the fluid equations (Eqs. (2) or (5)) the time integration algorithm must
update the discrete vorticity variables which are stored on each primal edge. We have seen that the fluid equations
state that vorticity is advected by the velocity field. The fundamental idea of our geometric integration algorithm is
thus to ensure that Kelvin’s theorem holds in the discrete setting: the circulation around any loop in the fluid remains
constant as the loop is advected. This can be achieved by backtracking loops: for any given loop at the current time,
determine its backtracked image in the velocity field (“where did it come from?”) and compute the circulation around
the backtracked loop. This value is then assigned as the circulation around the original loop at the present time, i.e.,
circulation is properly advected by construction (see Figure 5 for a depiction of this loop advection idea).

Since we store vorticity on primal edges, a natural choice for these loops are the bounding loops of the dual faces
associated to each primal edge (see Figure 3). Notice that these loops are polylines formed by sequences of dual
vertices around a given primal edge. Consequently an efficient implementation of this idea requires only that we
backtrack dual vertices in the velocity field (the same way primal vertices are backtracked in the traditional Stable
Fluids method). Once these positions are known all backtracked dual loops associated to primal edges are known.
These Voronoi loops can indeed generate any discrete, dual loop: the sum of adjacent loops is a larger, outer loop
as the interior edges cancel out due to opposite orientation as sketched in Fig. 5(right). The evaluation of circulation
around these backtracked loops will be quite straightforward. Invoking Stokes’ theorem, the integral of vorticity over
a dual face equals the circulation around its boundary. With this observation we can achieve our goal of updating
vorticities and, by design, ensured a discrete version of Kelvin’s theorem. The algorithmic details of this simple
geometric approach to time integration of the equations of motion for fluids will be given in Section 4.

3. COMPUTATIONAL MACHINERY

Now that we have described our choices of spatial and physical discretizations, along with a way to use them to
integrate the fluid’s motion, we must manipulate the numerics involved in a principled manner to guarantee proper
physical behavior. In this section, we point out that the intuitive definition of our physical quantities living at the dif-
ferent simplices of a mesh can be made precise through the definition of a discrete differential structure. Consequently,
the basic operators to go from fluxes to the divergence, curl, or Laplacian of the velocity field can be formally defined
through the use of discrete differential forms. We will mostly focus on presenting the practical implementation of the
few operators we need; more importantly, we will show that this implementation reduces to simple linear algebra with
very sparse matrices.
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Fig. 5: Kelvin’s Theorem: (left) in the continuous setting, the circulation on any loop being advected by the flow is constant. (middle) our discrete
integration scheme enforces this property on each Voronoi loop, (right) thus on any discrete loop.

3.1 Discrete Differential Structure

Integrals and Forms In Section 2.2, we have opted for manipulating the physical quantities in the form of a line,
surface, and volume integral computed directly on our meshed domain to render the setup entirely intrinsic, i.e., with
no need for vector fields to be stored with respect to arbitrary coordinate frames. Such an integral represents the
evaluation of a mathematical entity called a differential form. In the continuous three-dimensional setting, a 0-form
is simply a function on that 3D space. A 1-form, or line-form, is a quantity that can be evaluated through integration
over a curve. Thus a 1-form can be thought of as a proxy for a vector field, and its integral over a curve becomes
the circulation of this vector field. A 2-form, or area-form, is to be integrated over a surface, that is, it can be
viewed as a proxy for a vector perpendicular to that surface (and its evaluation becomes the flux of that vector field
through the surface); finally, a 3-form, or volume-form, is to be integrated over a volume and can be viewed as a
proxy for a function. Classic calculus and vector calculus can then be substituted with a special calculus involving
only differential forms, called exterior calculus—the basis of Hodge theory and modern differential geometry (for a
comprehensive discussion, see, for example, [Abraham et al. 1988]).

