
Curved Optimal Delaunay Triangulation

LEMAN FENG, Ecole des Ponts ParisTech
PIERRE ALLIEZ, Université Côte d’Azur, Inria
LAURENT BUSÉ, Université Côte d’Azur, Inria
HERVÉ DELINGETTE, Université Côte d’Azur, Inria
MATHIEU DESBRUN, Caltech
Meshes with curvilinear elements hold the appealing promise of enhanced

geometric flexibility and higher-order numerical accuracy compared to their

commonly-used straight-edge counterparts. However, the generation of

curved meshes remains a computationally expensive endeavor with current

meshing approaches: high-order parametric elements are notoriously diffi-

cult to conform to a given boundary geometry, and enforcing a smooth and

non-degenerate Jacobian everywhere brings additional numerical difficulties

to the meshing of complex domains. In this paper, we propose an extension

of Optimal Delaunay Triangulations (ODT) to curved and graded isotropic

meshes. By exploiting a continuum mechanics interpretation of ODT instead

of the usual approximation theoretical foundations, we formulate a very

robust geometry and topology optimization of Bézier meshes based on a new

simple functional promoting isotropic and uniform Jacobians throughout

the domain. We demonstrate that our resulting curved meshes can adapt to

complex domains with high precision even for a small count of elements

thanks to the added flexibility afforded by more control points and higher

order basis functions.

CCS Concepts: • Mathematics of computing → Mesh generation;

Additional Key Words and Phrases: Higher-order meshing, Optimal Delau-

nay Triangulations, higher order finite elements, Bézier elements.

ACM Reference Format:
Leman Feng, Pierre Alliez, Laurent Busé, Hervé Delingette, and Mathieu

Desbrun. 2018. Curved Optimal Delaunay Triangulation. ACM Trans. Graph.
37, 4, Article 61 (August 2018), 16 pages. https://doi.org/10.1145/3197517.

3201358

1 INTRODUCTION
Simplicial meshing has found wide adoption in the graphics com-

munity over the years because of the prevalence of linear basis

functions in computer animation. As the availability of comput-

ing power on commodity hardware continues to increase, so is the

geometric complexity of the models simulated. However, properly

capturing the boundaries of complex shapes with linear elements

often requires an inordinate count of simplices for highly curved

domains. Computational efficiency, instead, dictates the use of a

low count of higher order piecewise polynomial elements: while

Authors’ addresses: L Feng, Ecole des Ponts ParisTech, France; P. Alliez, L. Busé, H.

Delingette, Université Côte d’Azur / Inria, France; M. Desbrun, Caltech, USA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2018/8-ART61 $15.00

https://doi.org/10.1145/3197517.3201358

Fig. 1. Curved Optimal Delaunay Triangulations: A Bézier mesh (left,
here with cubic patches) can capture a curved domain with orders of mag-
nitude less elements for a given Hausdorff distance. Our extension of ODT
to curved meshes results in a well-behaved Jacobian field (top: sizing-scaled
determinant, with a few front elements removed to expose the interior).

using high-order elements—and thus, high-order basis functions—

involves inevitable computational overhead, the drastic reduction

of the number of elements needed to capture the domain boundary

and the internal physical fields with a given accuracy lowers the

total computational time appreciably compared to the linear case.

However, generating such a curved high order mesh for an arbi-

trary domain is significantly more difficult than its straight-edge

analog: first, many staples of meshing (such as Delaunay triangula-

tions or quality measures of mesh elements) only apply to straight-

edge meshes; moreover, the use of higher-order polynomials to

approximate the shape of a domain renders the numerical task more

complex as it increases the occurrence of local minima in the en-

ergy landscape involved in the boundary fitting process and of local

fold-overs of the polynomial map. As a result, most approaches for

curved meshing limit themselves to deforming the boundary of a

straight-edge mesh to improve the spatial matching of the bound-

ary. However, this approach is limited and far from optimal as it

largely relies on a good coarse linear mesh to start with, and leads

to high deformation near the domain boundary, thus hampering

subsequent numerical accuracy where it is sometimes most crucial

(e.g., for boundary layers in fluid dynamics).

This paper extends the successful Optimal Delaunay Triangula-

tion (ODT) approach for generating isotropic triangle and tetrahe-

dron meshes [Alliez et al. 2005; Chen and Xu 2004] to now form

Bézier meshes of arbitrary order. By exploiting the numerical proper-

ties of the original ODT technique and introducing a novel boundary

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201358
https://doi.org/10.1145/3197517.3201358
https://doi.org/10.1145/3197517.3201358

61:2 • Feng, L. et al.

treatment, we show that our approach, which we coined Curved
Optimal Delaunay Triangulation, generates curved meshes robustly

and quite efficiently. The resulting meshes require far fewer ele-

ments to represent geometry or to guarantee accurate numerical

solutions than their linear (straight-edge) counterparts.

1.1 Previous Work
We begin our exposition with a brief review of graphics and compu-

tational science efforts towards linear and high-order meshing.

From linear meshes... High quality meshing in graphics typically

seeks the generation of non-degenerate meshes that offer good con-

dition numbers for common discrete isotropic operators like the

Laplacian [Cheng et al. 2012]. While Delaunay meshes with local

refinements [Shewchuk 1998] have been shown most efficient at

generating good isotropic simplicial meshes, variational approaches
(that is, methods relying on energy minimization) can dramatically

improve the quality of the resulting meshes. Most notably, the con-

cept of Optimal Delaunay Triangulations (ODT) [Chen 2004; Chen

and Xu 2004] anchored in functional approximation has garnered

attention for providing what can be argued as the simplicial equiv-

alent of Centroidal Voronoi Tessellations [Du et al. 1999; Liu et al.

2009]. Its implementation in 3D along with details on the sizing

field computations and boundary handling was studied by Alliez

et al. [2005], and a hybrid approach mixing Delaunay refinement

and ODT optimization was later introduced [Tournois et al. 2009] to

accelerate convergence and improve results. Recent improvements

include an alternative boundary treatment [Gao et al. 2012] and vari-

ous numerical accelerations [Chen and Holst 2011; Chen et al. 2014].

Today, the isotropic meshes obtained via ODT optimization con-

sistently outperform other approaches (based on advancing front,

bubble packing, etc) in terms of element quality (dihedral angles,

aspect ratio, etc) for a given vertex budget.

To high-order basis functions... While simplicial meshes can be

used for linear basis functions in the context of Finite Element

Analysis, they can also accommodate the use of higher order basis

functions which have been in high demand for simulation in com-

putational fluid dynamics (CFD) and solid mechanics. Increasing

the polynomial degree of basis functions within each element (clas-

sically referred to as p-refinement [Babuska et al. 1981]) allows for

increased accuracy and faster convergence, often at a fraction of

the computational cost of simply refining the simplicial mesh (h-
refinement). Scalar fields are no longer just defined through values

at nodes: more degrees of freedom per elements are now available,

depending on the choice of basis functions and their polynomial

orders. The accuracy gains brought by higher order basis in tetra-

hedral finite-element simulation were demonstrated in graphics

by, e.g., [Roth et al. 1998] and [Weber et al. 2011]. However, the

accuracy of finite element solutions is often strongly influenced by

how well the geometry of the domain is approximated, which limits

the applicability of straight-edge meshes in practice.

To high-order meshing. Coarse straight-edge meshes conform

poorly to curved domain boundaries, impairing the correct numer-

ical imposition of boundary conditions. Modern simulation tech-

niques, in particular Isogeometric Analysis (IGA), define the geome-

try of the domain with the same high-order basis functions utilized

for their Finite Element computations; that is, they use “high-order

meshes” in the sense that the geometric description of the domains

is a manifold assembly of curved isoparametric elements that are

each defined through a geometric mapping with respect to a canon-

ical simplex. However, degree elevation can be numerically difficult

to handle near highly curved geometric boundaries: conforming

to the shape of a boundary with piecewise higher order polynomi-

als can easily create locally inverted mappings or severe distortion

which precipitously decrease the accuracy of subsequent compu-

tations. Some graphics applications (notably, [Mezger et al. 2008]

and [Suwelack et al. 2013]) use higher order meshes just to offer a

coarse embedding of a fine geometry and accelerate computations;

in this case, the presence of large Jacobians near the boundary is

not necessarily an important issue. In practice, though, generating

high-order meshes is typically accomplished by first constructing a

straight-edge mesh that is subsequently curved and often regular-

ized in case of invalidity (non-injectivity) of the geometric mapping.

Regularization is usually achieved either through smoothing or mor-

phing [Karman et al. 2016; Ruiz-Girones et al. 2017] (the deformation

on the boundary is propagated onto the inside of the domain), or

through optimization of control points and topological changes to

increase the smallest value of the local determinant of the Jacobian

of the map [Cardoze et al. 2004; Luo et al. 2002]. Global mesh op-

timization based on the extended notion of quality measures for

curved elements has also been proposed: one can extend the element-

based distortion measure by integrating a Jacobian-based distortion

measure on the whole physical curved element [Gargallo-Peiró et al.

2013]. Distortion measures are often based on the Jacobian determi-

nant, and include the ratio of minimum to maximum determinants

in each element, or the ratio of the minimum determinant to the

determinant of the corresponding straight-edge element [Johnen

et al. 2013]. However, these functionals can be very high order even

for moderately high order elements; Geuzaine et al. [2015] thus

proposed a technique to compute provable bounds on the Jacobian

determinant per element to check the mesh validity efficiently, and

formulated a simpler functional to untangle invalid parts with a log

barrier to penalize small determinants. Hierarchical methods pro-

ceed to curve edges first, then faces, then elements [Ziel et al. 2017]

although behavior on complex 3D domains has not been demon-

strated. Arguably, the most successful family of curved meshing

methods rely on a mechanical analogy: these optimization-based

methods use an initial straight-edge mesh as a reference domain and

minimize a non-linear distortion using FEM between the reference

domain and the parametric elements, thus effectively computing

an elastostatic solution where the distortion they target defines a

potential energy of deformation [Abgrall et al. 2012; Johnen et al.

2013]. However, the non-linearity of the potential is often an obsta-

cle to finding a good minimum, and starting from a straight-edge

mesh of the domain unnecessarily adds distortion if this mesh is

not of high quality. Note that this approach was actually used in

graphics, in the context of simulation by [Bargteil and Cohen 2014]:

the authors suggested to use a rest pose of an elasticity simulation

to be the end result of a previous simulation with a straight-edge

tetrahedral mesh. However, they used a linear elastic model for sim-

ulation purposes, whereas high-quality meshing typically requires

non-linear models [Johnen et al. 2013; Persson and Peraire 2009].

