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Abstract

Interpreting 3D data such as point clouds or surface
meshes depends heavily on the scale of observation. Yet,
existing algorithms for shape detection rely on trial-and-
error parameter tunings to output configurations represen-
tative of a structural scale. We present a framework to au-
tomatically extract a set of representations that capture the
shape and structure of man-made objects at different key
abstraction levels. A shape-collapsing process first gener-
ates a fine-to-coarse sequence of shape representations by
exploiting local planarity. This sequence is then analyzed to
identify significant geometric variations between successive
representations through a supervised energy minimization.
Our framework is flexible enough to learn how to detect
both existing structural formalisms such as the CityGML
Levels Of Details, and expert-specified levels of abstraction.
Experiments on different input data and classes of man-
made objects, as well as comparisons with existing shape
detection methods, illustrate the strengths of our approach
in terms of efficiency and flexibility.

1. Introduction
Shape detection from raw 3D data is a long-standing

problem whose goal consists in turning a large amount of
geometric data into a higher level representation based on
simple geometric shapes. Instead of reasoning at the scale
of 3D atomic elements such as points, triangular facets or
voxels, it is often more appealing to directly handle larger
geometric shapes in order to both reduce the algorithmic
complexity and analyze objects with a higher representation
level. Most common geometric shapes include lines, planes
and quadrics. In this work, we focus on planar shapes due
to their relevance to man-made environments [17].

Shape detection is typically used as a prior step in a large
variety of vision-related tasks ranging from surface recon-
struction [2, 5, 29, 37, 20] to object recognition [4, 22] and
data registration [7, 38]. Existing algorithms typically re-
quire two user-specified parameters: (i) a fitting tolerance
ε that specifies the maximal distance of a datum to its as-
sociated geometric shape, and (ii) a minimal shape size σ

that specifies how large a group of samples must be to be
considered as a geometric primitive—typically, a number
of inliers when dealing with point clouds, or a minimum
area for meshes. Finding parameter values that produce de-
sirable results often involves fastidious manual labor: sur-
prisingly, the incidence of these two parameters on shape
detection has not been formally studied in the literature.

In this work, we propose an efficient exploration of this
(ε, σ) space of geometric abstractions to find the structural
scales of an input geometry, i.e., the few simplified repre-
sentations that are truly meaningful to capture the structure
of man-made objects. From a progressive planarity-driven
coarsening of the input data, we demonstrate that we can
reliably detect structural scales whose characteristics are
learned from training sets of different types of objects such
as buildings, house furniture, or cars.

2. Related work

We first review prior work in three related aspects of our
goal: shape detection, scale-space exploration, and classifi-
cation of 3D data.

Shape detection. The automated detection of geomet-
ric shapes from 3D measurement data is an instance of
the general problem of fitting mathematical models to data.
Among many successful approaches, region growing based
approaches [26] are very efficient when input data is rela-
tively clean. They proceed by growing a local shape hy-
pothesis in a spatial neighborhood of a seed point while fit-
ting is observed. In presence of outliers, RANSAC-based
algorithms such as [27] typically performs best by itera-
tively constructing many shape hypotheses from a few sam-
ples, verifying them against the input data, and selecting
the shapes with the highest numbers of inliers. Accumula-
tion space methods [6, 12, 1] operate through voting in the
parameter space of the shapes. Gaussian sphere mapping
is a common choice for 3D data but requires a good esti-
mation of normals. More recently, various research efforts
have tried to both detect and regularize shapes according to
geometric relationships such as parallelism or orthogonal-
ity [30, 23]. This can also be solved as a labeling prob-
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lem by turning shape detection into shape selection among
a finite set of candidates [10, 25, 19]. Although these meth-
ods are popular in 3D vision, obtaining a representation that
adequately describes the input shape often requires time-
intensive parameter tuning.

Scale-space exploration. Scale-space theory is an in-
teresting framework for representing nD signals at multiple
scales, in particular for the analysis of images [15] and 3D
data [24, 14, 18]. Such methods rely on the detection of ge-
ometric variations in a spatial neighborhood whose size is
controlled by a continuous scale parameter. These methods,
which have been designed to apply to free-form objects with
continuously differentiable surfaces, are however ill suited
to man-made objects that typically involve piecewise para-
metric surfaces. For such objects, existing works use filter-
ing procedures to select shapes at different structural levels,
usually called levels of details (LOD [16]). Shape selection
typically relies on simple user-defined area and orientation
rules [17, 32]. In particular, there is no scale parameter to
characterize, detect or learn structural variations.