Discrete Forms and Their Representation However, in our framework, the continuous domain is replaced (or ap-
proximated) by a mesh, the only structure we can work with. Therefore, the integrated physical values we store on the
mesh corresponds to discrete differential k-forms [Desbrun et al. 2006]. A discrete differential k-form, k = 0,1,2, or 3,
is the evaluation (i.e., the integral) of the differential k-form on all k-cells, or k-simplices. In practice, discrete k-forms
can simply be considered as vectors of numbers associated to the simplices they live on: 0-forms live on vertices,
and are expressed as a vector of length |V |; correspondingly, 1-forms live on edges (length |E|), 2-forms live on faces
(length |F |), and 3-forms live on tetrahedra (length |T |). Dual forms, i.e., forms that we will evaluate on the dual mesh,
are treated similarly. The reader should now realize that in our discretization of physical quantities, the notion of flux
that we described is thus a primal 2-form (integrated over faces), while its vorticity is a dual 2-form (integrated over
dual faces), and its divergence becomes a primal 3-form (integrated over tetrahedra).

Discrete Differential Calculus on Simplicial Meshes These discrete forms can now be used to build the tools of
calculus through Discrete Exterior Calculus (DEC), a coherent calculus mimicking the continuous setting that only
uses discrete combinatorial and geometric operations [Munkres 1984; Hirani 2003]. At the core of its construction
is the definition of a discrete d operator (analog of the continuous exterior derivative), and a discrete Hodge star,
which will allow us to move values from the primal mesh to the dual mesh and vice-versa. For a more comprehensive
introduction to DEC and the use of discrete differential forms, we refer the interested reader to [Desbrun et al. 2006]
and [Bochev and Hyman 2006].
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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3.2 Two Basic Operators

The computations involved in our approach only require the definition of two basic operators: one is the exterior
derivative d, necessary to compute derivatives, like gradients, divergences, or curls; the other is the Hodge star, to
transfer values from primal simplices to dual simplices.

Exterior Derivative d Given an oriented mesh, we implement our first operator by simply assembling the incidence
matrices of the mesh. These will act on the vectors of our discrete forms and implement the discrete exterior derivative
operator d as explained in more details in Appendix A. For our 3D implementation, there are three sparse matrices
involved, which contain only entries of type 0, +1, and −1. Care is required in assembling these incidence matrices,
as the orientation must be taken into account in a consistent manner [Elcott and Schröder 2006]. The first one is d0,
the transpose of the incidence matrix of vertices and edges (|V | rows and |E| columns). Each row of the transpose
contains a single +1 and−1 for the end points of the given edge (and zero otherwise). The sign is determined from the
orientation of the edge. Similarly, the second matrix d1 is the transpose of the incidence matrix of edges and faces (|E|
rows and |F | columns), with appropriate +1 and−1 entries according to the orientation of edges as one moves around
a face. More generally dk is the transpose of the incidence matrix of k-cells on k +1-cells. A simple debugging sanity
check (necessary but not sufficient) is to compute consecutive products: d0 followed by d1 must be a matrix of zeros;
d1 followed by d2 must similarly give a zero matrix. This reflects the fact that the boundary of any boundary is the
empty set. It also corresponds to the calculus property that curl of grad is zero as is divergence of curl (see [Desbrun
et al. 2006]).

Hodge Star The second operator we need will allow us to transfer quantities back and forth between the primal and
dual mesh. We can project a primal k-form to a conceptually-equivalent dual (3−k)-form with the Hodge star. We will
denote ?0 (resp., ?1,?2,?3) the Hodge star taking a 0-form (resp., 1-form, 2-form, and 3-form) to a dual 3-form (resp.,
dual 2-form, dual 1-form, dual 0-form). In this paper we will use what is known as the diagonal Hodge star [Bossavit
1998] as it offers an acceptable approximation at very little computational cost. This operator simply scales whatever
quantity that is stored on mesh cells by the volumes of the corresponding dual and primal cells: let vol(.) denote the
volume of a cell (i.e., 1 for vertices, length for edges, area for triangles, and volume for tetrahedra), then

(?k)ii = vol(σ̃i)/vol(σi)

where σi is any primal k-simplex, and σ̃i is its dual (all other terms, off the diagonal, are zero). These linear operators,
describing the local metric, are diagonal and can be stored as vectors. Conveniently, the inverse matrices going from
dual to primal quantities are trivial to compute for this diagonal Hodge star.

