
Preface

This volume documents the full day course Discrete Differential Geometry: An Applied Introduction pre-
sented at SIGGRAPH ’05 on 31 July 2005. These notes supplement the lectures given by Mathieu Desbrun,
Eitan Grinspun, and Peter Schröder, compiling contributions from: Pierre Alliez, Alexander Bobenko,
David Cohen-Steiner, Sharif Elcott, Eva Kanso, Liliya Kharevych, Adrian Secord, John M. Sullivan, Yiy-
ing Tong, Mariette Yvinec.

The behavior of physical systems is typically described by a set of continuous equations using tools such
as geometric mechanics and differential geometry to analyze and capture their properties. For purposes
of computation one must derive discrete (in space and time) representations of the underlying equations.
Researchers in a variety of areas have discovered that theories, which are discrete from the start, and have
key geometric properties built into their discrete description can often more readily yield robust numerical
simulations which are true to the underlying continuous systems: they exactly preserve invariants of the
continuous systems in the discrete computational realm.

A chapter-by-chapter synopsis The course notes are organized similarly to the lectures. Chapter 1
presents an introduction to discrete differential geometry in the context of a discussion of curves and cur-
vature. The overarching themes introduced there, convergence and structure preservation, make repeated
appearances throughout the entire volume. Chapter 2 addresses the question of which quantities one should
measure on a discrete object such as a triangle mesh, and how one should define such measurements. This
exploration yields a host of measurements such as length, area, mean curvature, etc., and these in turn
form the basis for various applications described later on. Chapter 3 gives a concise summarization of
curvature measures for discrete surfaces, paving the way for the discrete treatment of thin shell mechanics
developed in Chapter 4. Continuing with the theme of discrete surfaces, Chapter 5 describes a discrete
Willmore energy for fairing applications, this time preferring a discrete surface made up of linked circles
instead of triangles. Such circle patterns are also key to a discrete formulation of conformal parameteri-
zation, explored in Chapter 6. At this point we shift down to explore the low-level approach of discrete
exterior calculus: Chapter 7 overviews this exciting field, and Chapter 8 details a layman’s approach to
implementing DEC. With this in place, numerically robust and efficient simulations of the Navier-Stokes
equations of fluids become possible, as described in Chapter 9. Unlike many graphics simulations of fluids
which require regular grids, these fluid simulations are adept for arbitrary meshes around boundaries with
complex shapes. The generation of such meshes is the subject of Chapter 10.

Chapter 1:
Introduction to Discrete Differential Geometry:

The Geometry of Plane Curves

Eitan Grinspun
Columbia University

Adrian Secord
New York University

1 Introduction

The nascent field of discrete differential geometry deals with
discrete geometric objects (such as polygons) which act as
analogues to continuous geometric objects (such as curves).
The discrete objects can be measured (length, area) and
can interact with other discrete objects (collision/response).
From a computational standpoint, the discrete objects are
attractive, because they have been designed from the ground
up with data-structures and algorithms in mind. From a
mathematical standpoint, they present a great challenge:
the discrete objects should have properties which are ana-
logues of the properties of continuous objects. One impor-
tant property of curves and surfaces is their curvature, which
plays a significant role in many application areas (see, e.g.,
Chapters 4 and 5). In the continuous domain there are re-
markable theorems dealing with curvature; a key require-
ment for a discrete curve with discrete curvature is that it
satisfies analogous theorems. In this chapter we examine the
curvature of continuous and discrete curves on the plane.

The notes in this chapter draw from a lecture given by
John Sullivan in May 2004 at Oberwolfach, and from the
writings of David Hilbert in his book Geometry and the
Imagination.

2 Geometry of the Plane Curve

Consider a plane curve, in particular a small piece
of curve which does not cross itself (a simple curve).

P

Q

Choose two points, P and Q,
on this curve and connect them
with a straight line: a secant.
Fixing P as the “hinge,” ro-
tate the secant about P so
that Q slides along the curve
toward Q. If the curve is
sufficiently smooth (“tangent-
continuous at P”) then the se-

cant approaches a definite line: the tangent. Of all the
straight lines passing through P , the tangent is the best
approximation to the curve. Consequently we define the di-
rection of the curve at P to be the direction of the tangent,
so that if two curves intersect at a point P their angle of
intersection is given by the angle formed by their tangents
at P . If both curves have identical tangents at P then we
say “the curves are tangent at P .” Returning to our sin-
gle curve, the line perpendicular to the tangent and passing
through P is called the normal to the curve at P . Together
the tangent and normal form the axes of a local rectangular
coordinate system. In addition, the tangent can be thought
of as a local approximation to the curve at P .

A better approximation than the tangent is the circle of
curvature: consider a circle through P and two neighboring
points on the curve, and slide the neighboring points towards

P

Figure 1: The family of tangent circles to the curve at point
P . The circle of curvature is the only one crossing the curve
at P .

P . If the curve is sufficiently smooth (“curvature-continuous
at P”) then the circle thus approaches a definite position
known as the circle of curvature or osculating circle; the
center and radius of the osculating circle are the center of
curvature and radius of curvature associated to point P on
the curve. The inverse of the radius is κ, the curvature of
the curve at P .

If we also consider a sense of traversal along the curve
segment (think of adding an arrowhead at one end of the
segment) then we may measure the signed curvature, iden-
tical in magnitude to the curvature, but negative in sign
whenever the curve is turning clockwise (think of riding a
bicycle along the curve: when we turn to the right, it is
because the center of curvature lies to the right, and the
curvature is negative).

Another way to define the circle of curvature is by con-
sidering the infinite family of circles which are tangent to
the curve at P (see Figure 1). Every point on the normal
to the curve at P serves as the center for one circle in this
family. In a small neighborhood around P the curve divides
the plane into two sides. Every circle (but one!) in our fam-
ily lies entirely in one side or the other. Only the circle of
curvature however spans both sides, crossing the curve at P .
It divides the family of tangent circles into two sets: those
with radius smaller than the radius of curvature lying on one
side, and those with greater radius lying on the other side.
There may exist special points on the curve at which the
circle of curvature does not locally cross the curve, and in
general these are finite and isolated points where the curve
has a (local) axis of symmetry (there are four such points on
an ellipse). However on a circle, or a circular arc, the special
points are infinitely many and not isolated.

That the circle of curvature crosses the curve may be rea-
soned by various arguments. As we traverse the curve past

Figure 2: The Gauss map assigns to every point on the curve
a corresponding point on the unit circle.

point P , the curvature is typically either increasing or de-
creasing, so that in the local neighborhood of P , so that
the osculating circle in comparison to the curve will have
a higher curvature on one side and lower on the other. An
alternative argument considers our three point construction.
Trace along a circle passing through three consecutive points
on the curve to observe that the circle must pass from side
A to side B on the first point, B to A on the second, and A
to B on the third. Similar reasoning of our two-point con-
struction shows that in general the tangent does not cross
the curve—the isolated exceptions are the points of inflec-
tion, where the radius of curvature is infinite and the circle
of curvature is identical to the tangent.

Informally we say that P , the tangent at P , and the oscu-
lating circle at P have one, two, and three coincident points
in common with the curve, respectively. Each construction
in sequence considers an additional approaching point in the
neighborhood of P and the so-called order of approximation
(0, 1, and 2 respectively) is identical to the number of addi-
tional points.

In 1825 Karl F. Gauss introduced a new tool for thinking
about the shape of curves and surfaces. Begin by fixing a
sense of traversal for the curve, naturally inducing for every
point on the curve a direction for the tangent. By conven-
tion, the normal points a quarter turn counterclockwise from
tangent direction. Gauss’s idea is to draw a unit circle on
the plane of the curve, and for any point on the curve, to
represent the normal by the radius of the circle parallel to
the normal and having the same sense as the normal. To any
point P on the curve, the Gauss map assigns a point Q on
the unit circle, namely the point where the radius meets the
circle (here, radius means the line segment from the center
of the circle to a point on the circumference). Observe that
the normal at P is parallel to the radius of the circle, and the
tangent to the curve at P is parallel to the tangent to the cir-
cle at Q. That the tangent at P and Q are parallel is used to
simplify important definitions in differential geometry (see,
e.g., the definition of the shape operator in the chapter on
discrete shells). While the Gauss map assigns exactly one
point on the unit circle to any point on the curve, there may
be multiple points on the curve that map to the same point
on the circle, i.e.the map is not one-to-one.

Consider the image of the curve under the Gauss map:
the Gaussian image of a curve is the union of all points
on the unit circle corresponding to all points on the given
curve. For an open curve, the Gaussian image may be an
arc or may be the unit circle. Consider a closed simple plane

+1 -1 +2 0

Figure 3: Turning numbers of various closed curves. Top
row: Two simple curves with opposite sense of traversal,
and two self-intersecting curves, one of which “undoes” the
turn. Bottom row: Gaussian image of the curves, and the
associated turning numbers.

curve: the image is always the unit circle. If we allow the
closed curve to intersect itself, we can count how many times
the image completely “wraps around” the unit circle (and in
which sense): this is the turning number or the index of
rotation, denoted k. It is unity for a simple closed curve
traversed counterclockwise. It is zero or ±2 for curve that
self-intersects once, depending on the sense of traversal and
on whether or not the winding is “undone.”

Turning Number Theorem. An old and well-known
fact about curves is that the integral of signed curvature over
a closed curve, Ω, is dependent only on the turning number:

Z
Ω

κ ds = 2πk .

No matter how much we wiggle and bend the curve, if we
do not change its turning number we do not change its to-
tal signed curvature1. To change the total signed curvature
of Ω we are forced to alter its turning number by adjusting
the curve to introduce (or rearrange) self-intersecting loops.
This theorem about the significance of the turning number
is a piece of mathematical structure: together all the struc-
ture we discover embodies our understanding of differential
geometry. Consequently, our computational algorithms will
take advantage of this structure. In computing with dis-
crete approximations of continuous geometry, we will strive
to keep key pieces of structure intact.

3 Geometry of the Discrete Plane Curve

Given a curve, r, approximate it drawing an in-
scribed polygon p: a finite sequence of (point)
vertices, V1, V2, . . . Vn,
ordered by a traversal
of the curve, and line
segments connecting
successive vertices2.

1Beware that in the context of space curves, the phrase “total
curvature” is occasionally used to denote the Pythagorean sum
of torsion and curvature—a pointwise quantity like curvature. In
contrast, here we mean the integral of curvature over the curve.

2While we concern ourselves here only with plane curves, this
treatment may be extended to curves in a higher-dimensional am-

The length of the inscribed polygon is given by

len(p) =

nX
i=0

d(Vi, Vi+1) ,

where d(·, ·) measures the euclidean distance3 between two
points. We find the length of the continuous curve by taking
the supremum over all possible inscriptions:

len(r) = sup
p inscribed in r

len(p) .

Next, choose a sense of traversal along the curve, naturally
inducing a sense for the inscribed polygon. The (discrete)
total signed curvature of the inscribed polygon is given by

tsc(p) =

nX
i=0

αi ,

where αi is the signed turning angle at vertex Vi, measured
in the sense that a clockwise turn has negative sign; if p
is open then α0 = αn = 0. (N.B.: the turning angle is a
local quantity at each vertex, whereas the turning number
is a global quantity of a curve—these are two distinct con-
cepts). Again, we may express the total signed curvature
of the continuous curve by taking the supremum over all
possible inscribed polygons:

tsc(r) = sup
p inscribed in r

tsc(p) .

A definition based on suprema serves as an elegant foun-
dation for defining the (integral quantities) length and total
curvature of a smooth curve using only very simple polyg-
onal geometry; however suprema are typically is not well
suited for computation. For an equivalent, computationally
meaningful definition, we construct an infinite sequence of
inscribed polygons, p1, p2, p3, . . ., that approaches the po-
sition of r; analogous definitions of len(r) and tsc(r) are
formulated as limits of measurements over elements of the
sequence.

To clarify what we mean by “the inscribed polygon p ap-
proaches the position of r,” define the geometric mesh size
of p by the length of its longest line segment:

h(p) = max
0≤i<n

d(Vi, Vi+1) .

Suppose that r is a smooth simple curve. By smooth we
mean that every point on the curve has a unique well-
defined tangent4. Then one can show that given a sequence
p1, p2, p3, . . . such that h(pi) vanishes in the limit of the se-
quence, then len(pi) approaches len(r). An analogous state-
ment holds for total curvature, as summarized by the follow-
ing statement:5

bient space, Mm ⊆ Rd, by replacing line segments with shortest
geodesics in this definition, and straight-line distance by length
of geodesic in subsequent definitions.

3It measures distance using the metric of the ambient space,
in our case R2.

4Observe that smoothness here is in a purely geometric sense—
the notion of parametric smoothness in the context of parameter-
ized curves is a different matter altogether.

5Note that there are sequences of pathological polygons whose
mesh size vanishes yet the limit of the sequence does not approach
the curve. For example, if the curve is a circle, consider a poly-
gon whose vertices all cluster about a single point of the circle.

Figure 4: The discrete Gauss map assigns to every edge of
the polygon a corresponding point on the unit circle, and to
every vertex of the polygon a corresponding arc on the unit
circle.

Convergence. A key recurring theme in discrete differ-
ential geometry is the convergence of a measurement taken
over a sequence of discrete objects each better approximat-
ing a particular smooth object. In the case of a plane curve,
a sequence of inscribed polygons, each closer in position to
the curve, generates a sequence of measurements that ap-
proach that of the curve:

len(r) = lim
h(pi)→0

len(pi) ,

tsc(r) = lim
h(pi)→0

tsc(pi) .

Establishing convergence is a key step towards numerical
computations which use discrete objects as approximations
to continuous counterparts. Indeed, one might argue that
the notion of continuous counterpart is only meaningful in
the context of established convergence. Put simply, if we
choose an inscribed polygon as our discrete analogue of a
curve, then as the position of the approximating polygon
approaches the curve, the measurements taken on the ap-
proximant should approach those of the underlying curve.

Next, consider the tangents, normals, and Gaussian im-
age of a closed polygon p. Repeating the two-point limiting
process we used to define the tangent for a point on the
curve, we observe that every vertex of the polygon has two
limiting tangents (thus two normals), depending on the di-
rection from which the limit is taken (see Figure 4). De-
fine the Gaussian image of p by assigning to every vertex
Vi the arc on the unit circle whose endpoints are the two
limiting normals and whose signed angle equals the signed
turning angle αi, i.e., as if one “smoothly interpolated” the
two normals in the Gaussian image. Every point on the
polygon away from the vertices has a unique normal which
corresponds in the Gaussian image to the meeting point of
consecutive arcs. The sense of traversal along the polygon
induces a natural sense of traversal along the arcs of the
Gaussian image. With this construction in place, our def-
inition of turning number for a smooth plane curve carries
over naturally to the setting of closed polygons. Not that
for for open polygons, the Gaussian image of vertices at the
endpoints is a point on the unit circle (a degenerate arc).

As long as the length of the longest line segment shrinks, i.e.
the polygon clusters more tightly around the point, then this se-
quence of polygons will satisfy our definition but will clearly not
converge to a circle. One may introduce stronger requirements on
the polygon sequence to exclude such pathological sequences.

Structure preservation. Does the Turning Number
Theorem hold for discrete curves? Yes. Recall that the
sum of exterior angles of a simple closed polygon is 2π. This
observation may be generalized to show that tsc(p) = 2πk
where k is the turning number of the polygon. We stress a
key point: the Turning Number Theorem is not a claim that
the total signed curvature converges to a multiple of 2π in
the limit of a finely refined inscribed polygon. The Turning
Number Theorem is preserved exactly and it holds for any
(arbitrarily coarse) closed polygon. Note, however, that the
turning number of an inscribed polygon may not match that
of the smooth curve, at least until sufficiently many vertices
are added (in the right places) to capture the topology of
the curve.

4 Parameterization of the Plane Curve

So far in our exploration of curves our arguments have
never explicitly made reference to a system of coordinates.
This was to stress the point that the geometry (or shape)
of the curve can be described without reference to coor-
dinates. Nevertheless, the idea of parameterizing a curve
occurs throughout applied mathematics. Unfortunately, pa-
rameterization can sometimes obscure geometric insight. At
the same time, it is an exceedingly useful computational tool,
and as such we complete our exploration of curves with this
topic.

In working with curves it is useful to be able to indicate
particular points and their neighborhoods on the curve. To
that end we parameterize a curve over a real interval map-
ping each parameter point, t ∈ [0, a], to a point R(t) on the
plane:

R : [0, a] → R2 .

Thus the endpoints of finite open curve are R(0) and R(a);
for closed curves we require R(0) = R(a).

The parameterization of a curve is not unique. Besides the
geometric information encoded in the image of R, the para-
meterization also encodes a parameterization-dependent ve-
locity. To visualize this, observe that moving the parameter
at unit velocity slides a point R(t) along the curve: the rate
of change of R(t), or velocity, is the vector ~v(t) = d

dt
R(t).

Indeed, given any strictly increasing function t(s) : [0, b] →
[0, a] we reparameterize the curve as R(t(s)) so that moving
along s ∈ [0, b] generates the same points along the curve; the
geometry remains the same, but by chain rule of the calculus
the velocity is now ~v(s) = d

ds
R(t(s)) = d

dt
R(t(s)) d

ds
t(s): at

every point the R(t(s)) reparameterization scales the veloc-
ity by d

ds
t(s).

Given a parameterized curve there is a unique reparame-

terization, R̂(s) = R(t(s)), with the property that ‖~v(s)‖ =
1, s ∈ [0, b]. In arc-length parameterization of a curve, unit
motion along the parameter s corresponds to unit motion
along the length of the curve. Consequently, s is the length

traveled along the curve walking from R̂(0) to R̂(s), there-
fore b is the length of the entire curve.

In the special setting of an arc-length parameterization
the curvature at a point R(s) is identical to the second deriv-

ative d2

ds2 R(s). It is a grave error to identify curvatures with
second derivatives in general. The former is a geometric
quantity only, and we defined it without reference to a para-
meterization; the latter encodes both geometry and velocity,
and is parameterization-dependent. Here a spaceship anal-
ogy is helpful. If a spaceship travels at unit speed along a
curved path, the curvature give the acceleration of the space-
ship. Now if the spaceship travels at a nonuniform velocity

along the path, then part of the acceleration is due to cur-
vature, and part is due to speeding up and slowing down.
A parameterization encodes velocity—this can be extremely
useful for some applications.

Parameterization enables us to reformulate our statement
of convergence. Given a sequence of parameter values, 0 =
t1 ≤ t2 . . . ≤ tn−1 ≤ tn = b, for a “sufficiently well-behaved”
parameterization of a “sufficiently well-behaved” curve6, we
may form an inscribed polygon taking Vi = R(ti). Then the
parametric mesh size of the inscribed polygon is the greatest
of all parameter intervals [ti, ti + 1]:

hR(p) = max
i

(ti+1 − ti) .

Unlike geometric mesh size, parametric mesh size is depen-
dent on the chosen parameterization.

As before, consider a sequence of inscribed polygons, each
sampling the curve at more parameter points, and in the
limit sampling the curve at all parameter points: the as-
sociated sequences of discrete measurements approach their
continuous analogs:

len(r) = lim
hR(pi)→0

len(pi) ,

tsc(r) = lim
hR(pi)→0

tsc(pi) .

5 Conclusion and Overview

So far we have looked at the geometry of a plane curve and
demonstrated that it is possible to define its discrete ana-
logue. The formulas for length and curvature of a discrete
curve (a polygon) are immediately amenable to computa-
tion. Convergence guarantees that in the presence of abun-
dant computational resources we may refine our discrete
curve until the measurements we take match to arbitrary
precision their counterparts on a smooth curve. We dis-
cussed an example of structure preservation, namely that the
Turning Number Theorem holds exactly for discrete curves,
even for coarse mesh sizes. If we wrote an algorithm whose
correctness relied on the Turning Number Theorem, then
the algorithm could be applied to our discrete curve.

The following chapters will extend our exploration of dis-
crete analogues of the objects of differential geometry to the
settings of surfaces and volumes and to application areas
spanning physical simulation (thin shells and fluids) and
geometric modeling (remeshing and parameterization). In
each application area algorithms make use of mathemat-
ical structures that are carried over from the continuous
to the discrete realm. We are not interested in preserv-
ing structure just for mathematical elegance—each applica-
tion demonstrates that by carrying over the right structures
from the continuous to the discrete setting, the resulting
algorithms exhibit impressive computational and numerical
performance.

6Indeed, the following theorems depend on the parameteriza-
tion being Lipschitz, meaning that small changes in parameter
value lead to small motions along the curve:

d(R(a), R(b)) ≤ C|a− b| ,

for some constant C. The existence of a Lipschitz parameteriza-
tion is equivalent to the curve being rectifiable, or having finite
arclength. Further care must be taken in allowing non-continuous
curves with finitely many isolated jump points.

Chapter 2:
What Can We Measure?

Peter Schröder
Caltech

1 Introduction

When characterizing a shape or changes in shape we must first
ask, what can we measure about a shape? For example, for
a region in R3 we may ask for its volume or its surface area.
If the object at hand undergoes deformation due to forces act-
ing on it we may need to formulate the laws governing the
change in shape in terms of measurable quantities and their
change over time. Usually such measurable quantities for a
shape are defined with the help of integral calculus and often
require some amount of smoothness on the object to be well
defined. In this chapter we will take a more abstract approach
to the question of measurable quantities which will allow us
to define notions such as mean curvature integrals and the cur-
vature tensor for piecewise linear meshes without having to
worry about the meaning of second derivatives in settings in
which they do not exist. In fact in this chapter we will give
an account of a classical result due to Hadwiger, which shows
that for a convex, compact set in Rn there are only n + 1
unique measurements if we require that the measurements be
invariant under Euclidian motions (and satisfy certain “sanity”
conditions). We will see how these measurements are con-
structed in a very straightforward and elementary manner and
that they can be read off from a characteristic polynomial due
to Steiner. This polynomial describes the volume of a family
of shapes which arise when we “grow” a given shape. As a
practical tool arising from these consideration we will see that
there is a well defined notion of the curvature tensor for piece-
wise linear meshes and we will see very simple formulas for
quantities needed in physical simulation with piecewise linear
meshes. Much of the treatment here will initially be limited to
convex bodies to keep things simple. This limitation that will
be removed at the very end.

The treatment in this chapter draws heavily upon work
by Gian-Carlo Rota and Daniel Klein, Hadwigers pioneering
work, and some recent work by David Cohen-Steiner and col-
leagues.

2 Geometric Measures

To begin with let us define what we mean by a measure. A
measure is a function µ defined on a family of subsets of some
set S, and it takes on real values: µ : L → R. Here L denotes
this family of subsets and we require of L that it is closed
under finite set union and intersection as well as that it contains
the empty set, ∅ ∈ L. The measure µ must satisfy two axioms:
(1) µ(∅) = 0; and (2) µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩
B) whenever A and B are measureable. The first axiom is
required to get anything that has a hope of being well defined.
If µ(∅) was not equal to zero the measure of some set µ(A) =
µ(A ∪ ∅) = µ(A) + µ(∅) could not be defined. The second
axiom captures the idea that the measure of the union of two
sets should be the sum of the measures minus the measure of

their overlap. For example, consider the volume of the union
of two sets which clearly has this property. It will also turn that
the additivity property is the key to reducing measurements
for complicated sets to measurements on simple sets. We will
furthermore require that all measures we consider be invariant
under Euclidian motions, i.e., translations and rotations. This
is so that our measurements do not depend on where we place
the coordinate origin and how we orient the coordinate axes.
A measure which depended on these wouldn’t be very useful.

Let’s see some examples. A well known example of such a
measure is the volume of bodies in R3. Clearly the volume of
the empty body is zero and the volume satisfies the additivity
axiom. The volume also does not depend on where the coordi-
nate origin is placed and how the coordinate frame is rotated.
To uniquely tie down the volume there is one final ambiguity
due to the units of measurement being used, which we must
remove. To this end we enforce a normalization which states
that the volume of the unit, coordinate axis aligned parallelip-
iped in Rn be one. With this we get

µn
n(x1, . . . , xn) = x1 · . . . · xn

for x1 to xn the side lengths of a given axis aligned paral-
lelipiped. The superscript n denotes this as a measure on Rn,
while the subscript denotes the type of measurement being
taken. Clearly the definition of µn

n is translation invariant. It
also does not depend on how we number our coordinate axes,
i.e., it is invariant under permutations of the coordinate axes.
Finally if we rotate the global coordinate frame none of the
side lengths of our parallelipiped change so neither does µn

n.
Notice that we have only defined the meaning of µn

n for axis
aligned parallelipipeds as well as finite unions and intersec-
tions of such parallelipipeds. The definition can be extended
to more general bodies through a limiting process akin to how
Riemann integration fills the domain with ever smaller boxes
to approach the entire domain in the limit. There is nothing
here that prevents us from performing the same limit process.
In fact we will see later that once we add this final require-
ment, that the measure is continuous in the limit, the class of
such measures is completely tied down. This is Hadwiger’s
famous theorem. But, more on that later.

Of course the next question is, are there other such invariant
measures? Here is a proposal:

µn
n−1(x1, . . . , xn) =

x1x2 + x1x3 + . . . + x1xn + x2x3 + . . . + x2xn . . .

For an axis aligned parallelipiped in R3 we’d get

µ3
2(x1, x2, x3) = x1x2 + x2x3 + x3x1

which is just half the surface area of the paralellipiped with
sides x1, x2, and x3. Since we have the additivity property
we can certainly extend this definition to more general bodies

through a limiting process and find that we get, up to normal-
ization, the surface area.

Continuing in this fashion we are next led to consider

µ3
1(x1, x2, x3) = x1 + x2 + x3

(and similarly for µn
1). For a parallelipiped this function mea-

sures one quarter the sum of lengths of its bounding edges.
Once again this new measure is clearly rigid motion invariant.
What we need to check is whether it satisfies the additivity
theorem. Indeed it does, which is easily checked for the union
of two paralellipipeds. What is less clear is what this mea-
sure represents if we extend it to more general shapes where
the notion of “sum of edge lengths” is not clear. The result-
ing continuous measure is sometimes referred to as the mean
width.

From these simple examples we can see a pattern. For
Euclidian n-space we can use the elementary symmetric poly-
nomials in edge lengths to define n invariant measures

µn
k (x1, . . . , xn) =

X
1≤i1<i2<...<ik≤n

xi1xi2 . . . xik

for k = 1, . . . , n for parallelipipeds. To extend this defini-
tion to more general bodies we’ll follow ideas from geometric
probability. In particular we will extend these measures to the
ring of compact convex bodies, i.e., finite unions and intersec-
tions of compact convex sets in Rn.

3 How Many Points, Lines, Planes,...
Hit a Body?

Consider a compact convex set, a convex body, in Rn and sur-
round it by a box. One way to measure its volume is to count
the number of points which, when randomly thrown into the
box, hit the body versus those that hit empty space inside the
box. To generalize this idea we consider affine subspaces of
dimension k < n in Rn. Recall that an affine subspace of
dimension k is spanned by k + 1 points pi ∈ Rn (in gen-
eral position), i.e., the space consists of all points q which can
be written as affine combinations q =

P
i αipi,

P
i αi = 1.