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

Curved Optimal Delaunay Triangulation • 61:3

1.2 Contributions
In this paper, we revisit the ODT framework and extend it to provide

both a better handling of the boundaries and new foundations for

curved meshing. We show that the measure of element distortion

underlying the ODT approach can be reexpressed as a particularly-

simple potential energy whose minimization amounts to an equidis-

tribution of the gradient of the deformation field, thus regularizing

simultaneously the size and shape of all simplicial elements. After

formulating a non-shrinking traction to favor uniform and isotropic

elements at the boundary, we show that this interpretation of ODT

applies nearly as is for curved meshes made of Bézier simplices.

The resulting “Curved Optimal Delaunay Triangulations” provide

coarse geometric descriptions of arbitrary 2D or 3D domains with a

much improved fit to the domain boundary due to their piecewise

polynomial nature, see Figs. 1 and 11. Moreover, our construction

naturally promotes smoothness of the gradient of the induced geo-

metric map inside and across elements, thus offering high-quality

curved meshes ready to use in high-order finite element methods.

2 REVISITING OPTIMAL DELAUNAY TRIANGULATION
Before describing our extension of ODT to high-order meshes, we

first review the foundations behind ODT for straight-edge simplicial

meshes in�d (d=2, 3). We show that they can be neatly rewritten in

the context of elastostatics, which provides us with a new approach

to handle boundary conditions for improved isotropic simplicial

meshing. This novel interpretation will, in later sections, render the

extension to high-order meshes quite straightforward.

2.1 Primer on ODT
The quest for high quality simplicial meshes has sparked advances

in mesh optimization through local vertex relocation to optimize a

chosen notion of mesh quality [Amenta et al. 1999], local topological

operations [Cheng et al. 2000], or both [Freitag and Ollivier-Gooch

1997]. Within the large body of work in mesh optimization for

2D and 3D unstructured triangulations, the Optimal Delaunay Tri-

angulation approach (ODT for short) stands out by casting both

geometric and topological mesh improvement as a single, unified

optimization [Chen and Xu 2004].

Approximation-theoretical foundations. Exploiting functional ap-

proximation theory for piecewise linear interpolants, ODT finds a

simplicial mesh in dimension d that minimizes in Rd+1 the volume

between the height field of the function f : x→∥x∥2 and the piece-

wise linear (PWL) interpolation of the mesh vertices lifted onto the

height field; that is, the mesh connectivity and vertex positions are

updated so as to minimize the energy EODT:

EODT = ∥ f − fPWL∥
2

L1 =

∫
Ω

(
fPWL(x) − f (x)

)
dx. (1)

The minimum of this energy is known to be asymptotically achieved

when the mesh elements are isotropic [Nadler 1986]. Such theo-

retical grounding has far reaching practical implications: optimal

connectivity, seemingly a high dimensional combinatorial problem,

results from a simple numerical minimization akin to a convex hull

algorithm, for which many robust, off-the-shelf tools exist. More-

over, various closed-form expressions of this geometric definition

have been proposed that allow to evaluate efficiently the energy’s

gradient with respect to mesh vertices. In particular, if one denotes

Ωi as the one-ring neighborhood of vertex xi , we can rewrite the

energy as a simple weighted sum plus a constant that solely depends

on the shape of the domain Ω [Chen and Xu 2004]:

EODT =
1

d + 1

∑
i=1.. |V |

∥xi ∥2 |Ωi | −

∫
Ω
∥x∥2dx. (2)

A simple expression of the energy restricted to a single simplex τ
was also formulated in [Chen and Holst 2011], containing no extra

terms that depend on the domain:

EODT

���
τ
=

|τ |

(d + 1)(d + 2)

d+1∑
i, j=1,i<j

∥xi − xj ∥2, (3)

meaning that the contribution of a simplex to EODT is proportional

to its volume |τ | times the sum of all of its squared edge lengths.

Minimization of EODT. The minimization involved in finding an

optimal ODT mesh in connectivity and vertex positions is particu-

larly simple: starting from an arbitrary mesh of Ω, one alternatively
updates mesh connectivity for fixed positions, then vertex positions

for a fixed connectivity [Alliez et al. 2005]. Vertex optimization in-

volves minimizing a quadratic energy for inner vertices with respect

to each vertex position, while connectivity optimization corresponds

to finding the Delaunay triangulation of the current vertex posi-

tions, leading to a steady decrease of the energy after each iteration.

The effect on the mesh is very visible: all elements quickly tend

to become equally sized and equally shaped, as predicted by ap-

proximation theory. Faster convergence can also be obtained using

variants of Newton’s method, where the energy Hessian is approxi-

mated through either previous values of the gradient [Chen et al.

2014] or a graph-Laplacian [Chen and Holst 2011].

Controlling mesh density. Another property of ODT making it

particularly appropriate for isotropic meshing is that its formulation

can be trivially altered to handle arbitrary mesh density: given a

positive scalar field ρ : Ω→R+, we can modulate the L1 norm in

the definition of EODT in Eq. (1) by substituting a modulated local

volume form ρ(x) dx for the original dx as introduced in [Chen

and Xu 2004] and exploited in [Chen et al. 2014]. Modifying the

volume form does not affect the isotropic properties of formulation,

but the resulting minimizer of the ODT energy now has elements

with edges proportional to ρ −1/(d+2)
. A given sizing field h over the

domain Ω can thus be imposed by picking ρ(x) ∝ h −(d+2)(x).

Non-shrinking boundary conditions. As oftentimes for variational

problems, setting proper boundary conditions is crucial to the suc-

cess of ODT: like Eq. (3) clearly indicates, minimizing EODT without

any constraints on the domain will make all the vertices of the mesh

collapse to a point. Boundary conditions must thus be set to prevent

shrinkage. Dirichlet conditions using a fixed sampling of the bound-

ary of Ω produces nicely-shaped tetrahedra throughout the domain,

but generates many degenerate elements near ∂Ω (in particular,

“slivers” in 3D, i.e., almost flat tets with nearly equal edge lengths)

as boundary vertices are not optimized, preventing the formation

of equilateral elements. Reprojecting boundary vertices [Alliez et al.

2005] or letting them slide along the boundary by only taking the

tangential part of the ODT gradient [Chen and Holst 2011; Gao

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

61:4 • Feng, L. et al.

et al. 2012] improves the resulting meshes, but leaves degenerate

elements as vertices that reach the boundary tend to stay on the

boundary. The work of [Tournois et al. 2009] exploits a degree of

freedom in the boundary terms of the update of a vertex to enforce a

“circumsphere property” on ∂Ω. This so-called Natural ODT bound-

ary update guarantees that if ODT converges, it will form a mesh

where boundary edges have nearly all the same lengths, further

reducing the number of slivers. However, the precise boundary con-

dition that this update corresponds to remains unclear, and as a

consequence, how to modify this update to handle varying mesh

density was not properly addressed either.

Discussion. While we will not explore anisotropy in this paper,

we note that extensions of ODT to straight-edge anisotropic meshes

have also been provided in [Chen and Xu 2004] and put into practice

for flat and curved domains in [Boissonnat et al. 2006; Fu et al. 2014;

Loseille and Alauzet 2009]. An interesting duality between graded

polytopal tessellations and graded anisotropic simplicial complexes

was also presented in [Budninskiy et al. 2016].

2.2 ODT as Elastostatics
We now reexpress the ODT energy in the context of continuum me-

chanics. This physical analogy will help us define a proper boundary

condition (corresponding to a load on the boundary to render the

elements isotropic there). This novel interpretation will facilitate

the extension of ODT to high-order meshes later on as well.

Unit reference mesh. For any given d-dimensional simplicial com-

plex T , one can define a unit reference simplicial complex T where

both T and T share the same connectivity, but each element of T

is regular with all of its edges of length 1. Note that this reference

mesh is trivially manifold, but cannot be embedded in d dimensions:

except in the rare case of 2D triangulation with only valence-6

vertices, such a “unit” mesh can only be embedded in a Euclidean

space of dimension D>d (and D is finite due to Nash’s embedding

theorem) since the generalized defect angles at vertices and edges

are not zero. However, its exact embedding has no influence on our

construction: this construction is only conceptual. Its purpose is

to define a clear intrinsic reference d-manifold so that our target

“physical” mesh in Rd can be seen as a minimal deformation from

this ideal (but unrealizable in Rd) reference domain by a map φ as

in classical elastostatics, with:

RD ⊃ T T ⊂ Rd
φ

Our use of a reference domain with unit elements is quite different

from any of the other methods anchored in continuum mechanics

such as [Abgrall et al. 2012; Bargteil and Cohen 2014; Johnen et al.

2013; Persson and Peraire 2009] as they all use non-unit straight-

edge triangulations as reference, which unnecessarily biases the

notion of isotropy based on the quality of the tetrahedron mesh

they start from. Instead, our interpretation phrases the optimization

as a minimization of distortion with respect to a perfect mesh.

Jacobian-based expression of ODT. For the original straight-edge
case of ODT, the mapping φ is piecewise linear, mapping each unit

simplex τ i from T to its associated physical simplex τi in T . The

Jacobian ∇φ of this map is thus piecewise constant: let’s denote Ji

this Jacobian from τ i to τi . We now present a simple, but important

lemma that re-expresses the contribution of an element to ODT.

Lemma 2.1. Using the linear map φ between τ i and τi , one has:

EODT

���
τi
=

|τ i |

2(d + 2)
det(Ji) ∥Ji ∥2F ,

where ∥Ji ∥2F = trace (Ji J
t
i), and det is the determinant.

Proof. The squared Frobenius norm ∥Ji ∥2F of Ji times the volume

of τ i is nothing but the integral of the Dirichlet energy of φ over

τ i . From [Meyer et al. 2003; Pinkall and Polthier 1993], we know

that the Dirichlet energy in 2D and 3D is a linear combination of

squared edge lengths of τi :∫
τ i
∥∇φ∥2

F
=

∑
i, j=1.. |V |

α i j ∥xi−xj ∥2,

where the coefficients α i j depend on geometric measures of τ i (half
the cotangent of the tip angle in 2D [Pinkall and Polthier 1993], and

one sixth of the cotangent of the dihedral angle times the associated

edge length in 3D [Meyer et al. 2003]; more generally, they are the

stiffness matrix coefficients for the Poisson problem). When τ i is a
regular d-simplex, these coefficients are all equal to 2/(d+1). More-

over, we know that det(Ji)= |τi |/|τ i | as the map is piecewise linear.