Overloading Operators Note that both the dk and the ?k operators are typed: the subscript k is implicitly determined
by the cardinality of the argument. For example, the velocity field u is a 2-form stored as a vector U of cardinality
|F |. Consequently the expression dU implies use of the |T | × |F |-sized matrix d2. In the implementation this is
accomplished with operator overloading (in the sense of C++). We will take advantage of this in the paper from now
on and drop the dimension subscripts.

3.3 Offline Matrix Setup

With these overloads of d and ? in place, we can now set up the only two matrices (C and L) that will be used during
simulation. They respectively represent the discrete analogs of the curl and Laplace operators [Desbrun et al. 2006].

Curl Since we store fluxes on faces and gather them in a vector U , the circulation of the vector field u can be derived
as values on dual edges through ?U . Vorticity, typically thought of as a 2-form in fluid mechanics [Marsden and
Wenstein 1983], is easily computed by then summing this circulation along the dual edges that form the boundary of
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a dual face. In other words, ωωω = ∇×u becomes, in terms of our discrete operators, simply Ω = dT ?U . We therefore
create a matrix C = dT ? offline, i.e., the composition of an incidence matrix with a diagonal matrix.

Laplacian The last matrix we need to define (to handle viscous fluids) is the discrete Laplacian. The discrete analog
of ∆φφφ = (∇∇·−∇×∇×)φφφ = ωωω is simply (?d?−1dT ?+dT ?d) Φ = Ω as explained in Appendix B. This last matrix, a
direct composition of incidence and diagonal matrices, is precomputed and stored as L for later use.

4. IMPLEMENTATION

To facilitate a direct implementation of our integration scheme, we provide pseudocode in Figure 6. A series of
implementation details follow, providing comments on specific steps and how these relate to the machinery developed
in earlier sections.

//Load mesh and build incidence matrices

C← dT ?

L← ?d?−1dT ?+dT ?d

//Time stepping h
loop

//Advect Vorticities

for each dual vertex (tet circumcenter) ci
ĉi← PathTraceBackwards(ci);
vi← InterpolateVelocityField(ĉi);

for each dual face f
Ω f ← 0
for each dual edge (i, j) on the boundary of f

Ω f ←Ω f + 1
2 (vi +v j) · (ĉi− ĉ j);

//Add forces

Ω←Ω+h C F

//Add diffusion for Navier-Stockes

Ψ← SolveCG( (? −ν h L)Ψ = Ω );
Ω← ? Ψ

//Convert vorticities back to fluxes

Φ← SolveCG( L Φ = Ω );
U ← dΦ;

Fig. 6: Pseudocode of our fluid motion integrator (SolveCG calls a linear solver, typically based on the Conjugate Gradient method).

4.1 Converting Vorticities back to Fluxes

After we update the vorticity on each dual Voronoi face of the domain through semi-Lagrangian backtracing and
resampling via integration, the resulting vorticity field needs to be converted back to a velocity field that the next time
step will utilize to backtrack vorticity once again. Since the vorticities Ω are related to the fluxes U through Ω = dT ?U ,
we can directly solve for the fluxes via a Poisson equation as explained in detail in Appendix B. The linear system
involved being sparse and symmetric, a Conjugate Gradient is recommended for efficiency. Note that a thresholding
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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of the vorticity values stored on each dual face can be also performed during this step to offer a simple way to control
any excessive amount of vorticity in the flow (due to exaggerated user-added external forces, for instance).

4.2 External Body Forces

The use of external body forces, like buoyancy, gravity, or stirring, is common practice to create interesting motions.
Incorporating external forces into Eq. (4) is straightforward, resulting in:

∂u
∂ t

+u ·∇u = −∇p+ν∆u+ f .

Again, taking the curl of this equation allows us to recast this equation in terms of vorticity:

∂ωωω

∂ t
+Luωωω = ν∆ωωω +∇× f . (6)

Thus, we note that an external force influences the vorticity only through the force’s curl (the ∇ · f term is compensated
for by the pressure term keeping the fluid divergence-free). Thus, if we express our forces through the vector F of
their resulting fluxes in each face, we can directly add the forces to the domain by incrementing Ω by the circulation
of F over the time step h, i.e.:

Ω←Ω+h C F.