Such an affine subspace is simply a linear subspace translated,
i.e., it does not necessarily go through the origin. For example,
for k = 1, n = 3 we will consider all lines—a line being the
set of points one can generate as affine combinations of two
points on the line—in three space. Let λ3

1(R) be the measure
of all lines going through a rectangle in R3. Then

λ3
1(R) = cµ3

2(R),

i.e., the measure of all lines which meet the rectangle is pro-
portional to the area of the rectangle. To see this, note that a
given line (in general position) either meets the rectangle once
or not at all. Conversely for a given point in the rectangle there
is a whole set of lines—a sphere’s worth—which “pierce” the
rectangle in the given point. The measure of those lines is pro-
portional to the area of the unit sphere. Since this is true for all
points in the rectangle we see that the total measure of all such
lines must be proportional to the area of the rectangle with a
constant of proportionality depending on the measure of the
sphere. For now such constants are irrelevant for our consider-
ations so we will just set it to unity. Given a more complicated
shape C in a plane nothing prevents from performaing a lim-
iting process and we see that the measure of lines meeting C

is
λ3

1(C) = µ3
2(C),

i.e., it is proportional to the area of the region C. Given a union
of rectangles D = ∪iRi, each living in a different plane, we
get Z

XD(ω) dλ3
1(ω) =

X
i

µ3
2(Ri).

Here XD(ω) counts the number of times a line ω meets the set
D and the integration is performed over all lines. Going to the
limit we find for some convex body E a measure proportional
to its surface areaZ

XE(ω) dλ3
1(ω) = µ3

2(E).

Using planes (k = 2) we can now generalize the mean
width. For a straight line c ∈ R3 we find λ3

2(c) = µ3
1(c) =

l(c), i.e., the measure of all planes that meet the straight line is
proportional—as before we set the constant of proportionality
to unity—to the length of the line. The argument mimics what
we said above: a plane either meets the line once or not at all.
For a given point on the line there is once again a whole set
of planes going through that point. Considering the normals
to such planes we see that this set of planes is proportional in
measure to the unit sphere without being more precise about
the actual constant of proportionality. Once again this can be
generalized with a limiting process giving us the measure of
all planes hitting an arbitrary curve in space as proportional to
its length Z

XF (ω) dλ3
2(ω) = µ3

1(F).

Here the integration is performed over all planes ω ∈ R3,
and XF counts the number of times a given plane touches the
curve F .

It is easy to see that this way of measuring recovers the
perimeter of a parallelipiped as we had defined it before

λ3
2(P) = µ3

1(P).

To see this consider the integration over all planes but taken
in groups. With the parallelipiped having one corner at
the origin—and being axis aligned—first consider all planes
whose normal (nx, ny, nz) has either all non-negative or non-
positive entries (i.e., the normal, or its negative, points into the
first octant). Any such plane, if it meets the parallelipiped,
meets it in a point along either x1, x2 or x3 giving us the de-
sired µ3

1(P) = x1 +x2 +x3 as the measure of all such planes.
The same argument holds for the remaining seven octants giv-
ing us the desired result up to a constant. We can now see that
µ3

1(E) for some convex body E can be written as
Z

XE(ω) dλ3
2(ω) = µ3

1(E),

i.e., the measure of all planes which meet E. With this we
have generalized the notion of perimeter to more general sets.

All this can be summarized as follows. Let µ be a measure
which is Euclidean motion invariant. Then it can be written,
up to normalization, as a linear combination of the measures
µn

k (C) of all affine subspaces of dimension n − k meeting
C ⊂ Rn for k = 1, . . . , n. These measures are called the
intrinsic volumes.

Are these all such measures? It turns out there is one mea-
sure missing, which corresponds to the elementary symmetric
function of order zero

µ0(x1, . . . , xn) =

�
1 n > 0
0 n = 0

This very special measure is the Euler characteristic of a con-
vex body. It takes the value 1 on all non-empty convex bodies.
The main trick is to prove that µ0 is indeed well defined. This
can be done by inducation. In dimension n = 1 we consider
closed intervals [a, b], a < b. Instead of working with the set
directly we consider a functional on the characteristic function
f[a,b] of the set which does the trick

χ1(f) =

Z
R

f(ω)− f(ω+) dω.

Here f(ω+) denotes the right limiting value of f at ω:
limε→0 f(ω + ε), ε > 0. For the set [a, b], f(ω) − f(ω+)
is zero for all ω ∈ R except b since f(b) = 1 and f(b+) = 0.
For higher dimensions we proceed by induction. In Rn take a
straight line L and consider the affine subspaces Aω of dimen-
sion n− 1 which are orthogonal to L and parameterized by ω
along L. Letting f be the characteristic function of a convex
body in Rn we get

χn(f) =

Z
R

χn−1(fω)− χn−1(fω+) dω.

Here fω is the restriction of f to the affine space Aω or al-
ternatively the characteristic function of the intersection of
Aω and the convex body of interest. With this we define
µn

0 (G) = χn(f) for any finite union of convex bodies G and
f the characteristic function of the set G ∈ Rn.

That this definition of µn
0 amounts to the Euler characteris-

tic is not immediately clear, but it is easy to show, if we con-
vince ourselves that for any non empty convex body C ∈ Rn

µn
0 (Int(C)) = (−1)n.

For n = 1, i.e., the case of open intervals on the real line, this
statement is obviously correct. We can now apply the recursive
definition to the characteristic function of the interior of C and
get

µn
0 (Int(C)) =

Z
ω

χn−1(fω)− χn−1(fω+) dω.

By induction the right hand side is zero except for the first ω at
which Aω ∩ C is non-empty. There χn−1(fω+) = (−1)n−1,
thus proving our assertion for all n.

The Euler-Poincaré formula for a polyhedron

|F | − |E| − |V | = 2(1− g)

which relates the number of faces, edges, and vertices to the
genus now follows easily. Given a polyhedron simply write
it as the non-overlapping union of the interiors of all its cells
from dimension n down to dimension 0, where the interior of
a vertex (0-cell) is the vertex itself. Then

µn
0 (P) =

X
c∈P

µn
0 (Int(c)) = c0 − c1 + c2 − . . .

where ci equals the number of cells of dimension i. For the
case of a polyhedron in R3 this is exactly the Euler-Poincaré
formula.

4 The Intrinsic Volumes and Had-
wiger’s Theorem

The above machinery can now be used to define the intrinsic
volumes as functions of the Euler characteristic alone for all
finite unions of convex bodies G

µn
k (G) =

Z
µn

0 (G ∩ ω) dλn
n−k(ω).

Here µn
0 (G ∩ ω) plays the role of XG(ω) we used earlier to

count the number of times ω hits G.
There is one final ingredient missing, continuity in the limit.

Suppose Cn is a sequence of convex bodies which converges
to C in the limit as n →∞. Hadwiger’s theorem says that if a
Euclidean motion invariant measure µ of convex bodies in Rn

is continuous in the sense that

lim
Cn→C

µ(Cn) = µ(C)

then µ must be a linear combination of the intrinsic volumes
µn

k , k = 0, . . . , n. In other words, the intrinsic volumes, under
the additional assumption of continuity, are the only linearly
independent, Euclidean motion invariant, additivie measures
on finite unions and intersections of convex bodies in Rn.

What does all of this have to do with the applications we
have in mind? A consequence of Hadwiger’s theorem assures
us that if we want to take measurements of piecewise linear
geometry (surface or volume meshes, for example) such mea-
surements should be functions of the intrinsic volumes. This
assumes of course that we are looking for additive measure-
ments which are Euclidean motion invariant and continuous in
the limit. For a triangle for example this would be area, edge
length, and Euler characteristic. Similarly for a tetrahedron
with its volume, surface area, mean width, and Euler charac-
teristic. As the name suggests all of these measurements are
intrinsic. For a 2-manifold mesh which is the boundary of a
solid one of these measurements is an extrinsic quantity cor-
responding to the dihedral angle between triangles meeting at
an edge (see below).

5 Steiner’s Formula

We return now to questions of discrete differential geometry
by showing that the intrinsic volumes are intricately linked
to curvature integrals and represent their generalization to
the non-smooth setting. This connection is established by
Steiner’s formula.

Consider a non-empty convex body K ∈ Rn together with
its parallel bodies

Kε = {x ∈ Rn : d(x, K) ≤ ε}

where d(x, K) denotes the Euclidean distance from x to the
set K. In effect Kε is the body K thickened by ε. Steiner’s
formula gives the volume of Kε as a polynomial in ε

V (Kε) =

nX
j=0

V (Bn−j)Vj(K)εn−j .

Here the Vj(K) are the measures µn
k we have seen earlier.

For this formula to be correct the Vj(K) are normalized so
that they compute the j-dimensional volume when restricted
to a j-dimensional subspace of Rn. V (Bn−j) = πn/2/Γ(1 +

1/2n) denotes the (n− j)-volume of the (n− j)-unit ball. In
particular we have V (B0) = 1, V (B1) = 2, V (B2) = π, and
V (B3) = 4π/3.

In the case of a polyhedron we can verify Steiner’s formula
“by hand.” Consider a tetrahedron in T ∈ R3 and the volume
of its parallel bodies Tε. For ε = 0 we have the volume of T
itself (V3(T)). The first order term in ε, 2V2(T), is controlled
by area measures: above each triangle a displacement along
the normal creates additional volume proportional to ε and the
area of the triangle. The second order term in ε, πV1(T), cor-
responds to edge lengths. Above each edge the parallel bodies
form a wedge with opening angle θ which is the exterior an-
gle of the faces meeting at that edge and radius ε (this is the
extrinsic measurement alluded to above). The volume of such
as wedge is proportional to edge length, exterior angle, and ε2.
Finally the third order term in ε, 4π/3V0(T), corresponds to
the volume of the parallel bodies formed over vertices. Each
vertex gives rise to additional volume spanned by the vertex
and a spherical cap above it. The spherical cap corresponds to
a spherical triangle formed by the three incident triangle nor-
mals. The volume of such a spherical wedge is proportional to
its solid angle and ε3.

If we have a convex body with a boundary which is C2 we
can give a different representation of Steiner’s formula. Con-
sider such a convex M ∈ Rn and define the offset function

g(p) = p + t~n(p)

for 0 ≤ t ≤ ε, p ∈ ∂M and ~n(p) the outward normal to M in
p. We can now directly compute the volume of Mε as the sum
of Vn(M) and the volume between the surfaces ∂M and ∂Mε.
The latter can be written as an integral of the determinant of
the Jacobian of gZ

∂M

�Z ε

0

����∂g(p)

∂p

���� dt

�
dp.

Since we have a choice of coordinate frame in which to do this
integration we may assume wlog that we use principal curva-
ture coordinates on ∂M , i.e., a set of orthogonal directions in
which the curvature tensor diagonalises. In that case����∂g(p)

∂p

���� = |I + tK(p)|

=

n−1Y
i=1

(1 + κi(p)t)

=

n−1X
i=0

µn−1
i (κ1(p), . . . , κn−1(p))ti.

In other words, the determinant of the Jacobian is a polynomial
in t whose coefficients are the elementary symmetric functions
in the principal curvatures. With this subsitution we can triv-
ially integrate over the variable t and get

V (Mε) = Vn(M)+
n−1X
i=0

εi+1

i + 1

Z
∂M

µn−1
i (κ1(p), . . . , κn−1(p)) dp.

Comparing the two versions of Steiner’s formula we see that
the intrinsic volumes generalize curvature integrals. For ex-
ample, for n = 3 and some arbitrary convex body K we get

V (Kε) = 1V3(K) + 2V2(K)ε + πV1(K)ε2 +
4π

3
V0(K)ε3

while for a convex body M with C2 smooth boundary the for-
mula reads as

V (Mε) = V3(M) +0
B@
Z

∂M

µ2
0(κ1(p), κ2(p))| {z }

=1

dp

1
CA

| {z }
=A

ε +

0
B@
Z

∂M

µ2
1(κ1(p), κ2(p))| {z }

=2H

dp

1
CA ε2

2
+

0
B@
Z

∂M

µ2
2(κ1(p), κ2(p))| {z }

=K

dp

1
CA

| {z }
=4π

ε2

3
.

6 What All This Machinery Tells Us

We began this section by considering the question of what ad-
ditive, continuous, rigid motion invariant measurements there
are for convex bodies in Rn and learned that the n + 1 intrin-
sic volumes are the only ones and any such measure must be
a linear combination of these. We have also seen that the in-
trinsic volumes in a natural way extend the idea of curvature
integrals over the boundary of a smooth body to general con-
vex bodies without regard to a differentiable structure. These
considerations become one possible basis on which to claim
that integrals of Gaussian curvature on a triangle mesh be-
come sums over excess angle at vertices and that integrals of
mean curvature can be identified with sums over edges of di-
hedral angle weighted by edge length. These quantities are al-
ways integrals. Consequently they do not make sense as point-
wise quantities. In the case of smooth geometry we can define
quantities such as mean and Gaussian curvature as pointwise
quantities. On a simplicial mesh they are only defined as inte-
gral quantities.

All this machinery was developed for convex bodies. If a
given mesh is not convex the additivity property allows us to
compute the quantities no less by writing the mesh as a finite
union and intersection of convex bodies and then tracking the
corresponding sums and differences of measures. For exam-
ple, V (Kε) is well defined for an individual triangle K and
we know how to identify the coefficients involving intrinsic
volumes with the integrals of elementary polynomials in the
principal curvatures. Glueing two triangles together we can
perform a similar identification carefully teasing apart the in-
trinsic volumes of the union of the two triangles. In this way
the convexity requirement is relaxed so long as the shape of
interest can be decomposed into a finite union of convex bod-
ies.

This machinery was used by Cohen-Steiner and Morvan to
give formulas for integrals of a discrete curvature tensor. We
give these here together with some fairly straightforward intu-
ition regarding the underlying geometry.

Let P be a polyhedron with vertex set V and edge set E
and B a ball in R3 then we can define integrated Gaussian and
mean curvature measures as

φG
P (B) =

X
v∈V ∩B

Kv and φH
P (B) =

X
e∈E

l(e ∩B)θe,

where Kv = 2π −
P

j αj is the excess angle sum at vertex
v defined through all the incident triangle angles at v, while
l(.) denotes the length and θe is the signed dihedral angle at e
made between the incident triangle normals. Its sign is positive
for convex edges and negative for concave edges (note that
this requires an orientation on the polyhedron). In essence this
is simply a restatement of the Steiner polynomial coefficients
restricted to the intersection of the ball B and the polyhedron
P . To talk about the second fundamental form IIp at some
point p in the surface, it is convenient to first extend it to all of
R3. This is done by setting it to zero if one of its arguments is
parallel to the normal p. With this one may define

ĪIP (B) =
X
e∈E

l(e ∩B)θeen ⊗ en, en = e/‖e‖.

The dyad en ⊗ en(u, v) = 〈u, en〉〈v, en〉 projects given vec-
tors u and v along the normalized edge. What is the geometric
interpretation of the summands? Consider a single edge and
the associated dyad. The curvature along this edge is zero
while it is θ orthogonal to the edge. A vector aligned with
the edge is mapped to θe while one orthogonal to the edge is
mapped to zero. These are the principal curvatures except they
are reversed. Hence ĪIP (B) is an integral measure of the cur-
vature tensor with the principal curvature values exchanged.
For example we can assign each vertex a three by three tensor
by summing the edge terms for each incident edge. As a tan-
gent plane at the vertex, which we need to project the three by
three tensor to the expected two by two tensor in the tangent
plane, we may take a vector parallel to the area gradient at the
vertex. Alternatively we could defined ĪIP (B) for balls con-
taining a single triangle and its three edges each. In that case
the natural choice for the tangent plane is the support plane of
the triangle. In practice one often finds that noise in the mesh
vertex positions makes these discrete computations noisy. It is
then a simple matter of enlarging B to stabilize the computa-
tions.

Cohen-Steiner and Morvan show that this definition can
be rigorously derived from considering the coefficients of
the Steiner polynomial in particular in the presence of non-
convexities (which requires some fancy footwork...). They
also show that if the polyhedron is a sufficiently fine sample
of a smooth surface the discrete curvature tensor integrals have
linear precision with regards to continuous curvature tensor in-
tegrals. They also provide a formula for a discrete curvature
tensor which does not have the principal curvatures swapped.

7 Further Reading

The material in this section only gives the rough outlines of
what is a very fundamental theory in probability and geomet-
ric measure theory. In particular there are many other con-
sequences which follow from relationships between intrin-
sic volumes which we have not touched upon. A rigorous
derivation of the results of Hadwiger, but much shorter than
the original can be found in [Klain 1995]. A complete and
rigorous account of the derivation of intrinsic volumes from
first principles in geometric probability can be found in the
short book by Klain and Rota [Klain and Rota 1997], while
the details of the discrete curvature tensor integrals can be
found in [Cohen-Steiner and Morvan 2003]. Approximation
results which discuss the accuracy of these measure vis-a-vis
an underlying smooth surface are treated by Cohen-Steiner
and Morvan in a series of tech reports available at http://www-
sop.inria.fr/geometrica/publications/.

Acknowledgments This work was supported in part by
NSF (DMS-0220905, DMS-0138458, ACI-0219979), DOE
(W-7405-ENG-48/B341492), nVidia, the Center for Inte-
grated Multiscale Modeling and Simulation, Alias, and Pixar.

References

COHEN-STEINER, D., AND MORVAN, J.-M. 2003. Re-
stricted Delaunay Triangulations and Normal Cycle. In Pro-
ceedings of the 19th Annual Symposium on Computational
Geometry, 312–321.

KLAIN, D. A., AND ROTA, G.-C. 1997. Introduction to
Geometric Probability. Cambridge University Press.

KLAIN, D. A. 1995. A Short Proof of Hadwiger’s Character-
ization Theorem. Mathematika 42, 84, 329–339.

Chapter 3:
Curvature Measures for Discrete Surfaces

John M. Sullivan
sullivan@math.tu-berlin.de

Institut für Mathematik, TU Berlin MA 3–2
Str. des 17. Juni 136, 10623 Berlin

The curvatures of a smooth curve or surface are local mea-
sures of its shape. Here we consider analogous measures
for discrete curves and surfaces, meaning polygonal curves
and triangulated polyhedral surfaces. We find that the most
useful analogs are those which preserve integral relations for
curvature, like the Gauß–Bonnet theorem. For simplicity,
we usually restrict our attention to curves and surfaces in
euclidean space R3, although many of the results would eas-
ily generalize to other ambient manifolds of arbitrary dimen-
sion.

These notes are based on work by many people, but un-
fortunately do not include proper citations to the literature.

1 Smooth Curves and Surfaces

Before discussing discrete analogs, we briefly review the
usual theory of curvatures for smooth curves and surfaces
in space.

1.1 Smooth curves

The curvatures of a smooth curve γ are the local proper-
ties of its shape invariant under Euclidean motions. The
only first-order information is the tangent line; since all lines
in space are equivalent, there are no first-order invariants.
Second-order information is given by the osculating circle,
and the invariant is its curvature κ = 1/r.

For a plane curve given as a graph y = f(x) let us con-
trast the notions of curvature and second derivative. At a
point p on the curve, we can find either one by translating p
to the origin, transforming so the curve is horizontal there,
and then comparing to a standard set of reference curves.
The difference is that for curvature, the transformation is a
Euclidean rotation, while for second derivative, it is a shear
(x, y) 7→ (x, y − ax). A parabola has constant second deriv-
ative f ′′ because it looks the same at any two points after a
shear. A circle, on the other hand, has constant curvature
because it looks the same at any two points after a rotation.

A plane curve is completely determined (up to rigid mo-
tion) by its (signed) curvature κ(s) as a function of arclength
s. For a space curve, however, we need to look at the third-
order invariants, which are the torsion τ and the deriva-
tive κ′ (which of course gives no new information). These
are now a complete set of invariants: a space curve is deter-
mined by κ(s) and τ(s). (Generally, for higher codimension,
higher-order invariants are needed. For curves in Rn, we
need n− 1 curvatures, of order up to n, to characterize the
shape.)

A smooth space curve γ is often described by its orthonor-
mal Frenet frame (T, N, B). With respect to an arclength

parameter s, the defining equations are T := γ′ and0
@T

N
B

1
A

′

=

0
@ 0 κ 0
−κ 0 τ
0 −τ 0

1
A
0
@T

N
B

1
A .

For a curve γ lying on a surface M , it is often more use-
ful to consider the Darboux frame (T, η, ν), adapted to this
situation. This orthonormal frame includes the tangent vec-
tor T to γ and the normal vector ν to M . Its third element
is thus η := ν×T , called the cornormal. The curvature vec-
tor of γ decomposes into parts tangent and normal to M as
T ′ = κN = κgη+κnν. Here in fact, κn measures the normal
curvature of M in the direction T , and is independent of γ.

1.2 Smooth surfaces

Given a (two-dimensional, oriented) surface M (immersed)
in R3, we understand its local shape by looking at the Gauß
map ν : M → S2 given by the unit normal vector ν = νp at
each point p ∈ M . We can view its derivative at p as a linear
endomorphism −Sp : TpM → TpM , since TpM and TνpS2

are naturally identified, being parallel planes in R3. The
map Sp is called the shape operator (or Weingarten map).

The shape operator is the second-order invariant (or cur-
vature) which completely determines the original surface M .
However, it is usually more convenient to work with scalar
quantities. The eigenvalues κ1 and κ2 of Sp are called prin-
cipal curvatures, and (since they cannot be globally distin-
guished) it is their symmetric functions which have geomet-
ric meaning.

We define the Gauß curvature K := κ1κ2 as the deter-
minant of Sp and the mean curvature H := κ1 + κ2 as its
trace. Note that the sign of H depends on the choice of unit
normal ν, and so often it is more natural to work with the
vector mean curvature (or mean curvature vector) H := Hν.
Note furthermore that some authors use the opposite sign
on Sp and thus H, and many use H = (κ1+κ2)/2, justifying
the name mean curvature. Our conventions mean that the
mean curvature vector for a convex surface points inwards
(like the curvature vector for a circle). For a unit sphere ori-
ented with inward normal, the Gauß map ν is the antipodal
map, Sp = I, and H = 2.

The Gauß curvature is an intrinsic notion, depending only
on the pullback metric on the surface M , and not on the im-
mersion into space. That is, K is unchanged by bending the
surface without stretching it. For instance, a developable
surface like a cylinder or cone has K = 0 because it is ob-
tained by bending a flat plane. One intrinsic definition of
K(p) is obtained by considering the circumferences Cε of
(intrinsic) ε-balls around p. We get

Cε

2πε
= 1− ε2

6
K +O(ε3).

Mean curvature is certainly not intrinsic, but it has a nice
variational interpretation. Consider a variation vectorfield V
on M , compactly supported away from any boundary. Then
H = −δ Area /δ Vol in the sense that

δV Vol =

Z
V · ν dA, δV Area = −

Z
V ·Hν dA.

With respect to the L2 inner product 〈U, V 〉 :=
R

Up · Vp dA
on vectorfields, the vector mean curvature is the negative
gradient of the area functional, often called the first variation
of area: H = −∇Area. (Similarly, the negative gradient of
length for a curve is κN .)

Just as κ is the geometric version of second derivative
for curves, mean curvature is the geometric version of the
Laplacian ∆. Indeed, if a surface M is written locally as the
graph of a height function f over its tangent plane TpM then
H(p) = ∆f . Alternatively, we can write H = ∇M ·ν = ∆Mx,
where x is the position vector in R3 and ∆M is Beltrami’s
surface Laplacian.

If we flow a curve or surface to reduce its length or area,
by following these gradients κN and Hν, the resulting par-
abolic heat flow is slightly nonlinear in a natural geometric
way. This so-called mean-curvature flow has been exten-
sively studied as a geometric smoothing flow.

1.3 Integral curvature relations for curves

The total curvature of a curve is
R

κ ds. For closed curves,
the total curvature is at least 2π (Fenchel) and for knotted
space curves the total curvature is at least 4π (Fáry/Milnor).
For plane curves, we can consider instead the signed curva-
ture, and find that

R
κ ds is always an integral multiple of 2π.

Suppose we define (following Milnor) the total curvature
of a polygonal curve simply to be the sum of the turning
angles at the vertices. Then all the theorems for smooth
curves mentioned in the previous paragraph remain true for
polygonal curves. Our goal, when defining curvatures for
polyhedral surfaces, will be to again ensure that integral
relations for these curvatures remain exactly true.

1.4 Integral curvature relations for surfaces

For surfaces, the integral curvature relations we want to con-
sider relate area integrals over a region D ⊂ M to arclength
integrals over the boundary γ = ∂D. The Gauß–Bonnet
theorem says, when D is a disk,

2π −
ZZ

D

K dA =

I
γ

κg ds =

I
γ

T ′ · η ds = −
I

η′ · dx,

where dx = T ds is the vector line element along γ. This
implies that the total Gauß curvature of D depends only
on a collar neighborhood of γ: if we make any modification
to D supported away from the boundary, the total curvature
is unchanged (as long as D remains topologically a disk).
We will extend the notion of Gauß curvature from smooth
surfaces to more general surfaces (in particular polyhedral
surfaces) by requiring this property to remain true.

The other relations are all proved by Stokes’ Theorem,
and thus only depend on γ being the boundary of D in a
homological sense; for these D is not required to be a disk.
First consider the vector area

Aγ := 1
2

I
γ

x× dx =

ZZ
D

ν dA.

The right-hand side represents the total vector area of any
surface spanning γ, and the relation shows this to depend
only on γ (and this time not even on a collar neighborhood).
The integrand on the left-hand side depends on a choice of
origin for the coordinates, but because we integrate over a
closed loop, the integral is independent of this choice. Both
sides of this vector area formula can be interpreted directly
for a polyhedral surface, and the equation remains true in
that case.

A simple integral for curve γ from p to q says that

T (q)− T (p) =

Z q

p

T ′(s) ds =

Z
κN ds.

This can be viewed as a balance between tension forces try-
ing to shrink the curve, and sideways forces holding it in
place. It is the relation used in proving that κ is the first
variation of length.

The analog for a surface patch D is the mean curvature
force balance equation

I
γ

η ds = −
I

γ

ν × dx =

ZZ
D

Hν dA =

ZZ
D

H dA.

Again this represents a balance between surface tension
forces acting in the conormal direction along the boundary
of D and what can be considered as pressure forces (espcially
in the case of constant H) acting normally across D. We will
use this equation to develop the analog of mean curvature
for discrete surfaces.

Two other similar relations that we will not need later are
the torque balance

I
γ

x× η ds =

I
γ

x× (ν × dx) =

ZZ
D

H(x× ν) dA

and the area relationI
γ

x · η ds =

I
γ

x · (ν × dx) =

ZZ
D

(H · x− 2) dA.

2 Discrete Surfaces

For us, a discrete or polyhedral surface M ⊂ R3 will mean a
triangulated surface with a PL map into space. In more de-
tail, we start with an abstract combinatorial triangulation—
a simplicial complex—representing a 2-manifold with bound-
ary. We then pick positions p ∈ R3 for every vertex, which
uniquely determine a linear map on each triangle; these fit
together to form the PL map.

2.1 Gauß curvature

It is well known how the notion of Gauß curvature extends
to such discrete surfaces M . Any two adjacent triangles
(or, more generally, any simply connected region in M not
including any vertices) can be flattened—developed isomet-
rically into the plane. Thus the Gauß curvature is supported
on the vertices p ∈ M . In fact, to keep the Gauß–Bonnet
theorem true, we must take

ZZ
D

K dA :=
X
p∈D

Kp; Kp := 2π −
X

i

θi.

Here, the angles θi are the interior angles at p of the triangles
meeting there, and Kp is often known as the angle defect

at p. If D is any neighborhood of p contained in Star(p),
then

H
∂D

η ds =
P

θi; when the triangles are acute, this is
most easily seen by letting ∂D be the path connecting their
circumcenters and crossing each edge perpendicularly.

(Similar arguments lead to a notion of Gauß curvature—
defined as a measure—for any rectifiable surface. For our
polyhedral surface, this measure consists of point masses at
vertices. Surfaces can also be built from intrinsically flat
pieces joined along curved edges. Their Gauß curvature is
spread out with a linear density along these edges. This
technique is often used in designing clothes, where corners
would be undesirable.)

