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Abstract
Geometry processing has made ample use of discrete representations of tangent vector fields and antisymmetric
tensors (i.e., forms) on triangulations. Symmetric 2-tensors, while crucial in the definition of inner products and
elliptic operators, have received only limited attention. They are often discretized by first defining a coordinate
system per vertex, edge or face, then storing their components in this frame field. In this paper, we introduce a
representation of arbitrary 2-tensor fields on triangle meshes. We leverage a coordinate-free decomposition of
continuous 2-tensors in the plane to construct a finite-dimensional encoding of tensor fields through scalar val-
ues on oriented simplices of a manifold triangulation. We also provide closed-form expressions of pairing, inner
product, and trace for this discrete representation of tensor fields, and formulate a discrete covariant derivative
and a discrete Lie bracket. Our approach extends discrete/finite-element exterior calculus, recovers familiar op-
erators such as the weighted Laplacian operator, and defines discrete notions of divergence-free, curl-free, and
traceless tensors—thus offering a numerical framework for discrete tensor calculus on triangulations. We finally
demonstrate the robustness and accuracy of our operators on analytical examples, before applying them to the
computation of anisotropic geodesic distances on discrete surfaces.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Curve and surface representations.

1 Introduction

While scalar (rank-0 tensor) and vector (rank-1 tensor) fields
have been staples of geometry processing, the use of rank-
2 tensor fields has steadily grown over the last decade in
applications ranging from non-photorealistic rendering to
anisotropic meshing. Unlike their lower rank counterparts,
there is currently no convenient way to perform computa-
tions with arbitrary 2-tensor fields on triangulations. In this
paper, we present a coordinate-free representation of rank-2
tensors suitable for tensor calculus on triangle meshes. De-
rived from an orthogonal decomposition of planar 2-tensor
fields, our resulting discrete tensors extend the notion of dis-
crete differential forms, and are thus compatible with dis-
crete or finite-element exterior calculus in that they define
pairing and inner products of arbitrary forms. Additionally,
pervasive discrete geometry processing tools such as the
weighted Laplace-Beltrami operator are shown to be special
cases of our construction, while new operators such as the
covariant derivative of discrete 1-forms emerge.

1.1 Related Work

In order to put our contributions in perspective, we review
representative topics that our work impacts or extends.

Tangent Vectors. Vector fields on triangulations are often
discretized through local coordinates related to orthogonal

frames defined either on vertices or on faces. A continuous
vector field over a mesh is evaluated from this finite set of
vectors based on piecewise constant interpolation [PP00] or,
to increase smoothness, using non-linear basis functions de-
rived from the geodesic polar map [ZMT06, KCPS13]. In
an effort to remove the need for coordinate systems, scalar
potentials were proposed as an intrinsic encoding of tan-
gent vector fields: while Tong et al. [TLHD03] used two
potential values per node interpolated with linear finite el-
ements, Polthier and Preuss [PP03] offered a discrete no-
tion of Hodge decomposition with proper cohomology by
using one value per node and one value per unoriented
edge interpolated with conforming and non-conforming lin-
ear basis functions respectively. This representation is, how-
ever, limiting as it only leads to per-face constant vector
fields. Operator-based representations have also been re-
cently proposed [PMT∗11, ABCCO13], but their use is, to
date, too restrictive to be widely adopted. Finally, a coor-
dinate free approach to vector field representation was in-
troduced through the use of algebraic topology and exte-
rior calculus [FSDH07] where vector fields are identified
as discrete differential 1-forms (i.e., rank-1 tensors of type
(0,1)) and interpolation is performed via Whitney basis
functions [Whi57]. These edge-based discrete tangent vector
fields have since then been shown useful in a variety of ap-
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plications [ETK∗07,BCBSG10]. Our discrete 2-tensor fields
will be fully compatible with this specific form-based repre-
sentation, and will even provide a discrete notion of covari-
ant derivative of vector and covector fields.

2-Tensors. Tensors of rank two are commonplace in geom-
etry processing, e.g., as a way to encode sizing and orienta-
tion fields for meshing purposes [FH96,NSO12,PPTSH14].
These mathematical objects can act on tangent vector fields,
on 1-forms, or on both (i.e., tensors of type (0,2), (2,0), and
(1,1) respectively). Much like early work on discrete vec-
tor fields, they are often defined by first establishing a local
tangent space basis per vertex [NSO12], edge [ACSD∗03],
or face [TSS∗04, ZRS05, IO06], then storing the four com-
ponents of the tensor in each of these frames. A notable
coordinate-free alternative exists for purely antisymmet-
ric 2-tensors (called 2-forms): they are scalar multiples of
J=
(

0 -1
1 0
)

in any orthogonal coordinate frame since RJRt =J
for an arbitrary rotation matrix R. They can thus be encoded
as discrete differential 2-forms via one scalar per face and
Whitney basis functions [AFW06b,DKT08]. (Dual 2-forms,
defined per dual cell, can also be used.) In comparison, sym-
metric tensors have rarely been discussed in the discrete
realm [Mei03, KASH13], yet they are implicitly behind all
inner products of forms or vectors, generalized Laplacian
operators [AN02], and the notion of Hodge star [BH06]. Our
discrete encoding of tensors encompasses both symmetric
and antisymmetric tensors in a consistent framework.

Analysis and Visualization. Visualization of fluid motion
is often achieved by analyzing the gradient of the velocity
field [LW09]. This 2-tensor field is often split into an an-
tisymmetric part conveying vorticity, and a symmetric part
that can be depicted via streamlines tangent to tensor eigen-
vectors [DH94]. A unified analysis of arbitrary 2-tensors
was proposed in [ZP05] based on complex eigenvalues and
eigenvectors. Zhang et al. [ZYLL09] used, instead, a geo-
metric decomposition of 2-tensors leveraging the trace oper-
ator, which was later illustrated as a combination of stream-
lines and glyphs [PLC∗11]. In contrast, our work introduces
a new orthogonal decomposition of planar 2-tensor fields
compatible with discrete exterior calculus.

Metrics. The metric tensor of a Riemannian surface is, it-
self, a symmetric tensor that defines the length of, and angle
between, tangent vectors. While most geometry processing
methods use the canonical metric of a mesh induced by its
Euclidean embedding, one can use a set of edge lengths to
encode piecewise-Euclidean metrics [Reg61,SSP08,Luo10].
However, high degrees of anisotropy might not be repre-
sentable with pure edge lengths as they might not fulfill
the triangle inequality everywhere [KMZ11, CHK13]. Re-
cently, a notion of discrete divergence-free metric tensor in
the plane was introduced in [dGAOD13] (representing stress
tensors within masonry structures) through not only edge
lengths but also additive weights per vertex—which affect
both the discrete Hodge star and the Laplacian operator. This
augmented metric was further extended to surface meshes

in [dGMMD14]. Our approach offers a generalization of this
divergence-free case to arbitrary rank-2 tensors.