4.3 Adding Diffusion

If we desire to simulate a viscous fluid, we must add the diffusion term present in Eq. (5). Note that previous methods
were sometimes omitting this term because their numerical dissipation was already creating (uncontrolled) diffusion.
In our case, however, this diffusion needs to be properly handled if viscosity is desired. This is easily done through an
unconditionally-stable implicit integration as done in Stable Fluids (i.e., we also use a fractional step approach). Using
the discrete Laplacian (given in Appendix B, Eq. (8)) and the current vorticity Ω, we simply solve for the diffused
vorticity Ω′ using the following linear system:

(?−νhL) ?−1
Ω
′ = Ω.

4.4 Interpolation of Velocity

In order to perform the backtracking of dual vertices we must first define a velocity field over the entire domain using
the data we have on primal faces (fluxes). This can be done by computing a unique velocity vector for each dual vertex
and then using barycentric interpolation of these vectors over each dual Voronoi cell [Warren et al. 2007], defining a
continuous velocity field over the entire domain. This velocity field can be used to backtrack dual vertices as well as
transport particles or dyes (e.g., for visualization purposes) with standard methods.

To see that such a vector, one for each dual vertex, is well defined consider the following argument. The flux on a face
corresponds under duality (via the Hodge star) to a circulation along the dual edge of this face. Now, there is a linear
relation between fluxes per tetrahedra due to the incompressibility condition (fluxes must sum to zero). This translates
directly to a linear condition on the four circulations at each tetrahedra too. Thus, there is a unique vector (with three
components) at the dual vertex whose projection along the dual edges is consistent with the observed circulations.

Relation to k-form Basis Functions The standard method to interpolate k-form data in a piecewise linear fashion
over simplicial complexes is based on Whitney forms [Bossavit 1998]. In the case of primal 2-forms (fluxes) this

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



12 · Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun

Fig. 7: Obstacle Course 1: in the usual experiment of a flow (going left to right) passing around a disk, the viscosity as well as the velocity
can significantly affect the flow appearance; (top) our simulation results for increasing viscosity and same left-border boundary flux; the vorticity
magnitude (shown in false colors) is shown; (bottom) same frames, where color dye has been passively advected with the flow for visualization
purposes. Notice the usual irrotational flow (leftmost) for zero viscosity, and the von Karman vortex street when viscosity is introduced.

results in a piecewise constant (per tetrahedra) velocity field. Our argument above, using a Voronoi cell based gen-
eralized barycentric interpolation of dual 1-forms (circulation), in fact extends the Whitney form machinery to the
dual setting. This is a novel contribution, recently exploited in [Klingner et al. 2006], which may be useful as well in
other computational applications of discrete forms. We note that the generalized barycentric coordinates have linear
accuracy [Warren et al. 2007], an important requirement in many settings.

4.5 Handling Boundaries

The algorithm as described above does not constrain the boundaries, thus achieving “open” boundary conditions.
No-transfer boundary conditions are easily imposed by setting the fluxes through the boundary triangles to zero. Non-
zero flux boundary conditions (i.e., forced fluxes through the boundary as in the case of Fig. 7) are more subtle.
First, remark that all these boundary fluxes must sum to zero; otherwise, we would have little chance of getting a
divergence-free fluid in the domain. Since the total divergence is zero, there exists a harmonic velocity field satisfying
exactly these conditions. This is a consequence of the Helmholtz-Hodge decomposition theorem with normal boundary
conditions [Chorin and Marsden 1979]. Thus, this harmonic part h can be computed once and for all through a
Poisson equation using the same setup as described in Appendix B. This precomputed velocity field allows us to deal
very elegantly with these boundary conditions: we simply perform the same algorithm as we described by setting all
boundary conditions to zero (with the exception of backtracking which takes the precomputed velocity into account),
and reinject the harmonic part at the end of each time step (i.e., add h to the current velocity field).

Viscous Fluids near Boundaries The Voronoi cells at the boundaries are slightly different from the usual, interior
ones, since boundary vertices do not have a full 1-ring of tetrahedra. In the case of NS equations, this has no significant
consequence: we set the velocity on the boundary to zero, resulting also in a zero circulation on the dual edges on the
boundary. The rest of the algorithm can be used as is.