Note that Kp is clearly an intrinsic notion, as it should
be, depending only on the angles of each triangle and not
on the precise embedding into R3. Sometimes it is useful
to have a notion of combinatorial curvature, independent of
all geometric information. Given just a combinatorial tri-
angulation, we can pretend that each triangle is equilateral
with angles θ = 60◦, whether or not that geometry could
be embedded in space. The resulting combinatorial curva-
ture is Kp = π

3
(6 − deg p). In this context, the global formP

Kp = 2πχ(M) of Gauß–Bonnet amounts to nothing more
than the definition of the Euler characteristic χ.

2.2 Vector area

The vector area formula

Aγ := 1
2

I
γ

x× dx =

ZZ
D

ν dA

needs no special interpretation for discrete surfaces: both
sides of the equation make sense directly, since the surface
normal ν is well-defined almost everywhere. However, it is
worth interpreting this formula for the case when D is the
star of a vertex p. More generally, suppose γ is any closed
curve (smooth or polygonal), and D is the cone from p to
γ (the union of all line segments pq for q ∈ γ). Fixing γ
and letting p vary, we find that the volume enclosed by this
cone is a linear function of p, and Ap := ∇p Vol D = A/3 =
1
6

H
γ
x×dx. We also note that any such cone D is intrinsically

flat except at the cone point p, and that 2π−Kp is the cone
angle at p.

2.3 Mean curvature

The mean curvature of a discrete surface M is supported
along the edges. If e is an edge, and e ⊂ D ⊂ Star(e) =
T1 ∪ T2, then

He :=

ZZ
D

H dA =

I
∂D

η ds = e× ν1 − e× ν2 = J1e− J2e.

Here νi is the normal vector to the triangle Ti, and Ji is
rotation by 90◦ in the plane of that triangle. Note that
|He| = 2|e| sin θe

2
where θe is the exterior dihedral angle

along the edge, defined by cos θe = ν1 · ν2.

No nonplanar discrete surface has He = 0 along every
edge. But this discrete mean curvature can cancel out
around the vertices. We set

2Hp :=
X
e3p

He =

ZZ
Star(p)

H dA =

I
Link(p)

η ds.

The area of the discrete surface is a function of the ver-
tex positions; if we vary only one vertex p, we find that
∇p Area(M) = −Hp.

Suppose that vertices adjacent to p are p1, . . . , pn. Then
we have

3Ap = 3∇p Vol =

ZZ
Star p

ν dA

= 1
2

I
Link p

x× dx = 1
2

X
i

pi × pi+1

and similarly

2Hp =
X

Hppi = −2∇p Area =
X

Ji(pi+1 − pi)

=
X

i

(cot αi + cot βi)(p− pi),

where αi and βi are the angles opposite edge ppi in the two
incident triangles.

Note that if we change the combinatorics of a discrete
surface M by introducing a new vertex p along an existing
edge e, and subdividing the two incident triangles, then Hp

in the new surface equals the original He, independent of
where along e we place p. This allows a variational interpre-
tation of He.

2.4 Minkowski mixed volumes

A somewhat different interpretation of mean curvature for
convex polyhedra is suggested by Minkowski’s theory of
mixed volumes (which actually dates in this form well ear-
lier). If X is a smooth convex body in R3 and Bt(X) denotes
its t-neighborhood, then

Vol(Bt(X)) = Vol X + t Area X +
t2

2

Z
X

H dA +
t3

3

Z
X

K dA.

Here, the last integral is always 4π.

When X is instead a convex polyhedron, the only term
that needs a new interpretation is

R
X

H dA. The correct
replacement for this term is then

P
e |e| θe. This suggests

He := |e| θe as a notion of total mean curvature for the
edge e.

We note the difference between this formula and our ear-
lier |He| = 2|e| sin θe/2. Either one can be derived by re-
placing the edge e with a sector of a cylinder of length |e|
and arbitrary (small) radius r. We find then

ZZ
H dA = He,

ZZ
H dA = He.

The difference is explained by the fact that one formula inte-
grates the scalar mean curvature while the other integrates
the vector mean curvature.

2.5 CMC surfaces and Willmore surfaces

A smooth surface which minimizes area under a volume con-
straint has constant mean curvature; the constant H can be
understood as the Lagrange multiplier for the constrained
minimization problem. A discrete surface which minimizes
area among surfaces of fixed combinatorial type and fixed
volume will have constant discrete mean curvature H in
the sense that at every vertex, Hp = HAp, or equivalently
∇p Area = −H∇p Vol. In general, of course, the vectors
Hp and Ap are not even parallel: they give two competing
notions of a normal vector at p.

Still,

hp :=
|∇p Area |
|∇p Vol | =

|Hp|
|Ap|

=
|
RR

Star p
H dA|

|
RR

Star p
ν dA|

gives a better notion of mean curvature near p
than, say, the smaller quantity 3|Hp|/ Area(Star(p)) =
|
RR

H dA|/
RR

1 dA.

For this reason, a good discretization of the Willmore elas-
tic energy

RR
H2 dA is given by

P
p h2

p
1
3

Area(Star(p)).

2.6 Relation to discrete harmonic maps

Discrete minimal surfaces minimize area, but also have other
properties similar to those of smooth minimal surfaces. For
instance, in a conformal parameterization, their coordinate
functions are harmonic. We don’t know when in general a
discrete map should be considered conformal, but the iden-
tity map is certainly conformal. We have that M is dis-
crete minimal if and only if Id : M → R3 is discrete har-
monic. Here a PL map f : M → N is called discrete
harmonic if it is a critical point for the Dirichlet energy
E(f) :=

P
T |∇fT |2 AreaM (T). We find that E(f)−Area N

is a measure of nonconformality. For the identity map,
E(IdM) = Area(M) and ∇pE(IdM) = ∇p Area(M) con-
firming that M is minimal if and only if IdM is harmonic.

Chapter 4:
A Discrete Model of Thin Shells

Eitan Grinspun
Columbia University

Figure 1: A simulation of a tumbling thin shell.

Abstract We present a discrete model for the behavior of
thin flexible structures, such as hats, leaves, and aluminum
cans, which are characterized by a curved undeformed
configuration. Previously such models required complex
continuum mechanics formulations and correspondingly
complex algorithms. We show that a simple shell model
can be derived geometrically for triangle meshes and im-
plemented quickly by modifying a standard cloth simulator.
Our technique convincingly simulates a variety of curved
objects with materials ranging from paper to metal, as we
demonstrate with several examples including a comparison
of a real and simulated falling hat.

This chapter is based on the paper by Grinspun, Hirani,
Desbrun, and Schröder which appeared in the Proceedings
of the Symposium for Computer Animation 2003 [Grinspun
et al. 2003].

1 Introduction

Thin shells are thin flexible structures with a high ratio
of width to thickness (> 100) [Ciarlet 2000]. While their
well-known counterparts, thin plates, relax to a flat shape
when unstressed, thin shells are characterized by a curved
undeformed configuration. Cloth, recently studied in the
computer animation literature, may be modeled as a thin
plate, since garments are typically constructed from flat tex-
tiles. In stark contrast, thin-walled objects which are natu-
rally curved (e.g., leaves, fingernails), or put into that shape
through plastic deformation (e.g., hats, cans, carton boxes,
pans, car bodies, detergent bottles) are thin shells and can-
not be modeled using plate formulations.

Thin shells are remarkably difficult to simulate. Because
of their degeneracy in one dimension, shells do not ad-
mit to straightforward tessellation and treatment as three-
dimensional solids; indeed, the numerics of such approaches
become catastrophically ill-conditioned, foiling numerical
convergence and/or accuracy. Robust finite element meth-
ods for thin shell equations continue to be an active and
challenging research area.

In this chapter we develop a simple model for thin shells
with applications to computer animation. Our discrete
model of shells captures the same characteristic behaviors
as more complex models, with a surprisingly simple imple-
mentation. We demonstrate the realism of our approach

Figure 2: The local coordinate frame in a small neighborhood
of a thin shell: two axes span the middle surface, and the
normal shell director spans the thickness.

through various examples including comparisons with real
world footage (see Figure 3).

2 Kinematics

We begin by describing the geometry of a thin shell, as well
as its kinematics—the geometric description of a shell’s de-
formation. Since it is thin, the shell is well described by its
middle-surface (see Figure 2). At any point on the middle
surface the local tangent plane and surface normal induce
a coordinate frame in which to describe “motion along the
surface” and “motion along thickness.”

In the discrete setting, we describe the middle surface with
an arbitrary 2-manifold triangle mesh, M = {v, e, f}, where
v, e, f are sets of vertices, edges and faces repectively. We
denote a specific mesh vertex by vi, i ∈ {1, 2, . . . n}, likewise
for edges, ej , and faces, fk. Consider that the embedding
of the mesh into ambient space can uniquely be specified by
the discrete configuration function, C(vi) : v → R3, mapping
every vertex into ambient space (here chosen as R3, without
loss of generality). Such a discrete function may be repre-
sented as an element of the configuration space Ω = (R3)n,
i.e., as a vector, x = [x1, x2, . . . xn], xi ∈ R3, of points in am-
bient space corresponding to the positions of mesh vertices,
vi. Furthermore, we will use the correspondence between
subsets of the mesh and lower-dimensional subspaces of the
configuration space, e.g., consider that the embedding of a
single triangle, fi, is specified uniquely by the embedding of
its three vertices, hence this subset of {fi} ⊂ M has a corre-
sponding configuration subspace C(fi) ∈ (R3)3 where, in an
abuse of notation, we say that the configuration function, C,
maps subsets of the mesh onto lower-dimensional subspaces
of configuration space.

With a shell representation in hand, we want to quantify
the ways in which a shell deforms: the geometry of deforma-
tion is called the shell kinematics. Which kind of quantities
make physical sense? Observe that coordinate systems are
an imposed artifact: the physical behavior of our world is in-
dependent of the chosen (global or local) coordinate system.
Therefore, in building a physical model we should measure

the mesh only in ways which are invariant to changes in co-
ordinates, i.e., to rigid body motions. We have seen in the
previous chapters (in particular Chapter 2) that such consid-
erations lead to a limited palette of fundamental measures
for which (by some aggregation) any compound measure is
constructed. In our setting, we will consider only measure-
ments which are functions of edge length, face area, and
signed dihedral angle.

Suppose that the mesh is deformed from its original con-
figuration. We can express this as a piecewise-affine defor-
mation map, ϕ : Ω → Ω, from the configuration space to the
configuration space, mapping every mesh face (resp. edge,
vertex) from its undeformed to its deformed configuration.
In general, this map encodes both local changes in shape
as well as a global translation and rotation, i.e., both shape
and rigid-body deformations. A natural question is “how
much has the geometry deformed?” Consider that we are
modeling the mechanics of materials whose stored energy is
local in nature, such that the deformation in one section of
the surface only affects the stored energy associated to that
section. Thus we ask “how much has this very local piece of
geometry deformed?”

Consider a small, localized region, Mx ⊂ M , of the sur-
face, and the associated subset Ωx ⊂ Ω of configuration
space. We want a function s(x0, x1) : Ωx ×Ωx → R, quanti-
fying the amount of change moving from configuration x0 to
x1. In particular, we define the local generalized strain (here
onward “strain”) as s(x0, ϕ(x0)), i.e., a (signed) amount of
deformation from the undeformed to the deformed configu-
ration. Strain should be a local measure of change in shape,
and not a measure of rigid-body deformation. Furthermore,
it might make sense for strain to be antisymmetric in its
arguments: s(x0, x1) = −s(x1, x0), e.g., the strain of a lo-
cally curved sheet deformed to a locally flattened shape is
the opposite of that of a locally flat sheet deformed to a lo-
cally curved shape (note however in general neither x0 nor
x1 need represent a flat configuration).

We express our strain in terms of the fundamental mea-
sures evaluated (separately) over the undeformed and de-
formed configurations (and then aggregated in some anti-
symmetric way). As a consequence our strain formulation
will be invariant under rigid body motions. Strain must be
zero if there is no change in shape, and should grow with the
change in shape. A simple functional form which achieves
this is the difference between evaluations of a fundamental
measure over the undeformed and deformed configurations.
We adopt the simplest such terms: the difference in edge
length, se, evaluated over a single edge; the difference in
area, sf , evaluate over a single face; and the difference in
dihedral angles, sθ, evaluated over a single edge incident
on two faces. While these are perhaps the simplest possi-
ble constituent terms of a shape deformation metric, other
more complicated options can be very interesting. Recent
research in discrete shell models has focused on functions
evaluated over mesh faces which aggregate in one term the
configuration of all the incident edge lengths and dihedral
angles [Gingold et al. 2004].

Observe that se and sf are invariant under locally-
isometric deformations, i.e., the deformation may be arbi-
trary but in the neighborhood of the edge or face in question
the deformation is length-preserving. Analogously, sθ is in-
variant under deformations which locally-preserve discrete
mean curvature. Furthermore, sf is invariant under defor-
mations which locally-preserve area. Consequently, we say
that se and sf “see” the stretching but not the bending com-
ponent of a deformations, while sθ sees only bending but not

stretching component. Finally, sf sees the area-preserving
(considering shell thickness, also volume preserving) com-
ponent of a stretching deformation, whereas se sees all of
the stretching deformation. With these deformation pseudo-
metrics in hand, we now proceed in proposing a constitutive
elastic model for the stored energy.

3 Constitutive Model

Having defined the geometry of thin shells, we turn our
attention to the governing physical equations. The stored
elastic energy of a thin shell is at the heart of the equa-
tions which govern its response to elastic deformations. The
stored energy, W (x0, x1) = f(s(x0, x1)), is a function of
the local strain. It is defined over small mesh neighbor-
hoods via the evaluation, W (x0, ϕ(x0)) of a pseudometric,
W (x0, x1) : Ωx × Ωx → R. Recall that a pseudomet-
ric is a nonnegative function that measures the distance
between points for a given set, in this case a configura-
tion subspace; a metric is symmetric, satisfies the trian-
gle inequality, and evaluates to zero for identical points;
a pseudometric may also evaluate to zero for nonidentical
points. Here the distinction of pseudo is physically signifi-
cant: from a given initial configuration, there is more than
one deformation that yields the same (local) stored energy:
consider, e.g., taking a sheet of paper and bending it up
versus bending it down. Since the stored energy is a func-
tion of local shape deformation, i.e., energy contributions
are directly attributable to some portion of the mesh, then
W (x0, x1) should satisfy the usual inclusion/exclusion prin-
ciple: given two mesh subsets, Mx, My ⊂ M , we require that
W (Mx ∪ My) = W (Mx) + W (My) − W (Mx ∩ My), where
W (Mx) is shorthand for the energy, W (C(Mx), ϕ(C(Mx))),
associated to the deformation of mesh subset Mx (we first
saw the inclusion/exclusion principle in Chapter 2). Because
strain is invariant under rigid body transformations of the
undeformed and/or deformed configurations, a key theorem
by Nöther guarantees that the internal forces derived from
the stored energy obey the conservation laws for (linear as
well as angular) momentum.

We choose the simplest expression for energy that is con-
sistent with Hookean mechanics. In 1676 Robert Hooke
stated

The power [sic.] of any springy body is in the same
proportion with the extension.

This statement was the birth of modern elasticity, which
states that a first order approximation for the response of a
material is a force proportional to strain, and consequently
(by the definition of work as force over distance) that the
first approximation of stored energy is quadratic in strain.
We propose:

W (Mx) =
X

ei∈Mx

W e(ei) +
X

fj∈Mx

W f (fi) +
X

ek∈Mx

W θ(ek) ,

W e(ei) = ke
i (s

e(ei))
2

= ke
i (change in length of edge ei)

2 ,

W f (fj) = kf
j (sf (fj))

2

= kf
j (change in area of face fj)

2 ,

W θ(ek) = kθ
k(sθ(ek))2

= kθ
k(change in dihedral angle at edge ek)2 .

using the same shorthand

W (Mx) = W (C(Mx), ϕ(C(Mx))) ,

s(Mx) = s(C(Mx), ϕ(C(Mx))) .

Our constitutive model for thin shells is governed by non-
linear1 membrane and flexural energy terms. We examine
these terms in turn, and discuss the coefficients ke, kf , and
kθ.

Membrane Elastic surfaces resist stretching (local change
in area) and (local change in length).

While some materials such as rubber sheets may undergo
significant deformations in the stretching or shearing (mem-
brane) modes, we focus on inextensible shells which are char-
acterized by nearly isometric deformations, i.e., possibly sig-
nificant deformations in bending but unnoticeable deforma-
tion in the membrane modes. Works on cloth simulation sim-
ilarly focus on inextensible plates [Baraff and Witkin 1998;
Bridson et al. 2002]. Most membrane models for triangle
meshes satisfy this small-membrane-strain assumption with
choice of suitably large membrane stiffness coefficients.

The only missing link in our definitions of W e(ei) and

W f (fj) are the coefficients ke
i , kf

j . We can learn more about
these coefficients by considering the following scaling argu-
ment. Place in front of you three patches of the same elastic
material, with the third patch having the combined area
of the two other patches. Stretch all the patches by 30%.
Then the energy stored in the third (large) patch should be
the same as the combined energy stored in the other two
patches (think of the third patch as two smaller patches, at-
tached, each stretched by 30%). Substituting this logic into
our stored energy formulation yields the requirement that
kf

j is inversely proportional to the area of the undeformed
face fj . With the same calculation we find that ke

i must be

independent of local area or length. Finally, both kf
j and

ke
i should be proportional to the stiffness of the material,

i.e., its resistance to stretching deformations. Thus we have
ke

i = Ke and kf
j = Kf/|f̄j |, where Ke and Kf are the ma-

terial parameters determining stiffness, and |f̄j | is the area
of face j. Barred quantities (f̄j) denote measurements taken
in the undeformed configuration. Putting this all together
the membrane terms are given by

W e(ei) = Ke (|ei| − |ēi|)2 = Ke|ēi|2
�
|ei|
|ēi|

− 1

�2

,

W f (fj) =
Kf

|f̄j |
�
|fj | − |f̄j |

�2
= Kf |f̄j |

�
|fj |
|f̄j |

− 1

�2

,

where |ei| is the length of edge i. This is a unitless strain
measurement, squared, and then integrated over the area
of the local neighborhood, and multiplied by the material-
dependent parameters. Observe that under regular refine-
ment of a triangle mesh, the local area indeed scales as |f̄i|
and as |ēj |2, both of which have units of area. The units
of the material parameters are energy per unit area, i.e.,
surface energy density. In engineering models of shells, the
material parameter is given as a volume energy density, and
the energy is integrated over shell thickness yielding a surface
energy density. Note the opportunity to precompute quan-
tities that depend only on the undeformed configuration, in
this case Ke|ēi|2 and Kf |f̄i|.

1Observe that while the restoring forces are proportional to
strain, strain is not linear in the displacements of the mesh ver-
tices.

Figure 3: Real footage vs. Simulation: left, a real hat is
dropped on a table; right, our shell simulation captures the
bending of the brim. Notice that volumetric-elasticity, plate,
or cloth simulations could not capture this behavior, while
earlier work on shell simulation required significant imple-
mentation and expertise (see also the color plate).

So far we have only discussed energies that measure mem-
brane (intrinsic) deformations. However, when a surface
bends—an extrinsic [Gray 1998] deformation—flexural en-
ergy comes into play.

Flexure In this section we discuss our discrete bending
energy in relation to its continuous analogues. Models in
mechanics are based on invariant measures, i.e., quantities
which are not affected by rigid-body transformations of the
coordinate frame. Typically, this has led to formulations
based on tensors. For example, shell models use the dif-
ference of the second fundamental forms [Gray 1998] in the
deformed and undeformed configurations (pulling back the
deformed tensor onto the undeformed configuration). In the
graphics literature, the work of Terzopoulos et al. introduced
such tensorial treatments [Terzopoulos et al. 1987]. These
treatments derive tensorial expressions over smooth mani-
folds, and as a final step discretize to carry out the numer-
ics. In contrast, we define a discrete constitutive model by
applying geometric operators over piecewise-linear surfaces.
In both earlier treatments and our discrete treatment the
underlying geometry is the same. However, the resulting ex-
pressions are simpler in the discrete approach.

The shape operator [Gray 1998] is the derivative of the
Gauss map2: geometrically, it measures the local curvature
at a point on a smooth surface. Our bending energy is an
extrinsic measure of the difference between the shape oper-
ator evaluated on the deformed and undeformed surfaces.
We express this difference as the squared difference of mean
curvature:

[Tr(ϕ∗S)− Tr(S̄)]2 = 4(H ◦ ϕ− H̄)2 , (1)

where S̄ and S are the shape operators evaluated over the un-
deformed and deformed configurations respectively; likewise
H̄ and H are the mean curvatures; ϕ∗S is the pull-back of S
onto Ω̄, and we use Tr(ϕ∗S) = ϕ∗ Tr(S) = Tr(S)◦ϕ = H ◦ϕ
for a diffeomorphism ϕ. This measure is extrinsic: it sees
only changes in the embedding of the surface in R3. This
measure is invariant under rigid-body transformations: this
ensures conservation of linear and angular momentum. Inte-
grating (1) over the reference domain we find the continuous
flexural energy

R
Ω̄

4(H ◦ϕ− H̄)2dĀ. Next, we discretize this

2This is the map from the surface to the unit sphere, mapping
each surface point to its unit surface normal.

integral over the piecewise linear mesh that represents the
shell.

We derive the discrete, integral mean-curvature
squared operator as follows. We first partition the
undeformed surface into disjoint union of diamond-
shaped tiles, T̄ , associated to each mesh edge,

he
T

e

e, as indicated on the side figure (fol-
lowing [Meyer et al. 2003], one can
use the barycenter of each triangle to
define these regions—or alternatively,
the circumcenters). Over such a dia-
mond, the mean curvature integral isR

T̄
H̄dĀ = θ̄|ē| (for a proof see [Cohen-

Steiner and Morvan 2003]). A sim-
ilar argument leads to:

R
T̄
(H ◦ ϕ −

H̄)dĀ = (θ− θ̄)|ē|. Using the notion of
area-averaged value from [Meyer et al.
2003], we deduce that (H ◦ ϕ − H̄)|T̄ = (θ − θ̄)/h̄e, where
h̄e is the span of the undeformed tile, which is one sixth of
the sum of the heights of the two triangles sharing ē. For a
sufficiently fine, non-degenerate tessellation approximating a
smooth surface, the average over a tile (converging pointwise
to its continuous counterpart) squared is equal to the squared
average, leading to:

R
T̄
(H ◦ ϕ− H̄)2dĀ = (θ − θ̄)2|ē|/h̄e.

We might instead consider a formula of the form (θ−θ̄)2|ē|.
Here the energy functional becomes dependent only on its
piecewise planar geometry not on the underlying triangula-
tion. An attractive claim, this is appealing in that a mater-
ial’s physical energy should depend on its shape, not on the
discretization of the shape. Unfortunately, there is no dis-
cretization of (1) that simultaneously is (a) dependent only
on the geometry not its triangulation, and (b) converges to
its continuous equivalent under refinement. Indeed, the area
integral of (1) is in general unbounded for a piecewise planar
geometry! A discrete energy satisfying both (a) and (b) may
exist for smoother surfaces, but our focus is piecewise planar
(triangle mesh) geometry.

Following the argument found in [Meyer et al. 2003], there
may be numerical advantages in using circumcenters instead
of barycenters for the definition of the diamond tiles (except
in triangles with obtuse angles). This affects the definition
of h̄e and of the lumped mass. Since we only need to com-
pute these values for the undeformed shape, the implemen-
tation and performance of only initialization code would be
affected. As noted in [Bobenko 2004], when circumcenters
are used the derivation of discrete shells present here coin-
cides, in the case of a flat undeformed configuration, with
the derivation of the discrete Willmore energy based on cir-
cle packing (see Chapter 5).

As we have just seen, we can express our
discrete flexural energy as a summation over
mesh edges, where the term for edge ek is

e

θe

W θ(ek) = Kθ �θk − θ̄k

�2 |ēk|
h̄k

, (2)

where θk and θ̄k are corresponding complements of the di-
hedral angle of edge ek measured in the deformed and unde-
formed configuration respectively, Kθ is the material bend-
ing stiffness, and h̄k is a third of the average of the heights of
the two triangles incident to the edge ek (see the appendix
for another possible definition of h̄k). Note that the unit of
Kθ is energy (not surface energy density). This formulation
is consistent with the physical scaling laws of thin shells:

if the (deformed and undeformed) geometry of a thin shell
is uniformly scaled by λ along each axis, then surface area
scales as λ2 as does the total membrane energy, however
the total bending energy is invariant under uniform scaling.
This formulation of bending energy was contemporaneously
published in [Bridson et al. 2003; Grinspun et al. 2003].

Following the reasoning for (1), we could have formed a
second energy term taking the determinant instead of the
trace of S. This would lead to a difference of Gaussian cur-
vatures, but this is always zero under isometric deformations
(pure bending). This is not surprising, as Gaussian curva-
ture is an intrinsic quantity, i.e., it is independent of the
embedding of the two-dimensional surface into its ambient
three-dimensional space. In contrast, flexural energy mea-
sures extrinsic deformations.

4 Dynamics

The treatment of the temporal evolution of a thin shell is
beyond the scope of our discrete differential geometry course.
In this section we briefly summarize the basic components
required to simulate the motion of thin shells.

Our dynamic system is governed by the ordinary differen-
tial equation of motion ẍ = −M−1 ∇W (x) where x is the
vector of unknown DOFs (i.e., the vertices of the deformed
geometry) and M is the mass matrix. We use the conven-
tional simplifying hypothesis that the mass distribution is
lumped at vertices: the matrix M is then diagonal, and the
mass assigned to a vertex is a third of the total area of the
incident triangles, scaled by the area mass density.

Newmark Time Stepping We adopt the Newmark
scheme [Newmark 1959] for ODE integration,

xi+1 = xi + ∆tiẋi + ∆t2i
�
(1/2− β)ẍi + βẍi+1

�
,

ẋi+1 = ẋi + ∆ti

�
(1− γ)ẍi + γẍi+1

�
,

where ∆ti is the duration of the ith timestep, ẋi and ẍi are
configuration velocity and acceleration at the beginning of
the ith timestep, respectively, and β and γ are adjustable
parameters linked to the accuracy and stability of the time
scheme. Newmark is either an explicit (β = 0) or implicit
(β > 0) integrator: we used β = 1/4 for final production,
and β = 0 to aid in debugging. Newmark gives control over
numerical damping via its second parameter γ. We obtained
the best results by minimizing numerical damping (γ = 1/2);
this matches Baraff and Witkin’s observation that numerical
damping causes undesirable effects to rigid body motions.
See also [West et al. 2000] for a discussion of the numerical
advantages of the Newmark scheme.

Dissipation Shells dissipate energy via flexural oscillations.
To that end we complete our model with an optional damp-

ing force proportional to (θ̇ − ˙̄θ)∇θ where ˙̄θ = 0 for elastic
deformations but is in general non-zero for plastoelastic de-
formations. This is consistent with standard derivations of
Rayleigh-type damping forces using the strain rate tensor,
as discussed by [Baraff and Witkin 1998].

Discussion Our proposed discrete flexural energy (2) gener-
alizes on published energies for (flat) plates both continuous
and discrete: (a) [Ge et al. 1996] presented a geometric ar-
gument that the stored energy of a continuous inextensible
plate has the form

R
Ω̄

cHH2 + cKKdA for material-specific
coefficients cH and cK ; (b) [Haumann 1987] used a discrete
hinge energy, similarly [Baraff and Witkin 1998] used a dis-
crete constraint-based energy, of the form WB(x) =

P
ē θ2

e .