3D object recognition. Detecting structural scales is
closely related to 3D object recognition. Traditional meth-
ods exploit geometric descriptors to locally characterize
data distribution, e.g., through corner and edge detectors
[21], scatter matrix [31] or spin images [11]. These 3D de-
scriptors are usually embedded into a learning procedure to
recognize, for instance, urban objects from LIDAR scans
[8]. With the emergence of deep learning, recent meth-
ods exploit multi-layered voxel-based representations [35]
to strongly simplify the shape of objects. Deep learning
techniques are efficient for recognition tasks, but are so far
less attractive for addressing reconstruction issues. More-
over, these recognition methods operate on raw geometric
data of free-form objects, and cannot be easily extended to
shape representations of man-made objects.

3. Motivation and overview
The motivation behind our work is to explore the (ε, σ)

space of shape approximation for a given input 3D scene,
where ε quantifies the geometric tolerance to data and σ
defines the minimum number of inliers: its geometric rel-
evance to the issue of shape and scale detection has been
repeatedly confirmed (see, e.g., [26]). Yet, it may appear
at first sight that finding meaningful abstractions of input
shapes by exploring this (ε, σ) space is simply intractable:
even a greedy search through discrete sampling is unlikely
to find the few key structural scales that we seek. We ob-
serve, however, that for a vast range of 3D objects (includ-
ing man-made shapes), the meaningful structural scales are
likely to be well captured along the (bottom-left to top-
right) diagonal of the parameter space (ε, σ) as illustrated
in Figure 1. This property has an important practical con-
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Figure 1. Influence of shape detection parameters. A point sam-
pled object partially piecewise-planar (bottom left) is turned into a
set of planar elements by region growing [26] given a fitting toler-
ance ε and a minimal shape size σ. Increasing σ for a fixed ε pro-
gressively removes the smallest planar elements. Simplifications
that are most representative of a key structural scale are located
along the bottom-left to top-right diagonal: above (resp., below),
planar regions (resp., free form parts) disappear too fast.

sequence: we can turn this two-parameter exploration task
into a simple 1D exploration along this diagonal—a far
more tractable task.

We are left with two issues to address: (i) how to sam-
ple efficiently the shape configurations along the parameter
space diagonal which are likely to cross the different struc-
tural scales, and (ii) how to detect structural scales robustly.

To address (i), we propose a shape-collapsing procedure
described in Section 4 that merges progressively pairs of
planar shapes from an initial configuration with both low ε
and σ, i.e., a configuration at the bottom left of the param-
eter space of Figure 1. Since merging two planar shapes
cannot decrease the maximal distance to an inlier or the
minimum shape size, repeated shape merging will gener-
ate a sequence of shape representations near the diagonal
of the parameter space, as illustrated in Figure 2. Such
a procedure is very efficient, and returns a fine discretiza-
tion of abstractions roughly along the diagonal of our two-
parameter space: starting from n planar shapes, we produce
a sequence of n shape configurations called a trajectory in
the parameter space.

As structural scales correspond to arbitrary levels of ab-
straction, solving (ii) by tracking and quantifying the geo-
metric changes along this diagonal is not a reliable approach
to detect them. Instead, we adopt an efficient strategy de-
tailed in Section 5 that consists in learning the geometric
characteristics of structural scales from a training set. The
latter is typically created by a manual assignment of struc-
tural scales to the configurations of trajectories obtained by
our shape collapsing procedure on a few test datasets. This
training strategy offers the advantage to be fast compared to
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Figure 2. Overview. Starting from 3D data (here a dense mesh generated by MultiView Stereo, top left), our algorithm produces a set
of high-level representations with planar primitives (representations 1–4) describing the object at different representative structural scales
(bottom). By progressively merging planar regions of an initial state (representation 0), one creates a sequence of representations whose
further analysis allows for the extraction of a few structurally relevant representations (top right). Such shape representations can be used,
for instance, as input for piecewise-planar reconstruction [5] (see grey compact meshes). Note that each shape is displayed as a colored
polygon computed as the α-shape of its inliers projected onto the shape; we use this visualization of inliers in all following figures.

a greedy exploration of the 2D parameter space, and con-
sistent with the way planar shapes are sampled during the
testing.