Elasticity. Decompositions of differential 2-tensors such as
stress and strain are particularly relevant in elasticity [Hu54].
Arnold et al. [AFW06a] proposed tensor subspaces (in-
cluding divergence-free tensors) that form an exact chain
dubbed the elasticity complex. This sequence further served
as the basis for discretizing planar symmetric 2-tensor
(stress) fields through mixed finite elements [AW02] or
non-conforming elements [AW03]. Extensions to tetrahedral
meshes were proposed in [AAW08, AAW14]. Also in the
elasticity context, Kanso et al. [KAT∗07] expressed 2-tensor
fields as quadratic tensor products of Whitney 1-forms.
While previous methods require high order finite-element
spaces, we discretize arbitrary 2-tensor fields through direct
differentiation of piecewise-linear Whitney basis functions,
which leads to closed-form expressions for discrete tensor
calculus on triangulations.

1.2 Contributions
We introduce a numerical framework to encode and manip-
ulate rank-2 tensors on triangle meshes. Our work is based
on a novel coordinate-free decomposition of continuous 2-
tensor fields in the plane. By leveraging this decomposi-
tion, we construct a finite-dimensional representation of 2-
tensors on discrete surfaces that is fully compatible with
the DEC [DKT08] and FEEC [AFW06b] machinery. Our
discrete 2-tensors exactly mimic the continuous notion of
divergence-free, curl-free, and traceless tensors, and recover
many well-known discrete operators commonly used in ge-
ometry processing. Finally, our approach offers a discrete
counterpart to both covariant derivative and Lie bracket of
1-forms (or vector fields), and provides an extension of the
heat method [CWW13] to compute anisotropic geodesics.

1.3 Notations
We will make use of a few specific notations in this paper.

Continuous setup. We denote by M a smooth and com-
pact Riemannian 2-manifold, possibly with boundaries ∂M,
and endowed with a metric g that provides an inner product
on (tangent) vector fields. We also use the notion of k-forms
(k = 0,1,2), along with their respective inner products 〈., .〉k,
and the operators d and ? on these forms [AMR88]. We de-
note by ∆ the Laplace-Beltrami operator on functions. From
the metric, one can convert a vector field v into an equivalent
1-form ω using the flat ([) operator, i.e., v[=ω; similarly, a
1-form is converted into its equivalent vector field by the
sharp (]) operator, i.e., ω

]=v. We call T the space of tensor
fields of rank (0,2) on M, i.e., 2-tensors acting on vector
fields. We also define a local basis of tensors in a given co-
ordinate frame as:

I=
(

1 0
0 1
)
, J=

(
0 -1
1 0
)
, B=

(
0 1
1 0
)
, C=

(
1 0
0 -1
)
.

We write the area form of g as µg=
√

detgJt , and the Hodge
star on 1-forms as ?=

√
detgJg-1, indicating a rotation by

π/2 in the tangent plane when applied to a covector. Finally,
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the (Frobenius) inner product on 2-tensor fields is:

∀τ1,τ2 ∈ T , 〈τ1,τ2〉F =
∫
M

tr(τt
1 g
−1

τ2) µg, (1)

where tr(τ)=τijg
ij indicates the trace operator on 2-tensors.

Discrete setup. When dealing with a discrete surface, we
use an orientable, compact, and 2-manifold simplicial com-
plex M in R3, of arbitrary topology (possibly with boundary
∂M). We call V the set of all its vertices, while the corre-
sponding edge and face sets are denoted by E and F . Each
edge and triangle carries an arbitrary but fixed orientation
(index order matters; e.g., ij has the opposite orientation as
ji), while vertices have positive orientation by convention.
Vertices are given positions P = {pi ∈ R3}, which define
the surface through linear interpolation over each simplex.
The resulting Euclidean measures of
edges and triangles are denoted by lij
(length) and aijk (area), where the in-
dices refer to the vertex indices, and
we assume these to be all nonzero.
We denote by θijk the angle between
edges ij and jk of a triangle ijk. Dis-
crete k-forms are given as scalars on k-cells [DKT08]. More-
over, we indicate as d0 the transpose of the incidence ma-
trix of vertices and edges (|E| rows, |V| columns), in which
each row contains a single +1 and −1 for the endpoints of
a given edge (the sign being determined from the chosen
edge orientation), and zero otherwise; and by d1 the trans-
pose of the incidence matrix of edges and faces (|F| rows,
|E| columns), with +1 or −1 entries according to the ori-
entation of edges as one moves counterclockwise around
a face. We also use Whitney basis functions for discrete
forms [Whi57], indicated as φi (the usual piecewise linear
finite-element function with φi(pi) = 1, φi(p j) = 0) for 0-
forms, φij =φidφ j−φ jdφi for 1-forms, and φijk =2dφi∧dφ j
for 2-forms. By sharpening 1-form basis functions with the
piecewise Euclidean metric, we get the corresponding basis
functions for vector fields φφφij =φ

]
ij =φi∇φ j−φ j∇φi. Hence,

our discrete treatment will represent a vector field u and its
associated 1-form α=u[ through the same edge values αij,
i.e., through u=∑ij αijφφφij and α=∑ij αijφij.

2 Tensor Fields over Smooth Surfaces

We begin with a brief review of existing decompositions of
arbitrary rank-2 tensors on smooth surfacesM with bound-
aries ∂M. Note that we will restrict our exposition to tensors
of type (0,2) (i.e., acting on tangent vectors), but equivalent
expressions for tensors of type (1,1) or (2,0) can be derived
using proper raising or lowering of indices with the flat and
sharp operators defined by the Riemannian metric g.

2.1 Antisymmetric vs. Symmetric Tensors

Just as a matrix A can be decomposed into a symmetric
1
2 (A+At) and an antisymmetric 1

2 (A−At) part, a rank-2 ten-
sor field τ∈T can be decomposed into an antisymmetric (or
skew-symmetric) tensor µ∈A and a symmetric tensor σ∈S

with τ=µ+σ. Therefore,

T =A⊕S. (2)

This decomposition is trivially an orthogonal direct sum for
the Frobenius inner product 〈., .〉F due to the fact that the
product of an antisymmetric matrix and a symmetric matrix
is traceless, and thus their inner product vanishes. Note that
antisymmetric tensors are also called “forms”, and have been
extensively used as the basis of exterior calculus [AMR88].
Common geometric notions such as metric, stress, and strain
are, instead, symmetric tensors.