Our approach generalizes both (a) and (b), and produces
convincing simulations beyond the regime of thin plate and
cloth models (see Section 6).

Our approach can also be viewed within the framework
laid out by [Terzopoulos et al. 1987]: we focus on the second
fundamental form, choose a computationally convenient and
geometrically intuitive norm, and propose a simple, effective
discretization.

Our novel formulation has three salient features: (a) the
energy is invariant under rigid body transformation of both
the undeformed and the deformed shape: our system con-
serves linear and angular momenta; (b) the piecewise nature
of our geometry description is fully captured by the purely
intrinsic membrane terms, and the purely extrinsic bending
term; most importantly, (c) it is simple to implement.

5 Implementation

We encourage readers to implement this novel approach to
simulating shells as follows: take working code for a thin
plate or cloth simulator (e.g., as presented by [Baraff and
Witkin 1998]), and replace the bending energy with (2).
From an implementation point of view, this involves min-
imal work. For example, consider that [Baraff and Witkin
1998] already implemented all the computations relating to
θe. The key hurdle is that the undeformed configuration,
x̄, is represented in (x, y) ∈ R2 coordinates, thus kinemat-
ically imposing a flat shape. One could augment this with
explicitly-stored undeformed-angles, θ̄e, but this would work
only for developable surfaces. Any surface which cannot be
unfolded into a flat sheet—a surface with intrinsic curva-
ture, such as a hat or a car body—requires a more complete
treatment than this. Instead, we express x̄ in coordinates
(x, y, z) ∈ R3, i.e., not restricting ourselves to planar un-
deformed configuration. Consequently, the undeformed con-
figuration is in general curved, and we must duplicate the
code that computes θe to also compute θ̄e. Rereading Baraff
and Witkin’s paper with these changes in mind, it is imme-
diately clear that these modification require just a few hours
of work.

As part of ongoing and future research, our priorities in
implementing our simulator are extendibility and ease of im-
plementation. We have made several design choices to aid
in numerical robustness and to avoid bugs in implementing
our formulas:

Automatic Differentiation The use of an explicit integra-
tor necessitates the evaluation of energy gradients, or forces,
with respect to vertex DOFs. Formulae for the gradients of
edge-length and area are easily found in the literature [Des-
brun et al. 2002]; the gradient of the dihedral angle requires
more work, but can still be derived by hand. Since our goal is
to ease implementation and debugging of new, experimental
energies, we chose to use an automatic differentiation (AD)
technique.

The use of an implicit integrator necessitates evaluation
of force gradients with respect to vertex DOFs, i.e., we need
formulae for second derivatives of energy. Deriving such for-
mulae is cumbersome and error-prone, consequently we used
AD, a technique for augmenting software with derivative
computations [Corliss et al. 2001]. The technique is based on
the observation that every computational algorithm can be
written as the composition of simple, easily differentiable,
steps to which the chain rule can be applied. AD is not
new to graphics [Gleicher 1994; Kass 1992]. Our AD code is
available at http://multires.caltech.edu/software .

The salient features of our AD implementation are: (a)
it differentiates directly with respect to vector (not scalar)
unknowns; (b) it uses C++ type-checking to ensure both ef-
ficiency and completeness of differentiation. Although there
are several good AD libraries publicly available [ADIFOR
2002; Autodiff.org 2002], we opted for implementing this
simple set of classes specially for differentiation with respect
to vector variables.

We define two classes, Scalar and Vector, representing in-
dependent scalar and vector values respectively. The related
classes DScalar and DVector represent dependent quanti-
ties; these carry a tuple (scalar value, vector-valued deriv-
ative) and (vector value, matrix-valued derivative) respec-
tively. The standard algebraic operators are overloaded to
inter-operate between the classes, with a special restriction
on assignment: dependent quantities may not be assigned
to independent variables, and vice-versa. This condition en-
sures both correctness (no dependent quantity is overlooked)
and efficiency (independent quantities never compute/store
derivatives). More documentation is given in the publicly-
available release of our small AD library.

In a production code, we believe that hand-derived for-
mulas would display better performance. As demonstrated
in the works of [Baraff and Witkin 1998] and [Bridson et al.
2003], it is reasonable to explicitly take the derivatives by
hand. Early in our investigation we converted our code to
the automatic technique, in order to facilitate future explo-
ration, and to learn more about the technique; although
we did not compare timings of the hand- and automatic-
techniques, in our research code they appeared to run at
comparable speeds, and we opted for the convenience of AD:
the actual performance degradation was well worth the guar-
anteed consistency between energy, forces, and force gradi-
ents for our research purposes.

6 Results

We exercised our implementation on three problems:
fixed beams, falling hats, and pinned paper (see
http://multires.caltech.edu/pubs/DS-CDROM). Compu-
tation time, on a 2GHz Pentium 4 CPU, ranged from 0.25s–
3.0s per frame. In light of the discussion in Section 5, we
expect an optimized implementation of our method to be as
efficient as state-of-the-art cloth simulators.

Beams We pinned to a wall one end of a v-beam, and re-
leased it under gravity. Figure 4, and the video, demonstrate
the effect of varying flexural stiffness on oscillation amplitude
and frequency. Higher flexural stiffness gives higher struc-
tural rigidity. The curved undeformed shape of a v-beam
gives qualitatively and quantitatively different behavior than
a flat beam. Compare: hold a simple paper strip by its end;
repeat after folding a v-shaped cross-section.

Elastic hats We dropped both real and virtual hats and
compared (see Figure 3): the deformation is qualitatively the
same, during impact, compression, and rebound. Adjusting
the damping parameter, we capture or damp away the brim’s
vibrations. Adjusting the flexural stiffness, we can make a
hat made of hard rubber or textile (see the videos of a nearly-
rigid hat and a floppy hat).

Plastoelasticity As discussed in the early work of [Ker-
gosien et al. 1994], a compelling simulation of paper would
require a mechanical shell model. Using our simple shell
model, we can easily simulate a sheet of paper that is rolled,
then creased, then pinned (see Figure 5). Here the physics
require plastic as well as elastic deformations. We begin

flat beam v beam

θ
θθ

Figure 4: Three pairs of flat and v-beams with increasing

flexural stiffness Kθ (left to right) of 100, 1000, and 10000.
The flexural energy coefficient has a high dynamic range;
extreme values (from pure-membrane to near-rigid) remain
numerically and physically well-behaved. Observe that in-
creasing flexural stiffness augments structural rigidity. Com-
pare the behavior of beams: the non-flat cross section of the
v-beam contributes to structural rigidity, especially for low
flexural stiffness.

Figure 5: Modeling a curled, creased, and pinned sheet of
paper: by altering dihedral angles of the reference configu-
ration, we effect plastic deformation. While the rendering
is texture-mapped we kept flat-shaded triangles to show the
underlying mesh structure (see also the color plate).

with a flat surface, and gradually increase the undeformed
angles, θ̄e. Notice: modifying the undeformed configuration
effects a plastic deformation. The kinematics of changing
θ̄e span only physically-realizable bending, i.e., inextensi-
ble plastic deformations. In contrast, directly modifying x̄
could introduce plastic deformations with unwanted mem-
brane modes. We introduced elastic effects by applying
three pin constraints to the deformed configuration. Ob-
serve the half-crease on the left side. The energy of the un-
deformed state is no longer zero! The (plastically-deformed)
left and (untouched) right halves have incompatible unde-
formed shapes, consequently the undeformed configuration

is not stress-free.

Figure 6: A measure of discrete strain is used to fracture a
thin shell in this simulation of a shattering lightbulb.

More recently, Gingold et al. demonstrated that simple,
discrete models of thin shells can also produce striking exam-
ples of shattering glass (see Figure 6) [Gingold et al. 2004].

7 Conclusion and Acknowledgements

We introduced a novel discrete model of thin shells for com-
puter animation, generalizing earlier discrete models of thin
plates, while complementing contemporaneous developments
in cloth simulation. Our simple model captures the charac-
teristic behaviors of shells, including flexural rigidity and
crumpling; visually, animations compare favorably to so-
phisticated shell models requiring cumbersome high-order
constitutive equations and finite-element techniques. Imple-
menting a thin shell simulator for graphics applications is
now practical and worthwhile.

The work described here is the fruit of a collaboration with
Mathieu Desbrun, Anil Hirani, and Peter Schröder. More
recent work on modeling thin shells is part of an active col-
laboration with Adrian Secord, Yotam Gingold, and Denis
Zorin. We are indebted to Jerry Marsden, Tom Duchamp,
and Anastasios Vayonakis for insightful discussions. Pierre
Alliez, Ilja Friedel, and Steven Schkolne were pivotal in the
production of the images shown here.

8 Further Reading

A comprehensive survey of this expansive body of literature
is far beyond the scope of this chapter; as a starting point
see the recent work of [Arnold 2000; Cirak et al. 2002] and
references therein. Here we highlight only a few results from
the graphics and engineering literature.

Recently, novel numerical treatments of shells, signifi-
cantly more robust than earlier approaches, have been intro-
duced in mechanics [Cirak et al. 2000] and graphics [Green
et al. 2002; Grinspun et al. 2002]. These continuum-based
approaches use the Kirchoff-Love constitutive equations,
whose energy captures curvature effects in curved coordi-
nate frames; consequently they model a rich variety of ma-
terials. The novel approaches remain relatively complex and
computationally expensive: shells made of stiff materials are
considered challenging and costly to simulate.

In contrast, thin plate equations tailored to animations
of cloth and garmets have seen successful numerical treat-
ment in the computer graphics literature [House and Breen
2000]. Thin plates have also been useful for variational geo-
metric modeling [Celniker and Gossard 1991; Greiner 1994;
Welch and Witkin 1992] and intuitive direct manipulation
of surfaces [Qin and Terzopoulos 1997; Qin and Terzopoulos
1996; Terzopoulos and Qin 1994]. In graphics, researchers
have used two kinds of approaches to modeling plates: finite-
elements and mass-spring networks. In the latter resistance

to bending is effected by springs connected to opposite cor-
ners of adjacent mesh faces. Unfortunately, this simple ap-
proach does not carry over to curved undeformed configura-
tions: the diagonal springs are insensitive to the sign of the
dihedral angles between faces. While some applications can
use thin plate models, many cannot. Simulations of objects
such as car bodies, wine glasses, and hats rely on the struc-
tural rigidity that arises from a curved undeformed configu-
ration, a characteristic captured by a thin shell but not a thin
plate model. Earlier work on elastic surfaces includes [Feyn-
man 1986], then [Terzopoulos et al. 1987] and [Baraff and
Witkin 1998; Carignan et al. 1992; Haumann 1987].

References

ADIFOR, 2002. Argonne National Labo-
ratory / Rice University. http://www-
unix.mcs.anl.gov/autodiff/ADIFOR/.

Arnold, D., 2000. Questions on Shell Theory. Workshop
on Elastic Shells: Modeling, Analysis, and Computation.
Mathematical Sciences Research Institute, Bekeley.

Autodiff.org, 2002. http://www.autodiff.org.

Baraff, D., and Witkin, A. 1998. Large Steps in Cloth
Simulation. In Proceedings of SIGGRAPH, 43–54.

Bobenko, A. I. 2004. A Conformal Energy for Simpli-
cial Surfaces. Published online at http://arxiv.org/
abs/math.DG/0406128, August.

Bridson, R., Fedkiw, R. P., and Anderson, J. 2002.
Robust Treatment of Collisions, Contact, and Friction for
Cloth Animation. ACM Trans. on Graphics 21, 3 (July),
594–603.

Bridson, R., Marino, S., and Fedkiw, R. 2003. Simula-
tion of Clothing with Folds and Wrinkles. In Proceedings
of ACM SIGGRAPH / Eurographics Symposium on Com-
puter Animation, D. Breen and M. Lin, Eds.

Carignan, M., Yang, Y., Thalmann, N. M., and Thal-
mann, D. 1992. Dressing Animated Synthetic Actors
with Complex Deformable Clothes. In Proceedings of SIG-
GRAPH, 99–104.

Celniker, G., and Gossard, D. 1991. Deformable Curve
and Surface Finite Elements for Free-Form Shape Design.
Computer Graphics (Proceedings of SIGGRAPH 91) 25,
4, 257–266.

Ciarlet, P. 2000. Mathematical Elasticity. Vol. III, vol. 29
of Studies in Mathematics and its Applications. Amster-
dam. Theory of shells.

Cirak, F., Ortiz, M., and Schröder, P. 2000. Subdi-
vision Surfaces: A New Paradigm for Thin-Shell Finite-
Element Analysis. Internat. J. Numer. Methods Engrg.
47, 12, 2039–2072.

Cirak, F., Scott, M., Antonsson, E., Ortiz, M., and
Schröder, P. 2002. Integrated Modeling, Finite-Element
Analysis, and Engineering Design for Thin-Shell Struc-
tures Using Subdivision. CAD 34, 2, 137–148.

Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted
Delaunay Triangulations and Normal Cycle. In Proc. 19th
Annu. ACM Sympos. Comput. Geom., 237–246.

Corliss, G., Faure, C., Griewank, A., Hascoët, L.,
and Naumann, U., Eds. 2001. Automatic Differenti-
ation of Algorithms: From Simulation to Optimization.
Springer.

Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic
Parameterizations of Surface Meshes. In Proceedings of
Eurographics, 209–218.

Feynman, C. 1986. Modeling the Appearance of Cloth. MSc
thesis, MIT.

Ge, Z., Kruse, H. P., and Marsden, J. E. 1996. The
Limits of Hamiltonian Structures in Three-Dimensional
Elasticity, Shells, and Rods. Journal of Nonlinear Science
6 , 19–57.

Gingold, Y., Secord, A., Han, J. Y., Grinspun, E.,
and Zorin, D. 2004. Poster: A Discrete Model for In-
elastic Deformation of Thin Shells. In ACM/Eurographics
Symposium on Computer Animation ’04.

Gleicher, M. 1994. A Differential Approach to Graphical
Manipulation (Chapter 5). PhD thesis.

Gray, A. 1998. Modern Differential Geometry of Curves
and Surfaces. Second edition. CRC Press.

Green, S., Turkiyyah, G., and Storti, D. 2002.
Subdivision-Based Multilevel Methods for Large Scale En-
gineering Simulation of Thin Shells. In Proceedings of
ACM Solid Modeling, 265–272.

Greiner, G. 1994. Variational Design and Fairing of Spline
Surfaces. Computer Graphics Forum 13, 3, 143–154.

Grinspun, E., Krysl, P., and Schröder, P. 2002.
CHARMS: A Simple Framework for Adaptive Simulation.
ACM Transactions on Graphics 21, 3 (July), 281–290.

Grinspun, E., Hirani, A., Desbrun, M., and Schröder,
P. 2003. Discrete Shells. In ACM SIGGRAPH Symposium
on Computer Animation. to appear.

Haumann, R. 1987. Modeling the Physical Behavior of
Flexible Objects. In Topics in Physically-based Modeling,
Eds. Barr, Barrel, Haumann, Kass, Platt, Terzopoulos,
and Witkin, SIGGRAPH Course Notes.

House, D. H., and Breen, D. E., Eds. 2000. Coth Mod-
eling and Animation. A.K. Peters.

Kass, M. 1992. CONDOR: Constraint-based Dataflow. In
Proceedings of SIGGRAPH, 321–330.

Kergosien, Y. L., Gotoda, H., and Kunii, T. L. 1994.
Bending and Creasing Virtual Paper. IEEE Computer
Graphics and Applications, 40–48.

Meyer, M., Desbrun, M., Schröder, P., and Barr,
A. H. 2003. Discrete Differential-Geometry Operators
for Triangulated 2-Manifolds. In Visualization and Math-
ematics III, H.-C. Hege and K. Polthier, Eds. Springer-
Verlag, Heidelberg, 35–57.

Newmark, N. M. 1959. A Method of Computation for
Structural Dynamics. ASCE J. of the Engineering Me-
chanics Division 85, EM 3, 67–94.

Qin, H., and Terzopoulos, D. 1996. D-NURBS: A
Physics-Based Framework for Geometric Design. IEEE
Transactions on Visualization and Computer Graphics 2,
1, 85–96.

Qin, H., and Terzopoulos, D. 1997. Triangular NURBS
and their dynamic generalizations. Computer Aided Geo-
metric Design 14, 4, 325–347.

Terzopoulos, D., and Qin, H. 1994. Dynamic NURBS
with Geometric Constraints for Interactive Sculpting.
ACM Transactions on Graphics 13, 2, 103–136.

Terzopoulos, D., Platt, J., Barr, A., and Fleischer,
K. 1987. Elastically Deformable Models. In Proceedings
of SIGGRAPH, 205–214.

Welch, W., and Witkin, A. 1992. Variational Sur-
face Modeling. Computer Graphics (Proceedings of SIG-
GRAPH 92) 26, 2, 157–166.

West, M., Kane, C., Marsden, J. E., and Ortiz, M.
2000. Variational Integrators, the Newmark Scheme, and
Dissipative Systems. In International Conference on Dif-
ferential Equations 1999, World Scientific, Berlin, 1009 –
1011.

Chapter 5:
Discrete Willmore Flow

Alexander I. Bobenko
TU Berlin

Peter Schröder
Caltech

Abstract

The Willmore energy of a surface,
∫
(H2 −K)dA, as a function of

mean and Gaussian curvature, captures the deviation of a surface
from (local) sphericity. As such this energy and its associated gra-
dient flow play an important role in digital geometry processing,
geometric modeling, and physical simulation. In this paper we con-
sider a discrete Willmore energy and its flow. In contrast to tradi-
tional approaches it is not based on a finite element discretization,
but rather on an ab initio discrete formulation which preserves the
Möbius symmetries of the underlying continuous theory in the dis-
crete setting. We derive the relevant gradient expressions including
a linearization (approximation of the Hessian), which are required
for non-linear numerical solvers. As examples we demonstrate the
utility of our approach for surface restoration, n-sided hole filling,
and non-shrinking surface smoothing.

CR Categories: G.1.8 [Numerical Analysis]: Partial Differential
Equations—Elliptic equations; Parabolic equations; Finite differ-
ence methods; I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Curve, surface, solid and object repre-
sentations; Geometric algorithms, languages, and systems; Physi-
cally based modeling; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation; Visual.

Keywords: Geometric Flow; Discrete Differential Geometry;
Willmore Energy; Variational Surface Modeling; Digital Geome-
try Processing.

1 Introduction

The Willmore energy of a surface S ⊂ R3 is given as

EW (S) =
∫

S
(H2−K)dA = 1/4

∫
S
(κ1−κ2)2 dA,

where κ1 and κ2 denote the principal curvatures, H = 1/2(κ1 +
κ2) and K = κ1κ2 the mean and Gaussian curvature respectively,
and dA the surface area element. Immersions of surfaces which
minimize this energy are of great interest in several areas:

• Theory of surfaces: the Willmore energy of a surface is con-
formally invariant [Blaschke 1929] making it an important func-
tional in the study of conformal geometry [Willmore 2000];

• Geometric modeling: for compact surfaces with fixed bound-
ary a minimizer of EW (S) is also a minimizer of total curva-
ture

∫
S κ1

2 +κ2
2 dA which is a standard functional in variation-

ally optimal surface modeling [Lott and Pullin 1988; Welch and
Witkin 1994; Greiner 1994];

• Physical modeling: thin flexible structures are governed by a
surface energy of the form

E(S) =
∫

S
α +β (H−H0)2− γK dA,

the so-called Canham-Helfrich model [Canham 1970; Helfrich
1973] (H0 denotes the “spontaneous” curvature which plays an

important role in thin-shells [Grinspun et al. 2002; Bridson et al.
2003; Grinspun et al. 2003]). For α = H0 = 0, β = γ the
Canham-Helfrich model reduces to the Willmore energy.

In all of these application areas one typically deals with the associ-
ated geometric flow

Ṡ =−∇E(S),

(time derivatives are denoted by an overdot) which drives the sur-
face to a minimum of the potential energy given by E(S). In the
theory of surfaces as well as in geometric modeling one is inter-
ested in critical points of E(S). In physical modeling the solution
shape is characterized by a balance of external and internal forces.
In this setting the internal forces are a function of the Willmore
gradient.

Contributions In this paper we explore a novel, discrete Will-
more energy [Bobenko 2005] and introduce the associated geomet-
ric flow for piecewise linear, simplicial, 2-manifold meshes. In con-
trast to earlier approaches the discrete flow is not defined through
assemblies of lower level discrete operators, nor does the numer-
ical treatment employ operator splitting approaches. Instead the
discrete Willmore energy, defined as a function of the vertices of a
triangle mesh, is used directly in a non-linear numerical solver to
affect the associated flow as well as solve the static problem. Since
the discrete formulation has the same symmetries as the continuous
problem, i.e., it is Möbius invariant, the associated properties, such
as invariance under scaling, carry over exactly to the discrete setting
of meshes. To deal effectively with boundaries we introduce appro-
priate boundary conditions. These include position and tangency
constraints as well as a free boundary condition. We demonstrate
the method with some examples from digital geometry processing
and geometric modeling.

1.1 Related Work

We distinguish here between discrete geometric flows, i.e., flows
based on discrete analogues of continuous differential geometry
quantities, and those based on discretizations of continuous sys-
tems. The guiding principle in the construction of the former is
the preservation of symmetries of the original continuous system,
while the latter is based on traditional finite element or finite differ-
ence approaches which in general do not preserve the underlying
symmetries. There is also a broad body of literature which uses
linearized versions of the typically non-linear geometric function-
als. Such approaches are not based on intrinsic geometric proper-
ties (e.g., replacing curvatures with second derivatives) but rather
depend on the particular parameterization chosen. For this reason
we will not further consider them here.

Discrete Flows In the context of mesh based geometric mod-
eling a number of discrete flows have been considered. For ex-
ample, Desbrun et al. [1999] used mean curvature flow (α = 1,
β = γ = H0 = 0) to achieve denoising of geometry. Pinkall and
Polthier [1993] used a related approach, area minimizing flow, to

construct discrete minimal surfaces. Critical points of the area func-
tional also play an important role in the construction of discrete
harmonic functions [Duchamp et al. 1997], their use in parameter-
izations [Eck et al. 1995; Desbrun et al. 2002], and the construc-
tion of conformal structures for discrete surfaces [Mercat 2001;
Gu and Yau 2003]. Since the underlying “membrane” energy is
second order only, it cannot accomodate G1 continuity conditions
at the boundary of the domain. These are important in geometric
modeling for the construction of tangent plane continuous surfaces.
Fourth order flows on the other hand can accomodate position and
tangency conditions at the boundary. Perhaps the simplest fourth
order flow is surface diffusion, i.e., flow by the Laplace-Beltrami
operator of mean curvature, Ṡ = −∆SH. Such discrete flows were
studied by Schneider and Kobbelt [2001], Xu et al. [2003], and
Yoshizawa and Belyaev [2002]. In each case the approach was
based on taking the square of a discrete Laplace-Beltrami operator
combined with additional simplifications to ease implementation.
Unfortunately surface diffusion flow can lead to singularities in fi-
nite time [Mayer and Simonett 2000] leading to “pinching off” of
surfaces which are too thin. Yoshizawa and Belyaev [2002] demon-
strate this behavior and show the comparison with Willmore flow,
which leads to much better results in this regard. This difference
in behavior between surface diffusion and Willmore flows is due to
the additional terms appearing in the Euler-Lagrange (EL) equation
of the Willmore flow

∆SH +2H(H2−K) = 0.

Yoshizawa and Belyaev took the EL equation as their starting point
and defined a discrete Willmore flow by assemblying the compo-
nents from individual, well known discrete operators. Unfortu-
nately in that discrete setting properties such as H2 −K ≥ 0 can
no longer be guaranteed. In contrast we define our discrete Will-
more energy directly using the Möbius invariance of the integrand
(H2−K)dA as the fundamental principle. Among other properties
one achieves the H2−K ≥ 0 always, as expected (see Section 2).

Discretized Flows Both surface diffusion and Willmore flows
have been treated numerically through a variety of discretizations.
For example, Tasdizen et al. [2003] and Chopp and Sethian [1999]
use a level set formulation for surface diffusion flow, while
Mayer [2001] uses finite differences, and Deckelnick et al. [2003]
use finite elements. For Willmore flow finite element approaches
were pursued by Hari et al. [2001] and Clarenz et al. [2004]. A
level set formulation was given by Droske and Rumpf [2004]. In
these approaches no attempt is made to preserve the Möbius sym-
metries. On the other hand they do have the advantage that a rich
body of literature applies when it comes to error and convergence
analysis. Our approach as of now lacks a complete analysis of this
type. Partial results on the convergence of the discrete Willmore
energy to the continuous Willmore energy are discussed at the end
of Section 2.

2 Discrete Willmore Energy

In this section we recall the definition of the discrete Willmore en-
ergy and some of its relevant properties.

The derivation of the discrete Willmore energy is based on the ob-
servation that the integrand

(H2−K)dA

is invariant under Möbius transformations [Blaschke 1929], i.e.,
translations, rotations, uniform scale, and inversion. The first two

are obvious and the latter two follow from the change of variable
formula [Chen 1973]. This immediately implies that EW (S) itself is
a conformal invariant of the surface. Note that for compact closed
surfaces we also have EH(S) =

∫
S H2 dA as a conformal invari-

ant [White 1973]. However the integrand of EH(S) is not Möbius
invariant. It is for this reason that we prefer EW over EH (the latter
is used by some authors as the definition of the Willmore energy).

We are interested in evaluating this energy for discrete surfaces,
i.e., surfaces given as topological 2-manifold configurations of
simplicies. Such a “mesh” consists of vertices vi = (xi,yi,zi)T

(i = 1, . . . ,N) and the topological complex is given as a set of edges
ei j connecting vi with v j and triangles ti jl bounded by vertices vi,
v j and vl and edges ei j, e jl , and eli (see Figure 1). For notational
simplicity we assume that the surface is closed (i.e., each edge ei j
is bounded by exactly two triangles, ti jl and t jik) and that triangles
incident on a given edge are consistently oriented (note however
that we do not assume global orientability). Boundaries will be dis-
cussed in Section 3.3.

vk
t jik

ti jl

a

d

e

b

c

vl

vi

v j

Figure 1: Notation for vertices, edges and triangles in the vicinity
of a given edge e = (vi,v j).

The discrete Willmore energy on a mesh is defined at each vertex vi
as

Wi = ∑
ei j

β
i
j −2π,

i.e., a sum over the edges incident to vi of certain angles β i
j, which

measure the angle between the circumcircles defined by the two
triangles ti jl and t jik incident to the given edge ei j (see Figure 2).
Obviously Wi is Möbius invariant since its definition is based on
angles between circles. The Willmore energy of the entire mesh is
then simply the sum, W = ∑i Wi. For later use we also recall the
definition of discrete Gauss curvature at a vertex vi

Ki = 2π−∑
tik j

α
i
k j.

Here α i
k j denotes the Euclidean angle at i inside the triangle tik j.

β i
j

vk

v j

vl

vi

Figure 2: Geometry of β i
j.