We thus conclude that the expression of EODT restricted to τi as given
in Eq. (3) is proportional to det(Ji) ∥Ji ∥2F , with a coefficient of pro-

portionality equal to
1

2
|τ i |/(d+2) (for completeness, the volume of a

d-dimensional unit and regular simplex is |τ i | = (d+1)1/2/[2d/2d!]).
Remark that this final expression is translation invariant (because

of the gradient of φ) and rotation invariant (∥J∥2
F
= ∥RJ∥2

F
for any

rotation matrix R), justifying a posteriori our claim that the precise

embedding of the unit reference mesh does not matter. �

ODT energy as potential energy. Based on the previous lemma,

we directly deduce that the ODT energy can be seen as a potential

energy density WODT over the reference configuration T in the

context of hyperelasticity, expressed as:

WODT(J) =
1

2(d + 2)
det(J) ∥J∥2

F
. (4)

With this expression, the potential energy of a given physical mesh

is exactly equal to EODT. A potential energy densityW induces an

internal (Cauchy) stress tensor over T of the form [Ogden 1997]:

σ =
1

det(J)
∂W

∂J
· Jt .

Since ∂∥J∥2
F
/∂J = 2 J and ∂ det(J)/∂J = det(J) J−t , we get a very

simple expression for the elementwise stress tensor in ODT:

Theorem 2.2. The Cauchy stress tensor σODT is expressed as:

σODT

���
τ i
=

1

d + 2

[
Ji Jti +

1

2

∥Ji ∥2F Id
]
,

where Id denotes the d × d identity matrix.

As a consequence, an optimal ODT mesh satisfies div(σODT)=0
everywhere (in the weak sense of FEM), as it is the equilibrium

equation for the equivalent elastostatics problem we just proved.

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

Curved Optimal Delaunay Triangulation • 61:5

Fig. 2. Non-shrinkingODT. Starting from a random triangulation (top: 2D;
bottom: 3D), minimizing the ODT energy with our non-shrinking boundary
loads naturally converges (left to right) to a mesh with isotropic elements.

Connectivity of unit reference mesh. Since we showed that the

ODT energy is in fact the integral of a potential energy density, we

can also immediately conclude that the minimal potential energy for
a given set of vertex positions is attained for the unit reference mesh

that corresponds to the connectivity of the Delaunay triangulation

of the vertices in physical space. As the reference mesh is purely

conceptual, no computations besides finding the Delaunay triangu-

lation is required: it simply means that our elastostatics problem

consists in finding both the connectivity of the reference configu-

ration and the deformed physical mesh that minimizes the total

potential energy of the deformation, for given boundary constraints

based on the domain Ω. We will formally write this variational

principle after we discuss boundary conditions.

2.3 Non-shrinking boundary conditions
Dealing properly with boundaries is key to the success of ODT. Our

elastostatics rewriting of the ODT energy suggests using boundary

forces, or loads, to prevent the degeneracy of the minimization. The

simplest constraint is to add a boundary force density along the

boundary equal to σODT n; in this case, boundary terms will exactly

compensate for the forces induced by the internal stress, prevent-

ing the boundary vertices from moving: this choice corresponds to

Dirichlet boundary conditions. As previously discussed, such a treat-

ment is not quite useful in our case: we wish instead to let vertices

move around to generate boundary elements that are as isotropic

as possible. This leads us to propose another expression: we can

compensate the isotropic part of the ODT stress tensor only, thus

leaving the deviatoric part (containing shearing forces) active near

the boundary: with the corresponding boundary forces, the elasto-

statics problem will find a solution where stress at the boundary is

purely isotropic, i.e, elements are under equal compression/tension

in all directions. Thus, at equilibrium, boundary elements will be

isotropic. In order to impose such a traction, we directly apply the

following boundary force field f
bdry

on a boundary element τi in T

(with the outwards unit normal denoted n):

f
bdry
=

1

d
trace(σODT) n =

1

2d
∥Ji ∥2F n, (5)

since the isotropic part of σ is trace(σ) Id/d and trace(Id)=d . As
Fig. 2 demonstrates, this simple boundary condition added within

the geometry updates unfolds a very uneven mesh into an assembly

of perfect equilateral simplices, quickly and in a stable manner.

2.4 Discussion
Revisiting the original ODT energy through elastostatics provides

some key advantages, as we review briefly to conclude this section.

Fig. 3. Slivers. Given a spherical domain and 1,000 vertices, Natural
ODT [Tournois et al. 2009] (top) achieves a minimum dihedral angle of
17.25◦ and a maximum of 149◦, with 5 tets with angles below 20

◦ (top);
our new isotropic-stress boundary treatment (bottom) brings the minimum
angle to 24.75◦ and the maximum to 141

◦ instead.

Variational formulation. First, we can now formulate the exact

elastostatics problem that our modified ODT solves:

(T ∗,φ∗)=argmin

T,φ

∫
T

WODT(∇φ(x)) dx s.t.

σ
���
∂T
=

1

2d
∥∇φ∥2

F
Id

Dist

[
φ(T),Ω

]
≤ ϵ,

where Dist[·, ·] measures how far two subsets of Rd are from each

other. In practice, this last condition can be enforced by adding a

boundary fitting force field that attracts boundary elements of T

towards ∂Ω. Such a force can be derived from, e.g., the symmetric

Hausdorff distance between mesh boundary and domain boundary,

or simply from the volume in between the two [Alliez et al. 1999].

This attractive force field then acts as a penalty to enforce a close

match between ∂T and ∂Ω, thus enforcing the last constraint. We

will provide a simpler shortest-distance based force field in Sec. 3.5

when we treat the more general case of Bézier meshes. Our novel

treatment of boundary elements brings much added robustness to

the ODT procedure : the constant reprojection on ∂Ω used in Natu-

ral ODT slows down convergence, introducing constant jittering of

boundary vertices; in sharp contrast, the CODT treatment of bound-

aries does converge reliably in practice, always reaching a high

quality mesh. Even if we compare to the (non-converged) best result

of natural ODT after many iterations, our new approach converges

to a lower number of slivers as illustrated in Fig. 3.

Interpretation and other potential energies. Aposteriori, expressing

ODT as a minimization of the deformation of a map between an

ideally isotropic mesh and the current embedding of a mesh in

Rd raises the question of why this particular choice of potential

energy is special. We first note that the potential energy that ODT

corresponds to is a local rescaling of the usual Dirichlet energy

density: without the volume |τ | in Eq. (3), we would be left with

only the Dirichlet energy, enforcing conformality of the map but

not size uniformity. Moreover, one could also argue that using a

geometric energy density of the form minR∈SO(d) ∥J − λR∥2
F
in the

spirit of what is advocated in [Chao et al. 2010] for elastic simulation

would seem like a perfect substitute: it would force each element

to be isometric (up to a global scale λ) to its reference element.

In fact, the potential energies of [Johnen et al. 2013; Persson and

Peraire 2009] (or more generally, any energy that derives from shape

functionals through density integration [Gargallo-Peiró et al. 2013])

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

61:6 • Feng, L. et al.

target the same ideal: having a Jacobian as close to constant and

isotropic as possible. However, two important differencesmake these

other choices of energy less attractive. First, finding the optimal

connectivity of these energies for given positions of the physical

mesh nodes is not known, which will thus require local and costly

exploration of the huge combinatorial space of all connectivities;

instead, the ODT energy is known to be minimized for a Delaunay

connectivity [Chen and Xu 2004], which is efficiently computed

by a number of existing libraries. Second, solving for the optimal

position of vertices given a fixed connectivity requires a non-linear

solve, and the minimization of high-order energies is evidently

slower and more prone to local extrema than ODT, for which the

optimal positions are found through a sparse linear system. One

can thus consider ODT as the d-D continuum equivalent of 1-D zero-
rest-length springs that regularize simultaneously the size and shape
of all simplices: the ODT energy goes to zero when the volume of

simplex goes to zero, whereas previous elastic energies had a non-

zero volume at rest state. In fact, the ODT energy is nothing but

the (integrated) L2 norm of the Jacobian over the physical domain,

so its minimization will tend to equidistribute its singular values.

This simple energy is thus a more effective solution to target a

uniform, isotropic Jacobian field than springs with unit rest lengths,

as they would require non-linear solves. Note also that other quality

measures [Knupp 2001; Shewchuk 2002] could be used as substitute

potential energies to enforce good mesh elements, but none can be

simpler (i.e., lower order in vertex positions) than ODT.

3 CURVED OPTIMAL DELAUNAY TRIANGULATION
We are ready to delve into our extension of ODT for high-order

meshes.We focus on Bézier meshes in dimensiond (ford=2 ord=3),
made out of Bézier simplices of order n. This choice of parametric

elements has commonly been used in graphics, as they require fewer

points (thus less memory) to represent curved domains and have

much better continuity properties than linear elements.

3.1 Primer on Bézier Meshes
While meshes made out of Bézier simplices (sometimes referred to

as Bernstein-Bézier meshes) have often been used in the graphics

literature (see, e.g., [Bargteil and Cohen 2014; DeRose 1988; Roth

et al. 1998; Weber et al. 2011]), we briefly review their construction

here for completeness.

Preamble. In the previous section, we used a linear mapφ between

a regular simplex and an arbitrary simplex embedded in �d . With

this convention, a straight-edge simplex is actually a parametric
patch, where the parameter domain

is the regular simplex, and the inter-

polation between the vertices of the

physical simplex is through linear ba-

sis functions. The Jacobian of this geo-

metric map φ (which is constant per

simplex since the basis functions are linear) indicates the local devi-

ation between the canonical and the physical element, and the ODT

energy tries to render this Jacobian field as uniform and isotropic

as possible. Bézier simplices extend this geometric map notion to

now higher-order polynomial deformation functions, where vertices

Fig. 4. Bézier simplices: Examples of Bézier simplices for n=1 (left, sim-
plicial meshes) and n = 2 (right, quadratic patches), with control points
highlighted in red; top: their reference (straight-edge) regular simplex.

are enriched with other control points per simplex to increase the

space of possible deformations.

Barycentric Coordinates. The use of barycentric coordinates is

particularly convenient when dealing with simplices: any point

x in a simplex τ in �d is encoded by a column vector of (d +1)
non-negative coefficients u(x)B (u1,...,ud+1)

t
, which sum to one.

We denote by U the matrix of the differential of the linear map

from x to u (i.e., the Jacobian matrix); it is constant over the simplex

since barycentric coordinates are linear. Given that we only consider

regular simplices τ , its expression is the same for each simplex, and

is given in App. B for 2D and 3D.

Bernstein polynomials. A barycentric index i of order n is defined

by a vector of (d+1) non-negative integers i= (i1,..., id+1) ∈�d+1

that sum to n, i.e., |i|B
∑
k ik =n. For each such index corresponds

a Bernstein polynomial Bni over the simplex τ (the superscript n
refers to the order of the subscript i), defined through:

Bni (u) =
n!∏d+1
k=1 ik !

d+1∏
k=1

u
ik
k , (6)

where u is a shorthand for u(x). These polynomials have a num-

ber of interesting mathematical properties (e.g., partition of unity,

positiveness over the simplex), not the least being that their partial

derivatives are, themselves, scaled Bernstein polynomials:

∂

∂uk
Bni (u) = nB

n−1
i−ek (u) (7)

where ek denotes the vector of size (d+1) with 1 at the kth position

and all zeros otherwise (to be valid for any n, Bernstein polynomials

are assumed to be identically zero if one of the barycentric indices is

negative). Note that we will denote by Bn
i the Jacobian (row vector)

of Bni with respect to the barycentric coordinates, i.e.,

Bn
i (u) =

[
∂
∂u1

Bni (u) · · · ∂
∂ud+1

Bni (u)
]

(8)

Eq. (7)
= n

[
Bn−1i−e1

(u) · · · Bn−1i−ed+1
(u)

]
.