4. Shape collapsing
Our shape-collapsing process iteratively merges two pla-

nar shapes from a current shape abstraction. This approach
relies on two key ingredients: a merging operator specifying
how to create a new planar shape from two existing ones,
and a priority policy that orders the shape pairs to merge.
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Figure 3. Merging operator. Two adjacent shapes i and j are
merged into the shape k that minimizes the Euclidean distance to
their joint sets of inliers. If di denotes the distance between shape
i and its furthest inlier, note that dk ≥ max(di, dj).

Initialization. We start by extracting an initial configu-
ration of planar shapes from input data, be it a 3D point
cloud or a surface mesh. A region growing algorithm [26] is
used with low parameter values, typically ε = 0.05% of the
bounding box diagonal, and σ = 10 inliers. As preprocess-
ing, we compute an adjacency graph between the detected
shapes based on spatial proximity: for surface meshes, two

planar shapes are considered as adjacent if at least a pair of
their respective inlier facets shares a common edge in the
input mesh; for a point cloud instead, two shapes are ad-
jacent if at least a pair of their respective inlier points are
mutual neighbors in the k-nearest neighbor graph of the in-
put points (we use k=20 in all our experiments).

Merging operator. This operator is applied on the edges
of the adjacency graph. It merges two adjacent planar el-
ements into the planar shape that minimizes the Euclidean
distance to their joint sets of inliers, as illustrated in Figure
3. The optimal planar shape is trivially found via Principal
Component Analysis.

Priority policy. In order to choose the next pair of planar
shapes to merge, a weight is assigned to each edge of the ad-
jacency graph. Merging is then performed on the edge with
the lowest weight. Different metrics can be considered for
specifying the weights, e.g., deviation of the normal vec-
tors of the two planes, or area of the smallest of the two
shapes. After an experimental evaluation of several met-
rics, we chose the Euclidean distance between input points
to planar shapes as it offers the best compromise between
accuracy and performance. In particular, this choice limits
drifts during shape collapsing because it relies on a direct
measurement to input data. Formally, we define the weight
wij between planar shapes i and j as

wij =

√√√√ 1

σi + σj

∑
pk∈Iij

d(pk, P )2 (1)
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Figure 4. Shape collapsing. Iteratively merging adjacent planar elements creates a sequence of shape representations, some of which being
structurally representative, e.g., representations obtained after iterations #4 and #7 (top). At each iteration, the black edge in the adjacency
graph (bottom) indicates the edge with the lowest weight, i.e. the next edge to be collapsed.

where σi is the size of shape i, Iij is the joint set of in-
liers from shapes i and j, and P is the optimal planar shape
computed by the merging operator. At each iteration, we
choose the pair of shapes with the lowest weight as the can-
didates to be merged. After merging two shapes, the adja-
cency graph as well as the weights are updated. Note that
this update is local as only edges with the planar shapes
adjacent to the two merged shapes are impacted. Figure 4
illustrates this procedure.

5. Detection of structural scales
Given a roughly-diagonal trajectory in parameter space,

our goal is now to detect structural scales by analyzing
the geometric evolution of the shape representations along
the trajectory. For an object with simple structure, the
problem can be solved in a unsupervised manner by de-
tecting strong geometric variations between two successive
piecewise-planar representations. However, in mosts cases,
structural scales are levels of abstraction that cannot be reli-
ably detected without learning from training samples. We
thus formulate the detection of structural scales as a su-
pervised labeling problem by assigning a structural scale to
each shape configuration of the trajectory.

Feature vector. We define a feature vector in order to
characterize a configuration of planar shapes from a geo-
metric point of view. Four different geometric descriptors
are used:

• Centroid distance that computes the Euclidean dis-
tance between the barycenters of two adjacent shapes;

• Normal alignment measuring |ni·nj | between the nor-
mals ni and nj of two adjacent shapes;

• Area variation that computes 1 − |σi − σj |/|σi + σj |
from the sizes σi and σj of two adjacent shapes;

• z-axis deviation that compares the relative orientation
of two adjacent shapes with the z-axis nz through the
expression | |ni · nz| − |nj · nz| |.