The geometric picture is as follows. A given edge has two incident
triangles. Each triangle has a circumcircle. Since the four vertices
forming the two triangles are (generically) on a common sphere
(possibly at infinity) the two circumcircles are also on this sphere.
The two circles meet in the vertices vi and v j where they intersect.
Consider a tangent vector to each circle at vi. These two tangent
vectors make the angle β i

j which lies in the tangent plane to the

sphere at that point. Note that this geometric setup implies that β i
j =

β
j

i . Suppose now vi and all its neighbors v j (i.e., corresponding to
edges ei j) lie on a common sphere and that the (embedded) 1-ring
of vi is convex. In that case it is easy to see that the β i

j neatly add
up to exactly 2π in the tangent plane at vi and hence Wi = 0 (see
Figure 3) as expected. Now suppose that vi and its neighboring
vertices do not share a common sphere. In that case Wi > 0. To see
this use the Möbius invariance of the energy and map the central
point vi to infinity by a Möbius transformation. All circles passing
through vi are mapped to straight lines and the energy becomes the
sum ∑ j β i

j of the external angles of a non-planar closed polygon in
three space. In that interpretation the inequality ∑ j β i

j ≥ 2π follows
easily [Bobenko 2005] (this inequality is a polygonal version of
Fenchel’s theorem [Fenchel 1929]). With the same argument one
also concludes that Wi +Ki ≥ 0, i.e., ∑ j β i

j−∑k j α i
k j ≥ 0, reflecting

the fact that H2 dA is always non-negative.

Figure 3: Geometry of ∑ei j
β i

j around a vertex. The angles be-
tween subsequent circumcircles—appropriate tangent vectors are
indicated with colors corresponding to the circumcircles of each
triangle—neatly add up to 2π if all vertices are co-spherical.

Finally we observe that Wi ≥ 0 and that it vanishes iff vi and all
its edge neighbors v j lie on a common sphere and the vertex vi
is convex. These two conditions are equivalent to the condition
that the triangles meeting at vi build a Delaunay triangulation on a
sphere.

Smooth Limit The discrete Willmore energy W is not only an
analogue of the continuous one. It approximates the continuous
Willmore energy W in a “natural” limit. Let (u,v) 7→ f (u,v) be a
curvature line parameterization of a surface. Without loss of gener-
ality consider the vicinity of the origin (u,v) = (0,0) in the tangent
plane where we have

(u,v) 7→ (u,v,
1
2
(κ1u2 +κ2v2)+o(u2 + v2)),

with κ1,κ2 denoting the principal curvatures of the surface at the
point (0,0). Now consider a triangular lattice Lε = {ε(la + mb +
nc) : l,m,n ∈ Z} in the parameter plane generated by three vec-
tors a,b,c with a + b + c = 0. Here ε is a small parameter. Con-
sider the hexagon Dε in the parameter plane with vertices p1 = εa,
p2 = −εc, p3 = εb, p4 = −εa, p5 = εc, p6 = −εb and its image
f (Dε) on the surface. Let W (Dε) be the smooth Willmore energy
of f (Dε). On the other hand, the vertices f (pi), i = 1, . . . ,6 together
with f (0) build a simplicial surface with six triangles. Denote by
W (Dε) the discrete Willmore energy of this surface and consider
the quotient of the discrete and smooth Willmore energies of such

an infinitesimal hexagon

R = lim
ε→0

W (Dε)
W (Dε)

.

A direct but rather complicated computation leads to the following
conclusions:

1. R is independent of the curvatures κ1,κ2,

2. R ≥ 1, and R = 1 iff the lattice Lε has two of its directions
aligned with the curvature lines of the surface (two of the vec-
tors a,b,c are curvature line directions).

Thus, after sufficiently many 1 → 4 refinements of the smooth sur-
face the discrete Willmore energy approximates the smooth one if
the curvature line net is triangulated, otherwise the discrete energy
is larger.

The question whether the discrete Willmore energy can be used as
a variational method for computation of curvature line nets is cur-
rently under investigation.

3 Evaluation

For the numerical treatment of discrete Willmore flow and the solu-
tion of energy minimization problems we need effective evaluation
procedures for the Willmore energy and its derivatives. To simplify
the implementation of these functions we begin with a discussion
of the definition of the angles β i

j and some of the consequent sym-
metries in the expressions.

3.1 Definition of Intersection Angles

Consider edge ei j and its two incident triangles t jik and ti jl with
associated vertices vk, v j , vl , and vi (see Figure 1). Defining the
four directed edge vectors

A = a
|a| = v j−vk

|v j−vk | B = b
|b| = vl−v j

|vl−v j |

C = c
|c| = vi−vl

|vi−vl | D = d
|d| = vk−vi

|vk−vi|

the angles follow as

cosβ
i
j = −R(Q) =−R(AB−1CD−1)

= 〈A,C〉〈B,D〉−〈A,B〉〈C,D〉−〈B,C〉〈D,A〉,

where 〈., .〉 denotes the usual Euclidean dot product and R(Q) the
real part of the normalized cross ratio of the four edges bound-
ing the “diamond” formed by the two triangles incident on edge
ei j. This cross ratio is defined in terms of quaternion algebra with
the standard identification of 3-vectors with imaginary quaternions,
R3 ≡ I(H), v 7→ (0, ix, jy,kz)T (i2 = j2 = k2 = −1, i j = k, jk = i,
ki = j). The subsequent expression of this quaternion cross ratio in
terms of Euclidean inner products follows from the rules of quater-
nion multiplication and Lagrange’s identity for the inner product
between two cross products. More details can be found in [Bobenko
2005].

Properties of β i
j and its Derivatives A number of surprising

facts—which we exploit to significantly simplify the expressions
needed by the numerical solver—are immediately obvious from the
above definition. To clarify these we make all arguments explicit,

β i
j = β (k, j, l, i) going around the diamond in counter clockwise

order. We already noted earlier that β (k, j, l, i) = β (l, i,k, j). In
fact from the formula for cosβ (k, j, l, i) it terms of scalar products
it is immediately clear that β (k, j, l, i) is invariant under all cyclic
permutations and reflections of its arguments. In particular if we
flip the edge ei j 7→ ekl the cosine of the angle remains the same.

From the invariance under cyclic and reflection permutations of its
arguments it also follows that all first derivatives can be written as
a single function f1(., ., ., .) with suitably permuted arguments

β,k = f1(k, j, l, i) β, j = f1(j, l, i,k)
β,l = f1(l, i,k, j) β,i = f1(i,k, j, l).

(Here and in what follows we use comma notation to denote partial
derivatives with respect to the corresponding argument and write
β := β i

j to reduce clutter.)

3.2 Energy Gradient

For gradient flow numerical computations we require the gradient
of the discrete Willmore energy. A direct calculation readily yields

−sin(β)β,k = (− 1
|a|

PA(C)〈B,D〉+ 〈A,C〉 1
|d|

PD(B)

+
1
|a|

PA(B)〈C,D〉−〈A,B〉 1
|d|

PD(C)

−〈B,C〉(1
|d|

PD(A)− 1
|a|

PA(D))).

Here we used PX = I−X ⊗X as shorthand for the projection oper-
ator into the orthogonal complement of (the unit vector) X .

Remarkably, if we separate out the linear dependence of this ex-
pression on a, b, c, and d we arrive at a scalar linear combination

− sin(β)β,k = (
〈D×A,B×C〉

|a|2
− 〈B,C〉
|a||d|

− 〈B,C〉〈D,A〉
|a|2

)a

+(
〈A,C〉
|b||d|

+
〈C,D〉
|b||a|

)b− (
〈A,B〉
|c||d|

+
〈B,D〉
|c||a|

)c

−(
〈D×A,B×C〉

|d|2
− 〈B,C〉
|a||d|

− 〈B,C〉〈D,A〉
|d|2

)d.

(1)

In a semi-implicit time stepping algorithm this amounts to requiring
only the solution of a sparse linear system of size n×n rather than
(3n)× (3n) for n vertices, a very attractive feature. In fact Equa-
tion 1 can serve as a linearized version of the Hessian of the energy.
See Section 4 for further comments on this fact.

For the free boundary treatment we also need expressions for
the gradient of the angle between two edges. Desbrun and co-
workers [Desbrun et al. 2002] (Appendix B) derive these and we
will not repeat them here.

Gradient Singularity If vk, v j , vl , and vi are co-circular then
β = 0 and β,k is not defined. For vertices in general positions this
does not occur. However, in practice the case that the four vertices
of a diamond are nearly co-circular, while rare, does occur. For
some inputs it can in fact be a frequent occurance (see for example
Figure 10). Consider a quadrangulation of a smooth surface which
is turned into a triangle mesh through insertion of diagonals in each
quad. In this setting the diagonal edges very often have β nearly
equal to zero.

Keeping in mind that in the end we care about the direction of neg-
ative gradient, i.e., steepest descent, of the discrete Willmore en-
ergy we make the following geometric observation. In case β = 0
there is one direction of varying vk in which the angle does not
change (infinitesimally). This is the tangential direction to the cir-
cle C passing through the points vi,v j,vk and vl . For (infinitesimal)
unit motions in all orthogonal directions the angle β increases at
equal rate. This property of the gradient is conformal and thus pre-
served under Möbius transformations. It can be seen more easily
in a Möbius transformed picture. Send the point vi to infinity by
the inversion in a sphere centered at vi. Both circles in Figure 4
become straight lines. Let ṽ j, ṽk, ṽl be the images of the vertices
v j,vk,vl under this Möbius transformation. For the case of β = 0
both circles in Figure 4 are coincident—call this common circle
C—and the points ṽ j, ṽk and ṽl become collinear: they lie on the
straight line L which is the Möbius image of the circle C. The only
direction of varying ṽk in which the angle does not change is along
the straight line L. Variations in all orthogonal directions increase
the angle at equal rate.

vk

v j

vl

vi

ṽk

ṽ j

ṽl
β

Figure 4: After sending vi to infinity, the two circles have been
mapped to two lines which intersect with angle β .

Consider now a given vertex vi and assume for the moment that
only one β contributing to the gradient computation at vi vanishes.
Let C 3 vi be the corresponding circle with four vertices lying on
it. Let all other, well defined, negative gradient directions sum to
g. Decompose a variation direction G = Go + Gp of vi into the
parts orthogonal Go ⊥ C and parallel Gp ‖ C to the tangent of the
circle in vi and let g = go +gp be the same decomposition of g. The
contribution to the gradient from all “regular” (non-vanishing) β ’s
is −〈g,G〉 and the contribution of the vanishing β is R | Go | with
some R > 0. For the whole gradient this implies

−Gpgp +(| Go | R−〈Go,go〉).

Thus the total negative gradient direction, i.e. the direction in which
the energy decreases the most is gp (parallel to C) if R >| go | and
gp +go(1−R/ | go |) if R <| go |.

The case of multiple β ’s in the support of the gradient of Wi with re-
spect to the given vertex vi vanishing, is more complicated. One can
get the negative gradient direction (if it exists) in this case from the
following non-linear minimization process. To each of the edges en
with vanishing β (en) = 0 there corresponds a circle Cn through vi.
For the variation G the contribution to the gradient of this edge is
| Rn×G | where Rn is a vector tangent to Cn. We define

δ = min
|G|=1,〈G,g〉≥0

∑
n
|Rn×G|− 〈G,g〉

where the sum is taken over all vanishing β from the 1-ring with
flaps of vi. The first term measures the length of the projection of
G into the orthogonal complement of Rn, i.e., the amount of (in-
finitesimal) increase of energy while the second term measures the
decrease in energy for the direction G. If δ > 0 no motion exists
which decreases the energy and the direction of steepest descent is
the zero vector. If δ < 0 the direction G which achieves the mini-
mum is our sought after steepest descent direction with magnitude
|δ |.

The case that all β in the support of the gradient of vi vanish simul-
taneously, corresponds to a configuration which puts all vertices in
the 1-ring with flaps of vi including vi itself onto a common circle.
In this case no direction decreasing the Willmore energy at vi exists.

In our implementation we have experimented with the non-linear
minimization to find a valid direction of energy decrease (or zero if
none exists) but found it to give the same results (numerically) as a
far simpler heuristic: if |sinβ |< ε set the corresponding gradient to
zero. We found ε = 10−6 to give reliable results in double precision
for all our experiments.

3.3 Boundary Conditions

So far we have implemented two types of boundary conditions.

G1-boundary The variational problem we are dealing with is a
fourth order system. To be well posed it requires two independent
boundary conditions. The most natural choice here is to fix posi-
tions and normals at a boundary. We specify this kind of boundary
data on a mesh by fixing positions of the boundary vertices and
those vertices within one edge distance from the boundary. The
normals of the triangles of this boundary strip can be treated as nor-
mals on the boundary. This boundary condition fits perfectly for
G1-gluing of surfaces. Typical applications are surface restoration
and smooth filling of a hole (see Figures 8 and 9). Note that the
method requires no conditions on the topology of the mesh. In par-
ticular one can fix some “islands” of internal vertices (or faces) of
the required surface.

Free Boundary Alternatively we have experimented with clos-
ing boundary curves by adding a vertex at infinity to each boundary
loop. This is an unusual treatment since it actually removes the
boundary and adds a Dirichlet condition at infinity. The idea comes
from Möbius geometry where the infinity point is not distinguished.

e

β2(e)

vb

β3(vb)

ẽ

Figure 5: Free boundary conditions. Boundary edges e and ẽ, and
a boundary vertex vb with the angles β2 and β3.

For simplicity consider a surface with one boundary curve. By
adding the infinity point and connecting it to each boundary ver-
tex we obtain a closed surface. We distinguish three types of edges
of this surface E = Ei∪Eb∪E∞: internal edges Ei, boundary edges
Eb of the original surface and new edges E∞ incident to the infin-
ity point. The circumcircles passing through the infinity point are
straight lines. The discrete Willmore energy of the closed surface
consists of three terms

∑
e∈E

β (e) = ∑
e∈Ei

β1(e)+ ∑
e∈Eb

β2(e)+ ∑
e∈E∞

β3(e).

The first term is just the discrete Willmore energy of the original
surface. The angles β2(e) are associated to the boundary edges
e ∈ Eb and are the intersection angles of these edges with the cir-
cumcircles of the corresponding boundary triangles. Another inter-
pretation for β2(e) is that this is π minus the angle of the boundary

triangle opposite to the edge e ∈ Eb. Finally the angle β3(e) is as-
sociated to the additional edge e ∈ E∞ connecting ∞ to a boundary
vertex vb. Equivalently it can be associated to the boundary vertex
vb. This is the intersection angle of two circumcircles (which are
straight lines in this case) passing through vb and ∞, i.e., the inter-
section angle of two boundary edges meeting at vb (see Figure 5).

The resulting behavior is that of a free boundary (see Figure 7; right
column).

4 Numerical Experiments

We have implemented the discrete Willmore gradient flow using
linear and non-linear solvers from the excellent PETSc [Balay et al.
2004] and TAO [Benson et al. 2004] libraries, allowing us to ex-
periment with a wide variety of pre-canned solvers, while needing
to supply only the gradient, respectively the approximation of the
Hessian (Equation 1). For the time discretization we experimented
with both the forward and backward Euler method. For the for-
ward Euler method the time step limitation imposed by the Courant
condition for fourth order problems—time increments must be of
the order of the fourth power of the shortest edge in the mesh—
is too severe to be practical except for very simple meshes. The
backward Euler method leads to a non-linear problem at each step.
These can be solved with a full Newton method requiring evalu-
ation of the Hessian of the energy at each iteration step. We did
derive the expressions for the Hessian, but found that the effort was
not justified as a function of evaluation cost and numerical behav-
ior. The latter was no better in our experiments than a much simpler
approach based on a semi-implicit time discretization using the lin-
earized version of the gradient (Equation 1). In that setup only a
linear system must be solved at each time step to find the position
increment ∆x(t)

(
1
dt

I+K(t))∆x(t) =−∇E(t).

Here dt is the time step and a super script (t) denotes quantities
evaluated at time t. The matrix K is n×n where n is the number of
(free) vertices and collects the terms of Equation 1. Assuming an
average valence of six, each row of the matrix contains (on average)
thirteen non-zero entries (1-ring with flaps plus the center vertex).
The full Hessian has non-trivial 3×3 blocks instead and results in
a linear system of size (3n)× (3n).

The use of such approximations is well established and works well
in practice though the usual convergence guarantees of (trust re-
gion) Newton methods are missing. Desbrun and co-workers [Des-
brun et al. 1999] used a similar approach when they performed im-
plicit mean curvature flow with a constant matrix per time step. Re-
call that the coefficients of the “cotan formula” change throughout
the time step. Keeping them constant corresponds to a similar lin-
earization of the gradient as we employed. For the particular case of
problems involving squared curvature bending energies Hauth and
co-workers [Hauth et al. 2003], similarly found that inexact New-
ton methods using even fairly aggressive linearizations of gradients
work very well.

Figures 6 and 7 show some simple examples. The icosahedron
is subdivided linearly four times and becomes essentially a per-
fect sphere within a few minimization steps (Figure 6). After 24
steps convergence was achieved with a final energy of 10−7 (a per-
fect sphere would be zero). The difference between fixed and free
boundary conditions is illustrated with the cathead example (Fig-
ure 7). First the result of flow with fixed boundaries then the result
of keeping the boundaries free (both intermediate and final state

Figure 6: Subdivided icosahedron rapidly evolves to a sphere.

Figure 7: Cathead evolved with fixed boundaries (left column) and
free boundaries (right column). In each case the original mesh is
followed by an intermediate state of the evolution and the final state.

shown). The latter evolves to a planar polygon with convex bound-
aries. In the latter example we show the circumcircles for all trian-
gles.

Figure 8 shows a standard benchmark example from k-sided (six
in this case) hole filling. An initial triangulation with boundaries
coming from a Loop subdivision surface is relaxed under the Will-
more flow. With the two outermost “rows” of vertices fixed tangent
continuity across the boundary is assured. Note that this example
starts in a configuration with many edges having β = 0. Our simple
strategy of setting these gradients to zero works quite well in this
example. After a few steps all β angles have become sufficiently
non-zero (above our threshold of ε = 10−6) that the flow proceeds
as expected.

Figure 9 shows an example of mesh restoration. A set of triangles
is marked as free while all others are held fixed. The free vertices
flow to “repair” the scar with a surface section which smoothly (G1)
interpolates the surrounding fixed surface (compare to the example
in [Clarenz et al. 2004]).

Finally Figure 10 shows an example of geometry denoising. The
mesh smoothed in this case is the raw result of a light field scan-
ner with typically small amplitude noise due to measurement error.

Figure 8: Smooth filling of a six sided hole. On the upper left the
original configuration showing the underlying mesh. The bound-
ary triangles follow a smooth outline and fix position and tangency
constraints (all other vertices are unconstrained). Evolution to the
energy minimum is illustrated through a number of intermediate
steps with the final hole fill in the lower right. All shaded images
use triangle normals for shading without interpolation.

Figure 9: Surface restoration for the Egea model. A region to be
restored is outlined (top). All vertices in the blue triangles are un-
constrained with the surrounding vertices providing position and
tangency constraints. Results of the energy minimization (before
and after; bottom).

In particular for examples of this type the non-shrinking nature of
the Willmore flow (the energy is scale invariant) favors it over stan-
dard approaches based on mean curvature flow. The mesh contains
over 37k vertices (and 88 boundary loops). This mesh is particu-
larly challenging since it contains many edges with β near zero: the
original mesh is a triangulated quadrangulation. It also has many
triangles with very high aspect ratio right next to small, round tri-
angles. Figure 10 shows the original mesh followed by the results
of 10 respectively 100 smoothing steps.

Figure 10: Denoising of scanned geometry. On the left the original
mesh with noise due to an active light stripe based scanner. Fol-
lowed by the results of 10 and 100 smoothing steps (37k vertices;
88 boundary loops).

5 Conclusion

In this paper we have considered a discrete Willmore flow. The
discrete energy is expressed in terms of circles and the angles they
make with one another and therefore Möbius invariant, reproduc-
ing the symmetries of the continous energy. The discrete energy
approaches the continuous energy in the infinitesimal limit for reg-
ular triangulations with two edges aligned with principal curvature
directions. We have experimented with a number of different linear
and non-linear solvers and found a simple linear approximation of
the Hessian to be sufficient in our experiments.

Ongoing investigations are geared towards more powerful numeri-
cal methods. Especially for large meshes a multigrid solver for the
linear systems arising in the semi-implicit time stepping method
may well provide significant speedups over our current (unop-
timized) implementation. Possible future directions include the
use of Willmore gradient flow for the construction of variational
subdivision schemes which would optimize functionals such as∫

κ1
2 + κ2

2 dA in a fully non-linear fashion. Another interesting
avenue is the use of the Willmore functional to construct curvature
line nets. We have observed that the discrete Willmore flow leads
to meshes aligned with the curvature lines of the surface. This phe-
nomenon, theoretically partially explained in Section 2, is quite nat-
ural since the curvature lines are also a subject of Möbius geometry.
A closely related problem, currently under investigation, is the de-
finition of the discrete Willmore energy for quadrilateral meshes,
which in a sense would be more natural for curvature line nets.

Acknowledgments This work was supported in part by NSF
(DMS-0220905, DMS-0138458, ACI-0219979), DFG (Research
Center MATHEON “Mathematics for Key Technologies,” Berlin),

DOE (W-7405-ENG-48/B341492), nVidia, the Center for Inte-
grated Multiscale Modeling and Simulation, Alias, and Pixar. Spe-
cial thanks to Kevin Bauer, Oscar Bruno, Mathieu Desbrun, Ilja
Friedel, Cici Koenig, Nathan Litke, and Fabio Rossi.

References

BALAY, S., BUSCHELMAN, K., EIJKHOUT, V., GROPP, W. D.,
KAUSHIK, D., KNEPLEY, M. G., MCINNES, L. C., SMITH,
B. F., AND ZHANG, H. 2004. PETSc Users Manual. Tech.
Rep. ANL-95/11 - Revision 2.1.5, Mathematics and Computer
Science Division, Argonne National Laboratory. Available at
http://www-unix.mcs.anl.gov/petsc/petsc-2/.

BENSON, S. J., MCINNES, L. C., MORÉ, J., AND SARICH,
J. 2004. TAO User Manual (Revision 1.7). Tech. Rep.
ANL/MCS-TM-242, Mathematics and Computer Science Divi-
sion, Argonne National Laboratory. Available at http://www-
unix.mcs.anl.gov/tao.

BLASCHKE, W. 1929. Vorlesungen über Differentialgeometrie III.
Springer.

BOBENKO, A. I. 2005. A Conformal Energy for Simplicial Sur-
faces. In Combinatorial and Computational Geometry, J. E.
Goodman, J. Pach, and E. Welzl, Eds., MSRI Publications. Cam-
bridge University Press, 133–143.

BRIDSON, R., MARINO, S., AND FEDKIW, R. 2003. Simula-
tion of clothing with folds and wrinkles. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on Computer
animation, Eurographics Association, 28–36.

CANHAM, P. B. 1970. The Minimum Energy of Bending as a
Possible Explanation of the Biconcave Shape of the Human Red
Blood Cell. Journal of Theoretical Biology 26, 61–81.

CHEN, B.-Y. 1973. An Invariant of Conformal Mappings. Pro-
ceedings of the American Mathematical Society 40, 2, 563–564.

CHOPP, D. L., AND SETHIAN, J. A. 1999. Motion by Intrinsic
Laplacian of Curvature. Interfaces and Free Boundaries 1, 1,
107–123.

CLARENZ, U., DIEWALD, U., DZIUK, G., RUMPF, M., AND
RUSU, R. 2004. A Finite Element Method for Suface Restora-
tion with Smooth Boundary Conditions. Computer Aided Geo-
metric Design. To appear.

DECKELNICK, K., DZUIK, G., AND ELLIOTT, C. M. 2003. Fully
Discrete Semi-Implicit Second order Splitting for Anisotropic
Surface Diffusion of Graphs. Tech. Rep. 33, University of
Magdeburg.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A.
1999. Implicit Fairing of Irregular Meshes using Diffusion and
Curvature Flow. In Computer Graphics (Proceedings of SIG-
GRAPH), 317–324.

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic Pa-
rameterizations of Surface Meshes. Computer Graphics Forum
(Proceedings of Eurographics 2002) 21, 3, 209–218.

DROSKE, M., AND RUMPF, M. 2004. A Level Set Formulation
for Willmore Flow. Interfaces and Free Boundaries. To appear.

DUCHAMP, T., CERTAIN, A., DEROSE, T., AND STUETZLE, W.
1997. Hierarchical Computation of PL Harmonic Embeddings.
Tech. rep., University of Washington.

ECK, M., DEROSE, T. D., DUCHAMP, T., HOPPE, H., LOUNS-
BERY, M., AND STUETZLE, W. 1995. Multiresolution Analysis
of Arbitrary Meshes. In Proceedings of SIGGRAPH, 173–182.

FENCHEL, W. 1929. Über die Krümmung und Windung
geschlossener Raumkurven. Math. Ann. 101, 238–252.

GREINER, G. 1994. Variational Design and Fairing of Spline Sur-
faces. In Proceedings of EUROGRAPHICS, vol. 13, 143–154.

GRINSPUN, E., KRYSL, P., AND SCHRÖDER, P. 2002. CHARMS:
A Simple Framework for Adaptive Simulation. ACM Transac-
tions on Graphics 21, 3, 281–290.

GRINSPUN, E., HIRANI, A., DESBRUN, M., AND SCHRÖDER, P.
2003. Discrete Shells. In Symposium on Computer Animation,
62–67.

GU, X., AND YAU, S.-T. 2003. Global Conformal Surface Para-
meterization. In Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing, 127–137.

HARI, L. P., GIVOLI, D., AND RUBINSTEIN, J. 2001. Com-
putation of Open Willmore-Type Surfaces. Applied Numerical
Mathematics 37, 257–269.

HAUTH, M., ETZMUSS, O., AND STRASSER, W. 2003. Analysis
of Numerical Methods for the Simulation of Deformable Mod-
els. The Visual Computer 19, 7–8, 581–600.

HELFRICH, W. 1973. Elastic Properties of Lipid Bilayers: Theory
and Possible Experiments. Zeitschrift für Naturforschung Teil C
28, 693–703.

LOTT, N. J., AND PULLIN, D. I. 1988. Method for Fairing B-
Spline Surfaces. Computer-Aided Design 20, 10, 597–600.

MAYER, U. F., AND SIMONETT, G. 2000. Self-Intersections for
the Surface Diffusion and the Volume Preserving Mean Curva-
ture Flow. Differential and Integral Equations 13, 1189–1199.

MAYER, U. F. 2001. Numerical Solution for the Surface Diffusion
Flow in Three Space Dimensions. Computational and Applied
Mathematics 20, 3, 361–379.

MERCAT, C. 2001. Discrete Riemann Surfaces and the Ising
Model. Communications in Mathematical Physics 218, 1, 177–
216.

PINKALL, U., AND POLTHIER, K. 1993. Computing Discrete
Minimal Surfaces and Their Conjugates. Experimental Mathe-
matics 2, 1, 15–36.

SCHNEIDER, R., AND KOBBELT, L. 2001. Geometric Fairing
of Irregular Meshes for Free-From Surface Design. Computer
Aided Geometric Design 18, 4, 359–379.

TASDIZEN, T., WHITAKER, R., BURCHARD, P., AND OSHER, S.
2003. Geometric Surface Processing via Normal Maps. ACM
Transactions on Graphics 22, 4, 1012–1033.

WELCH, W., AND WITKIN, A. 1994. Free-Form Shape Design
Using Triangulated Surfaces. Computer Graphics (Proceedings
of SIGGRAPH) 28, 247–256.

WHITE, J. H. 1973. A Global Invariant of Conformal Mappings in
Space. Proceedings of the American Mathematical Society 38,
1, 162–164.

WILLMORE, T. J. 2000. Surfaces in Conformal Geometry. Annals
of Global Analysis and Geometry 18, 3-4, 255–264.

XU, G., PAN, Q., AND BAJAJ, C. L. 2003. Discrete Surface Mod-
eling using Geometric Flows. Tech. rep., University of Texas.