2.2 Decomposition of Antisymmetric 2-Tensors
Antisymmetric rank-2 tensors µ ∈ A, dubbed 2-forms, are
particularly simple on surfaces: they are of the form µ=s µg
where s is an arbitrary scalar function. They can be further
decomposed, via Hodge decomposition [AMR88], as the or-
thogonal direct sum µ= dω⊕h, where ω is an arbitrary 1-
form and h is a harmonic 2-form—which is simply a con-
stant p times µg if M has a single connected component.
Consequently, by applying the Hodge decomposition on ω,
we see that 2-forms can be written in full generality as:

µ=sµg=(∆q+ p)µg, (3)

where ∆q is the Laplacian of a scalar function q, and p is a
scalar constant (non-zero constant functions are, indeed, not
in the image of the Laplacian operator).

2.3 Decomposition of Symmetric 2-Tensors
Symmetric rank-2 tensors can also be decomposed further.
Berger and Ebin [BE69] were the first to propose a notion
of decomposition of symmetric tensors on arbitrary mani-
folds that extends the well-known Hodge decomposition of
vector fields and forms. Noticing the role of the kernel and
image of divergence and curl in the Hodge decomposition,
they proposed to orthogonally decompose a symmetric ten-
sor via the image of an operator P (with injective principal
symbol) and the kernel of its adjoint operator P∗ (uniquely
defined via 〈P·, ·〉F =〈·,P∗·〉 up to boundary conditions):

S = ImP⊕KerP∗. (4)

This is the generalization of the well-known fact that, for any
given matrix, its range and the kernel of its transpose form
an orthogonal decomposition of the entire space. We review
relevant examples of this versatile construction next.

Divergence-based expression. One of the most common
differential operators on manifolds is the covariant deriva-
tive [Pet06], which extends the notion of directional deriva-
tive for arbitrary manifolds. The covariant derivative ∇ω of
a 1-form ω returns a rank-2 tensor whose symmetric part is
the Killing operator of ω, i.e., 1

2
(
∇ω+∇ω

t) ..=K(ω).† The
Killing operator is, itself, remarkably relevant in differential
geometry: its kernel corresponds to vector fields (known as

† Note that our definition of the Killing operator differs by a factor
1/2 from most authors, in an effort to simplify further expressions.
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Killing vector fields) that define isometric flows on the sur-
face [BCBSG10]. For P≡K in Eq. (4), the adjoint operator
P∗ turns out to be the negated divergence operator div on
tensors [BE69], implicitly defined on a closed surface as:

〈σ,K(ω)〉F =−〈divσ,ω〉1 ∀σ∈S. (5)

Note that, for flat domains with the Euclidean metric I, the
Killing operator can be expressed in local coordinates as a
symmetric matrix with entry (i, j) of the form 1

2 (∂ j+∂i),
while the divergence operator reduces to the divergence of
each column of the matrix form of a tensor. From the Berger-
Ebin decomposition, we conclude that any symmetric tensor
field is composed of a divergence-free part plus an element
of the image of the Killing operator:

S = ImK⊕Kerdiv. (6)

Curl-based expression. We can also define a similar de-
composition using this time the notion of curl of a tensor.
In fact, the relationship between div and curl for 2-tensors in
M is simple: just like the curl of a vector field is minus the
divergence of its rotated version, for a 2-tensor σ we have
curlσ ..=div(?σ?-t), where ?σ?-t is the ?-conjugate of σ. We
thus get a Berger-Ebin decomposition

S = ImK⊕Ker curl, (7)

where the operatorK indicates the ?-conjugate of the Killing
operator, i.e., K(ω) ..=?K(ω)?-t .

Trace-based expression. Another canonical operator on
tensors is the trace tr. Its Berger-Ebin based decomposi-
tion is rather trivial since the adjoint of the trace is simply
tr∗(z)=zg for any scalar function z, thus leading to:

S = Imtr∗⊕Ker tr . (8)

2.4 Remarks
We conclude this section with a few observations.

Boundary conditions. In order to uniquely define the ad-
joint relation in Eq. (5), we must prescribe boundary con-
ditions for 2-tensor fields. Similar to the case of 1-forms,
this can be achieved by either prescribing boundary tensors
(Dirichlet boundary condition) or specifying their normal
derivatives (Neumann boundary condition).

Physical Interpretation. Tensor decompositions are often
used to characterize deformations in mechanical systems.
The antisymmetric part of asymmetric tensors (Eq. (2)), for
instance, reveals infinitesimal rotations in a fluid motion.
Divergence-free tensors and the Killing operator (Eq. (6))
indicate force equilibrium and deviation from isometries in
solid mechanics. Similarly, the trace-based decomposition
(Eq. (8)) identifies local dilations and shearing, commonly
controlled in elasticity via Lamé parameters.

Covariant Derivative. As mentioned in §2.3, the covariant
derivative maps a 1-form ω to a 2-tensor field ∇ω which is
the sum of a symmetric and an antisymmetric part:

∇ω =K(ω)− 1
2 dω, (9)

where the antisymmetric part is half the curl of the vector
field ω

] associated to ω. Therefore, the covariant deriva-
tive ∇ω identifies the scalar function q in Eq. (3) with the
(negated) function g induced by the coclosed part ?dg of ω.

Generalized Laplacian. The standard Laplace-Beltrami op-
erator ∆ on a function z is defined as div(∇z). This operation
generalizes for a symmetric 2-tensor field σ inM as

∆
σz ..= div(σ∇z)=?(divσ∧?dz)+tr

(
σg−1 Hess(z)

)
, (10)

where Hess(z) is the Hessian of z. This operator is par-
ticularly relevant in the computation of quasi-harmonic
fields [AN02] and in elasticity [Hu54]. Graphics applica-
tions have also used this generalized Laplacian to com-
pute anisotropic parameterization [ZRS05, KMZ11] and fil-
tering [PM90], and more recently to design simplicial ma-
sonry structures [dGAOD13, LHS∗13]. Note that, when σ is
a divergence-free tensor field, the generalized Laplace op-
erator becomes linear accurate, i.e., ∆

σz = 0 for any linear
function z in the plane.

3 Tensor Fields over 2D Euclidean Space
We now combine the three Berger-Ebin decompositions de-
scribed in §2.3, and derive a new coordinate-free decomposi-
tion of 2-tensor fields for the case of a compact regionM in
R2 with boundaries ∂M and Euclidean metric (g ≡ I). The
continuous picture we present here will be at the core of our
discrete approach to deal with 2-tensor fields on arbitrary tri-
angulations. Notice that differential operators simplify con-
siderably for the Euclidean case—e.g., the Hodge-star and
the area form reduce to ?≡ J and µg ≡ Jt , respectively. Yet
we keep our original notation in order to discuss extensions
and limitations of our results for curved surfaces.