For each descriptor, we create an histogram describing
the distribution over all the pairs of adjacent shapes. We

then normalize each histogram and concatenate them into a
18-bin feature vector, as illustrated in Figure 5. We denote
by fi the feature vector of shape representation i. Such a
simple feature vector summarizes the main geometric char-
acteristics of a shape representation as mutual position, ori-
entation, size and alignment of pairs of adjacent shapes.

Figure 5. Feature vector. Feature vectors (see histograms) can
discriminate between shape representations that capture differ-
ent structural levels of man-made object, here cars. Four bins
are used for both normal alignment (orange) and z-axis deviation
(navy), and five bins for centroid distance (blue) and area variation
(green).

Energy minimization. Recall that from an initial config-
uration composed of n planar shapes, repeated collapsing
generates a trajectory with n shape representations. Given a
finite set of structural scales L = {1, 2, ...,K}, we consider
a random variable li ∈ L that associates a structural scale
to the ith shape configuration of the trajectory. The qual-
ity of a label assignment l = (li)i∈[1,n] over a trajectory is
measured through an energy U of the form

U(l) =

n∑
i=1

ψi(li) + γ

n−1∑
i=1

ϕi,i+1(li, li+1) (2)

where ψi(li) is a unary data term, ϕi,i+1(li, li+1) is a pair-
wise potential that accounts for temporal consistency be-
tween two successive shape representations, and γ > 0 is
a weight balancing the two terms. In all our experiments,
γ has been fixed to 0.5. Note that this formulation is ba-
sically a Hidden Markov model, so the configuration that



minimizes energy U is found by dynamic programming us-
ing the Viterbi algorithm [33].

Choice of ψi. The unary data term of shape representation
i is formulated using a classifier trained by Random Forests
[3]. It is expressed by:

ψi(li) = −
1

|T |
∑
t∈T

log(Pt(li|fi)), (3)

where T denotes a set of decision trees, |T | the number of
trees, and Pt the prediction probability of the label li for the
decision tree t.

Choice of ϕi,i+1. The pairwise potential promotes tem-
poral consistency along the trajectory: it penalizes scale
changes between successive representations when geomet-
rically too similar. This potential is defined through

ϕi,i+1(li, li+1) = wi,i+1 · T (li, li+1) (4)

wherewi,i+1 = exp(−dEM(fi, fi+1)/2) is a weight measur-
ing the similarity between feature vectors fi and fi+1. The
distance dEM is defined as the L2 norm of the Earth Mover
distances for each descriptor histogram using a L1 ground
distance. This weight favors high geometric variation be-
tween two successive representations with different labels.
The term T (li, li+1) measures jump coherence from scale
li to scale li+1, and is defined as

T (li, li+1) =


0 if li+1 = li

1 if li+1 = li + 1

+∞ otherwise
(5)

The role of T (li, li+1) is to weakly penalize a jump between
two successive scales while preventing other jumps in scale.

The resulting labeled sequence assigns a same label to a
whole range of representations. The first shape representa-
tion with a given label is selected as representative of the
object structure at this scale. With this choice, every planar
shape is a relevant component of the object structure.

6. Experiments
We tested our method on three datasets with (i) different

man-made objects (buildings, cars, sofa and indoor scenes),
and (ii) different input data including synthetic/real-world
surface meshes and point clouds. We only considered three
scales in all our experiments: one scale with fine details,
one with general structure and no fine details, and one
with an overly-simplified general shape; but any (typically
small) number of scales can be used.

• CAD dataset. The Princeton Shape database [28]
is used to generate noise-free input point clouds

that uniformly sample CAD models. Models are
mainly composed of free-form shapes, including cars
and sofas. The three structural scales are levels of
abstraction that were specified by an expert.

• MultiView Stereo dataset. We created a dataset of
buildings represented by dense surface meshes gener-
ated from MultiView Stereo (MVS [34]). These dense
meshes contain fine details such as chimneys, but have
a high amount of defects in the form of noise, holes
and erroneous topology. We trained the algorithm to
recognize the Levels Of Details 1, 2 and 3 defined by
the cityGML formalism [9] as structural scales.

• RGB-D dataset. We also evaluated our algorithm on
point clouds generated by RGB-D cameras from the
Sun3D database [36] and datasets from [13]. These
3D point sets correspond to indoor scenes, each repre-
senting a room with walls, floor and furniture. Inputs
are defect laden with variable noise, heterogeneous
spatial density and severe occlusions. The three
structural scales are levels of abstraction that were
specified by an expert.