YOSHIZAWA, S., AND BELYAEV, A. G. 2002. Fair Triangle Mesh
Generation with Discrete Elastica. In Geometric Modeling and
Processing, IEEE Computer Society, 119–123.

Chapter 6:
Discrete Conformal Mappings via Circle Patterns

Liliya Kharevych
Caltech

Boris Springborn
TU Berlin

Peter Schröder
Caltech

Figure 1: Examples of discrete conformal maps produced with our method. Next to each 3D texture image is a visualization of the planar
region over which the surface is parameterized. The (cut) Camel demonstrates a constrained complex boundary shape; the Max Planck pa-
rameterization (also with cuts) shows a straightline bounded parameter region suitable for good texture packing; the face mask demonstrates
natural boundary conditions; and the lion head mapping to a disk.

Abstract

We introduce a novel method for the construction of discrete con-
formal mappings from (regions of) embedded meshes to the plane.
Our approach is based on circle patterns, i.e., arrangements of
circles—one for each face—with prescribed intersection angles.
Given these angles the circle radii follow as the unique minimizer
of a convex energy. The method has two principal advantages
over earlier approaches based on discrete harmonic mappings: (1)
it supports very flexible boundary conditions ranging from natural
boundaries to control of the boundary shape via prescribed curva-
tures; (2) the solution is based on a convex energy as a function
of logarithmic radius variables with simple explicit expressions for
gradients and Hessians, greatly facilitating robust and efficient nu-
merical treatment. We demonstrate the versatility and performance
of our algorithm with a variety of examples.

CR Categories: G.1.0 [Numerical Analysis]: General—
Numerical Algorithms; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve,surface, solid and object
representations; Geometric algorithms, languages, and systems.

Keywords: Conformal parameterizations; discrete differential
geometry; circle patterns; discrete analytic functions; meshing; tex-
ture mapping

1 Introduction

Surfaces are often represented as collections of samples with con-
nectivity, typically in the form of a simplicial mesh. It is natural
and convenient to use the implied piecewise linear mesh as the
basis for formulating a variety of computational algorithms, such
as parameterization problems or the solution of partial differential
equations for purposes of simulation. In this paper we argue that
when it comes to computing conformal structures, e.g., conformal
parameterizations of surfaces, circles can be a far better basis upon
which to formulate the underlying relationships and consequent al-
gorithms (see Figure 2). In particular we advocate the formulation
of the discrete conformal mapping1 problem in terms of circles and
the angles with which they intersect, so called circle patterns.

The idea of using circles to capture a discrete notion of confor-
mality goes back to a conjecture of Thurston’s [1985] who posited
that one may approximate the Riemann mapping2 from a given re-
gion in the plane to the unit disk through a sequence of increasingly
fine, regular (hexagonal) circle packings. This conjecture was later
proven correct by Rodin and Sullivan [1987]. Circle packings as-
sign a circle to each vertex, with pairwise tangency for each edge
in the mesh. A numerical algorithm for the construction of such
mappings, based on iterative adjustment of circle radii, was pro-

1In this article we use the term “discrete conformal map” for maps be-
tween meshes that are close to angle preserving.

2The Riemann Mapping Theorem asserts that there exists a unique (up to
Möbius transformations of the unit disk to itself) conformal map from any
region in the plane (open, connected and simply connected, not the whole
plane) onto the unit disk.

posed by Thurston [1980] and improved and realized by Collins
and Stephenson [2003]. Unfortunately, circle packings yield map-
pings which depend only on the combinatorics of the original mesh,
while we are seeking methods which depend on the geometry of the
mesh. One possible avenue to remedy this shortcoming is to use
patterns of non-intersecting circles [Bowers and Hurdal 2003]. Un-
fortunately there exists little theory concerning these patterns and
in empirical practice solutions cannot always be found.

In contrast, circle patterns, which associate a circle with each face
in the original mesh provide an opportunity to incorporate the in-
trinsic geometry of the original mesh: each edge is assigned an
angle θ ∈ (0,π) which corresponds to the intersection angle of the
two incident face circles. A recent theorem of Bobenko and Spring-
born [2004] characterizes such circle patterns as the unique mini-
mizer of a convex energy expressed in terms of logarithmic radius
variables (and the given edge angles). Simple, explicit expressions
for the energy, its gradient, and Hessian are available and greatly
facilitate an efficient implementation.

Figure 2: Typically a triangle mesh is understood as the piecewise
linear interpolation of given vertex coordinates induced by the con-
nectivity of the mesh (left). Alternatively we may also think of the
vertices as the unique loci where incident triangle circumcircles in-
tersect (middle;right). The latter point of view is more appropriate
for formulating relationships of conformal geometry.

Contributions We describe a robust and efficient numerical
procedure for the construction of discrete conformal mappings. In
the first stage of the algorithm, we compute edge labels that are
close to the circumcircle intersection angles in the original mesh
and may serve as circumcircle intersection angles of a planar De-
launay mesh. This requires solving a quadratic programming prob-
lem. In the second stage, we use the theory of Bobenko and Spring-
born [2004] to construct the planar Delaunay mesh with the given
intersection angles from the first stage. Here we have to minimize a
convex function subject to no constraints. The variables are the log-
arithmic circumcircle radii. We modify the energy of Bobenko and
Springborn (without compromising the underlying theory) to pro-
vide a simple and uniform treatment of boundary conditions (see
Figure 3). With these we can provide both natural boundaries and
detailed control over the boundary shape (see Figure 1). The para-
meter mappings are always locally injective. They may fail to be
globally injective due to self-overlap of the boundary of the parame-
ter domain. However, this can be avoided since we can prescribe the
boundary curvature κ: if for any sequence of consecutive boundary
vertices the sum of κs is larger or equal −π , then there can be no
overlap and the method is guaranteed to produce a global embed-
ding. The resulting flat triangulations are of high quality as they are
always triangulations of a (not necessarily convex) planar domain
with all interior edges satisfying the local Delaunay criterion.

1.1 Related Work

Most approaches to the construction of conformal mappings for
meshes have relied on discretizations of continuous formulations.
First order finite difference approximations of the Cauchy-Riemann

Figure 3: A simple mesh (left) mapped to the plane using circle
patterns. Boundary shape is controlled through appropriate curva-
ture conditions. Examples: disk boundary; natural boundary; and
rectangular boundary (left to right).

equations were used by Levy et al. [2002]. The same equations, the
so-called “cotan formula” [Pinkall and Polthier 1993], also result
when considering a discrete variational Ansatz based on mesh in-
variants [Desbrun et al. 2002] or when deriving discrete holomor-
phy [Mercat 2001] from first principles using Discrete Exterior Cal-
culus (DEC) methods [Hirani 2003]. Such approaches, for exam-
ple, have been used to compute discrete approximations of Riemann
structures for general meshes by Gu and co-workers (see [Gu and
Yau 2003] and the references therein).

A great advantage of these methods is that they require only the
solution of simple linear systems. However, due to negative cotan
weights solutions may lack local injectivity. More troublesome is
the lack of flexible boundary conditions: Dirichlet conditions intro-
duce non-conformal distortion (see Figure 4), while natural bound-
aries provide essentially no control over the boundary.

Figure 4: Harmonic parameterization (left) of a region (middle) to
the disk with Dirichlet boundary conditions (vertices are mapped
to a k-gon with matching secant edge lengths) compared to our
approach which sets appropriate angle conditions at the boundary
(right).

A completely different Ansatz to the construction of conformal
maps is based on circle packing. Continuous conformal mappings
can be characterized as mapping infinitesimal circles to infinites-
imal circles. Circle packings replace infinitesimal circles with fi-
nite circles. In the limit of refinement the continuous confor-
mal maps are recovered [Rodin and Sullivan 1987]. Collins and
Stephenson [2003] have implemented these ideas in their software
CirclePack. The disadvantage of using circle packings (with
tangent circles) is that they depend only on the combinatorics of
the original mesh. In particular, if one starts with a planar mesh and
parameterizes it, the result is not the original mesh. This is in con-
trast to our approach. Given a triangulation of a region in the plane
satisfying the empty circumcircle property, one simply assigns the
observed intersection angles of circumcircles (at the boundary one
adds infinite circles, i.e., straight lines) to each edge and our varia-
tional approach will return the identity map as a conformal map of
the region to itself.

An extension of Stephenson’s original circle packing scheme that
takes the geometry of the original mesh into account is based on
patterns of non-intersecting circles, so called inversive distance cir-
cle packings [Bowers and Hurdal 2003]. (Non-intersecting circles
have imaginary “intersection angles.”) However, virtually nothing
is known regarding the existence and uniqueness of inversive dis-
tance packings.

The first variational principle for circle packings was presented in

a seminal paper by Colin de Verdière [1991]. The variables are
the circle radii. However, a closed formula is presented only for
the derivative of the energy, not for the energy itself. Since then,
different variational principles for circle packings [Brägger 1992]
as well as circle patterns [Rivin 1994], [Leibon 2002] were dis-
covered. In these, the variables are the angles of a triangulation,
subject to numerous linear constraints (one per edge and one per
face for Rivin’s energy. Leibon’s energy deals with patterns in the
hyperbolic plane.) In this paper, we use the most general functional
which was given by Bobenko and Springborn [2004]. In their setup,
the variables are logarithmic circle radii. Most importantly, they are
not subject to any constraints.

Most closely related to our approach is the work of Sheffer and
de Sturler [2000]. They flatten a given mesh by formulating a con-
strained quadratic minimization problem which seeks to find angles
at the corners of triangles which are close to desired angles in a
weighted L2 norm. The constraints capture the angle sum condi-
tions at all faces (sum of angles = π) and vertices (sum of angles
= 2π) as well as a non-linear condition on the product of sines of
angles. The resulting minimization problem has local minima and
does not have a unique solution. The resulting mappings are of ex-
cellent quality but only natural boundary conditions are provided.
Their approach is similar in spirit to ours as we also optimize an-
gles. We discuss the similarities and differences of both schemes in
Section 2.3.

2 Circle Patterns and Discrete Conformal
Maps

For computational problems in Euclidean geometry the use of tri-
angles as a basic primitive is convenient and natural, since trian-
gles are the basic invariant “building blocks” of Euclidean geom-
etry. When one is interested in conformal geometry the picture
changes. The basic invariants of conformal geometry are circles
and the angles they make with one another. In the case of trian-
gle meshes these differing points of view are naturally compati-
ble. For example, the vertices in a triangle mesh are the unique
loci where the circumcircles of the incident triangles intersect (see
Figure 2). Similarly the empty circumcircle property, which cor-
responds to non-negative intersection angles between circumcircles
incident on an edge, is a defining feature of Delaunay triangula-
tions. While we may use triangles for tasks such as interpolation
and rendering, conformal relationships between vertices are better
captured through expressions involving the circumcircles they de-
fine and the angles these circles make with one another. A benefit
of this different point of view is that much mathematical machinery
from conformal geometry carries over to the discrete computational
setting. For example, existence and uniqueness properties of con-
formal maps are reflected in the existence and uniqueness properties
of circle patterns.

We begin this section by defining circle patterns in the plane and
describe their characterization as minimizers of a variational en-
ergy. The latter forms the basis for our approach. While we only
deal with triangle meshes here, the theory extends to polyhedral
meshes and also to circle patterns with cone singularities [Bobenko
and Springborn 2004].

2.1 Circle Patterns

Consider a Delaunay triangulation T = (V,E,T) of finitely many
points P = {pi} in the plane. Here V = {vi}, E = {ei j}, and

T = {ti jk} denote the sets of vertices, edges, and triangles respec-
tively with pi the point position of vertex vi. From this Delaunay
triangulation, we may read off the following edge weights

∀ei j ∈ E : θe =

{
π −αk

i j −α l
i j for interior edges

π −αk
i j for boundary edges

, (1)

where αk
i j (and α l

i j) are the angle(s) opposite ei j in the adjacent tri-
angle(s) ti jk (and t jil). The θ -weight of an interior edge is the (exte-
rior) intersection angle of the circumcircles of the incident triangles
(see Figure 5). The θ -weight of a boundary edge is the intersection

ei j

v j

vi

vk

vl

αk
i j

α l
i j

θe

ci jk
c jil

θe

Figure 5: Notation: The angles αk
i j and α l

i j opposite a given edge
ei j and incident on a particular vertex vk respectively vl . The edge
angle θe denotes the exterior intersection angle of the incident cir-
cumcircles or equivalently the angle between the two radii at vi (or
v j).

angle of the circumcircle of the incident triangle with the straight
line containing the boundary edge. (View this line as a circle with
infinite radius.)

Assume that the Delaunay triangulation is unique (points are in gen-
eral position). Then

∀ei j ∈ E : 0 < θe < π. (2)

(Otherwise, some θe may be 0.) For an interior vertex vi, the sum
of edge weights on the incident edges is 2π:

∀vi ∈Vint : ∑
e3vi

θe = 2π, (3)

while for a boundary vertex vi, the defect

∀vi ∈Vbdy : κi = 2π − ∑
e3vi

θe (4)

is the curvature angle of the polygonal boundary at that vertex (see
Figure 6). Since the Delaunay triangulation triangulates the con-

θ
θ

θ θ

κ
∞∞

Figure 6: The θ angle sum at the boundary contains the discrete
curvature term κ .
vex hull of the sites, 0 ≤ κi < π . However, we want to consider a
slightly more general setup: Instead of a Delaunay triangulation,

we may start with a flat PL-surface that is topologically a disk and
that is triangulated in such a way that the edge weights θ satisfy the
local Delaunay condition (Equation 2). That is, we allow “Delau-
nay triangulations” of non-convex regions with polygonal bound-
ary. Hence, κi may be negative, and we speak of circle patterns
instead of Delaunay triangulations.

Now the idea is to reconstruct a circle pattern from its abstract tri-
angulation and the intersection angles.

Circle Pattern Problem Given an abstract triangulation T of
a topological disk and a function θ ∈ RE on the edge set E that
satisfies Equation 2 and the angle sum condition for interior vertices
(Equation 3), find a circle pattern that is combinatorially equivalent
to T and has the given edge weights θ .

The circle pattern problem has a solution (unique up to scale) if and
only if a coherent angle system exists [Rivin 1994; Bobenko and
Springborn 2004]. A coherent angle system is an assignment of
angles α̂k

i j for all triangles such that

(i) they are all positive
α̂

k
i j > 0,

(ii) they sum to π in each triangle

∀ti jk ∈ T : α̂
k
i j + α̂

i
jk + α̂

j
ki = π,

(iii) they satisfy Equations 1 (with α̂ instead of α) for the given
θ -weights.

The solvability question for a circle pattern problem is therefore
reduced to a linear feasibility problem with 3|T | variables, 3|T | in-
equality constraints and |T |+ |E| equality constraints.

Conditions (i) and (ii) imply that all α̂k
i j < π . Condition (iii) implies

that the α̂k
i j sum to 2π around interior vertices and to π − κi for

boundary vertices (with κi defined by Equation 4). This may give
the false impression that finding a coherent angle system is equiv-
alent to solving the circle pattern problem—in the sense that one
could construct triangles with angles α̂k

i j and lay them out. This is
not so. The angles determine the triangles only up to scale. In gen-
eral it is not possible to determine the size of each triangle in such
a way that they all fit together. This observation is also what lead
Sheffer and de Sturler [2000] to add their non-linear constraints on
the product of sines of triangle angles.

Conditions (i), (ii) and (iii) combined imply that a necessary condi-
tion for the solvability of a circle pattern problem is that

∑
vi∈Vbdy

κi = 2π, (5)

with κi defined by Equation 4.

Local Geometry of an Edge To elucidate the role of terms
which make up the variational energy characterizing the solution to
the circle pattern problem we consider the local geometry around a
given edge (see Figure 7). The basic building blocks of the parame-
terization are the kites formed by the endpoints of an edge (vi, v j)
and the incident face circumcircle centers ci jk and c jil for triangles
ti jk and t jil respectively (at the boundary t jil is missing). Since all
relations are scale invariant it is convenient to introduce the loga-
rithmic radius variables ρt = logrt for t ∈ T . With these definitions

the angle ϕk
e induced at ci jk by ei j follows as

ϕ
k
e =

{
fe(x) = atan2(sinθe,ex− cosθe) e ∈ Eint
π −θe e ∈ Ebdy

(6)

where x = ρi jk −ρ jil (see Figure 7). The condition that every face

ci jk

ri jk

vi

v j

ϕk
e

θe

r jil

ϕ l
e c jil

Figure 7: Geometry around an edge (left). The kite formed by the
edge endpoints and the incident face circumcircle centers (ci jk, c jil)
allows us to determine ϕk

e as a function of the given θe and unknown
radii ri jk and r jil (see Equation 6).

in the parameterization should be flat constrains the ρt as functions
of the θe through the system of non-linear equations

∀t ∈ T : 0 = 2π −∑
e∈t

2ϕ
t
e, (7)

i.e., summing around all edges incident on a face the resulting total
angle must be 2π .

The basic idea of the variational energy formulation of Bobenko
and Springborn now is to give an energy S(ρ) for which the face
flatness Equations 7 are equivalent to the vanishing of the energy
gradient, ∇ρ S = 0.

Variational Characterization of Circle Patterns To arrive
at the desired energy Bobenko and Springborn used the fact that

Fe(x) =
∫ x

−∞

fe(ξ)dξ = ImLi2(ex+iθe),

where

Li2(x) =−
∫ x

0

log(1−ξ)
ξ

dξ

|x|≤1

=
∞

∑
k=1

xk

k2

denotes the dilogarithm function. The imaginary part of the dilog-
arithm function of a complex argument can be expressed in terms
of a 2π-periodic real function (Clausen’s integral) that can be com-
puted efficiently with high accuracy. Using ρk and ρl as shorthand
for ρi jk (respectively ρ jil) the energy is

S(ρ) = ∑
e∈Eint

(
ImLi2(eρk−ρl+iθe)+ ImLi2(eρl−ρk+iθe)

− (π −θe)(ρk +ρl)
)

− ∑
e∈Ebdy

2(π −θe)ρk +2π ∑
t∈T

ρt .

(8)

The gradient of this energy with respect to ρk is

∂S
∂ρk

= 2π − ∑
{e∈k}∩Eint

2 fe(ρk −ρl)− ∑
{e∈k}∩Ebdy

2(π −θe), (9)

giving us the desired equivalence of ∇ρ S = 0 and Equation 7. The
Hessian of the energy is

dρ
T (HessS)dρ = ∑

e∈Eint

sinθe

cosh(dρk −dρl)− cosθe
(dρk −dρl)2.

(10)

In particular from this expression we can see that the energy is con-
vex except along the scaling “direction,” i.e., the Hessian has a null
space spanned the constant vector dρ = (1,1,1, . . .) and is other-
wise positive. (This immediately implies the uniqueness of solu-
tions of the circle pattern problem up to scale.)

2.2 Algorithm

There are three basic stages to the algorithm: (1) setting the θ an-
gles; (2) minimizing the energy; and (3) generating the layout. We
discuss these in turn.

2.3 Edge Angles

As a first step of the algorithm, θe angles need to be assigned to
all edges of the mesh. These must satisfy the bounds constraints
(Equation 2), sum conditions (Equation 3) at interior vertices, and,
in the case of prescribed boundary curvatures, the boundary curva-
ture conditions (Equations 4 and 5). Last but not least, a coherent
angle system must exist for them. Of course, the θ angles should
also reflect the conformal structure of the original mesh as well as
possible. Let αk

i j denote the angles in the original mesh. Ideally,
one would like to assign θe = π −αk

i j −α l
i j, where αk

i j and α l
i j are

the angles opposite an interior edge e (and θe = π−αk
i j for a bound-

ary edge.) Then the intersection angles in the circle pattern would
be the same as the intersection angles of the circumcircles in the
mesh. This is too much to ask, though, because the conditions on
θe will be violated (after all the original mesh is not flat).

Our aim is to find angles α̂k
i j close to αk

i j that can serve as a coherent
angle system for the θ -angles that we read off in the usual way. To
this end, we minimize the objective function

Q(α̂) = ∑ |α̂k
i j −α

k
i j|2

subject to the following constraints:

• positivity: ∀α̂k
i j : α̂k

i j > 0,

• local Delaunay condition: ∀ei j ∈ Eint : α̂k
i j + α̂ l

i j < π ,

• triangle sum condition: ∀ti jk ∈ T : α̂k
i j + α̂ i

jk + α̂
j

ki = π ,

• vertex sum condition: ∀vk ∈Vint : ∑ti jk3vk
α̂k

i j = 2π .

If we want natural boundary conditions (see for example the face in
Figure 1 and the lion and Max Planck examples in Figures 9, 11),
we add the constraint

• natural boundary condition: ∀vk ∈Vbdy : ∑ti jk3vk
α̂k

i j < 2π.

If we want to prescribe the boundary curvature κ at boundary ver-
tices (see the constrained boundary for the camel and the straight-
line layout for Max Planck in Figure 1), we add the constraint

• prescribed boundary curvature:
∀vk ∈Vbdy : ∑ti jk3vk

α̂k
i j = π −κk.

We solve this quadratic minimization problem with linear inequal-
ity constraints (on the α̂k

i j) with the software [Mosek 2005]. Since
both the bounds constraints and the objective are convex and the ad-
ditional constraints linear we have experienced no difficulty finding
solutions efficiently even for large meshes (see Section 3).

Then we set θe = π − α̂k
i j − α̂ l

i j on interior edges and θe = π − α̂k
i j

on boundary edges and proceed to the next stage of energy mini-
mization.

It is theoretically possible that the constraints are not feasible. In the
cases of natural boundary conditions and mapping to the disk this
is due to the (counterintuitive) fact that there exist triangulations of
the topological sphere that cannot be realized as convex polyhedra
with vertices on the unit sphere; see, e.g., Grünbaum [2003]. These
triangulations are rather special and we do not expect to encounter
them in practice. In any case, it can be shown that 4 to 1 refinement
applied once leads to a legal triangulation. In the case of prescribed
boundary curvature, it may happen that the constraints become in-
feasible. We have not encountered any problems, but we have also
not put any effort into exploring just how far one can go. (Our most
complex example along these lines is the texture boundary for the
Camel with numerous prescribed curvatures all around the bound-
ary.)

2.3.1 Mapping to the Disk

To map a mesh to the unit disk, we first pick a vertex at the bound-
ary of the mesh and remove it together with all adjacent faces (see
Figure 8). Now we map the resulting mesh to a convex polygon

Figure 8: Mapping a mesh to the disk. (1) Remove a boundary ver-
tex together with all adjacent faces (dark pink). (2) Map the mesh
to a convex polygon where all the original boundary edges lie on
a straight line (top). The removed vertex (which should be imag-
ined at infinity) and its incident triangles are shown schematically
(dark pink). (3) Invert in a circle and reinsert the missing vertex to
complete the mesh (bottom right). In this inversion we get to pick a
vertex which will map to the center of the disk. In our example this
vertex is the marked vertex between the ears of the cat.

in the plane with prescribed boundary curvature. At boundary ver-
tices that were not adjacent to any of the removed faces, we fix the
curvature to be 0. At the others, we bound the curvature to be pos-
itive. These conditions ensure that the original mesh boundary will
be mapped to a straight line (Figure 8, top). Now we reflect in a
circle whose center lies on the other side of that line. This maps

the boundary line to a boundary circle. Finally we reinsert the re-
moved vertex at the center of the reflection circle (it lies on the
boundary circle) and complete the mesh (Figure 8, bottom right).
Note that the circle reflection maps the other edges of the polygon
to the circumcircles of the reinserted triangles. If we want to have a
particular interior vertex at the center of the circular map, this can
be achieved by an appropriate choice of reflection circle (or equiv-
alently by a Möbius transformation).

In the polygonal mesh (Figure 8, top), the dynamic range of the
edge lengths is typically large. This was initially a cause for con-
cern, but it turned out to be harmless. We give a rough argument
why this should be so. Suppose the mesh has n vertices. Then the
number of boundary edges will be roughly n

1
2 . Suppose that in the

final circular map the boundary vertices are evenly spaced on the
boundary circle. After inversion on a circle that sends one of these
vertices to infinity, one finds that the largest (finite) edge on the
boundary line is proportional to n

1
2 while the smallest edge is pro-

portional to n−
1
2 . Hence the ratio is n. If n = 106 we would expect

to loose about 6 out of 16 double precision digits. Figure 11 shows
an example of a larger mesh mapped to the disk. We experienced
no numerical difficulties in this procedure.

Discussion Angle optimization is also at the heart of the work
of Sheffer and de Sturler [2000], who formulate their flattening
problem as one which minimizes the (weighted) least squares de-
viation of the measured αk

i j (scaled to satisfy the angle sum con-
dition around a vertex) from the realizable α̂k

i j with flatness sum
conditions for each triangle and each vertex. Unfortunately, when
using the α̂k

i j to determine the final shape of the triangles in the
flat mesh, one must additionally include non-linear conditions on
the quotients of sines of α̂k

i j around each vertex (due to the law of
sines). This additional non-linear condition makes the minimiza-
tion problem numerically much harder since it becomes non-convex
(for recent significant progress in the numerical treatment see [Shef-
fer et al. 2004]). Due to the lack of convexity, it cannot be expected
that there is only one local minimum.

Our method works in two stages. First we change the angles of
the triangles, but only so much that we can read off valid θ -angles.
The deviation from the ideal angles is measured with a quadratic
objective just as in the work of Sheffer and de Sturler. The criti-
cal observation is that the sum of two α-angles across an edge is a
conformal invariant (because it measures the angle of intersection
between the circumcircles), while the α-angles themselves are not.
In other words, the best one can hope for in a discrete conformal
mapping is conservation of θ -angles, not α-angles. Formulating
the problem in terms of given θ -angles then leads to a simple con-
vex, and thus unique, minimization problem: the final circle pattern
in the plane is completely determined by the θ -angles.

An alternative approach for the construction of mappings to the disk
in the context of discrete harmonic mappings (cotan formula) was
proposed by Jin and co-workers [2004]. They “welded” a mesh
with its double at the boundary to create a sphere topology and
then proceeded to map to the sphere. Enforcing symmetry in this
mapping turns the original boundary into an equator. They had to
effectively double the degrees of freedom while in our approach the
number of degrees of freedom is (essentially) constant. As they ob-
served, being able to map to a canonical region such as a disk one
can effectively map from any region to any other through compo-
sition of one map to the disk with the inverse of another map to
the disk (though the meshes in general do not match up and some
interpolation in the disk is required).

- 1.5

- 1

- 1.25

Figure 9: Comparison of two different mappings of the cut Max
Planck model: natural boundaries and a straightline boundary. Er-
ror plots indicate the quasiconformal distortion between original
and mapped triangles.

2.4 Energy Minimization

With a given valid assignment of θe for all edges the energy min-
imization is straight forward (using Equations 8, 9, and 10). We
have relied on a black box energy minimizer [Mosek 2005] with
excellent results (see Section 3).

2.5 Layout Generation

Once all radii have been determined the length of each edge follows
easily from a local computation

|ei j|= 2rk sinϕ
k
e = 2rl sinϕ

l
e

(see Figure 7). We begin the layout with some interior edge, starting
it at the origin and orienting it along the positive x-axis and push it
onto an empty stack. When popping an edge off the stack we lay
out any vertices not yet laid out in the incident triangles (at most
two). This results in at most four edges being finished (second end
point fixed); such edges are pushed onto the stack. The process
repeats until the stack is empty. There may be concern that such a
procedure might lead to cumulating error as one proceeds. We have
found consistently that we achieve accuracies on the order of 10−8

with double precision data (for example for the Camel, Max Planck,
and Lion datasets). Should accuracy of the layout become an issue
we recommend the procedure given in [Sheffer et al. 2004], which
solves for all vertex positions simultaneously with a simple (least
squares induced) linear system.