Killing decomposition. Suppose that a 1-form ω is ex-
pressed, via Hodge decomposition, as ω = d f ⊕?dg⊕h,
where f and g are scalar functions (d f and ?dg represent, re-
spectively, the 1-forms associated to ∇ f and J∇g), and h is
a harmonic 1-form. Its Killing operatorK(ω) can be decom-
posed by linearity into terms that are mutually orthogonal
with respect to the Frobenius inner product—not only in the
plane, but also for surfaces of constant Gaussian curvature
as shown in App. A:

K(ω)=K(d f)⊕K(?dg)⊕K(h)=Hess( f )⊕Tr0(g)⊕∇h. (11)

One can check thatK(d f ) reduces to the Hessian Hess( f ) ..=
∇d f of the function f , while the term K(?dg) is always
traceless—we thus denote it as Tr0(g). The termK(h) is sim-
ply the covariant derivative∇h due to the harmonicity of h.

Conjugate Killing decomposition. In a similar fashion, the
?-conjugate version of the Killing operator K(ω) can, itself,
be decomposed as:

K(ω)=?Hess( f )?-t⊕?Tr0(g)?-t⊕?∇h?-t . (12)
We note here that the traceless and harmonic terms in the
plane are invariant by ?-conjugation; i.e., Tr0(g)=?Tr0(g)?-t

and∇h=?∇h?-t .
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Complete decomposition. Using Eqs. (3), (11) and (12),
and recalling that divergence-free tensors can be expressed
as ?-conjugated Hessians [GZ02], we conclude that an ar-
bitrary 2-tensor field τ in the plane is orthogonally decom-
posed into antisymmetric, divergence-free, curl-free, trace-
less, and harmonic parts:

τ =

∈A︷︸︸︷
sµg︸︷︷︸

2-form

⊕

∈S︷ ︸︸ ︷
Hess( f )︸ ︷︷ ︸

curl free

⊕ ?Hess(w)?-t︸ ︷︷ ︸
div free

⊕ Tr0(g)︸ ︷︷ ︸
traceless

⊕ ?∇h?-t︸ ︷︷ ︸
harmonic

, (13)

where the scalar function s describes the antisymmetric part
of the tensor field, and the three scalar functions ( f , g and
w) plus a harmonic 1-form h encode the space of symmetric
tensors. Thereby, we obtain a complete characterization of
planar 2-tensor fields, which only requires coordinate-free
scalar functions f , g, w, and s.

We further notice that any constant tensor of the form aI +
bB+cC can be expressed as the Hessian of a quadratic func-
tion f or w. Similarly, a constant tensor pJ+bB+cC can be
associated to the covariant derivative of the rotated gradient
of a quadratic function g. We can thus use the three con-
stant scaling a, b, and c to encode a “mean” symmetric ten-
sor field, and then rewrite Eq. (13) in a more concise form:

τ = sJ +aI +bB+ cC+K(d f +?dg)+K(dw+h). (14)

Separating these constant terms will be shown useful in our
treatment of 2-tensors on discrete non-flat surfaces in §4.2.

Finally, it bears repeating that Eq. (13) is only valid for the
Euclidean metric (g≡ I). Moreover, while the Berger-Ebin
decompositions presented in §2.3 are valid for any smooth
manifold, we show in App. A that the various parts of the
Killing operator in Eq. (11) are mutually orthogonal only on
surfaces of constant Gaussian curvature. To our knowledge,
there is no known general coordinate-free decomposition of
2-tensors on arbitrary surfaces.

4 Tensor Fields over Triangulations
We now leverage our continuous decomposition of 2-tensor
fields in the plane to represent discrete 2-tensor fields on ar-
bitrary triangle meshes via local, discrete 0- and 1-forms.

4.1 Discrete antisymmetric 2-tensors
Differential forms are known to be conveniently discretized
using the concept of cochains defined in Algebraic Topol-
ogy [Mun84], and can be interpolated through Whitney
form bases [Whi57]. The resulting discrete differential
forms [DKT08] and their most relevant operators [AFW06b]
are well documented by now. In particular, Hodge decompo-
sition of arbitrary forms carries very neatly into the discrete
realm in a coordinate-free fashion. The case of discrete 2-
forms is a particularly simple subset of this discrete theory:
a 2-form µ as used in Eq. (3) is simply encoded as its inte-
gration over each face ijk

µijk =
∫

ijk
µ. (15)

This is equivalent to storing a scalar sijk per face as a dis-
cretization of the antisymmetric part in Eq. (14), with sijk =
µijk/aijk. Note that this value can be further decomposed us-
ing the Laplacian of a dual 0-form q and a constant 2-form
p as indicated in §2.1. From this set of scalar-per-face µijk, a
discrete differential 2-form can be interpolated through face-
based Whitney basis functions as ∑

ijk
µijk φijk.

4.2 Discrete symmetric 2-tensors

Unlike the antisymmetric case, symmetric tensors are not
entities that are directly “integrable”, thus a different dis-
cretization approach must be adopted. We introduce a finite-
dimensional representation of symmetric tensors via a dis-
crete version of Eq. (14).

Encoding. We propose to represent dis-
crete symmetric 2-tensor fields on arbi-
trary triangle meshes by encoding the
forms involved in the decomposition
of Eq. (14) over small, developable
patches: we use one patch per edge ij
defined as the “butterfly stencil” con-
taining the two triangles adjacent to ij
and their immediate neighbors, as well
as one patch per face ijk defined as the
face and its immediate flaps (see in-
set). For each edge-centered and face-
centered patch, we store a local approx-
imation of a continuous tensor field as values per oriented
simplex (wi and fi at nodes, values gijk at triangles, and har-
monic 1-form values hij at oriented edges) from which we
will be able to derive the symmetric terms of Eq. (14). This
form-based discretization choice is guided by the usual al-
gebraic topology tools of DEC/FEEC and the resulting dis-
crete Hodge decomposition [DKT08]: in particular, it faith-
fully discretizes the continuous 1-forms d f+?dg and dw+h
as d0 f +F-1dt

1g and d0w+h, where F is a discrete Hodge
star. Note that we do not need to explicitly encode the con-
stants a,b, and c since, as we discussed in §3, they can be
incorporated in the scalar fields f ,g,w, and s.

Interpolation. As we wish to provide a discrete treatment
of 2-tensors that is fully compatible with DEC, the use
of Whitney form basis functions [Whi57] is most appro-
priate: they provide low order, intrinsic interpolation of
our discrete forms through f = ∑i fiφi, g = ∑i gijkφijk, and
h=∑ij hijφij. With this piecewise continuous reconstruction
of forms over each patch, we can formally evaluate the lo-
cal tensor field approximation for all patches as we describe
below. However, our use of piecewise linear basis func-
tions is not amenable to properly capture locally constant
2-tensors: while a quadratic function f has a constant Hes-
sian, a piecewise-linear approximation of f fails to fulfill this
property. We thus begin our tensor reconstruction by extract-
ing a local mean tensor per patch, denoted σ, to fully remedy
this limitation of low-order form interpolation.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



de Goes et al. / Discrete 2-Tensor Fields on Triangulations

Extracting local mean tensor σ. From f , g, w, h we first
evaluate a local constant tensor σ through local fitting. For
each of the 1-forms d0 f , F-1dt

1g, h, and d0w on an edge-
based or face-based patch, we find the least-squares fitting
linear 1-form over the patch: using a local coordinate sys-
tem where x is along the oriented edge, we compute the
optimal coefficients {νi}i=1..6 of the 1-form ν1dx+ν2dy+
ν3(xdx+ydy)+ν4(ydx+xdy)+ν5(xdx−ydy)+ν6(ydx−xdy).
The mean tensor σ=aI+bB+cC is then expressed in local
coordinates as a sum of contributions ν3I + ν4B+ ν5C ob-
tained from each 1-form d0 f , F-1dt

1g, h, and d0w. This pro-
cedure requires a linear least-squares solve of size 6x6 for
both edge- and face-based patches, and is performed on the
fly when needed.