For each class of man-made objects, we randomly se-
lected one third of the models for training, and the two re-
maining third for testing. To create planar configurations
at representative structural scales for the training set, we
created sequences of configurations by our automatic shape
collapsing process and then assigned a scale label to each
configuration by visual inspection. To speed-up the anno-
tation, we visually detect the pairs of successive configura-
tions where the scale changes, and then automatically an-
notate the configurations in between. Such a training pro-
cedure is (i) fast, i.e., from 30 minutes (Multiview dataset)
to 2 hours (RGB-D dataset) to create the full training set,
and (ii) consistent with our two-step strategy since training
samples are also generated from shape collapsing.

Qualitative and quantitative evaluation. Figure 6
presents some qualitative results on small portions of the
three datasets. We observe that the computed representa-
tive shapes for each structural scale on testing examples are
structurally similar to those in the training samples. Our
framework is flexible enough to learn shape detection from
both existing formalisms such as the CityGML LODs for
representing buildings, and expert-specified levels of ab-
straction of man-made objects. Table 1 demonstrates that
our resulting scale labeling is fairly accurate. One may
note that accuracy on the MultiView Stereo dataset is much
higher than for the other datasets; two main reasons explain
this difference: buildings are less free-form than cars or fur-
nitures, and levels of abstraction for building are less sub-
jective. Once trained on a specific class of object, the clas-
sifiers do not generalize particularly well when tested on
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Figure 6. Results on different man-made objects. The shape representations archetypical of each structural scale generated by our algorithm
on testing examples have similar structures to the training samples. In particular, our algorithm is able to learn the CityGML formalism
and produce meaningful shape representations of buildings at different LODs. For indoor scenes, both furniture and permanent elements
such as floor and walls exhibit the same level of detail at a given scale. Even for less structured objects such as cars or sofas, the level of
abstraction conveyed by planar elements remains consistent between training and testing. Note in particular how cars at scale 1 have their
bonnet described by many elements, which turn into a single element at scale 2, before merging with the windshield at scale 3.

other object categories: accuracy typically decrease propor-
tionally to the similarity between objects, e.g. applying the
”Car” classifier on the ”Sofa” dataset decreases accuracy
from 86% to 63%.

Robustness to data defects, object size and initialization.
As scale detection is performed using normalized features,
our algorithm is only weakly affected by noise: adding 1%
random noise in the car dataset only decreases the general
accuracy by 1.8%. Initialization can be an issue if we start
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Figure 7. Comparisons on Empire. The result from Rapter [19] (courtesy of the authors) finds a visually-significant configuration of planar
shapes to describe the building, whereas the one from Ransac [27] was obtained by manual parameter tuning to obtain a result as close as
possible as our scale 1. While Ransac and Rapter exhibit similar error distributions with respect to input points (see color histograms from
yellow to black), our algorithm produces three output representations that strongly differ in terms of geometric accuracy and number of
planar elements, while guaranteeing a similar coverage. Our representation at scale 1 is more meaningful than those obtained by these two
methods. In particular, Ransac and Rapter omit fine planar components on the top of the tower.

with too large ε and σ values that are located after the first
scale. In practice, there is no accuracy difference on the
MVS meshes if we start with ε = 0.05% and ε = 0%, i.e.,
with each triangular facet as a shape. Since histograms of
descriptors are normalized, our classifier is robust to object
size variability as well: while the buildings in Figure 6 have
quite different sizes (from small cottages to entire blocks),
their shape representations are consistent at each scale.

Object #training #testing training testing
class samples samples accuracy accuracy

CAD car 5K 12K 98.53% 82.88%
CAD sofa 3K 4K 97.60% 85.88%

MVS building 9K 12K 99.61% 99.30%
RGB-D indoor 20K 26K 96.90% 80.60%

Table 1. Accuracy of scale labeling on training and testing sets for
different object classes.

Timings. Learning the classifier on the different datasets
requires from 5 seconds for the MultiView Stereo dataset
(9K training samples) to 2.5 minutes for the RGB-D dataset
(20K training samples) for a random forests training with
100 trees and 25 levels. Table 2 details timings for testing
on one representative sample of each object class. Shape
collapsing is the most time-consuming step, whereas the
timing for scale detection is negligible and independent of
the input complexity.