3 Results

Figure 1 demonstrates different boundary shapes that can be ob-
tained by our method. The Max Planck head is parameterized by
a simple polygonal region. This was achieved by prescribing the
boundary curvature of the parameter domain. It was set to zero at
all boundary vertices, except for eight designated corner vertices,
where it was set to ±π/2. The parameterized camel shows that
more complicated boundary shapes can also be achieved by pre-
scribing the boundary curvature. Here the parameter domain is es-
sentially a polygonal region with rounded corners. Both the Max

Planck mesh and the camel mesh were cut before parameteriza-
tion. We do nothing to ensure continuity across the cut and, unsur-
prisingly, there is none. The face was parameterized with natural
boundary conditions and the lion head was mapped to a disk. The
following table shows timings for the angle optimization and en-
ergy minimization. The layout times are negligible (∼0.5s). The
timings were measured on a 3.6GHz Pentium IV Xeon.

Model Faces Angles Energy
Max Planck 37.9K 26s 9s
Camel 77.7K 56s 17s
Face 12.6K 7s 2s
Lion Head 39.6K 28s 8s

We claim that our discrete conformal maps are close to angle pre-
serving. A measure for the conformality of a map is the quasicon-
formal distortion: the ratio of the larger to the smaller eigen value of
the Jacobian matrix. It is at least 1 and equal to 1 everywhere only
for conformal maps. Figures 9 and 11 show the quasiconformal
distortion of our discrete conformal maps for different meshes and
different boundary conditions. For the Max Planck head with nat-
ural boundary conditions, the average and maximal values are 1.02
and 1.35. With the polygonal boundary conditions the maximum
distortion goes up to 4.06, but the high distortion is concentrated at
the boundary and spreads very little inwards. Even the example of
the highly convoluted lion head (Figure 11) shows very low confor-
mal distortion in most places with a few hot spots of high distortion.
Because the natural boundary shape is already fairly round, the dif-
ference between natural boundary conditions and disk boundary is
not so pronounced.

Figure 10 shows the results of an experiment to see how sensitive
our method is to abruptly differing sampling rates. The geometry
of the head is symmetric while the sampling rate doubles at the
right/left symmetry line. Examining the flattened mesh (using nat-
ural boundary conditions) we observe that the left/right symmetry
is preserved (see also the resulting texture mapping on the original
surface).

4 Conclusion

We have presented a new method to parameterize surface meshes.
It is based on the mathematical theory of circle patterns and pro-
duces discrete conformal maps. The shape of the boundary may
be determined by natural boundary conditions or by prescribing the
curvature of the boundary. This affords a high degree of control
over the boundary shape ranging from disks and simple polygonal
outlines to more complex boundary arrangements. The examples
show that our method is efficient, provides good parameterizations

Figure 10: Our method is robust to varying sampling rates. Here
a symmetric (left/right) geometry sampled at different rates. The
parameterization (with natural boundary) maintains the symmetry
of the geometry.

even for large and complex meshes, and that the result is insensitive
to the way the surface is triangulated.

Our algorithm works in three stages: first, we solve a quadratic
programming problem to obtain intersection angles. These are the
input for the second stage that consists in the minimization of a
convex energy. The output of this stage (the radii of the circumcir-
cles) and the intersection angles determine the shape of all triangles
which are then laid out. In every stage, the solution is unique and
depends continuously on the input.

At the moment, we use general purpose solvers in the first two
stages, and a very simple layout algorithm in the third. Efficiency
could be improved by customizing and tuning the minimizers, and
by switching to hierarchical methods [Sheffer et al. 2004]. Their so-
phisticated layout scheme—it minimizes the global layout error—
can also be used without change as the third stage in our algorithm.

When we parameterize a mesh with prescribed boundary curvature,
we have to set the curvature at each boundary vertex. At present, we
do this manually. A user friendlier graphical interface is desirable.
Since it is most likely that the performance of our method can be
improved further, it is not unreasonable to envision an interactive
interface that lets the user manipulate the parameter domain while
the parameterization is incrementally recomputed.

The most exciting avenue for future work concerns the use of varia-
tional methods for the construction of discrete conformal mappings
to the sphere and for surfaces of higher genus. Energy functionals
for circle patterns on the sphere as well as hyperbolic space ex-
ist and can be used in a manner similar to our approach presented
here. There are both additional difficulties (the sphere functional
is not convex) and opportunities: the hyperbolic circle pattern case
does not require a surface with higher genus to be cut open first.
Instead one can solve the energy minimization directly and only af-
ter the solution has been found (through a layout in the hyperbolic
plane) pick a suitable fundamental domain.

Acknowledgments This work was supported in part by NSF
(DMS-0220905, DMS-0138458, ACI-0219979), DFG (Research

- 1.5

- 1

- 1.25

Figure 11: Comparison of two different mappings of the Lion data
set: natural boundaries and disk boundary. Error plots indicate the
quasiconformal distortion between original and mapped triangles.

Center MATHEON “Mathematics for Key Technologies,” Berlin),
DOE (W-7405-ENG-48/B341492), nVidia, the Center for Inte-
grated Multiscale Modeling and Simulation, Alias, and Pixar. Spe-
cial thanks to Alexander Bobenko, Mathieu Desbrun, Ilja Friedel,
and Cici Koenig.

References

BOBENKO, A. I., AND SPRINGBORN, B. A. 2004. Variational
Principles for Circle Patterns and Koebe’s Theorem. Transac-
tions of the American Mathematical Society 356, 659–689.

BOWERS, P. L., AND HURDAL, M. K. 2003. Planar Conformal
Mappings of Piecewise Flat Surfaces. In Visualization and Math-
ematics III, Springer-Verlag, Berlin, H.-C. Hege and K. Polthier,
Eds., Mathematics and Visualization, 3–34. Papers from the 3rd
International Workshop held in Berlin, May 22–25, 2002.

BRÄGGER, W. 1992. Kreispackungen und Triangulierungen. En-
seign. Math. 38, 201–217.

COLIN DE VERDIÈRE, Y. 1991. Un principe variationnel pour les
empilements de cercles. Invent. Math. 104, 655–669.

COLLINS, C., AND STEPHENSON, K. 2003. A Circle Packing
Algorithm. Computational Geometry: Theory and Applications
25, 233–256.

DESBRUN, M., MEYER, M., AND ALLIEZ, P. 2002. Intrinsic Pa-
rameterizations of Surface Meshes. Computer Graphics Forum
(Proceedings of Eurographics 2002) 21, 3, 209–218.

GRÜNBAUM, B. 2003. Convex polytopes, second ed., vol. 221 of
Graduate Texts in Mathematics. Springer-Verlag, New York.

GU, X., AND YAU, S.-T. 2003. Global Conformal Surface Pa-
rameterization. In Symposium on Geometry Processing, Euro-
graphics/ACM SIGGRAPH, 127–137.

HIRANI, A. N. 2003. Discrete Exterior Calculus. PhD thesis,
California Institute of Technology.

JIN, M., WANG, Y., YAU, S.-T., AND GU, X. 2004. Optimal
Global Conformal Surface Parameterizations. In Proceedings of
IEEE Visualization, IEEE, 267–274.

LEIBON, G. 2002. Characterizing the Delaunay Decompositions
of Compact Hyperbolic Surfaces. Geom. Topol. 6, 361–391.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.
Least Squares Conformal Maps for Automatic Texture Atlas
Generation. ACM Transactions on Graphics 21, 3, 362–371.

MERCAT, C. 2001. Discrete Riemann Surfaces and the Ising
Model. Communications in Mathematical Physics 218, 1, 177–
216.

MOSEK, 2005. Constrained Quadratic Minimization Software.
http://www.mosek.com/. Version 3.1r42.

PINKALL, U., AND POLTHIER, K. 1993. Computing Discrete
Minimal Surfaces and Their Conjugates. Experimental Mathe-
matics 2, 1, 15–36.

RIVIN, I. 1994. Euclidean Structures on Simplicial Surfaces and
Hyperbolic Volume. Annals of Mathematics 139, 3, 553–580.

RODIN, B., AND SULLIVAN, D. 1987. The Convergence of Circle
Packings to the Riemann Mapping. J. Differential Geom. 26, 2,
349–360.

SHEFFER, A., AND DE STURLER, E. 2000. Surface Parameteri-
zation for Meshing by Triangulation Flattening. In Proceedings
of the 9th International Meshing Roundtable, Sandia National
Labs, 161–172.

SHEFFER, A., LÉVY, B., MOGILNITSKI, M., AND BO-
GOMYAKOV, A. 2004. ABF++: Fast and Robust Angle Based
Flattening. ACM Transactions on Graphics. To appear.

THURSTON, W. P. 1980. The Geometry and
Topology of Three-Manifolds. Available at
http://www.msri.org/publications/books/gt3m/.

THURSTON, W. P. 1985. The finite Riemann mapping theorem.
Invited talk at the symposium on the occasion of the proof of the
Bieberbach conjecture held at Purdue University, March 1985.

Chapter 7:
Discrete Differential Forms for Computational Modeling

Mathieu Desbrun Eva Kanso Yiying Tong
Applied Geometry Lab

Caltech∗

1 Motivation
The emergence of computers as an essential tool in scientific re-
search has shaken the very foundations of differential modeling.
Indeed, the deeply-rooted abstraction of smoothness, or differentia-
bility, seems to inherently clash with a computer’s ability of storing
only finite sets of numbers. While there has been a series of com-
putational techniques that proposed discretizations of differential
equations, the geometric structures they are supposed to simulate
are often lost in the process.

1.1 The Role of Geometry in Science

Geometry is the study of space and of the properties of shapes in
space. Dating back to Euclid, models of our surroundings have
been formulated using simple, geometric descriptions, formalizing
apparent symmetries and experimental invariants. Consequently,
geometry is at the foundation of many current physical theories:
general relativity, electromagnetism (E&M), gauge theory as well
as solid and fluid mechanics all have strong underlying geometri-
cal structures. Einstein’s theory for instance states that gravitational
field strength is directly proportional to the curvature of space-time.
In other words, the physics of relativity is directly modelled by the
shape of our 4-dimensional world, just as the behavior of soap bub-
bles is modeled by their shapes. Differential geometry is thus, de
facto, the mother tongue of numerous physical and mathematical
models.

Unfortunately, the inherent geometric nature of such models is of-
ten obstructed by their formulation in vectorial or tensorial nota-
tions: the traditional use of a coordinate system, in which the equa-
tions of those models are expressed, often obscures the underlying
structures by an overwhelming usage of indices. Moreover, such
complex expressions entangle the topological and geometrical con-
tent of the model.

1.2 Geometry-based Exterior Calculus

The geometric nature of these models is best expressed and elu-
cidated through the use of the Exterior Calculus of Differential
Forms, first introduced by Cartan [Cartan 1945]. This geometry-
based calculus was further developed and refined over the twentieth
century to become the foundation of modern differential geometry.
The calculus of exterior forms allows one to express differential
and integral equations on smooth and curved spaces in a consis-
tent manner, while revealing the geometrical invariants at play. For
example, the classical operations of gradient, divergence, and curl
as well as the theorems of Green, Gauss and Stokes can all be ex-
pressed concisely in terms of differential forms and an operator on
these forms called the exterior derivative—hinting at the generality
of this approach.

Compared to classical tensorial calculus, this exterior calculus has
several advantages. First, it is often difficult to recognize the
coordinate-independent nature of quantities written in tensorial no-

∗E-mail: {mathieu|eva|yiying}@caltech.edu

tation: local and global invariants are hard to notice by just star-
ing at the indices. On the other hand, invariants are easily dis-
covered when expressed as differential forms by invoking either
Stokes’ theorem, Poincaré lemma, or by applying exterior differen-
tiation. Note also that the exterior derivative of differential forms—
the antisymmetric part of derivatives—is one of the most important
parts of differentiation, since it is invariant under coordinate system
change. In fact, Sharpe states in [Sharpe 1997] that every differen-
tial equation may be expressed in term of the exterior derivative of
differential forms. As a consequence, several recent initiatives have
been aimed at formulating the physical laws in terms of differen-
tial forms. For recent work along these lines, the reader is invited
to refer to [Burke 1985; Abraham et al. 1988; Lovelock and Rund
1993; Flanders 1990; Morita 2001; Carroll 2003; Frankel 2004] for
books offering a theoretical treatment of various physical theories
using differential forms.

1.3 Differential vs. Discrete Modeling

We have seen that a large amount of our scientific knowledge relies
on a deeply-rooted differential (i.e., smooth) apprehension of the
world. This abstraction of differentiability allows researchers to
model complex physical systems via concise equations. With the
sudden advent of the digital age, it was therefore only natural to
resort to computations based on such differential equations.

However, since digital computers can only manipulate finite sets
of numbers, their capabilities seem to clash with the basic founda-
tions of differential modeling. In order to overcome this hurdle, a
first set of computational techniques (e.g., finite difference or par-
ticle methods) focused on satisfying the continuous equations at a
discrete set of spatial and temporal samples. Unfortunately, focus-
ing on accurately discretizing the local laws often fails to respect
important global structures and invariants. Later methods such as
Finite Elements (FEM), drawing from developments in the calculus
of variations, remedied this inadequacy to some extent by satisfying
local conservation laws on average and preserving some important
invariants. Coupled with a finer ability to deal with arbitrary bound-
aries, FEM became the de facto computational tool for engineers.
Even with significant advances in error control, convergence, and
stability of these finite approximations, the underlying structures of
the simulated continuous systems are often destroyed: a moving
rigid body may gain or loose momentum; or a cavity may exhibit
fictitious eigenmodes in an electromagnetism (E&M) simulation.
Such examples illustrate some of the loss of fidelity that can fol-
low from a standard discretization process, failing to preserve some
fundamental geometric and topological structures of the underlying
continuous models.

The cultural gap between theoretical and applied science commu-
nities may be partially responsible for the current lack of proper
discrete, computational modeling that could mirror and leverage
the rich developments of its differential counterpart. In particu-
lar, it is striking that the calculus of differential forms has not yet
had an impact on the mainstream computational fields, despite ex-
cellent initial results in E&M [Bossavit 1998] or Lagrangian me-

chanics [Marsden and West 2001]. It should also be noticed that
some basic tools necessary for the definition of a discrete calculus
already exist, probably initiated by Poincaré when he defined his
cell decomposition of smooth manifolds. The study of the structure
of ordered sets or simplices now belongs to the well-studied branch
of mathematics known as Combinatorial Differential Topology and
Geometry, which is still an active area of research (see, e.g., [For-
man 2005] and [Björner and Welker 1995] and references therein).

1.4 Calculus ex Geometrica

Given the overwhelming geometric nature of the most fundamental
and successful calculus of these last few centuries, it seems relevant
to approach computations from a geometric standpoint.

One of the key insights that percolated down from the theory of
differential forms is rather simple and intuitive: one needs to recog-
nize that different physical quantities have different properties, and
must be treated accordingly. Fluid mechanics or electromagnetism,
for instance, make heavy use of line integrals, as well as surface
and volume integrals; even physical measurements are performed
as specific local integrations or averages (think flux for magnetic
field, or current for electricity, or pressure for atoms’ collisions).
Pointwise evaluations or approximations for such quantities are not
the appropriate discrete analogs, since the defining geometric prop-
erties of their physical meaning cannot be enforced naturally. In-
stead, one should store and manipulate those quantities at their
geometrically-meaningful location: in other words, we should con-
sider values on vertices, edges, faces, and tetrahedra as proper dis-
crete versions of respectively pointwise functions, line integrals,
surface integrals, and volume integrals: only then will we be able
to manipulate those values without violating the symmetries that
the differential modeling supposedly tried to exploit for predictive
purposes.

1.5 Similar Endeavors

The need for improved numerics have recently sprung a (still lim-
ited) number of interesting related developments in various fields.
Although we will not try to be exhaustive, we wish to point the
reader to a few of the most successful investigations with the same
“flavor” as our discrete geometry-based calculus, albeit their ap-
proaches are rarely similar to ours. First, the field of Mimetic Dis-
cretizations of Continuum Mechanics, led by Shashkov, Steinberg,
and Hyman [Hyman and Shashkov 1997], started on the premise
that spurious solutions obtained from finite element or finite differ-
ence methods often originate from inconsistent discretizations of
the operators div, curl, and grad, and that addressing this incon-
sistency pays off numerically. Similarly, Computational Electro-
magnetism has also identified the issue of field discretization as the
main reason for spurious modes in numerical results. An excel-
lent treatment (upon which this paper is inspired) of the discretiza-
tion of the Maxwell’s equations resulted [Bossavit 1998], with a
clear relationship to the differential case. Finally, recent develop-
ments in Discrete Lagrangian Mechanics have demonstrated the
efficacy of a proper discretization of the Lagrangian of a dynamical
system, rather than the discretization of its derived Euler-Lagrange
equations: with a discrete Lagrangian, one can ensure that the in-
tegration scheme satisfies an exact discrete least-action principle,
preserving all the momenta directly for arbitrary orders of accu-
racy [Marsden and West 2001]. Respecting the defining geometric
properties of both the fields and the governing equations is a com-
mon link between all these recent approaches.

1.6 Advantages of Discrete Differential Modeling

The reader will have most probably understood our bias by now:
we believe that the systematic construction, inspired by Exterior
Calculus, of differential, yet readily-discretizable computational
foundations is a crucial ingredient for numerical fidelity. Because
many of the standard tools used in differential geometry have dis-
crete combinatorial analogues, the discrete versions of forms or
manifolds will be formally identical to (and should partake of the
same properties as) the continuum models. Additionally, such an
approach should clearly maintain the separation of the topological
(metric-independent) and geometrical (metric-dependent) compo-
nents of the quantities involved, keeping the geometric picture (i.e.,
intrinsic structure) intact.

A discrete differential modeling approach to computations will also
be often much simpler to define and develop than its continuous
counterpart. For example, the discrete notion of a differential form
will be implemented simply as values on mesh elements. Likewise,
the discrete notion of orientation will be more straightforward than
its continuous counterpart: while the differential definition of ori-
entation uses the notion of equivalence class of atlases determined
by the sign of the Jacobian, the orientation of a mesh edge will be
one of two directions; a triangle will be oriented clockwise or coun-
terclockwise; a volume will have a direction as a right-handed helix
or a left-handed one; no notion of atlas (a collection of consistent
coordinate charts on a manifold) will be required.

Figure 1: Typical 2D and 3D meshes: although the David’ head appears
smooth, its surface is made of a triangle mesh; tetrahedral meshes (such
as this mechanical part, with a cutaway view) are some typical examples
of irregular meshes on which faithful computations need to be performed.
David’s head mesh is courtesy of Marc Levoy, Stanford.

1.7 Goal of This Paper

This paper was written with several purposes in mind. First, we
wish to demonstrate that the foundations on which powerful meth-
ods of computations can be built are quite approachable—and are
not as abstract as the reader may fear: the ideas involved are very
intuitive as a side effect of the simplicity of the geometric underly-
ing principles.

Second, we wish to help bridge the gap between applied fields and
theoretical fields: we have tried to render the theoretical bases of
our exposition accessible to computer scientists, and the concrete
implementation insights understandable by non-specialists. This is
quite an exercise in style, as one has to be sufficiently clear to not
put off theory-oriented minds while not losing the interests of prac-
tical minds. For this very reason, the reader should not consider this
introductory exposition as a definite source of knowledge: it should
instead be considered as a portal to better, more focused work on
related subjects. We only hope that we will ease our readers into
foundational concepts that can be undoubtedly and fruitfully ap-
plied to all sorts of computations—be it for graphics or simulation.

With these goals in mind, we will describe the background needed
to develop a principled, geometry-based approach to computational

modeling that circumvents the apparent mismatch between differ-
ential and discrete modeling.

2 Relevance of Forms for Integration
The evaluation of differential quantities on a discrete space (mesh)
is a nontrivial problem. For instance, consider a piecewise-linear
2-dimensional surface embedded in a three-dimensional Euclid-
ean space, i.e., a triangle mesh. Celebrated quantities such as the
Gaussian and mean curvatures are delicate to define on it. More
precisely, the Gaussian curvature can be easily proven to be zero
everywhere except on vertices, where it is a Dirac delta function.
Likewise, the mean curvature can only be defined in the distribu-
tional sense, as a Dirac delta function on edges. However, through
local integrations, one can easily manipulate these quantities nu-
merically: if a careful choice of non-overlapping regions is made,
the delta functions can be properly integrated, rendering the com-
putations relatively simple as shown, for example, in [Meyer et al.
2002; Hildebrandt and Polthier 2004]. Note that the process of inte-
gration to suppress discontinuity is, in spirit, equivalent to the idea
of weak form used in the Finite Element method.

This idea of integrated value has predated in some cases the equiva-
lent differential statements: for instance, it was long known that the
genus of a surface can be calculated through a cell decomposition
of the surface via the Euler characteristic. The actual Gauss-Bonnet
theorem was, however, derived later on. Now, if one tries to dis-
cretize the Gaussian curvature of a piecewise-linear surface in an
arbitrary way, it is less than likely that its integral over the surface
equals the desired Euler characteristic, while its discrete version,
defined on vertices (or, more precisely, on the dual of each vertex),
naturally preserves this topological invariant.

2.1 From Integration to Differential Forms

Integration is obviously a linear operation, since for any disjoint
sets A and B, Z

A∪B

=

Z
A

+

Z
B

.

Moreover, the integration over a subset of measure zero is always
zero; for example, an area integral of (a lower dimensional object
such as) a curve or a point is equal to zero. Finally, integration
is objective (i.e., relevant) only if its evaluation is invariant under
change of coordinate systems. These three properties combined
directly imply that the integrand (i.e., the whole expression after the
integral sign) has to be antisymmetric. That is, the basic building
blocks of any type of integration are differential forms. Chances
are, the reader is already very well acquainted with forms, maybe
without even knowing it.

2.1.1 An Intuitive Definition

A differential form (also denoted as exterior differential form) is,
informally, an integrand, i.e., a quantity that can be integrated. It
is the dx in

R
dx and the dx dy in

RR
dx dy. More precisely,

consider a smooth function F (x) over an interval in R. Now, define
f(x) to be its derivative, that is,

f(x) =
dF

dx
,

A simple rewriting of this last equation leads to dF = f(x)dx,
which leads (this is known as the Newton-Leibnitz formula):Z b

a

dF =

Z b

a

f(x)dx = F (b)− F (a) , (1)

The integrand f(x)dx is called a 1-form, because it can only be
integrated over any 1-dimensional (1D) real interval. Similarly, for
a function G(x, y, z), we have:

dG =
∂G

∂x
dx +

∂G

∂y
dy +

∂G

∂z
dz ,

which can be integrated over any 1D curve in R3, and is also a 1-
form. More generally, a k-form can be described as an entity ready
(or designed, if you prefer) to be integrated on a k-(sub)region.
Note that forms are valued zero on (sub)regions that are of higher
or lower order dimension than the original space; for example, 4-
forms are zero on R3. These differential forms are extensively used
in mathematics, physics and engineering, as evidenced by the fact
that operations like gradient, divergence, and curl can all be ex-
pressed in terms of forms only, as well as fundamental theorems
like Green’s or Stokes.

2.1.2 A Formal Definition

For concreteness, consider the n-dimensional Euclidean space Rn,
n ∈ N and letM be an open regionM ⊂ Rn; M is also called
an n-manifold. The vector space TxM consists of all the (tangent)
vectors at a point x ∈ M and can be identified with Rn itself. A
k-form ωk is a rank-k, anti-symmetric, tensor field overM. That
is, at each point x ∈M, it is a multi-linear map that takes k tangent
vectors as input and returns a real number:

ωk : TxM . . .× TxM −→ R

which changes sign when you switch two variables (hence the term
antisymmetric). Any k-form naturally induces a k-form on a sub-
manifold, through restriction of the linear map to the domain that is
the product of tangent spaces of the submanifold.

Note on Pseudo-forms There is a closely related concept
named pseudo-form. Pseudo-forms change sign when we change
the orientation of coordinate systems, just like pseudo-vectors. As
a result, the integration of a pseudo-form does not change sign
when the orientation of the manifold is changed. Unlike k-forms,
a pseudo-k-form induces a pseudo-k-form on a submanifold only
if a transverse direction is given. For example, fluid flux is some-
times called a pseudo-2-form: indeed, given a transverse direction,
we know how much flux is going through a piece of surface; it does
not depend on the orientation of the surface itself. Vorticity is, how-
ever, a true 2-form: given an orientation of the surface, the integra-
tion gives us the circulation around that surface boundary induced
by the surface orientation. It does not depend on the transverse di-
rection of the surface. But if we have an orientation of the ambient
space, we can always associate transverse direction with internal
orientation of the submanifold. Thus, in our case, we may treat
pseudo-forms simply as forms because we can consistently choose
a representative from the equivalence class.

2.2 The Differential Structure

Differential forms are the building blocks of a whole calculus. To
manipulate these basic blocks, Exterior Calculus defines seven op-
erators:

� d: the exterior derivative, that extends the notion of the differ-
ential of a function to differential forms;

� ?: the Hodge star, that transforms k-forms into (n-k)-forms;
� ∧: the wedge product, that extends the notion of exterior prod-

uct to forms;
�] and [: the sharp and flat operators, that, given a metric, trans-

forms a 1-form into a vector and vice-versa;

� iX : the interior product with respect to a vector field X (also
called contraction operator), a concept dual to the exterior prod-
uct;

� LX : the Lie derivative with respect to a vector field X , that
extends the notion of directional derivative.

In this chapter, we will restrict our discussions to the first three op-
erators, to provide the most basic tools necessary in computational
modeling.

2.3 A Taste of Exterior Calculus in R3

To give the reader of a taste of the relative simplicity of Exte-
rior Calculus, we provide a list of equivalence (in the continuous
world!) between traditional operations and their Exterior Calculus
counterpart in the special case of R3. We will suppose that we have
the usual Euclidean metric. Then, forms are actually quite simple
to conceive:

0-form⇔ scalar field
1-form⇔ vector
2-form⇔ vector
3-form⇔ scalar field

To be clear, we will add a superscript on the forms to indicate their
rank. Then applying forms to vector fields amounts to:

1-form: u1(v)⇔ u · v.
2-form: u2(v, w)⇔ u · (v × w).
3-form: f3(u, v, w)⇔ fu · (v × w).

Furthermore, the usual operations like gradient, curl, divergence
and cross product can all be expressed in terms of the basic exterior
calculus operators. For example:

d0f = ∇f , d1u = ∇× u, d2u = ∇ · u;

∗0f = f, ∗1u = u, ∗2u = u, ∗3f = f ;

δ1u = ∇ · u, δ2u = ∇× u, δ3f = ∇f ;

f0 ∧ u = fu, u1 ∧ v1 = u× v, u1 ∧ v2 = u2 ∧ v1 = u · v;

ivu1 = u · v, ivu2 = u× v, ivf3 = fv.

Now that we have established the relevance of differential forms
even in the most basic vector operations, time has come to turn our
attention to make this concept of forms readily usable for computa-
tional purposes.

3 Discrete Differential Forms
Finding a discrete counterpart to the notion of differential forms is a
delicate matter. If one was to represent differential forms using their
coordinate values and approximate the exterior derivative using fi-
nite differences, basic theorems such as Stokes theorem would not
hold numerically. The main objective of this section is therefore
to present a proper discretization of the forms on simplicial com-
plexes. We will show how this discrete geometric structure, well
suited for computational purposes, is designed to preserve all the
fundamental differential properties. For simplicity, we restrict the
discussion to forms on 2D surfaces or 3D regions embedded in R3,
but the construction is applicable to general manifolds in arbitrary
spaces. In fact, the only necessary assumption is that the embedding
space must be a vector space, a natural condition in practice.