Bézier simplex. We now can properly define a d-dimensional

Bézier simplex of order n: given a set C of control points with

C= {ci ∈ �d | i ∈ �d+1, |i| = n},
the associated Bézier simplex is defined via its geometric map φ:

x = φ(x) B
∑
|i |=n

ci Bni (u(x)). (9)

The control points ci ∈ �d are degrees of freedom for the Bézier

simplex, allowing it to curve. Note, as mentioned earlier, that the

case n=1 is nothing but the piecewise-linear map described in Sec. 2

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

Curved Optimal Delaunay Triangulation • 61:7

since the Bernstein polynomials are linear, and the control points

are restricted to be the vertices of the linear mesh. More generally,

a Bézier simplex only interpolates its “corner” control points (i.e.,

those of the form cnek), whereas the other control points smoothly

pull and stretch the simplex towards them, see Fig. 4. Note also that

this construction has the property that the boundary of a Bézier

k-simplex is, itself, a Bézier (k−1)-simplex.

Map Jacobian. Knowing the Jacobian U of u w.r.t x and the Jaco-

bian Bn
i of the Bézier simplex w.r.t. u, we can directly express the

Jacobian of the geometric map φ of the Bézier simplex w.r.t. x as:

J(x) B ∇φ(x) =
(∑
|i |=n

ci · Bn
i
(
u(x)

))
U(x) (10)

We deduce directly that the change ∂J(x)/∂ci of the Jacobian with

respect to a control point ci is given by:

∂J(x)
∂ci

= Bn
i
(
u(x)

)
U(x). (11)

Bézier mesh. A Bézier mesh is a manifold assembly of Bézier

simplices, that is, any two adjacent Bézier simplices have their as-

sociated parametric regular k-simplices sharing a common (k−1)-
simplex for k ≤ d . Moreover, two adjacent k-simplices share the

same (locations of) control points on their shared (k−1)-simplex

as well, thus enforcing continuity across simplices. Note that the

expression of the Jacobian with respect to a control point ci derived
for a single element in Eq. (11) remains valid as is, but one has to

sum the contributions of each simplex sharing this control point if

needed to get the final Jacobian.

Cubature points and cubature samples. For a function д(u) defined
in barycentric coordinates over a d-simplex, its integral over the

Bézier parametric simplex can be evaluated numerically using a

cubature scheme. For this purpose, we define a set of weighted points

{(ui ,wi)}i over the reference simplex τ such that

∑
i wi = 1: they

define a cubature scheme with which a function д can be integrated

through a linear combination of sample values as∫
τ
д(u) ≈ |τ |

∑
j
w j д(uj) .

Additionally, we map these cubature points to the physical domain

to create a series of cubature samples {xj Bx(uj)}j for each Bézier

simplex. This sampling of the Bézier simplices will be useful when

dealing with boundary fitting: they provide an efficient way to eval-

uate surface integrals by only using values at these spatial samples.

3.2 Extending ODT to High-Order Elements
Straight-edge triangulations correspond to Bézier meshes of order

one, so one may be tempted to extend the approximation theory

foundations behind ODT to the general case of order n. However,
the best discrete approximant of the paraboloid is no longer relevant

here: any Bézier simplex of order more than one can exactly capture

this low-order polynomial height field. Using a higher-order polyno-

mial to replace the paraboloid is also bound to fail, as one loses the

convenient property that the function and its discrete approximant

are below one another, rendering the L1 norm difficult to evaluate.

However, our analogy with continuum mechanics still holds in

the high-order case. We proved in Lemma 2.1 that the ODT energy

Fig. 5. Determinant of Jacobian. From left to right: ODT mesh (n = 1),
then curved ODT meshes with order 2, 3 and 5 respectively, showing in-
creasing continuity across elements. Bottom: determinant of the Jacobian
in the domain visualized with a rainbow colormap.

of a mesh corresponds to a specific potential energy of the piece-

wise linear map between an idealized unit reference mesh of same

connectivity and this mesh. Since each element of a Bézier mesh

has a simplicial parametric domain and the map is now piecewise

polynomial, the exact same expression is well defined in this Bézier

context. We rename it E
CODT

to underline its validity on any Bézier

mesh of order n≥ 1:

Definition 3.1. Given a Bézier mesh T made out of d-simplices

of order n and its unit reference mesh T made out of its associated

equilateral simplicial charts with the same connectivity, we define

its Curved Optimal Delaunay Triangulation energy as:

E
CODT
=

1

2(d + 2)

∫
T

det(J(x)) ∥ J(x)∥2
F
dx, (12)

where J(x) is the Jacobian of the Bézier simplex at point x on the

parametric domain.

Polynomial degree of E
CODT

. For Bézier simplices, this energy is in

fact polynomial in the barycentric coordinates. In a Bézier d-simplex

of order n, the Jacobian has degree n−1, and its determinant has

degree d (n−1). Thus, the energy density is of polynomial degree

(d+2)(n−1). In practice, order-2 (resp., order-3) Bézier elements in 2D

and 3D are often used, leading to polynomial degrees 4 and 5 (resp.,

8 and 10). Note that more complex energy densities (as discussed in

Sec. 2.4) would raise the degree of this polynomial, or even render

the energy rational, adding significant difficulty to its evaluation

and, arguably more troublesome, its minimization.

Interpretation for higher-order meshing. While the ODT energy

is clearly promoting equilateral simplices, a closer look is needed

to understand the effect of a low CODT energy. In the case of a

piecewise linear map φ, the energy in a simplex was proportional to

its volume and to the squared Frobenius norm of Jacobian describing

its linear transformation from a regular simplex, see Lemma 2.1. In a

Bézier simplex, the reference (parametric) element is still a straight-

edge simplex, so the notion of unit reference mesh remains valid

and unchanged. But now, the actual elements are curved, so the

traditional notion of “well-shaped elements” in simplicial meshing

is no longer appropriate. However, what this energy does is, in

essence, to consider the Bézier mesh subdivided to an infinitely

dense mesh, where now the edges are nearly straight, and it sums up

the classical ODT energy for these fine sub-simplices. So minimizing

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

61:8 • Feng, L. et al.

Fig. 6. Man head. Order-3 Bézier meshes based on a sizing field derived
from the local feature size with 1K vertices (left, no sliver peeling) vs. 10K
vertices (right); the sizing-scaled Jacobian determinant is visualized (bottom)
via a rainbow colormap; respective closeups on the ear and nose (middle).

this energy will lead, instead, to a Jacobian field of the deformation

map between the Bézier parametric domain and its curved elements

as close to being uniform and isotropic throughout the domain.

This effect can be clearly noticed in Fig. 5: starting from an ODT

mesh, optimizing the control points of a Bézier mesh to minimize

the energy E
CODT

makes the local Jacobian field more continuous

across edges—not to mention that the same number of elements now

approximates the smooth domain much better (see also in Fig. 11

how the Hausdorff distance to the boundary quickly decreases with

order). This continuity of the Jacobian field will improve within, and

across, elements as we go higher in the order of the Bézier simplices,

but not necessarily at vertices that form a cone singularity in the

reference domain: Fig 5 shows this expected behavior by displaying

the determinant of the Jacobian for a high-order Bézier mesh, which

is smooth everywhere except at vertices with irregular valences.

Derivative of CODT energy. The derivative of CODT energy de-

fined in Def. 3.1 with respect to a Bézier control point ci is found by
the product rule (see App. A for the full derivation), leading to:

∂E
CODT

∂ci
=

1

2(d+2)

∫
T

Bn
i (u(x))U(x)

[
∥ J∥2

F
J−1+2Jt

]
det(J)dx. (13)

3.3 Bézier mesh topology
We also need to consider the topology of the Bézier mesh, in partic-

ular to find how to optimize the connectivity based on the CODT

energy, and which elements are inside the domain.

Proxy straight-edge simplices. As often used

for Bézier meshes, we first define the notion of

“proxy simplex” for a Bézier simplex to be the

straight-edge simplex formed by the vertices

(i.e., corner control points) of the Bézier patch

(inset: order-5 simplex, proxy in blue). For n=1,
this is exactly the Bézier simplex; for higher

orders, it is just a straight-edge approximation of the curved element.

Delaunay proxy connectivity. Remember that for the straight-edge

case, the minimum of the E
ODT

for fixed vertex positions is achieved

for the Delaunay connectivity of these positions. With this new,

extended CODT energy, the situation becomes more complex: now,

the position of the control points do depend on this connectivity,

so finding which connectivity minimizes the CODT energy is less

obvious. We are not aware of how to define the optimal connectivity

of the Bézier mesh; however, since we are trying to form a Bézier

mesh with a distortion as small and uniform as possible, we pro-

ceed with the following assumption: we simply enforce a Delaunay
connectivity for the proxy elements. That is, from the vertices of the

Bézier mesh only (disregarding the other control points), we com-

pute the Delaunay triangulation of these positions, and assume that

the resulting Bézier mesh with these Delaunay simplices as proxy

elements is the one with minimal energy.

Restriction to Ω. Given a set of ver-

tices and a Delaunay connectivity for the

proxy elements, we have formed a Bézier

mesh. However, not all of the elements

are relevant to the meshing of the domain.

In particular, concave regions may con-

tain Bézier simplices that should really

be considered as outside, and thus dis-

regarded when it comes to optimizing the meshing of Ω. For a
Delaunay (straight-edge) first-order Bézier mesh, there is a clear

way to identify elements inside Ω through the notion of restricted
Delaunay elements [Rineau and Yvinec 2008]: these are simplices

for which their Voronoi dual is inside Ω. Only those restricted mesh

elements are active during ODT optimization, as they correspond

to the set of inside elements. We thus proceed exactly the same way

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

Curved Optimal Delaunay Triangulation • 61:9

for our case, but by testing the proxy elements instead: every Bézier

simplex whose proxy element is restricted is tagged as active. A finer

approximation could be done by considering the subdivided control

net; but only testing the proxy elements has shown sufficient in all

our examples.

Finally, we also deactivate restricted boundary elements that have

two faces or more on the domain boundary and are not on a sharp

feature: this allows to quickly “peel off” sliver-like curved elements.