Comparisons with shape detection methods. We com-
pared our algorithm to an advanced Ransac-based method
[27], and the Rapter labeling mechanism [19]. A fair
comparison must consider three main evaluation criteria:
geometric fidelity, coverage and output complexity. We
chose as measures the root mean square distance of detected
shapes to inliers, the ratio of points assigned to shapes, and
the number of shapes respectively. Contrary to our algo-
rithm, these other methods required tuning some parame-

Object Input Initialization Shape Scale
class complexity collapse detection

CAD car 143K pts 4.05s 10.7s 0.24s
CAD sofa 142K pts 4.79s 21.6s 0.16s

MVS mesh 3.3K facets 0.31s 0.54s 0.22s
RGB-D indoor 1.15M pts 114s 12min 0.72s

Table 2. Running times for testing on one representative sample
of each object class (see the first testing model for each class in
Figure 6). Experiments have been done on a single-core Intel Core
i7 processor clocked at 2GHz.

ters as the fitting tolerance. Table 3 presents the evaluation
scores from two input point clouds representing complex
buildings, whereas Figure 7 shows visual results with er-
ror distributions. Our output shape representations at three
different scales better capture the structure of the buildings
while remaining competitive with existing methods in terms
of geometric fidelity, coverage and output complexity.

RMS coverage #planes
Ransac [27] 0.034 0.808 128
Rapter [19] 0.042 0.817 163

Ours (scale 1) 0.017 0.816 239
Ours (scale 2) 0.29 0.816 40
Ours (scale 3) 1.03 0.816 9

Table 3. Comparisons on Empire in terms of Root Mean Square
distance (RMS) of detected shapes to inliers (unit expressed as %
of the bounding box diagonal), coverage (ratio of inliers) and num-
ber of shapes. Note that the shape collapsing process guarantees
an identical coverage for outputs at different scales.

Application to surface reconstruction. By connecting
our algorithm to a polyhedral surface reconstruction method
[5], we can generate compact piecewise-planar 3D mod-
els of bulidings at different LODs from dense defect-laden
meshes. As shown on Figure 8, we outperform the state-of-
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Figure 8. Application to reconstruction of LOD models of buildings. Our algorithm combined with a piecewise planar reconstruction
algorithm [5] produces compact LOD1 and LOD2 models from dense defect-laden meshes that outperform those delivered by a building-
specific LOD generation method [32] in terms of both geometric accuracy—as shown using color histograms from yellow (0 meter error)
to black (≥ 2 meter error)—and output complexity.

the-art method of [32] in terms of geometric accuracy and
output complexity while conforming to the LOD CityGML
formalism. Although [32] is specialized in producing LOD
models of buildings, our learning strategy allows us to gen-
erate meaningful configurations of planes without explicitly
specifying the rules of this LOD formalism.

Limitations. Although our framework is designed to be
flexible, the choice of the metric (Equation 1) that spec-
ifies the priority weights during shape collapsing is inde-
pendent of the object’s category. As suggested by Table 1,
our choice is relevant in the case of buildings for exploring
LODs, but not always optimal for more free-form objects
such as furniture. Ideally, this metric should be learned from
a training set of trajectories. This variant would however
be very costly in practice as shape collapsing and scale de-
tection are no longer performed serially. Additionally, our
algorithm does not discover and preserve geometric regu-
larities such as parallelism, orthogonality or symmetry of
shapes contrary to recent shape detection methods as [19].
This does not affect geometry fidelity and coverage, but
may lead to suboptimal shape abstractions that fail to re-
spect these specific features.

7. Conclusion

Our work provides a parameter-free algorithm for
detecting piecewise-planar shapes from 3D data. Contrary
to existing methods that require tedious parameter tuning,
our algorithm extracts multiple representations of an input
shape at key structural scales whose characteristics are

learned from a training set. Our framework is flexible
enough to learn both existing structural formalism such as
the CityGML Levels Of Details for representing buildings,
and expert-specified levels of abstraction on man-made
objects. Experiments demonstrate the added value of our
approach with respect to existing shape detection methods,
as well as its potential to help with surface reconstruction
and approximation.

As future work we wish to create priority metrics for
shape collapsing that allow a more refined exploration and
tracking of the structural scales in the parameter space. In
particular, we would like to learn such metrics from a train-
ing set of trajectories. We also wish to extend our approach
to quadric and volumetric primitives. This would however
require a more involved shape collapsing strategy.
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