Residual edge-based Dirac tensors. The differential terms
of Eq. (14), representing spatially varying terms around the
mean tensor σ, can now be captured within each patch as
well. Once we remove from the values of d0 f , F-1dt

1g, d0w,
and h the linear 1-forms found in the least-squares solution,
the residual discrete forms can be formally differentiated to
find the corresponding tensor field they encode over each
patch. Because of our choice of Whitney basis functions,
the resulting residual 2-tensor field turns out to only include
edge discontinuities induced by the derivatives of the piece-
wise linear bases φi and φij. The Hessian of f , for instance,
is trivially zero everywhere except across edges, since the
vertex-based basis functions are piecewise linear inside each
triangles, and their gradients are discontinuous across an
edge. Similarly, the traceless term Tr0(g) leads to disconti-
nuities in the piecewise linear 1-form F-1dt

1g across edges.
In contrast, the ?-conjugate Hessian of w is zero everywhere
except along edges. We can further compute the tensor term
coming from the harmonic 1-form h as a discontinuity along
every edge. (Note that the harmonic term could be locally
absorbed in the function w due to Poincaré lemma, thereby
reducing memory usage if needed; we keep it in our exposi-
tion for clarity.) Therefore, our discrete symmetric 2-tensor
per patch boils down to a constant tensor σ plus a sum of
impulse tensors on edges expressed as

σ+∑
ij

δij

[
tij(d0 f+F-1dt

1g)e⊥ij⊗e⊥ij + tij(d0w+h)eij⊗eij

]
, (16)

where eij is the normalized vector for edge ij, δij is the line
Dirac function along ij (i.e., δij(x,y)=δ(y) with δ being the
1D Dirac function and the x-axis being along ij), and tij is a
function linear in its 1-form argument such that, for edge ij
between triangles ijk and ilj, tij = tk

ij + t l
ji with

tk
ij(α) = αij

(
φ j cotθijk−φi cotθkij

)
/lij

+
(
α jk φ j−αki φi

)(
cotθkij + cotθijk

)
/lij.

(17)

These impulse tensors are only well defined in a distri-
butional sense, but they will be systematically integrated
against basis functions in §5 to obtain weak forms of dif-
ferential operators.

4.3 Discussion

Our proposed discrete encoding can be seen as a general-
ization of a number of previous approaches. First, our con-
stant term σ per edge and per face is akin to the conven-
tional piecewise-constant discretization of tensors, typically
done per face or vertex—with the major difference that we
do not need to define local frames in which components are
stored: they are derived from our local, coordinate-free 0-
and 1-forms instead. Second, edge-based Dirac tensors were
already identified as relevant for triangulated surfaces (see,
e.g., [CSM03, GGRZ06]); however, they were directly av-
eraged per local neighborhood before being used for differ-
ential computations—instead, we keep the Dirac nature of
our reconstructed tensors and formally integrate them to de-
rive differential operators on scalars and vector fields. Lastly,
having both constant tensors and Dirac edge tensors cap-
tures continuous tensor fields better than limiting the finite-
dimensional representation to only one of these two parts.

We finally note that our representation is a generalization of
the typical encoding of a stress tensor field in planar elas-
tostatics via the Airy function [dGAOD13], which is the
sum of a paraboloid and a function w—corresponding to a
constant tensor field plus the rotated Hessian of w to repre-
sent a spatially-varying tensor field. This added non-constant
term becomes a sum of Dirac impulses for linear basis func-
tions; higher order Whitney elements (see, e.g., [AFW06b,
WWT∗06]) would remove Dirac distributions—at the cost
of requiring larger patches.

5 Discrete Differential Tensor-based Operators
Our discrete 2-tensor edge-based representation can now be
harnessed to define various operators on vector fields and/or
1-forms. For each tensor-based operator, we present its dis-
crete expression for each of the terms in Eq. (14). We in-
troduce the edge integration T k

ij of the line Dirac function tk
ij

(Eq. (17)) as this term will appear in most expressions:

T k
ij (α) =

∫
ijk

δijt
k
ij(α)

=
(
α jk cotθkij−αki cotθijk

)
+ 1

2 (d1α)ijk
(
cotθijk− cotθkij

)
,

(18)

where α denotes a discrete 1-form. Following the conven-
tion for tij, we use Tij(α) ..=T k

ij (α)+T l
ij(α). Observe that, in

the case of exact 1-forms α=d0 f , Eq. (18) simplifies to the
non-conforming Laplacian [PP03] of f restricted to ijk. Con-
sequently, the terms Tij return zero for any linear function f .
For a boundary edge ij, we set Tij to zero in order to imple-
ment Neumann boundary condition.

5.1 Discrete generalized Laplacian∇· (σ∇)
As mentioned in §2.4, the Laplacian operator of functions,
commonly used in geometry processing, is a particular
case of a general family of differential operators on func-
tions ∆

σ(z) = div(σ∇z) where σ is a symmetric 2-tensor
field [AN02]. We can define its weak (integrated) form on
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a discrete scalar function z=∑ j z jφ j as

〈∆σ(z),φi〉0=∑
ij
(z j−zi)

∫
M

σ(∇φi,∇φj)..=∑
ij
(zi−z j)Hσ

ij. (19)

This generalized Laplacian operator on discrete 0-forms can
thus be expressed as a |V|×|V| matrix of the form

∆
σ = dt

0H
σd0, (20)

where Hσ is a diagonal |E|×|E| matrix. Its coefficients Hσ
ij

can be evaluated in closed form for the various types of σ

presented in Eq. (14) as spelled out in App. C.

We point out that HId matches the diagonal Hodge star
FD [BK99] traditionally used in mesh processing (we will
discuss discrete Hodge star approximations further in §5.4).
Also, the resulting elliptic operator ∆

Id reduces to the usual
cotan-Laplacian operator [PP93]. Moreover, for the case
of σ= ?Hess(w)?-t , the matrix Hσ corresponds to the ex-
tra terms used in the weighted Laplacian operator [Gli05,
MMdGD11]. Our formulation thus extends this operator to
arbitrary 2-tensors, and due to our deliberate choice to use
the conjugated form of the harmonic part in Eq. (13), our
generalized Laplacian for σ=∇h verifies the linear preci-
sion of its corresponding continuous operator [dGAOD13].