Such curved slivers can be useful if only a concise representation

of the domain is sought after, but they are not acceptable for finite

element computations as they lead to singularities of det J. Fig. 7
depicts such an example in 2D and Fig. 16 (bottom) in 3D, each

involving a simplex angle close to 180 degrees.

Fig. 7. Singularities at obtuse angles. If a curved triangle loosely approx-
imates a disk in 2D (left; proxy triangle in blue), the Jacobian is well behaved
everywhere. For strong fitting forces (middle), near-zero Jacobians may oc-
cur at vertices when the angles become close to 180 degrees, see the dark
magenta color and the squeezed subtriangles in the two insets (right).

Boundary elements. Our identification of restricted elements also

provides a direct way to find which Bézier faces are on the external

boundary of our Bézier mesh: during the testing of restricted ele-

ments, any d-dimensional simplex for which one of its (d−1)-faces’
dual edges crosses ∂Ω is tagged as “boundary simplex”, and the

corresponding boundary face is tagged as “boundary”: they will

play an important role in fitting the domain.

3.4 Non-shrinking boundary conditions
As we discussed in Sec. 2.1, defining proper boundary handling is

important to obtain meshes with low shape distortion. While previ-

ous boundary conditions do not always carry over straightforwardly

to our curved meshing context, our new isotropic-stress boundary

condition discussed in Sec. 2.3 can be adapted rather easily.

At first, one may be tempted to simply apply a force f
bdry

(given

in Eq. (5)) pointwise along boundary elements, since the gradient

J of the map is now spatially varying. This is, however, forgetting

part of the goal of this boundary force. Remember that the internal

CODT energy tries to get the Jacobian as uniform and isotropic

as possible. But the boundary condition should also promote both
isotropy and uniformity of the Jacobian.

We thus propose to compute an average tensor per boundary
simplex, and apply this tensor to form the boundary traction. More

specifically, we compute the average ⟨∥J∥2
F
⟩τi (over area in 2D, over

volume in 3D) of the isotropic part of the CODT stress tensor of

a boundary simplex. Then we apply the following boundary force

field for the face(s) of τi that are tagged as “boundary”:

f
bdry
=

1

2d
⟨∥J∥2

F
⟩τi n.

This averaging of the isotropic part of the stress at the boundary

used as an element-wise traction now promotes both isotropy and

uniformity: equilibrium will be reached when the Jacobian is, on

average, isotropic and uniform. It also exactly fits the straight-edge

ODT case, as the average and the pointwise Jacobian are equal in

the piecewise linear map case.

3.5 Boundary fitting
Minimizing our CODT energy with added traction at the boundary

makes any Bézier mesh as “regular” as possible in the sense that it

has a Jacobian with respect to the parametric domain quite uniform

and isotropic: in fact, like in Fig. 2, running the usual control-points

/ proxy-connectivity procedure to minimize the CODT energy leads

to nearly linear elements, as these correspond to the best possible

element in terms of their Jacobian fields. Yet, the domain Ω may not

be particularly well approximated by restricted elements, unless the

mesh is very dense. One of the key advantages of Bézier meshes is

that they can adapt to curved domains with high precision even for

a small count of elements thanks to the added flexibility afforded

by the control points and high order basis functions.

In order to achieve this desirable property, we add a boundary

fitting force field on the boundary faces of T to push them towards

the boundary ∂Ω of the domain. The magnitude of this extra force

offers a compromise between boundary fitting and low distortion of

the Bézier map. Depending on the application for which a mesh is

constructed, vertices may have to be precisely on the boundary, or

the mesh boundary just needs to approximate ∂Ω. While the former

can be achieved using methods as in [Alliez et al. 2005; Chen et al.

2014; Gao et al. 2012], we derive a simple approach to the latter by

exploiting the stability of our non-shrinking minimization.

We simply add a boundary force field f
fit

that attracts the bound-

ary face elements ofT to the domain boundary ∂Ω using a two-sided

notion of distance minimization. For any cubature sample xi of a
d-simplex τ that is on ∂T , we apply a local fitting force that sums

a force field fT→Ω based on the shortest distances from T to Ω and

another force field fΩ→T based on the shortest distances from Ω to

T to ensure tight geometric closeness:

f
fit
(xi) = λ |τ |1/d

(
fT→Ω(xi) + fΩ→T(xi)

)
, (14)

where |τ | is the volume of the d-simplex on which point xi lies, and
λ is the global strength of the force. The first force is defined as:

fT→Ω(xi) = Π∂Ω(xi) − xi ,

where ΠΩ(xi) is the projection of xi to the nearest point on the

domain boundary ∂Ω. The vector Π∂Ω(x) − x is known to be the

local gradient of the one-sided squared distance function between

∂T and ∂Ω [Pottmann and Hofer 2003]. By applying this force to

all cubature samples (weighted by their associated areas), we obtain

a simple one-sided boundary fitting term whose integral is zero

when the boundary of the Bézier mesh is straddling the domain

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

61:10 • Feng, L. et al.

Fig. 8. Fitting force field. The fitting force field decreases in magnitude
as the mesh of Fig. 1 (n = 3) is optimized from a very coarse linear mesh.
Force vectors are scaled by a factor 20 for better visual depiction.

boundary. The use of this force alone is usually enough to attract the

Bézier mesh to the boundary of the domain, but its one-sidedness

may lead to regions of the domain boundary being not covered.

So we compute the force fΩ→T derived from a set of sample points

{sk}k sampling the boundary ∂Ω: for each boundary sample sk , we
compute their closest cubature sample xi on the boundary ∂T of the

Bézier mesh; we then add a force fΩ→T equal to the vector between

the cubature sample and the centroid of all closest boundary sample

points, restricted to be normal to the boundary (to prevent spurious

sliding due to the use of the centroid):

fΩ→T =

(
1

|S(xi)|

∑
k ∈S (xi)

sk − xi

)
· ni ni , (15)

where S(xi) is the set of boundary sample indices such that xi
is their closest cubature sample, and ni is the unit normal to the

Bézier surface at xi . This extra forcing term helps ensure that every

region of ∂Ω is close to the Bézier mesh. The resulting force is

further multiplied in Eq. (14) by the local edge length h (obtained

by taking the d-th root of the volume of τ) and a dimensionless

coefficient λ for two reasons: first, it makes the fitting force be of the

same dimensionality as the gradient of CODT, thus making these

forces comparable in strength locally; second, the value λ can be

interpreted as controlling h/ϵ where ϵ is the average distance of

the boundary face of τi to the boundary of Ω. That is, λ is a scale-

invariant parameter defining how close to the boundary we want

the mesh to be compared to its local element size. This coefficient is

thus easy to adjust based on the balance between mesh distortion

and boundary fit, independent of mesh density or domain shape.

Refer to Fig. 9 to see the effect of increasing values of λ.

3.6 Mesh gradation
For a sizing fieldh(x) over Ω, all the expressions we provided need to
be altered to lead to the requested sizing constraints. Most changes

are very simple, and are best understood as thinking of sizing as a

modulation of the local metric by 1/h. This means that any gradient

needs to account for h (for instance, the evaluation of J should
become J/h), and any local evaluation of length, area, or volume

in should be multiplied by h−1, h−2 or h−3 respectively. As a result,

the ODT energy is effectively multiplied by h−(d+2) pointwise as
mentioned in the straight-edge case, since it involves ∥J∥2

F
(bringing

a factor h−2) and det(J) (responsible for a factor h−d). The only

complication is the computation of the derivative of the sizing-

weighted CODT energy, as it now involves a derivative in the sizing

Fig. 9. Boundary fitting. The dimensionless fitting strength λ in Eq. (15)
controls the tightness of the fit to the domain boundary: a small value (left,
λ = 1) will only weakly capture the boundary shape, while a large value
(right, λ=100) provides a close fit. The effect is adapted to the size of local
elements, making its value scale invariant, thus intuitive and easy to set.

field itself; for completeness, we provide its derivation in App. A

and its complete expression to ease implementation in Eq. (23).

As reported in prior work, we found that having a slowly-varying

sizing field that is adapted to the local feature size (lfs) of the domain

(see, for instance, the lfs-basedK-Lipschitz field in [Alliez et al. 2005])
is best for the gradation of the resulting mesh, as well as for the

robustness of the meshing process as the size of elements fits the

local geometry well. See Fig. 10 to see the effect of varying mesh

densities for a given domain, using degree-3 elements.

Fig. 10. Sizing. Left: uniform sizing; middle: lfs-based sizing; right: radially
linear sizing function. Respective sizing fields h are depicted on top.

3.7 Putting it all together
While minimizing the CODT energy can be incorporated into any

meshing technique with minimal effort, we describe next how one

can construct an isotropic curved Bézier mesh from an input domain

Ω and a sizing field h (possibly constant for uniform meshes). In

particular, we mention a few important implementation details to

improve efficiency and robustness.

Mesh initialization. Starting from a decent mesh is preferable if

computational time is an important issue—but any mesh can do. In

practice, we initialize the vertices by drawing them randomly from a

density distribution adapted to the sizing field. Our implementation

follows a usual Delaunay refinement/deletion process [Cheng et al.

2012; Rineau and Yvinec 2008] to construct a restricted tetrahedron

mesh that roughly follows the sizing field h and captures the topol-

ogy of the domain Ω. This coarse mesh defines proxy elements from

which a first Bézier mesh can be initiated.

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

Curved Optimal Delaunay Triangulation • 61:11

Fig. 11. Boundary approximation. Input domain approximated for a
given number of vertices, from Bézier order 1 to 4. The respective 2-sided
Hausdorff errors (as a percentage of bounding box diagonal) are 3.42, 0.315,
0.133 and 0.073. The boundary forces are rescaled for better depiction.

Numerical integration using cubature. Since the Bézier mapping

we employ is polynomial and the CODT energy is a function of its

Jacobian, the integrals involved in our CODT energy and its deriva-

tive can be evaluated efficiently and exactly using a cubature scheme

with the proper order (and with a pre-evaluation of the Bernstein

polynomials of the cubature points for efficiency) as their pointwise

values are known in analytical form. Unless a constant sizing field is

chosen, we use Witherden-Vincent cubature points [Witherden and

Vincent 2015]: the presence of an arbitrary (i.e., non-polynomial)

sizing fieldh is robusly handled through this cubature scheme—with,

again, pre-evaluation of the field at the cubature points—because its

weights are all positive. In our code, we used the points and weights

of this cubature scheme provided in [Schlömer 2018].