Inviscid Fluids near Boundaries For Euler equations, however, the tangential velocity at the boundary is not explic-
itly stored anywhere. Consequently, the boundary Voronoi faces need an additional variable to remedy this lack of
information. We store in these dual faces the current integral vorticity. From this additional information given at time
t = 0, we can deduce at each later time step the missing circulation on the boundary: since the circulation over the in-
side dual edges is known, and since the total integral must sum to the vorticity (Stokes’ theorem), a simple substraction
is all that is needed to update this missing circulation.

4.6 Handling Arbitrary Topology

Although the problem of arbitrary domain topology (e.g., when the first Betti number is not zero) is rarely discussed
in Computer Animation, it is important nonetheless. In the absence of external forces, the circulation along each loop
(of winding number 1) around a tunnel is constant in time. So we can precalculate a constant harmonic field based
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Regarding Section 4.5:Albert Chern (Caltech) mentioned to us that the way this is written seems to imply that the harmonic components stay constant in time. This is, in fact, wrong, for flat or non-flat domains: to reinject the *current* harmonic part, one has to also backtrack the 2g non-contractible loops generating the first homology, as the harmonic part of the velocity field evolves in time. I.e., backtrack the 2g loops (that one can precompute once and for all), and reinject these new harmonic coefficients to the \Delta^{-1} \omega. Since we mostly considered/showed sphere-like obstacles, the first comohology was trivial, so there was no harmonic part; but if there is, our text is wrong---or at least incomplete! Thanks, Albert.
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Fig. 8: Obstacle Course 2: Comparison with a very-high resolution viscous vortex particle method for the flow over an oscillating cylinder at high
Reynolds number (Re= 15,000). The top row of images are color vorticity plots from [Shiels and Leonard 2001] (used with permission), while the
bottom row shows our results at the exact same times.

on the initial circulation around each tunnel, and simply add it to the current velocity field for advection purposes.
This is achieved in our implementation by first computing the cohomology basis (see [Desbrun et al. 2006; Tong et al.
2006]) of the fluid domain, then projecting the initial velocity field on it to compute the harmonic part; this purely
harmonic part of the velocity field is then systematically added back to the velocity field computed by our algorithm.
This procedure serves two purposes: first, we now automatically enforce the discrete equivalent of Kelvin’s theorem
on any (shrinkable or non-shrinkable) loop; second, arbitrary topologies are accurately and efficiently handled.

If external forces f are added, the purely harmonic part of the velocity field may change. We thus need to project these
external forces onto the comology bases once again to extract the harmonic part: this part of the forces (times dt) is
then added to the purely harmonic vector field, to be reinjected to the velocity field at each time step as usual.

5. RESULTS AND DISCUSSION

We have tested our method on some of the usual “obstacle courses” in CFD. We start with the widely studied example
of a flow past a disk (see Fig. 7). If initiated with zero vorticity, it is well known that in the case of an inviscid fluid,
the flow remains irrotational for all times. By construction, our method does respect this physical behavior since
circulation is preserved for the Euler equations. We then increase the viscosity of the fluid incrementally, and observe
the formation of a vortex wake behind the obstacle, in agreement with physical experiments. As evidenced by the
vorticity plots, vortices are shed from the boundary layer as a result of the adherence of the fluid to the obstacle,
thanks to our proper treatment of the boundary conditions. A second test, now with a rotating obstacle in a fluid flow
at high Reynolds number (Re= 15,000), shows good numerical agreement with high-resolution simulations obtained
in [Shiels and Leonard 2001] using millions of vortex particles.

The behavior of vortex interactions observed in existing experimental results was also compared to numerical results
based on our novel model and those obtained from the semi-Lagrangian advection method. It is known from theory
that two like-signed vortices with a finite vorticity core will merge when their distance of separation is smaller than
some critical value. This behavior is captured by the experimental data and shown in the first series of snapshots
of Fig. 9. As the next row of snapshots indicates, the numerical results that our model generated present striking
similarities to the experimental data. In the last row, we see that a traditional semi-Lagrangian advection followed by
re-projection misses most of the fine structures of this phenomenon. This can be attributed to the loss of total integral
vorticity as evidenced in the graph on the side; in comparison our technique preserves this integral exactly.