Ellipticity. In the continuous setting, the generalized Lapla-
cian is (semi-)elliptic iff the symmetric 2-tensor σ is posi-
tive (semi-)definite (PSD). A full characterization of ellip-
ticity of our resulting discrete generalized Laplacian is cur-
rently unknown, but many sufficient conditions can be (and
have been) formulated. First, notice that a traceless 2-tensor
cannot be PSD since the sum of its eigenvalues is zero. For
the case σ=Hess(w), a simple sufficient condition on the
weights was offered in [Gli05], and it remains valid in our
setup. For all other cases, one can directly check whether the
discrete operator Hσ is positive definite by testing diagonal
dominance and non-negativity.

5.2 Pairing through discrete tensors
Discrete symmetric tensors can also be used to pair with vec-
tor fields. The integral of this pairing, called total pairing,
becomes an |E|×|E| operator on edge values since:

〈α,σβ
]〉1=

∫
M

σ(α#,β#)= ∑
ij,kl

αijβkl

∫
M

σ(φφφij,φφφkl)=α
tMσ

β,

where α,β are discrete 1-forms corresponding to the vector
fields α

#,β#. The matrix Mσ is typically referred to as the
(generalized) mass matrix. App. D lists all the closed-form
expressions of the pairing matrix Mσ for the terms of our
decomposition in Eq. (14).

Inner products with symmetric tensors. A particularly im-
portant case of pairing through a symmetric 2-tensor σ is the
notion of inner product, when σ is positive definite. As in the
generalized Laplacian case, necessary and sufficient condi-
tions on the scalar functions f and w to induce a positive def-
inite matrix Mσ are not trivial to formulate. However, a sim-
ple check of the diagonal dominance and non-negativeness
of MK and MK provide a straightforward numerical charac-
terization of inner products. Note that the mass matrix for

σ ≡ Id is the inner product of Whitney 1-form basis func-
tions, dubbed the Galerkin Hodge star FG [BK99].

Cross products with antisymmetric tensors. We finally
point out that when σ is purely antisymmetric (correspond-
ing to the case σ=µ in Eq. (26)), the total pairing becomes
an integrated cross product between the two vector fields
weighted by the face values µijk.

5.3 Trace
The discrete trace can also be defined through a weak form
based on our discrete tensors, resulting in a value per vertex:

[tr σ]i = 〈φi, tr(σ)〉0.
Discrete antisymmetric tensors thus have zero discrete trace,
as in the continuous world. For a discrete symmetric tensor σ

equal to the sum in Eq. (16), and using
∫

ijk φiφ jµg=aijk/12
and

∫
ijk φ

2
i µg=aijk/6, we find:

tr σ = dt
0H

Idd0w+dt
0M

Id
ω.

The first term is the (primal) cotan-Laplacian of w at vertex i.
The remainder is elucidated by noting that a discrete 1-form
ω is naturally split based on the discrete Hodge decomposi-
tion induced by the Galerkin Hodge star (MId =FG defined
in Eq. (25)) as:

ω = d0 f +
(
MId)−1 dt

1g+h,
where h is closed and coclosed, i.e., d1h=0 and dt

0MIdh=0.
Since we know that dt

0dt
1 is null, the second term simplifies to

the cotan-Laplacian of f , while the discrete versions of the
traceless terms of the continuous decomposition (Eq. (13))
are zero with this discrete trace operator. Thus, the discrete
trace recovers the exact same two non-zero terms as its con-
tinuous counterpart.

5.4 Choice of discrete Hodge stars
The continuous Hodge star can be approximated in the dis-
crete setting in various ways. In our setup where discrete
vector fields and 1-forms are expressed using edge val-
ues and Whitney basis functions, the most natural discrete
Hodge star is arguably the Galerkin Hodge star FG≡MId

(Eq. (25)). However, the diagonal Hodge FD≡HId (Eq. (23))
is a sparser alternative often preferred in graphics as it of-
fers a less computationally intensive approximation—in par-
ticular, the discrete Hodge decomposition for this sparse
star now only involves diagonal matrices. In fact, these two
Hodge stars are well-known to be related in the sense that the
primal Laplacian is the same whether Galerkin or diagonal
approximation is used [BK99], i.e., dt

0F
Dd0 = dt

0F
Gd0. Our

extensions of FD and FG to arbitrary symmetric 2-tensors
(resp., Hσ and Mσ) precisely maintain this property as we
prove in App. B. We thus note that one can opt for either
one, but the use of the computationally-attractive diagonal
approximation loses the traceless property of the terms in g
and h described in §5.3 since HM-1 no longer simplifies.

6 Applications
We now employ our discrete differential tensor-based oper-
ators to derive computational tools for covariant derivative,
Lie bracket, and anisotropic geodesics on triangle meshes.
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6.1 Discrete covariant derivative
The covariant derivative provides a generalization of direc-
tional derivatives on arbitrary surfaces. With this concept,
one can measure the rate of change of a 1-form α along a
vector field β

] (associated to a 1-form β) as the contraction
of β

] with the 2-tensor∇α:

∇β]α
..= (∇α)β] = ω,

where ω is the resulting 1-form. In the discrete realm, we
make use of the piecewise linear basis function φij to evalu-
ate the directional derivative in a weak form as:

∀ij, 〈φij,ω〉1 = 〈φij,(∇α)β]〉1.
By leveraging Eq. (9) and the mass matrices derived in §5.2,
we convert this weak formulation into a sparse linear system:

MId
ω =

(
MK(α)− 1

2 Md1α
)

β, (21)

Therefore, we define the discrete covariant derivative of the
1-form α as the matrix:

∇α =
(

MId
)−1(

MK(α)− 1
2 Md1α

)
.

Note that the mass matrices are computed by combining the
mean tensor σ extracted from α in each patch, the edge-
based residual tensor defined by α, and the antisymmetric
tensor d1α. Matrix MId is sparse, positive-definite, and de-
pends only on the triangle mesh, it can thus be efficiently
pre-factorized (our implementation uses eigen [GJ∗10]).
One can then compute directional derivatives for different 1-
forms β through simple sparse matrix-vector multiplication
and back substitution. Fig. 1 illustrates a directional deriva-
tive on a planar mesh with concave boundaries for the case
α=−2xydx−x2dy and β=dx. The resulting discrete 1-form
ω provides an approximation of the analytical solution with
a relative error of 0.7% for a coarse mesh and 0.1% for a 4x
finer mesh. Fig. 2 exemplifies the robustness of the discrete
covariant derivative to meshes with variable resolution (even
in the presence of obtuse angles), while Fig. 3 shows di-
rectional derivatives on surfaces of complex shape and non-

Figure 1: Covariant derivative of a 1-form α=−2xydx−
x2dy (top-left) along β=dx (bottom-left) for a planar mesh
with concave boundary. Resulting 1-form ω has a numer-
ical residual w.r.t. the analytical solution of 0.7% (center,
|V|= 173) and 0.1% (right, |V|= 609), respectively. Vec-
tor fields are displayed by interpolating 1-forms at triangle
barycenters.