Optimization of ECODT. From a current Bézier mesh, we perform

multiple “rounds” of optimization of the CODT energy, i.e., alternate

steps of geometry and topology updates to improve the mesh:

• Geometry. Control points (including vertices) are moved through

quasi-Newton (more precisely, LBFGS) iterations, where we add

to the gradient of ECODT (Eq. 11) the contribution of the boundary
forces f

fit
and f

bdry
to the control points. More precisely, for each

control point ci, we add to ∂J/∂ci the boundary force for each

cubature sample xk of neighboring simplices weighted by the

value Bni (uk) of the Bernstein polynomial Bni for that cubature

point uk . Since Bernstein polynomials form a partition of unity

over each simplex, forces are properly distributed to the control

points; the resulting vector forms the gradient (righthand side)

of the quasi-Newton step, while the Hessian is approximated

from previous gradients (we use a history size of 5 in our code).

• Topology. Every 10 geometry updates, we verify that every proxy

element is still Delaunay, performing a topology update if needed.

Once a connectivity update is triggered, we make sure not to

alter the control points of the unaffected elements; newly-created

elements are assigned either existing control points for shared

faces, or canonical internal control points as if they were forming

a straight-edge simplex: these new control points will move at

the next round of energy minimization anyway. To accelerate

computations, this topology check is only done every 30 geom-

etry updates once the energy change per iteration goes below

a certain threshold: this indicates near convergence, and thus a

low probability of frequent connectivity changes.

Early on, Jacobians with negative determinants may appear tem-

porarily, corresponding to local foldovers in a Bézier patch. While

minimizing the CODT energy eventually removes these cases, we

found beneficial to replace the determinant det of J by:

det<0?−100 det : det.

This simple trick heavily penalizes any locally negative Jacobian

by artificially inflating its effect. Even with large fitting forces, our

resulting meshes never have Jacobians with negative determinants.

Boundary fitting. The boundary forces are directly used as a

change of the gradient for the quasi-Newton step in each geometry

update. Faster convergence is observed if we start with a small fit-

ting force magnitude λ: we start with λ = 1 and increase λ gradually

during the geometry updates of the Bézier mesh to reach λ = 1000.

With this scheduling (see Fig. 14 for an example), mesh elements

have time to quickly position themselves near the boundary and

equidistribute their Jacobian before the fitting force is too strong

and starts counteracting the effect of the CODT minimization.

Sharp features. With the algorithm de-

scribed above, sharp features and corners

may or may not be properly handled, as

shown in the inset (where depending on

the initialization, the features get exactly

captured (left), or at times, an element

is bent to only approximate the feature

(right)). Sharp features can, however, be

tackled properly if needed. Recall that the

mesh boundary corresponds to facets of “restricted” proxies. Instead

of having only fitting forces between the mesh boundary and the

domain boundary, we can put fitting forces between all domain

features and restricted Delaunay elements (facets, edges, vertices).

More generally, restricted Delaunay elements are elements whose

dual intersects the corresponding feature in the domain. For 3D

meshing, this includes all features of lower dimension (2D, 1D, 0D):

the dual of a restricted facet (a Voronoi edge) pokes the domain 2D

boundary as we used before; but now, an edge is restricted if its dual

(a Voronoi face bisecting this edge) contains a sharp crease of the

domain; and a vertex is restricted if its dual (Voronoi cell) contains

a sharp corner. In practice, we thus sample all existing features.

During optimization, we detect all these restricted elements within

the proxy mesh after each connectivity update, and we call a Bézier

element restricted if its proxy element is restricted. Before each

quasi-Newton iteration, we calculate cubature points on all these

restricted Bézier elements, then for each kind of features, we find the

two-sided projection vectors between Bézier cubatures and domain

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

61:12 • Feng, L. et al.

Fig. 12. Sharp features. With simple changes, our approach can accom-
modate sharp features, ensuring that the curved edges of the Bézier mesh
approximate the feature curves, while corners are at vertices. Restricted
Bézier edges and vertices (i.e., creases and corners) are shown in red.

samples, just like fΩ→T and fT→Ω in Sec. 3.5. The only difference with

Eq. 14 is the rescaling factor: to keep λ dimensionless, we use e2

and s3 for edges and vertices respectively, where e is the local edge
length and s is the average length of edges incident to the vertex.

Three meshes with sharp features are shown in Fig. 12.

Interleaving refinement/deletion/teleportations. Note that most of

the previous accelerations proposed in the context of straight-edge

ODT meshes can also be incorporated in the curved mesh extension.

In particular, we found that the strategy of Tournois et al. [2009]

consisting in triggering occasional refinements (resp., deletions)

of elements in regions where the determinant of the Jacobian is

smallest (resp., largest) helps converge faster. The use of vertex

teleportation recommended in [Alliez et al. 2005] achieves a similar

goal, where now insertion and deletion are done in pairs.

Degree elevation. As recommended in previous works, proceed-

ing through incremental degree elevation helps both accelerate

convergence and improve the final mesh quality: even if CODT is

significantly simpler than previous mesh-optimization functionals,

starting from lower order polynomials avoids stepping early into

local minima, and minimize the amount of transient wiggling that

high order polynomials are known to create. The use of lower-order

numerical integration with fewer cubature points also improves

efficiency in early stages of the meshing.

3.8 Discussion
Our extension to ODT allows the creation of curved meshes with

excellent properties, akin to the isotropy of ODT meshes. We review

next a few notable properties that end users may benefit from, as

well as further possible extensions.

Isogeometric Analysis. In computational science, recent years have

seen a growing interest in Isogeometric Analysis (IGA): the geom-

etry of the computational domain is defined through parametric

functions that are also used to approximate the unknown physical

fields in a numerical simulation. Such approaches avoid the typical

mismatch between the basis functions describing the geometry and

the ones defining the solution space in the domain, thus improving

the analysis and convergence of numerical methods. Our curved

extension of ODT may be particularly relevant to this community:

because we optimize the parameterization to ensure a high quality

map gradient within and across elements, IGA-based numerical sim-

ulations should have both improved condition numbers of stiffness

matrices and global accuracy [Pilgerstorfer and Jüttler 2014].

Hybrid meshes. While we discuss the optimization of the CODT

energy with respect to all control points in the mesh, one may want

to keep most internal d-simplices with straight edges: computing

stiffness matrices in FEM simulation is computationally simpler

when elements are not curved. This is easily achieved in our frame-

work by optimizing all the control points within a certain distance

of the boundary, but only corner control points (i.e., vertices) in the

rest of the domain. As a result, we get a hybrid mesh with curved

elements near the boundary and straight elements inside. Unlike

previous approaches that propagate boundary deformation to inside

elements through smoothing or blending, this approach targets low

distortion of parametric elements directly and reliably.

Anisotropy. One interesting extension of our isotropic, curved

meshing approach is to introduce anisotropy. The ODT approach is

quite naturally extended to anisotropic meshes, through the inser-

tion of a metric field (locally indicating both anisotropy and sizing)

and the use of weighted Delaunay meshes (see [Budninskiy et al.

2016] for a recent summary). However, extending our approach to

handle any metric field raises a number of issues (such as the design

of anisotropic metric fields that are consistent with the geometry of

the boundary) that deserve more attention than this document can

dedicate to it. We thus leave anisotropy as future work.

4 RESULTS
We implemented our approach to curved meshing through ODT

minimization in C++ using mostly the CGAL [The CGAL Project

2017], Eigen [Guennebaud et al. 2018] and OpenCL libraries. Mesh-

ing is achieved in a very systematic way starting from a domain Ω
given as a triangle mesh or an implicit function (we use an oracle

to make our approach independent of the input format). We begin

with a given number of points generated with a spatial density

proportional to a user-given sizing field, from which the restricted

Delaunay elements within the domain Ω are determined. Then we

begin rounds of geometric and connectivity updates for n=1 (keep-
ing it as a linear mesh for now) as described in Sec. 3.7. When a

round has converged (i.e., the last round had no connectivity up-

dates and no vertex motions larger than a small threshold), we raise

the order of the Bézier mesh (never by more than two orders at

a time to avoid wiggling of the elements near the boundary) and

start another set of rounds until convergence. All our results were

generated with this simple approach. While this is unlikely to be the

fastest approach to generate our final meshes, the robustness and

efficiency of the approach made it quite straightforward to use as is.

Note finally that we always display the sizing-scaled Jacobian deter-
minant in the figure, i.e., det(J)/hd (since its pointwise value is more

meaningful in the case of steep sizing fields), and colorbars range

from 0 to twice the average sizing-scaled Jacobian determinant.

Fig. 11 demonstrates the approximation power of curved meshes

on a blobby-shaped domain. Starting from a desired number of

vertices (110), we increase the order n from 1 to 4 to show how the

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

Curved Optimal Delaunay Triangulation • 61:13

Fig. 13. Hippo. This CODT mesh used an lfs-based sizing field and Bézier
elements of order 3, with 10K vertices and λ = 10000.

boundary is closely captured. In order to estimate how well, we

measured the 2-sided Hausdorff error between the boundary of the

curved mesh and the input boundary as a percentage of the longest

bounding box diagonal of the input. Using the error of the linear

mesh as reference, the Hausdorff distance decreases by a factor 11,

26 and 47, respectively. For reference, matching similar errors with

linear elements (generated by Delaunay refinement) requires 2K,

4.3K and 15K vertices, respectively.

Fig. 6 shows our approach on a 1-Lipschitz sizing field based on

an estimate of the local feature size of the input domain [Alliez et al.

2005]. We generated two order-3 curved meshes of the same do-

main: one with 1K vertices (877 vertices ended up on the boundary,

123 inside, for a total of 2,971 elements) and one with 10K vertices

(6,051 vertices on the boundary, 3,949 inside, 40,323 elements). For

1K (resp., 10K) vertices, the 2-sided Hausdorff distance is 0.35%

(resp., 0.05%) of the longest bounding box diagonal, with an aver-

age Euclidean distance of 0.01% (resp., 0.00125%). A cross-section

illustrates the gradation of the mesh inside. The Jacobian field is

smooth, with distortion concentrated at mesh vertices. Similarly,

Fig. 15 presents two order-3 curved meshes of the Bimba model,

with respectively 2K and 10K vertices for a smoothly-varying sizing

field; Fig. 17 shows the kitten model for three different resolutions.

Finally, Fig. 13 depicts an order-3 curved mesh of the Hippo model

with 10K vertices, for an LFS-based sizing field.

Other Jacobian-based methods. As discussed early on, current

high-order meshing methods often use a Lagrangian mechanics

analogy to find a curved mesh using a high-quality straight mesh

as a reference. To allow for high curving, a neo-Hookean consti-

tutive model is desirable [Persson and Peraire 2009], containing

a logarithm of the determinant of the Jacobian. Instead, we use a

low-order polynomial CODT energy, and do not have to rely on

a PWL reference mesh, thus allowing both more freedom for the

connectivity of the curved mesh and much simpler numerics.