We have also considered the flow on curved surfaces in 3D with complex topology, as depicted in Fig. 11. We were
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 9: Two Merging Vortices: (left) discrete fluid simulations are compared with a real life experiment (courtesy of Dr. Trieling, Eindhoven
University; see http://www.fluid.tue.nl/WDY/vort/index.html) where two vortices (colored in red and green) merge slowly due to their
interaction (a); while our method faithfully captures the merging phenomenon (b), a traditional semi-lagrangian scheme does not capture the
correct motion because of vorticity damping (even with smaller time steps, because the more bactracking steps, the larger the energy loss) (c).
(right) the integral vorticity of both simulation techniques are shown on a graph.

able to easily extend our implementation of two-dimensional flows to this curved case thanks to the intrinsic nature of
our approach.

We also consider a smoke cloud surrounded by air, filling the body of a bunny as an example of flow in a domain with
complex boundary. The buoyancy drives the air flow which, in turn, advects the smoke cloud in the three-dimensional
domain bounded by the bunny mesh as shown in Fig. 1. Note that this domain is made out of 7K vertices, which is
the equivalent complexity (in terms of the number of degrees of freedom) of a regular grid of size 193. Consequently,
it took less than half a second per frame to compute, exemplifying the advantage of using tet meshes to resolve fine
boundaries since the equivalent low-resolution regular grid would not nearly be able to capture the complex geometry
of the bunny mesh.

Fig. 10: Bunny Snow Globe: the snow in the globe is advected by the inner fluid, initially stirred by a vortex to simulate a spin of the globe.

In the last simulation, we use a snow globe with a bunny inside (see Fig. 10). We emulate a flow due to an initial spin
of the globe using a swirl described as a vorticity field. The snow particles are (passively) transported by the flow as
they fall down under the effect of gravity. Here again, each frame is generated in less than half a second.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 11: Weather System on Planet Funky: the intrinsic nature of the variables used in our algorithm makes it amenable to the simulation of flows
on arbitrary curved surfaces.

6. CONCLUSION

In this paper, we have introduced a novel theoretical approach to fluid dynamics, along with a practical implementation
and various simulation results. We have carefully discretized the physics of flows to respect the most fundamental
geometric structures that characterize their behavior. Among the several specific benefits that we demonstrated, the
most important is the circulation preservation property of the integration scheme, as evidenced by our numerical
examples. The discrete quantities we used are intrinsic, allowing us to go to curved manifolds with no additional
complication. Finally, the machinery employed in our approach can be used on any simplicial complex. However, the
same methodology also applies directly to more general spatial partitions, and in particular, to regular grids and hybrid
meshes [Feldman et al. 2005]—rendering our approach widely applicable to existing fluid simulators.

For future work, a rigorous comparison of the current method with standard approaches should be undertaken. Using
Bjerknes’ circulation theorem for compressible flows may also be an interesting avenue. Additionally, we limited
ourselves to the investigation of our scheme without focusing on the separate issue of order of accuracy. Coming
up with an integration scheme that is higher-order accurate will be the object of further investigation, as it requires
a better (denser) Hodge star; in particular, it could reduce the diffusion of vorticity introduced during the vorticity
backtracking step. Note also that our geometric approach bears interesting similarities with the work of Chang et
al. [2002], in which they propose a purely algebraic approach to remedy the shortcomings of the traditional fractional
step approach; using their numerical analysis on our approach may provide a simple way to study the accuracy of our
scheme. Finally, mixing our method with the Lagrangian treatment of vortex rings as in [Weißmann 2006] could allow
for intuitive control of the fluid motion.
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A. DISCRETE EXTERIOR DERIVATIVE

A thorough explanation of the discrete exterior derivative of discrete forms is out of the scope of this paper, and we
refer the reader to existing tutorials [Desbrun et al. 2006; Bochev and Hyman 2006]. However, the reader should be
aware that this operator is simply implemented via the use of incidence matrices. Indeed, a key ingredient to defining
the discrete version of the exterior derivative d is Stokes’ theorem:∫

σ

dα =
∫

∂σ

α,

where σ denotes a (k +1)-cell and α is a k-form. Stokes’ theorem states that the integral of dα (a (k +1)-form) over
a (k +1)-cell equals the integral of the k-form α over the boundary of the (k +1)-cell (i.e., a sum of k-cells). Stokes’
theorem can thus be used as a way to define the d operator in terms of the boundary operator ∂ . Or, said differently,
once we have the boundary operator, the operator d follows immediately if we wish Stokes’ theorem to hold on the
simplicial complex.