Figure 2: For 1-forms α = sin(θ)dθ (top left) and β =
sin(θ)dφ (bottom left) (expressed in spherical coordinates),
our discrete covariant derivative ω=∇β]α on an irregular
mesh (center) is consistent with the result on a uniform mesh
(right) (meshes shown as insets). Vector fields displayed by
interpolating 1-forms at barycenters of a subset of triangles.

trivial topology. Finally, Fig. 7 presents convergence tests of
our results with symmetric and asymmetric tensor fields; we
restricted our analysis to a disk, a planar concave mesh and
a sphere, since their directional derivatives have known ana-
lytical expressions. We also tested the contribution of the im-
pulse tensors in Eq. (16) versus using simply the mean tensor
σ per patch in our computations, and observed a systematic
decrease in the relative residual from 2% to 27% depending
on the tensor fields.

Figure 3: Discrete covariant derivative on meshes of arbi-
trary shape and topology. We chose α (top) and β (bottom) as
the smoothest 1-forms from the 1-form Laplacian [DKT08].
Central images show the resulting 1-form ∇β]α, visualized
with sampled integral curves (bunny) and line integral con-
volution [PZ11] (twisted torus).

6.2 Discrete Lie bracket
Our discrete treatment of the covariant derivative also leads
to a Lie bracket (also known as the commutator) of vector-
fields. By flattening vector fields to 1-forms, the Lie bracket
of two 1-forms α and β returns a 1-form γ evaluated as:

[α,β] ..=∇β]α−∇α]β = γ.

From this definition, we directly reuse Eq. (21) and compute
the discrete Lie bracket 1-form γ through a similar sparse
linear system. Fig. 5 validates our discrete Lie bracket on
the “torus example” proposed in [ABCCO13].

6.3 Anisotropic heat method
Discrete 2-tensors are also suitable to compute anisotropic
geodesic distances based on a simple extension of the heat
method [CWW13]. For geodesics induced by the Euclidean
embedding space, the heat method requires two linear sys-
tem solves involving the cotan-Laplace operator: the first
step diffuses an impulse heat function z0 isotropically for
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Figure 4: Our tensor-based discrete differential operators can be used to compute anisotropic geodesics. We tested our method
on a disk with constant tensors of various anisotropy ratio (from left to right: 1, 0.5, 0.3, 0.2, and 0.1), with the larger magnitude
along the x-axis. Notice that the iso-levels stretch to ellipses with the anisotropy as expected.

a short time interval ε into a function z, while the second
step finds the potential ψ whose gradient best approximates
the normalized gradient of z under the surface metric. We
instead propose to replace the isotropic diffusion in the first
step by an anisotropic diffusion [PM90] induced by a PSD
symmetric 2-tensor field σ. We thus compute the function z
using the generalized Laplacian operator Hσ (see §5.1):(

F0 + εdt
0H

σd0

)
z =F0z0,

where F0 is the diagonal Hodge-star for 0-forms using ver-
tex areas [DKT08]. We further set the time step ε to the
square of the averaged edge length measured with respect
to the tensor σ. The second step remains unchanged, solv-
ing for the potential ψ based on the cotan-Laplacian matrix
dt

0HIdd0. For boundary conditions, we used Robin boundary
conditions as advocated in [CWW13].

In Fig. 4, we demonstrate the accuracy of our method by il-
lustrating isodistances for various anisotropy ratios on a unit
disk mesh. We also compute anisotropic distances driven by
curvature in Fig. 6: we first compute an average shape op-
erator Λ per edge as in [CSM03], and set the mean tensor
σ to (I+0.1Λ

2)-1, such that distances evolve more slowly in
regions of large curvature magnitudes.

7 Future Work
Our discrete symmetric 2-tensors and their associated op-
erators on vector fields require further numerical analysis,
just like usual operators in geometry processing [HPW06]. A
higher order construction of symmetric tensors through the
subdivision 1-form basis functions introduced in [WWT∗06]
would also be interesting (yet, more involved) so that the
resulting discrete tensor fields could now be piecewise con-

Figure 5: Our discrete notion of Lie bracket reproduces the
torus example presented in [ABCCO13] both qualitatively
and quantitatively. For two 1-forms α (left) and zβ (middle),
where z is a scaling function, the resulting Lie bracket γ=
[α,β] (right) is parallel to β, as expected in the smooth case.
Pseudo-colors indicate the norm of zβ and γ, respectively.

Figure 6: Anisotropic geodesics can be computed guided by
the curvature tensor of a surface. Left: isotropic geodesic
distance generated by the heat method [CWW13]. Right:
anisotropic (curvature-aware) geodesic distance computed
with our generalized Laplacian operator (see §5.1).

stant or linear. Moreover, our encoding of arbitrary 2-tensors
may also find other applications in the context of simulation:
the stress and strain tensors used in elasticity could be en-
coded with intrinsic values—instead of using a piecewise-
constant representation induced by the embedding of the
triangle mesh as typically done in finite-element methods.
Encoding the second fundamental form on a triangle mesh
could also be valuable. We are also investigating a discrete
notion of Frobenius inner product consistent to our dis-
crete 2-tensors, with which one can compute Killing vec-
tor fields [BCBSG10] and smoothness energies [KCPS13].
Finally, extending our discrete treatment of 2-tensors to tet
meshes is another topic left for future work.
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A Decomposition of Killing operator
We now detail the decomposition of the Killing operator K for
smooth surfaces with Gaussian curvature κ. We first make use of
the Bochner technique (see, e.g., [Pet06, BCBSG10]), and expand
the divergence of the Killing operator as:

−div (K(ω)) = (2dδ+δd−2κI)ω, (22)

where δ ..=−?d? is a shorthand for the co-differential operator. (Note
that we assumed a 1-form ω with zero Dirichlet or Neumann bound-
ary condition for simplicity.) By combining Eqs. (5) and (22), we
now compute the inner product of symmetric 2-tensor fields gener-
ated by the Killing operator of exact 1-forms d f , co-exact 1-forms
?dg, and harmonic 1-forms h:

〈K(d f ),K(?dg)〉F =2〈 f , ? (dκ∧dg)〉0,

〈K(d f ),K(h)〉F =2〈 f , ? (dκ∧?h)〉0,

〈K(?dg),K(h)〉F =2〈g, ? (dκ∧h)〉0.