Energy behavior. For fixed boundary, the CODT energy strictly

decreases at each step of control point optimization and connectivity

update. Because we use boundary forces to let vertices slide over the

domain, this is no longer true. However, the energy minimization

still behaves as expected: if the fitting strength λ increases, the

Fig. 14. Energy minimization. Energy plot (orange curve) and fitting
strength λ scheduling (blue dots) during the meshing of the elephant model
with 10K vertices, throughout the 600 rounds of optimization (horizontal
axis). A closeup of the final stage is shown below. An energy drop is seen at
the 401st round, where the mesh starts to curve.

energy increases; if λ stays constant for a while, then the energy

decreases as the mesh deforms to improve the shape of its elements;

finally, increasing the order of the Bézier elements allows for a

lowering of the energy as more DOFs become available. Fig. 14

shows the energy throughout the construction of the elephant mesh

as λ increases. When we switch from PWL to quadratic elements

(after 400 iterations), the energy drops precipitously.

Timings. We measured our timings on HP Z420 workstation,

with a quadcore E5-1620-0 clocked at 3.6GHz and 16 GBytes of

memory. We parallelized most steps of our CODT minimization

using OpenMP in shared memory mode. Optionally, the compute-

intensive evaluation of the energy and its gradient at internal and

boundary cubature points are performed on GPU, bringing an ac-

celeration of around a factor 5 on a NVIDIA GTX 1060. Compared

to Optimal Delaunay (linear) Tetrahedralizations, curved meshing

is more compute-intensive, even more so when the order of the

elements increases. The complete process for meshing the skin sur-

face shown in Fig. 1 with 200 vertices and order 3, takes nearly 50s.

Each quasi-Newton iteration takes 0.03s in the linear stage, and

0.14s in the order-3 stage (we go directly from degree 1 to degree

3). Meshing the ManHead model with 1K vertices and order-3 takes

less than 40 mins (but only 15 mins on GPU). Going up to 10K

vertices increases the computational time to 6 hours (only 80 mins

on GPU); each order-1 iteration then takes 0.41s (0.27s with GPU),

while an order-3 iteration takes 5s (1s with GPU), and we observe

a near-linear time complexity in the order to the Bézier simplices

for each iteration. In our experiments the total number of rounds

required for convergence depends heavily on the number of vertices,

the domain complexity and the grading of the sizing field. Using a

uniform sizing function is usually 20% faster or more, as the CODT

energy and its derivatives are simpler to evaluate. In practice, we

found that almost two thirds of the meshing time is used to reach

convergence for n=1: once this stage is obtained, the rest (further
degree elevations) goes relatively fast. Within each stage, most of

the time is spent in computing cubatures and boundary fitting forces

(hence the large time improvements when GPU acceleration is used).

While we have not tried to fully optimize computational time, using

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

61:14 • Feng, L. et al.

Fig. 15. Bimba con nastrino. This model is remeshed with an lfs-based sizing field using Bézier elements of order 3, with 2K (left) and 10K (right) vertices,
for λ = 1000. The Jacobian determinant of the 10K-vertex result (rightmost) is shown, with a cross section to highlight the quality of internal elements.

Fig. 16. Failure cases. Top: An insufficient number of vertices (130 in this
case, left) may fail to capture the proper topology of a domain and generate
self-intersections. Increasing the vertex count to 150 produces the correct
topology and no self-intersection. Bottom: The kitten from Fig. 17 with only
200 vertices shows that degeneracies of det(J) appear because of a dihedral
angle nearing 180 degrees (note that sliver peeling was turned off).

a cubature scheme of order 10 for the inside and order 20 for the

boundary (to offer more accurate boundary fitting estimates) has

proven adequate for all our examples; but adapting cubatures may

improve timings significantly.

Limitations and Possible Extensions. There are mostly two main

types of limitations to our current approach. First, geometry and

topology failures may appear: using too few vertices can fail to

capture the proper topology of the domain as shown in Fig. 16;

similarly, using a badly-adapted sizing field may lead to a loss of

geometric detail. Both cases are easily addressed by interleaving

refinements as in [Tournois et al. 2009]. In the same vein, and while

our proxy mesh is guaranteed to be free of self-intersection by

construction, we do not currently test for self-intersection of the

curved elements in our code since using a lfs-adapted sizing field

basically prevents such a case; but localized refinements can remove

these issues if detected. The second limitation concerns continuity

of the patches. By construction, the output curved meshes are only

strictly C0
across faces, even if the CODT energy tends to render

them nearlyC1
for higher-order Bézier meshes (see Fig. 5). Enforcing

strictG1
continuity is feasible, but adds many constraints on control

points; finding how to efficiently minimize the CODT energy under

these continuity constraints would be a valuable extension.

Supplemental material. We include short video clips demonstrat-

ing our approach. In 2D, we show a simple realtime sequence illus-

trating how CODT optimization with free boundary behaves, then

the same optimization with boundary forces activated, and finally

a visualization of the Jacobian field after degree elevation. In 3D,

we show an accelerated timelapse of the meshing of the 10K-vertex

ManHead mesh from Fig. 6, starting from n=1 until convergence,
then going straight to n=3 until convergence.

5 CONCLUSIONS
We showed in this paper that the common ODT approach to gen-

erating isotropic triangle and tetrahedron meshes can be directly

extended to curved meshing for higher-order basis functions. Our

construction requires only usual meshing tools, such as Delaunay

and restricted Delaunay triangulations, and a low-order polyno-

mial CODT energy to minimize using quasi-Newton iterations. We

showed that because of CODT energy benefits from the simplicity

of the original ODT energy, minimization is efficiently achieved via

simple control point updates and Delaunay connectivity in sharp

contrast to previous methods. Finally, while we focused our exposi-

tion on Bézier simplices, other simplex-based high-order functions

may be accommodated as well.

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

Curved Optimal Delaunay Triangulation • 61:15

Just like ODT for tetrahedron meshing, the concept of CODT

for curved meshing can be used not only for meshing a domain

from scratch, but also as a generic tool for local mesh improve-

ments in a variety of contexts. Our approach may thus benefit from

better heuristics and cubatures in specific applications, such as

local remeshing in physical simulation techniques like Arbitrary

Lagrangian-Eulerian (ALE) methods. Other obvious directions for

future work include anisotropic curved meshes—but the topic de-

serves its own focus. Due to the duality between Centroidal Voronoi

Tessellations and Optimal Delaunay Triangulations [Budninskiy

et al. 2016], our approach may also extend to Optimal Voronoi Tes-

sellations, where now curved cell elements would be used.

ACKNOWLEDGMENTS
All meshes in this paper are courtesy of AIM@SHAPE and Lux-

ology/Foundry. This work was supported by the European Union

under grant 675789 (ITN ARCADES), and by the French govern-

ment through the UCAJEDI Investments managed by the National

Research Agency (ANR-15-IDEX-01). MD gratefully acknowledges

the INRIA International Chair program, and Zhejiang University

for hosting him superbly well during the final editing of this work.

REFERENCES
Remi Abgrall, Cécile Dobrzynski, and Algiane Froehly. 2012. A method for comput-

ing curved 2D and 3D meshes via the linear elasticity analogy: preliminary results.
Technical Report RR-8061. INRIA. https://hal.inria.fr/hal-00728850

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Varia-

tional tetrahedral meshing. In ACM Trans. Graph., Vol. 24. ACM, 617–625.

Pierre Alliez, Nathalie Laurent, Henry Sanson, and Francis Schmitt. 1999. Mesh ap-

proximation using a volume-based metric. In Pacific Conf. on Computer Graphics
and Applications. 292–301.

Nina Amenta, Marshall Bern, and David Eppstein. 1999. Optimal Point Placement for

Mesh Smoothing. J. Algorithms 30, 2 (1999), 302–322.
Ivo Babuska, Barna Szabo, and Norman Katz. 1981. The p-version of the Finite Element

Method. SIAM J. Num. Anal. 18, 3 (1981), 515–545.
Adam W. Bargteil and Elaine Cohen. 2014. Animation of Deformable Bodies with

Quadratic Bézier Finite Elements. ACM Trans. Graph. 33, 3 (June 2014), Art. 27.
Jean-Daniel Boissonnat, David Cohen-Steiner, and Mariette Yvinec. 2006. Comparison

of algorithms for anisotropic meshing and adaptive refinement. Tech. Rep. ACS-TR-
362603, INRIA (2006).

Max Budninskiy, Beibei Liu, Fernando de Goes, Yiying Tong, Pierre Alliez, and Mathieu

Desbrun. 2016. Optimal Voronoi Tessellations with Hessian-based Anisotropy. ACM
Trans. Graph. 35, 6, Article 242 (2016).

David Cardoze, Alexandre Cunha, Gary L. Miller, Todd Phillips, and Noel Walkington.

2004. A Bézier-based Approach to Unstructured Moving Meshes. In Symp. Computat.
Geom. 310–319.

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A Simple Geometric

Model for Elastic Deformations. ACM Trans. Graph. 29, 4, Article 38 (2010).
Long Chen. 2004. Mesh Smoothing Schemes based on Optimal Delaunay Triangulations.

In Int. Meshing Roundtable. 109–120.
Long Chen and Michael Holst. 2011. Efficient mesh optimization schemes based on

optimal Delaunay triangulations. Computer Methods in Applied Mechanics and
Engineering 200, 9 (2011), 967–984.

Long Chen and Jin-chao Xu. 2004. Optimal delaunay triangulations. J. Computational
Mathematics (2004), 299–308.

Zhonggui Chen,WenpingWang, Bruno Lévy, Ligang Liu, and Feng Sun. 2014. Revisiting

Optimal Delaunay Triangulation for 3D Graded Mesh Generation. SIAM J. Sci.
Comput. 36, 3 (2014), 930–954.

Siu-Wing Cheng, Tamal K. Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-

Hua Teng. 2000. Sliver Exudation. J. ACM 47, 5 (2000), 883–904.

Siu-Wing Cheng, Tamal K. Dey, and Jonathan R. Shewchuk. 2012. Delaunay Mesh
Generation. CRC Press.

Tony D. DeRose. 1988. Composing Bézier Simplexes. ACM Trans. Graph. 7, 3 (July

1988), 198–221.

Qiang Du, Vance Faber, and Max Gunzburger. 1999. Centroidal Voronoi tesselations.

SIAM Rev. 41, 4 (1999), 637–676.
Lori A. Freitag and Carl Ollivier-Gooch. 1997. Tetrahedral Mesh Improvement using

Swapping and Smoothing. Int. J. Numer. Meth. Engng. 40, 21 (1997), 3979–4002.

Xiao-Ming Fu, Yang Liu, John Snyder, and Baining Guo. 2014. Anisotropic Simplicial

Meshing Using Local Convex Functions. ACM Trans. Graph. 33, 6 (2014), Art. 182.
Zhanheng Gao, Zeyun Yu, and Michael Holst. 2012. Quality Tetrahedral Mesh Smooth-

ing via Boundary-optimized Delaunay Triangulation. Comput. Aided Geom. Design
29, 9 (2012), 707–721.