To use a very simple example, consider a 0-form f , i.e., a function giving values at vertices. With that, d f is a 1-form
which can be integrated along an edge (say with end points denoted a and b) and Stokes’ theorem states the well
known fact: ∫

[a,b]
d f = f (b)− f (a).

The right hand side is simply the evaluation of the 0-form f on the boundary of the edge, i.e., its endpoints (with
appropriate signs indicating the orientation of the edge). Actually, one can define a hierarchy of these operators that
mimic the operators given in the continuous setting (up to an application of the Hodge star) by the gradient (∇), curl
(∇×), and divergence (∇·), namely,

• d0: maps 0-forms to 1-forms and corresponds to the Gradient;
• d1: maps 1-forms (values on edges) to 2-forms (values on faces). The value on a given face is simply the sum (by

linearity of the integral) of the 1-form values on the boundary (edges) of the face with the signs chosen according
to the local orientation. d1 corresponds to the Curl;
• d2: maps 2-forms to 3-forms and corresponds to the Divergence.
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Since the boundary of any mesh element can be directly read from the incidence matrices of the mesh, the exterior
derivative is trivial to implement once the mesh is known as it depends only on its connectivity [Elcott and Schröder
2006].

B. RECOVERY OF VELOCITY

We have seen in Section 4 how the vorticity ω can be derived directly from the set of all face fluxes as dT ?U = ω .
However, during the simulation, we will also need to recover flux from vorticity. For this we employ the Helmholtz-
Hodge decomposition theorem, stating that any vector field u can be decomposed into three components (given appro-
priate boundary conditions)

u = ∇×φφφ +∇ψ +h.

When represented in terms of discrete forms this reads as:

U = dΦ+?−1dT ?Ψ+H (7)

For the case of incompressible fluids (i.e., with zero divergence), two of the three components are sufficient to describe
the velocity field: the curl of a vector potential and a harmonic field. To see this apply d to both sides of Eq. 7:

dU = 0 = ddΦ+d ?−1 dT ?Ψ+dH.

Since dd = 0 and d of a harmonic form always vanishes, we find that d ?−1 dT ? Ψ = 0 to begin with. Since Ψ is a
3-form d ?−1 dT ?Ψ = ∆Ψ = 0, i.e., Ψ is harmonic which implies in particular that ?−1dT ?Ψ = 0, proving our claim
that

U = dΦ+H.

If the topology of the domain is trivial, we can furthermore ignore the harmonic part H (we discuss a full treatment of
arbitrary topology in Section 4.6), leaving us with U = dΦ.

Since our algorithm computes an updated Ω which is related to U as dT ?U , we need to find a solution to

Ω = dT ?dΦ,

where Ω is the known quantity, and dΦ the unknown. Unfortunately the kernel of dT ? d is not empty so we can not
determine Φ directly from this equation. To pick a unique solution for Φ, we require additionally that dT ?Φ = 0. By
doing so we pick a particular solution from the kernel of dT . But if dT ?Φ = 0 then certainly (?d ?−1 dT ?)Φ = 0 and
we can add it to our equation for Ω arriving at

Ω = (dT ?d +?d ?−1 dT ?)Φ. (8)

This latter equation is simply a Poisson equation for Φ since

?−1
Ω = ∆Φ

which has a unique solution. Let U = dΦ, and we have recovered U as desired.

The fact that Eq. 8 is indeed a Poisson problem follows from the definition of the Laplacian ∆ in differential calculus
as ?−1dT ?d +d ?−1 dT ?. In the language of vector calculus this translates to ∆φφφ = (∇∇·−∇×∇×)φφφ = ∇×u. Notice
that the left-side matrix (that we will denote L) is symmetric and sparse, thus ideally suited for fast numerical solvers.
Our linear operators (and, in particular, the discrete Laplacian) differ from another discrete Poisson setup on simplicial
complexes proposed in [Tong et al. 2003]: the ones we use have smaller support, which results in sparser and better
conditioned linear systems [Bossavit 1998]—an attractive feature in the context of numerical simulation.
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