These expressions return zero for arbitrary f , g and h iff the
Gaussian curvature κ is constant. Therefore, we can decompose
the Killing operator K into an orthogonal direct sum as stated in
Eq. (11) in the case of planar domains.

B Lumping of pairing
The proof found in [BK99] that the diagonal Hodge star is a lump-
ing of the Galerkin Hodge star in the Laplacian operator extends
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directly to our discrete pairing operators for arbitrary symmetric ten-
sors since:(

dt
0Mσd0

)
ij = ∑

kl,mn
(dt

0)
i,kl
(∫

M
σ(φφφkl ,φφφmn)

)
dmn, j

0

=
∫

M
σ

(
∑
kl

d kl,i
0 φφφkl ,∑

mn
dmn, j

0 φφφmn

)
=
∫

M
σ (∇φi,∇φ j) =

(
dt

0Hσd0
)

ij .

C Discrete generalized Laplacian ∆τ

The matrix Hτ is provided in closed form for the various terms of the
decomposition in Eq. (14). Note that the evaluation stencil for each
element requires the “butterfly” patch of edge ij (or part thereof),
and we use the naming convention described in the inset of §4.2.

• Case τ= I. This case corresponds to the well-known cotan for-
mula [PP93]:

HId
ij =

1
2

(
cotθ jki + cotθilj

)
(23)

• Case τ=µ.

Hµ
ij =

1
2a jil

µ jil − 1
2aijk

µijk. (24)

• Case τ=K(d0 f +F-1dt
1g). Using ω≡ d0 f+F-1dt

1g for concise-
ness, we have:

HKij =−
1

2l2
ij

(
cotθkij cotθijk + cotθ jil cotθlji

)
Tij(ω)

+ 1
4aijk

cotθ jki
(
Tik(ω)+Tkj(ω)

)
+ 1

4a jil
cotθilj

(
Tli(ω)+Tjl(ω)

)
• Case τ=K(d0w+h).

HKij = 1
l2
ij

Tij(d0w+h)

• Case τ=B.

HB
ij =

cotθkij− cotθijk

2(cotθkij + cotθijk)
+

cotθlji− cotθ jik

2(cotθ jil + cotθlji)

• Case τ=C.

HC
ij =−

1+ cotθkijcotθijk

2(cotθkij + cotθijk)
−

1+ cotθ jikcotθlji

2(cotθ jil + cotθlji)

D Pairing through discrete tensors
The matrix Mτ is provided in closed form for the various terms of
the decomposition in Eq. (14). Note that the evaluation stencil for
each element requires either the “butterfly” patch of edge ij or the
patch of a face ijk, and we still use the naming convention described
in the inset of §4.2.

• Case τ= I.

MId
ij,ij =

1
4

(
cotθ jki + cotθilj

)
+ 1

12

(
cotθkij + cotθijk

)
+ 1

12

(
cotθ jil + cotθlji

)
MId

ij, jk =
1

12

(
cotθijk− cotθkij− cotθ jki

)
.

(25)

This resulting matrix MId corresponds to the Galerkin Hodge star
FG [BK99], as further discussed in §5.4.

• Case τ=µ.

Mµ
ij, jk =−Mµ

jk,ij =−
µijk

6aijk
, Mµ

ij,ij = 0. (26)

• Case τ=B. We need to define a local coordinate frame to compute
this pairing. For diagonal terms MB

ij,ij , we use the coordinate frame
induced by the edge ij of the butterfly patch; for the other terms
MB

ij, jk , we pick a random, but fixed frame Fijk per face, and denote
by η the angle that rotates the x direction of the local frame Fijk to
the direction of edge ki. With this convention, one gets:

MB
ij,ij =

cotθijk− cotθkij

4(cotθijk + cotθkij)
+

cotθ jil − cotθlji

4(cotθ jil + cotθlji)

MB
ij, jk = sin(2η)

1+ cotθ jkicotθkij +(cotθ jki + cotθkij)
2

12(cotθ jki + cotθkij)

+ cos(2η)
cotθkij− cotθ jki

12(cotθ jki + cotθkij)

• Case τ=C. Using the same convention as above:

MC
ij,ij =

3+ cotθijkcotθkij− cot2θijk− cot2θkij

12(cotθijk + cotθkij)

+
3+ cotθljicotθ jil − cot2θlji− cot2θ jil

12(cotθ jil + cotθlji)

MC
ij, jk = cos(2η)

1+ cotθ jkicotθkij +(cotθ jki + cotθkij)
2

12(cotθ jki + cotθkij)

− sin(2η)
cotθkij− cotθ jki

12(cotθ jki + cotθkij)

• Case τ=K(d0 f +F-1dt
1g). Using ω≡ d0 f+F-1dt

1g for concise-
ness, the closed form expression is:

MKij, jk=
1

24aijk

[
Tij(ω)

(
2cotθijk− cotθkij

)
+Tjk(ω)

(
2cotθijk− cotθ jki

)
−Tki(ω)

(
cotθ jki + cotθkij

)
+ 1

2 cotθijk
(
cotθkij− cotθ jki

)
(d1ω)ijk

− 1
2 cotθijk

(
cotθ jil + cotθlji

)
(d1ω) jil

+ 1
2 cotθijk

(
cotθkjm + cotθmkj

)
(d1ω)kjm

]
MKij,ij=

Tij(ω)

6l2
ij

[
cot2 θkij+cot2 θijk−cotθkij cotθijk

+cot2 θ jil + cot2 θlji−cotθ jil cotθlji

]
+ 1

12aijk

[
Tjk(ω)

(
cotθijk+cotθ jki

)
+Tki(ω)

(
cotθ jki+cotθkij

)]
+ 1

12a jil

[
Til(ω)

(
cotθ jil+cotθilj

)
+Tlj(ω)

(
cotθilj+cotθlji

)]
+

(d1ω)ijk
48aijk

[
2cotθ jki(cotθkij−cotθijk)+cot2 θlji−cot2 θ jil

]
+ 1

48aijk

[
(d1ω)kjm(cotθkjm+cotθmkj)(cotθijk+cotθ jki)

−(d1ω)ikn(cotθnik+cotθikn)(cotθkij+cotθ jki)
]

+
(d1ω) jil

48a jil

[
2cotθilj(cotθlji−cotθ jil)+cot2 θkij−cot2 θijk

]
+ 1

48a jil

[
(d1ω)liu(cotθliu+cotθuil)(cotθilj+cotθ jil)

−(d1ω) jlv(cotθv jl+cotθ jlv)(cotθilj+cotθlji)
]

• Case τ=K(d0w+h).

MKij, jk = 0, MKij,ij =−
1
l2
ij

Tij(d0w+h)

The similarity of this last diagonal term with HK is explained in §5.4
where Hodge star approximations are discussed.
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