Abel Gargallo-Peiró, Xevi Roca, Jaimie Peraire, and Josep Sarrate. 2013. High-order

mesh generation on CAD geometries. In Int. Conf. on AdaptiveModeling & Simulation.
301–312.

Christophe Geuzaine, Amaury Johnen, Jonathan Lambrechts, Jean-Fraçois Remacle,

and Thomas Toulorge. 2015. The Generation of Valid Curvilinear Meshes. In Notes
on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 128. 15–39.

Gaël Guennebaud, Benoît Jacob, and others. 2018. Eigen v3. http://eigen.tuxfamily.org.

(2018).

Amaury Johnen, Jean-François Remacle, and Christophe Geuzaine. 2013. Geometrical

validity of curvilinear finite elements. J. Comp. Phys. 233, Supplement C (2013),

359–372.

Steve L. Karman, J. T. Erwin, Ryan S. Glasby, and Douglas Stefanski. 2016. High-

Order Mesh Curving Using WCN Mesh Optimization. In 46th AIAA Fluid Dynamics
Conference.

Patrick M. Knupp. 2001. Algebraic Mesh Quality Metrics. SIAM J. Sci. Comput. 23, 1
(2001), 193–218.

Yang Liu, Wenping Wang, Bruno Lévy, Feng Sun, Dong-Ming Yan, Lin Lu, and Chenglei

Yang. 2009. On Centroidal Voronoi Tessellation – Energy Smoothness and Fast

Computation. ACM Trans. Graph. 28, 4 (2009), Art. 101.
Adrien Loseille and Frédéric Alauzet. 2009. Optimal 3D Highly Anisotropic Mesh

Adaptation Based on the Continuous Mesh Framework. In Int. Meshing Roundtable.
575–594.

Xiao-Juan Luo, Mark S. Shephard, Jean-Francois Remacle, Robert M. OBara, Mark W.

Beall, Barna Szabo, and Ricardo Actis. 2002. p-Version Mesh Generation Issues. In

Int. Mesh Roundtable. 343–354.
Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. 2003. Discrete

Differential-Geometry Operators for Triangulated 2-Manifolds. 35–57.
Johannes Mezger, Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer. 2008.

Interactive Physically-based Shape Editing. In Symp. Solid Phys. Modeling. 79–89.
Edmond Nadler. 1986. Piecewise linear best L2 approximation on triangulations. In

Approx. Theory V, C. K. Chui et al. (Ed.). Academic Press, 499–502.

Ray W. Ogden. 1997. Non-linear Elastic Deformations. Dover Publications.
Per-Olof Persson and Jaime Peraire. 2009. Curved Mesh Generation and Mesh Refine-

ment using Lagrangian Solid Mechanics.

Elisabeth Pilgerstorfer and Bert Jüttler. 2014. Bounding the influence of domain pa-

rameterization and knot spacing on numerical stability in Isogeometric Analysis.

Comput. Methods in Appl. Mech. Eng. 268, Supplement C (2014), 589–613.

Ulrich Pinkall and Konrad Polthier. 1993. Computing Discrete Minimal Surfaces and

Their Conjugates. Experimental Mathematics 2, 1 (1993), 15–36.
Helmut Pottmann and Michael Hofer. 2003. Geometry of the squared distance function

to curves and surfaces. In Visualization and mathematics III. Springer, 221–242.
Laurent Rineau and Mariette Yvinec. 2008. Meshing 3D Domains Bounded by Piecewise

Smooth Surfaces. 443–460.
Samuel Roth, Markus Gross, Silvio Turello, and Friedrich Carls. 1998. A Bernstein-

Bézier Based Approach to Soft Tissue Simulation. Computer Graphics Forum 17, 3

(1998), 285–294.

Eloi Ruiz-Girones, Abel Gargallo-Peiró, Josep Sarrate, and Xevi Roca. 2017. An aug-

mented Lagrangian formulation to impose boundary conditions for distortion based

mesh moving and curving. In Int. Meshing Roundtable.
Nico Schlömer. 2018. Numerical integration (quadrature, cubature) in Python. (2018).

https://github.com/nschloe/quadpy

Jonathan R. Shewchuk. 1998. Tetrahedral Mesh Generation by Delaunay Refinement.

In Symp. on Comp. Geometry. 86–95.
Jonathan R. Shewchuk. 2002. What is a Good Linear Element? Interpolation, Condi-

tioning, and Quality Measures. In Int. Meshing Roundtable. 115–126.
Stefan Suwelack, Dimitar Lukarski, Vincent Heuveline, Rüdiger Dillmann, and Stefanie

Speidel. 2013. Accurate Surface Embedding for Higher Order Finite Elements. In

Symp. Comp. Anim. 187–192.
The CGAL Project. 2017. CGAL User and Reference Manual (4.11 ed.). CGAL Editorial

Board. http://doc.cgal.org/4.11/Manual/packages.html

Jane Tournois, Camille Wormser, Pierre Alliez, and Mathieu Desbrun. 2009. Interleaving

Delaunay refinement and optimization for practical isotropic tetrahedron mesh

generation. ACM Trans. Graph. 28, 3 (2009), Art–No.
Daniel Weber, Thomas Kalbe, André Stork, Dieter Fellner, and Michael Goesele. 2011.

Interactive deformable models with quadratic bases in Bernstein–Bézier-form. The
Visual Computer 27, 6 (2011), 473–483.

Freddie D. Witherden and Peter E. Vincent. 2015. On the identification of symmetric

quadrature rules for finite element methods. Comp. & Math. Appl. 69, 10 (2015),

1232–1241.

Verena Ziel, Hadrien Bériot, Onur Atak, and Génaël Gabard. 2017. Comparison of 2D

curving methods with modal shape functions and a piecewise linear target mesh. In

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

https://hal.inria.fr/hal-00728850
https://github.com/nschloe/quadpy
http://doc.cgal.org/4.11/Manual/packages.html

61:16 • Feng, L. et al.

Int. Meshing Roundtable.

A DERIVATIVES OF ECODT
To derive the gradients of the CODT energy and of the determinant

of J , we first recall Jacobi’s formula for an invertible matrix A:

∂detA(t)
∂t

= tr

[
adj(A)

∂A(t)
∂t

]
(16)

where adj(A) = det (A)A−1
is the adjugate matrix of A. We can now

derive the derivative of the determinant w.r.t. control points:

∂det J
∂ci

= tr

[
adj(J)

∂J
∂ci

]
= tr

[
adj(J)biδiaB

n
ikUk j

]
= adj(J)jiδiaBn

ikUk j = Bn
i U adj(J).

(17)

Similarly, the gradient of ∥J∥2 is computed as:

∂∥J∥2

∂ci
= 2 Ji jδiaBn

ikUk j = 2Bn
ik Uk j J

t
ji δia = 2Bn

i U Jt . (18)

Gradient for constant sizing field. From the expressions above, we

can derive the gradient by the product rule as:

∂ECODT
∂ci

=
1

2(d + 2)

∫
T

[
∂det(J(x))
∂ci

∥ J(x)∥2
F

+ det(J(x))
∂∥ J(x)∥2

F

∂ci

]
dx,

(19)

Then based on Eqs. (17) and (18), we find directly Eq. (13).

Derivative with sizing field. Notice that when CODT energy is

modulated by sizing field h, the energy becomes

E
CODT
=

1

2(d + 2)

∫
T

det(J)∥J∥2
F
h−(d+2)(x)dx. (20)

Its gradient with respect to a control point ci thus involves a gradient
of sizing field as well:

∂ECODT
∂ci

=
1

2(d + 2)

∫
T

∂det(J)∥J∥2
F

∂ci
h−(d+2)(x)dx

−
1

2

∫
τ0
h−(d+3)(x)

∂h(x)
∂ci

det(J)∥J∥2dx
(21)

Since we know that

x(u(x)) =
∑
|i |=n

ci Bni (u(x)) and
∂x
∂ci
= Bni (u(x))Id, (22)

we can compute the gradient of h w.r.t. to ci as:

∂h(x)
∂ci
=∇xh(x)

∂x
∂ci
=∇xh(x)Bni (u(x)) Id=B

n
i (u(x))∇xh(x). (23)

Finally, we deduce that:

∂ECODT
∂ci

=
n

2(d + 2)

∫
τ0
h−(d+2)(x)Bn

i U(∥J∥2
F
J−1+2Jt) det(J)dx

−
1

2

∫
τ0
h−(d+3)(x)Bni (u(x))∇xh(x) det(J)∥J∥2Fdx.

(24)

Fig. 17. Kitten. This kitten model is approximated with order-3 curved
meshes for an increasing number of vertices (bottom), with their corre-
sponding sizing-adapted Jacobian determinant (top).

B FORMULAS FORU

The barycentric coordinates of a point x in �d inside a unit, regular

simplex τ defined by vertices v1,..., vd+1 (their exact embedding

has no significance, and can be chosen arbitrarily as long as every

edge has unit length) are: u(x)= [u1(x), . . . ,ud+1(x)] with

uk =
|v1, . . . , vk−1, v, vk+1, . . . , vd+1 |

|v1, . . . , vd+1 |
(25)

where | · | represents the signed volume in �d (area in 2D, volume

in 3D) of the simplex formed by the vertices in the argument.

The Jacobian matrixU corresponding to the differential of uwith

respect to x is simple to assemble in both 2D and 3D, respectively:

U =
1

2|τ |

(v2 − v3)T

(v3 − v1)T

(v1 − v2)T

[
0 −1

1 0

]
(26)

U =
1

3|τ |

N(v2, v4, v3)T

N(v1, v3, v4)T

N(v1, v4, v2)T

N(v1, v2, v3)T

 (27)

where N(a, b, c) is the area-weighted face normal of triangle (a, b, c):

N(a, b, c) =
1

2

(b × c + c × a + a × b). (28)

ACM Trans. Graph., Vol. 37, No. 4, Article 61. Publication date: August 2018.

	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Contributions

	2 Revisiting Optimal Delaunay Triangulation
	2.1 Primer on ODT
	2.2 ODT as Elastostatics
	2.3 Non-shrinking boundary conditions
	2.4 Discussion

	3 Curved Optimal Delaunay Triangulation
	3.1 Primer on Bézier Meshes
	3.2 Extending ODT to High-Order Elements
	3.3 Bézier mesh topology
	3.4 Non-shrinking boundary conditions
	3.5 Boundary fitting
	3.6 Mesh gradation
	3.7 Putting it all together
	3.8 Discussion

	4 Results
	5 Conclusions
	Acknowledgments
	References
	A Derivatives of ECODT
	B Formulas for 1.2mu-1.2muU-1mu1mu