3.1 Simplicial Complexes and Discrete Manifolds

For the interested reader, the notions we introduce in this section
are defined formally in much more details (for the general case
of k-dimensional spaces) in references such as [Munkres 1984] or
[Hatcher 2004].

Figure 2: In 1D, the simplex is the line segment . In 2D, the simplex is the
convex hull of the equilateral triangle. In 3D, the simplex is the convex hull
of the tetrahedron.

3.1.1 Notion of Simplex

A k-simplex is the generic term to describe the simplest mesh el-
ement of dimension k—hence the name. By way of motivation,
consider a three-dimensional mesh in space. This mesh is made of
a series of adjacent tetrahedra (denoted tets for simplicity through-
out). The vertices of the tets are said to form a 0-simplex. Simi-
larly, the line segments or edges form a 1-simplex, the triangles or
faces form a 2-simplex, and the tets a 3-simplex. Also, the faces (2-
simplex) can be thought of as the boundaries of the tets (3-simplex),
and the edges (1-simplex) as the boundaries of the faces, etc.

The definition of a simplex can be made more abstract as a series
of k-tuples (referring to the vertices they are built upon). However,
for the type of applications that we are targeting in this chapter, we
will not make any distinction between an abstract simplex and its
topological or geometrical realization.

Formally, a k-simplex σk is the convex hull of (k+1) geometrically
distinct points v0, . . . vk ∈ Rn with n ≥ k. In other words, it is the
intersection of all convex sets containing (v0, . . . vk); namely:

σk = {x ∈ Rn|x =

kX
i=0

αi vi with αi ≥ 0 and

kX
i=0

αi = 1}.

The points v0, . . . vk are called the vertices and k is called the di-
mension of the k-simplex., which we will denote as:

σk = {v0v1...vk} .

3.1.2 Orientation of a Simplex

Note that all orderings of the k+1 vertices of a k-simplex can be di-
vided into two equivalent classes, i.e., two orderings differing by an
even permutation. Such an ordering is called an orientation. In the
present work, we always assume that local orientations are given
for each simplex; that is, each element of the mesh has been given a
particular orientation. For example, an edge σ1 = {v0v1} on Fig-
ure 2 has an arrow indicating its default orientation. If the opposite
orientation is needed, we will denote it as {v1v0}, or, equivalently,
by −{v0v1}. For more details and examples, the reader is referred
to [Hirani 2003].

3.1.3 Boundary of a Simplex

Any (k-1)-simplex spanned by a strict subset of {v0, . . . vk} is
called a (k-1)-face of σk. That is, a (k-1)-face is simply a (k − 1)-
simplex whose k vertices are all from the (k + 1) vertices of the
k-simplex. The union of the (k − 1)-faces is what is called the
boundary of the k-simplex. One should be careful here: because of
the default orientation of the simplices, the formal signed sum of
the (k-1)-faces defines the boundary of the k-simplex. Therefore,
the boundary operator takes a k-simplex and gives the sum of all its
(k − 1)-faces with 1 or −1 as coefficients depending on whether
their respective orientations match or not, see Figure 4.

To remove possible mistakes in orientation, we can define the

Figure 3: The boundary operator ∂ applied to a triangle (a 2-simplex) is
equal to the signed sum of the edges (i.e., the faces of the 2-simplex).

boundary operator as follows:

∂{v0v1...vk} =

kX
j=0

(−1)j{v0, ..., bvj , ..., vk}, (2)

where bvj indicates that vj is missing from the sequence, see Fig-
ure 3. Clearly, each k-simplex has k+1 faces. For this statement
to be valid even for k = 0, the empty set ∅ is usually defined as
a (−1)-simplex face of every 0-simplex. The reader is invited to
verify this definition on the triangle {v0, v1, v2} in Figure 3:

∂〈v0, v1, v2〉 = 〈v1, v2〉 − 〈v0, v2〉+ 〈v0, v1〉

Figure 4: Boundary operator applied to a triangle (left), and a tetrahedron
(right). Orientations of the simplices are indicated with arrows.

3.1.4 Simplicial Complex

A simplicial complex is a collection K of simplices, which satisfies
the following two simple conditions:

� every face of each simplex in K is in K;
� the intersection of any two simplices in K is either empty, or a

single common face.

simplicial complexes not a simplicial complex

Computer graphics makes heavy use of what is called realizations
of simplicial complexes. Loosely speaking, a realization of a sim-
plicial complex is an embedding of this complex structure into the
underlying space Rn. Triangle meshes in 2D and tet meshes in 3D
are examples of such simplicial complexes (see Figure 1). Notice
that polygonal meshes can be easily triangulated, thus can be easily
turned into simplicial complexes. One can also use the notion of
cell complex by allowing the elements of K to be non-simplicial;
but we will restrict our explanations to the simpler, yet as general
case of simplicial complexes.

3.1.5 Discrete Manifolds

An n-dimensional discrete manifoldM is an n-dimensional sim-
plicial complex that satisfies the following condition: for each sim-
plex, the union of all the adjacent simplices forms an n-dimensional
ball (i.e., a disk in 2D, a ball in 3D, etc), or half a ball if the simplex
is on the boundary. As a consequence, each (n-1)-simplex has ex-
actly two adjacent n-simplices—or only one if it is on a boundary.

Basically, a discrete manifold is nothing but a triangulation of a
smooth manifold. For example in 2d, discrete manifolds cannot
have isolated edges (also called sticks or hanging edges) or isolated
vertices, and each of their edges is adjacent to 2 faces (except for
the boundary; in that case, the edge is adjacent to only one face). A
surface mesh in 3d cannot have a “fin”, i.e., a edge with more than
two adjacent triangles. In other words, a small, imaginary inhab-
itant of an n-dimensional discrete manifold would consider itself
living in Rn.

Figure 5: (a) A simplicial complex consisting of all vertices
{v0, v1, v2, v3} and edges {e0, e1, e2, e3, e4}. This simplicial complex
is not a discrete manifold because the neighborhoods of the vertices or of
any points on an edge are not 1d balls. (b) If we add the faces f0 and f1 to
the simplicial complex, it becomes a 2-manifold with one boundary.

3.2 Notion of Chains

We have already encountered the notion of chain, without mention-
ing it. Recall that the boundary operator takes each k-simplex and
gives the signed sum of all its (k-1)-faces. We say that the boundary
of a k-simplex produces a (k-1)-chain. The following definition is
more precise and general.

3.2.1 Definition

A k-chain of an oriented simplicial complex K is a set of values,
one for each k-simplex of K. That is, a k-chain c can then be
thought of as a linear combination of all the k-simplices in K:

c =
X

σ∈M

c(σ) · σ, (3)

where c(σ) ∈ R. More formally, a chain is a free abelian group
generated by the k-simplices, i.e., a mapping from the collection of
all k-simplices in K to R. We will denote the space of k-chains as
Ck.

3.2.2 Implementation of Chains

Let the set of all k-simplices in K be denoted Kk, and let its car-
dinality be denoted as |Kk|. A k-chain can simply be stored as a
vector (or array) of dimension |Kk|.

3.2.3 Boundary Operator on Chains

We mentioned that the boundary operator ∂ was returning a particu-
lar type of chain, namely, a chain with coefficients equal to either 0,
1, or −1. Therefore, it should not be surprising that we can extend
the notion of boundary to act also on k-chains, simply by linearity:

∂
X

k

ckσk =
X

k

ck∂σk.

That is, from one set of values assigned to all simplices of a com-

Figure 6: (a) An example of a 1-chain being the boundary of a face (2-
simplex); (b) a second example of 1-chain with 4 non-zero coefficients; (c)
an anti-aliased line is, in disguise, a 2-chain (i.e., values on pixels)!

plex, one can deduce another set of values derived by weighting the
boundaries of each simplex by the original value stored on it. This
operation is very natural, and can thus be implemented extremely
easily as explained next.

3.2.4 Implementation of the Boundary Operator

Since the boundary operator is a linear mapping from the space of
k-simplices to the space of (k-1)-simplices, it can simply be rep-
resented by a matrix of dimension |Kk| × |Kk−1|. The reader can
convince herself that this matrix is sparse, as only immediate neigh-
bors are involved in the boundary operator. Similarly, this matrix
contains only the values 0, 1, and −1. Notice than in 3D, there are
3 boundary operators ∂k. however, the operator needed for a partic-
ular operation is obvious from the type of the argument. Thanks to
this context-dependence, we can simplify the notation and remove
the superscript when there is no ambiguity.

3.3 Notion of Cochains

A k-cochain ω is the dual of a k-chain, that is to say, ω is a linear
mapping that takes k-chains to R. One writes:

ω : Ck → R (4)
c → ω(c), (5)

which reads as: a k-cochain ω operates on a k-chain c to give a
scalar in R.

Clearly, a co-chain also corresponds to one value per simplex (since
all the k-simplices form a basis for vector space Ck, and we only
need to know the mapping of vectors in basis to determine a linear
mapping), and hence the notion of duality of chains and co-chains
is appropriate. But contrary to a chain, a k-cochain is evaluated on
each simplex of the dimension k. In other words, a k-cochain can
be thought of as a field that can be evaluated on each k-simplex of
an oriented simplicial complexM.

3.3.1 Implementation of Cochains

The numerical representation of cochains follows from that of
chains by duality. Recall that a k-chain can be represented as a
vector ck of length equal to the number of k-simplices inM. Sim-
ilarly, one may represent ω by a vector ωk of the same size as ck.

Now, remember that ω operates on c to give a scalar in R. The
linear operation ω(c) translates into an inner product ωk · ck. More
specifically, one may continue to think of ck as a column vector so
that the R-valued linear mapping ω can be represented by a row
vector (ωk)t, and ω(c) becomes simply the matrix multiplication
of the row vector (ωk)t with the column vector ck.

3.4 Discrete Forms as Co-chains

The attentive reader will have noticed by now: k-cochains are dis-
crete analogs to differential forms. Indeed, a continuous k-form

was defined as a linear mapping from k-dimensional sets to R, as
we can only integrate a k-form on a k-(sub)manifold. Note now
that a k-d set, when one has only a mesh to work with, is simply
a chain. And a linear mapping from a chain to a real number is
what we called a cochain: a cochain is therefore a natural discrete
counterpart of a form.

For instance a 0-form can be evaluated at each point, a 1-form can
be evaluated on each curve, a 2-form can be evaluated on each sur-
face, etc.

Now if we restrict integration to take place only on the k-
submanifold which is the sum of k-simplices in the triangulation,
we get a k-cochain; thus k-cochains are a discretization of k-forms.
One can further map a continuous k-form to a k-cochain. To do this,
first integrate the k-form on each k-simplex and assign the result-
ing value to that simplex to obtain a k-cochain on the k-simplicial
complex. This k-cochain is a discrete representation of the original
k-form.

3.4.1 Evaluation of a Form on a Chain

We can now naturally extend the notion of evaluation of a differen-
tial form ω on an arbitrary chain simply by linearity:Z

P
i ciσi

ω =
X

i

ci

Z
σi

ω. (6)

As mentioned above, the integration of ω on each k-simplex σk

provides a discretization of ω or, in other words, a mapping from
the k-form ω to a k-cochain represented by:

ω[i] =

Z
σi

ω.

However convenient this chain/cochain standpoint is, in practical
applications, one often needs a point-wise value for a k-form or to
evaluate the integration on a particular k-submanifold. How do we
get these values from a k-cochain? We will cover this issue of form
interpolation in Section 6.

4 Operations on Chains and Cochains
4.1 Discrete Exterior Derivative

In the present discrete setting where the discrete differential forms
are defined as cochains, defining a discrete exterior derivative can
be done very elegantly: Stokes’ theorem, mentioned early on in
Section 2, can be used to define the exterior derivative d. Tra-
ditionally, this theorem states a vector identity equivalent to the
well-known curl, divergence, Green’s, and Ostrogradsky’s theo-
rems. Written in terms of forms, the identity becomes quite sim-
ple: it states that d applied to an arbitrary form ω is evaluated on an
arbitrary simplex σ as follows:Z

σ

dω =

Z
∂σ

ω. (7)

You surely recognize the usual property that an integral over a k-
dimensional set is turned into a boundary integral (i.e., over a set of
dimension k-1). With this simple equation relating the evaluation
of dω on a simplex σ to the evaluation of ω on the boundary of this
simplex, the exterior derivative is readily defined: each time you
encounter an exterior derivative of a form, replace any evaluation
over a simplex σ by a direct evaluation of the form itself over the
boundary of σ. Obviously, Stokes’ theorem will be enforced by
construction!

4.1.1 Coboundary Operator

The operator d is called the adjoint of the boundary operator ∂: if
we denote the integral sign as a pairing, i.e., with the convention thatR

σ
ω = [ω, σ], then applying d on the left hand side of this operator

is equivalent to applying ∂ on the right hand: [dω, σ] = [ω, ∂σ].
For this very reason, d is sometimes called the coboundary operator.

Finally, by linearity of integration, we can write a more general
expression of Stokes’ theorem, now extended to arbitrary chains as
follows:Z

P
i ciσi

dω =

Z
∂(
P

i ciσi)

ω =

Z
P

i ci∂σi

ω =
X

i

ci

Z
∂σi

ω

Consider the example shown in Figure 7. The discrete exterior
derivative of the 1-form, defined as numbers on edges, is a 2-
form represented by numbers on oriented faces. The orientation
of the 1-forms may be opposite to that induced on the edges by
the orientation of the faces. In this case, the values on the edges
change sign. For instance, the 2-form associated with the d of the
1-forms surrounding the oriented shaded triangle takes the value
ω = 2− 1− 0.75 = 0.25.

Figure 7: Given a 1-form as numbers on oriented edges, its discrete exte-
rior derivative is a 2-form. In particular, this 2-form is valued 0.25 on the
oriented shaded triangle.

4.1.2 Implementation of Exterior Derivative

Since we use vectors of dimension |Kk| to represent a k-cochain,
the operator d can be represented by a matrix of dimension
|Kk+1| × |Kk|. Furthermore, this matrix has a trivial expression.
Indeed, using the matrix notation introduced earlier, we have:Z

∂c

ω = ωt(∂c) = (∂tω)tc =

Z
c

dω.

Thus, the matrix d is simply equal to ∂t. This should not come as
a surprise, since we previously discussed that d is simply the ad-
joint of ∂. Note that extreme care should be used when boundaries
are present. However, and without digging too much into the de-
tails, it turns out that even for discrete manifolds with boundaries,
the previous statement is valid. Implementing the exterior deriva-
tive while preserving Stokes’ theorem is therefore a trivial matter
in practice. Notice that just like for the boundary operator, there
is actually more than one matrix for the exterior derivative opera-
tor: there is one per simplex dimension. But again, the context is
sufficient to actually know which matrix is needed. A brute force
approach that gets rid of these multiple matrices is to use a notion
of super-chain, i.e., a vector storing all simplices, ordered from di-
mension 0 to the dimension of the space: in this case, the exterior
derivative can be defined as a single, large sparse matrix that con-
tains these previous matrices as blocks along the diagonal. We will
not use this approach, as it makes the exposition more cumbersome
in general.

4.2 Exact/Closed Forms and Poincaré Lemma

A k-form ω is called exact if there is a (k-1)-form α such that ω =
dα, and it is called closed if dω = 0.

Figure 8: (a) The 2-form on the oriented shaded triangles defined by the
exterior derivative d of the 1-form on the oriented edges is called an exact 2-
form; (b) The 1-form on the oriented edges whose derivative d is identically
zero is called a closed 1-form.

It is worth noting here that every exact form is closed, as will be
seen in Section 4.3. Moreover, it is well-known in the continuous
setting that a closed form on a smooth contractible (sub)-manifold
is locally exact. This result is called the Poincaré lemma. The dis-
crete analogue to Poincaré lemma can be stated as follows: given
a closed k-cochain ω on a logically star-shaped complex, that is to
say, dω = 0, there exits a (k-1)-cochain α such that ω = dα. For
a formal statement and proof of this discrete version, see [Desbrun
et al. 2004].

4.3 Introducing the deRham Complex

The boundary of a boundary is the empty set. That is, the boundary
operator applied twice to a k-simplex is zero. Indeed, it is easy to
verify that ∂ ∂σk = 0, since each (k-2)-simplex will appear exactly
twice with different signs and, hence, cancel out. From the linearity
of ∂, one can readily conclude that the property ∂ ∂ = 0 is true for
all k-chain since k-simplices are the basis. Similarly, one has that
the discrete exterior derivative satisfies d d = ∂t∂t = (∂ ∂)t = 0,
analogously to the exterior derivative of differential forms (notice
that this last equality corresponds to the equality of mixed partial
derivatives, which in turn is responsible for identities like∇×∇ =
0 and∇ · ∇× = 0 in R3).

00

Figure 9: The chain complex of a tetrahedron with the boundary operator:
from the tet, to its faces, to their edges, and to their vertices.

4.3.1 Chain Complex

In general, a chain complex is an array of linear spaces, connected
with a linear operator D that satisfies the property D D = 0.
Hence, the boundary operator ∂ (resp., the exterior derivative d)
makes the spaces of chains (resp., cochains) into a chain complex,
as shown in Figures 9 and 13.

4.3.2 Examples

Consider the 2d simplicial complex in Figure 10(a) and choose the
oriented basis of the i-dimensional simplices (i = 0 for vertices,
i = 1 for edges and i = 2 for the face) as suggested by the ordering
in the figure.

One gets ∂(f0) = e0 − e4 − e3, which can be identified with the
vector (1, 0, 0,−1,−1). By repeating similar calculations for all
simplices, one can readily conclude that the the boundary operator

Figure 10: Three examples of simplicial complexes. The first one is not
manifold. The two others are.

∂ is given by:

∂2 =

1
0
0
−1
−1

!
, ∂1 =

 −1 0 0 −1 0
1 −1 0 0 1
0 1 1 0 0
0 0 −1 1 −1
0 0 0 0 0

!
,

That is, the chain complex under the boundary operator ∂ can be
written as:

0 −→ C2
∂2

−→ C1
∂1

−→ C0 −→ 0

where Ci, i = 0, 1, 2, denote the spaces of i-chains.

Consider now the domain to be the mesh shown in Figure 10(b).
The exterior derivative operator, or the coboundary operator, can be
expressed as:

d0 =

 −1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1
0 −1 0 1

!
, d1 =

�
1 0 0 1 1
0 1 1 0 −1

�
.

It is worth noting that, since d is adjoint to ∂ by definition, the
coboundary operator d induces a cochain complex:

0←− C2 d1

←− C1 d0

←− C0 ←− 0

where Ci, i = 0, 1, 2, denote the spaces of i-cochains.

Finally, suppose the domain is the tetrahedron in Figure 10(c), then
the exterior derivative operators are:

d0 =

0@−1 1 0 0
0 −1 1 0
1 0 −1 0
1 0 0 −1
0 1 0 −1
0 0 −1 1

1A , d1 =

�
1 1 −1 0 0 0
1 0 0 1 −1 0
0 1 0 0 1 1
0 0 1 1 0 1

�
, d2 =

�
−1 1 1 −1

�
.

4.4 Notion of Homology and Cohomology

Homology is a concept dating back to Poincaré that focuses on
studying the topological properties of a space. Loosely speaking,
homology does so by counting the number of holes. In our case,
since we assume that our space is a simplicial complex (i.e., tri-
angulated), we will only deal with simplicial homology, a simpler,
more straightforward type of homology that can be seen as a dis-
crete version of the continuous definition (equivalently, it is equiva-
lent to the continuous one is the domain is triangulated). As we are
about to see, the notion of discrete forms is intimately linked with
these topological notions. In fact, we will see that (co)homology is
the study of the relationship between closed and exact (co)chains.

4.4.1 Simplicial Homology

A fundamental problem in topology is that of determining, for two
spaces, whether they are topologically equivalent. That is, we wish
to know if one space can be morphed into the other without having
to puncture it. For instance, a sphere-shaped tet mesh is not topo-
logically equivalent to a torus-shaped tet mesh as one cannot alter
the sphere-shaped mesh (i.e., deform, refine, or coarsen it locally)
to make it look like a torus.

The key idea of homology is to define invariants (i.e., quantities that
cannot change by continuous deformation) that characterize topo-
logical spaces. The simplest invariant is the number of connected
components that a simplicial complex has: obviously, two simpli-
cial complexes with different numbers of pieces cannot be contin-
uously deformed into each other! Roughly speaking, homology
groups are an extension of this idea to define more subtle invariants
than the number of connected components.

Cycles and their Equivalence Classes Generalizing the
previous example to other invariants is elegantly done using the no-
tion of cycles. A cycle is simply a closed k-chain; that is, a linear
combination of k-simplices so that the boundary of this chain (see
Section 3.2) is the empty set. Any set of vertices is such a closed
chain; any set of 1D loops are too; etc. Evidently, the mathematical
definition of a k-cycle is any k-chain that belongs to Ker ∂k, by
definition.

On this set of all k-cycles, one can define equivalence classes: we
will say that a k-cycle is homologous to another k-cycle (i.e., in the
same equivalence class than the other) when these two chains differ
by a boundary of a (k+1)-chain (i.e., by an exact chain). Notice that
this exact chain is, by definition (see Section 4.2), in the image of
∂k+1, i.e., Im ∂k+1.

4.4.2 Homology Groups

Let us now use these definition on the simple case of the 0th ho-
mology groupH0.

Homology Group H0 The boundary of any vertex is ∅, so a 0-
cycle is any linear combination of vertices. Now if two vertices v0

and v1 are connected by an edge, v1−v0 (i.e., the difference of two
cycles) is the boundary of this edge. Thus, by our previous defini-
tion, two vertices linked by an edge are homologous. By the same
reasoning, any two vertices taken from the same connected compo-
nent are, also, homologous, since there exists a chain of edges in
between. Consequently, we can pick only one vertex per connected
component to form a basis of this homology group. Its dimension,
β0, is therefore simply the number of connected components. The
basis elements of that group are called generators, since they gen-
erate the whole homology group.

Homology Group H1 Let us proceed similarly for the 1st ho-
mology class: we now have to consider 1-cycles (linear combina-
tions of 1D loops). Again, one can easily conceive that there are
different types of such cycles, and it is therefore possible to separate
all possible cycles into different equivalence classes. For instance,
the loop L1 in Figure 11 is topologically distinct from the curve L2:
one is around a hole and the other is not, so the difference between
the two is not the boundary of a 2-chain. Conversely, L1 is in the
same class as curve L3 one since they differ by one connected area.
Thus, in this figure, the 1st homology group is a 2-dimensional
group, and L1 and L2 (or L3 and L2, similarly) are generators.
The reader is invited to apply this simple idea on the triangulated
torus, to find two loops as generators ofH1. In general, the dimen-
sions of higher order homology will simply become the number of
voids (holes) of the same order.

Formal Definition of Homology Groups We are now ready
to generalize this construction to all homology groups. Remember
that we have a series of k-chain spaces:

Cn
∂n

−→ Cn−1 . . .
∂2

−→ C1
∂0

−→ C0

Figure 11: Example of Homology Classes: the cycles L1 and L2 are topo-
logically distinct as one encloses a hole while the other does not; L2 and
L3 are however in the same equivalence class.

with the specificity that ∂ ∂ is the empty set. This direct implies
that image of Cj is always in the kernel of ∂j+1—such a series
is called a chain complex. Now, the homology groups {Hk}k of
a chain complex based on ∂ are defined as the following quotient
spaces:

Hk = Ker ∂k/Im ∂k+1.

The reader is invited to check that this definition is exactly what we
did for the 0th and 1st homology groups—and it is now valid for
any order: indeed, we use the fact that closed chains (belonging to
Ker ∂) are homologous if their difference is in Im ∂, and this is
exactly what this quotient vector space is.

Example Consider the example in Figure 10(a). Geometrically,
H0 is nontrivial because the simplicial complex σ is disconnected
(it is easy to see {v0, v4} form a basis forH0), whileH1 is nontriv-
ial since the cycle (e1−e2 +e4) is not the boundary of any 2-chain
of σ ({(e1 − e2 + e4)} is indeed a basis for this 1D spaceH1).

Link to Betti Numbers The dimension of the k-th cohomology
group is called k-th Betti number; βk = |Hk|. For a 3D simplicial
complex embedded in R3, these numbers have very straightforward
meanings. β0 is the number of connected components, β1 is num-
ber of tunnels, β2 is the number of voids, while β4 is the number of
empty 4D space inside the domain, which is 0 in the Euclidean (flat
3D) case. Finally, note that

P
k=0,...,n(−1)kβk, where βk is the

k-th Betti number, gives us the well-known Euler characteristics.

4.4.3 Cohomology Groups

The definition of homology groups is much more general than what
we just reviewed. In fact, the reader can take the formal definition
in the previous section, replace all occurrences of chain by cochain,
of ∂ by d, and reverse the direction of the operator between spaces
(see Section 4.3.2): this will also define equivalence classes. Be-
cause cochains are dual of chains, and d is the adjoint of ∂, these
equivalence classes define what are actually denoted as cohomol-
ogy groups: the cohomology groups of the deRham complex for the
coboundary operator are simply the quotient spaces Ker d/Im d.
Finally, note that the homology and cohomology groups are not
only dual notions, but they are also isomorphic; therefore, the car-
dinalities of their basis are equal.

4.4.4 Calculation of the Cohomology Basis

One usual way to calculate a cohomology basis is to calculate a
Smith Normal Form to obtain the homology basis first (possibly
using progressive mesh [Gu and Yau 2003]), with a worst case
complexity is O(n3), and then find the corresponding cohomology
basis derived from this homology basis. We provide an alternative
method here with worst case complexity also equal to O(n3). The
advantage of our method is that it directly calculates the cohomol-
ogy basis.

Our algorithm is a modified version of an algorithm in [Edelsbrun-
ner et al. 2000], although they did not the use it for the same pur-
pose1. We will use row#(.) to refer to the row number of the last
non-zero coefficient in a particular column.

The procedure is as follows:

1. Transform dk (size |σk| × |σk+1|) in the following manner:

// For each column of dk

for(i = 0; i < |σk|; i++)
// Reduce column i

repeat
p← row#(dk[i])
find j < i such as p==row#(dk[j])
make dk[i][p] zero by adding to dk[i] a multiple of dk[j]

until j not found or column i is all zero

In the end of this procedure, we get dk′ = dk Nk, whose non-
zero column vectors are linearly independent of each other
and with different row#(.), and Nk is a non-singular upper
triangular matrix.

2. Construct Kk = {Nk
i | dk′

i = 0}
(where Nk

i and D′
i are column vectors of matrices N and D’

respectively).
Kk is a basis for kernel of dk.

3. Construct Ik = {Nk
i |i = row#(d(k−1)′

j)}

4. Construct P k = Kk − Ik

P k is a basis for cohomology basis.

Short proof of correctness: First thing to notice is that Nk
i ’s are all

linearly independent because Nk is nonsingular. If Nk
i1 , Nk

i2 ∈ P k

(with i1 < i2), row#(Nk
i1 −Nk

i2) = i2. But i2 is not row#(.) of
any d(k−1)′

i (and thus any linear combination of them) by definition
of P k. Therefore, we know that Nk

i1 − Nk
i2 is not in the image

space of dk−1 (since the range of dk−1 is the same as dk−1′, by
construction).

One can also prove that Ik is a subset of Kk. Pick such an
Nk

i , suppose i = row#(d(k−1)′
j). dk d(k−1)′

j = 0 (since
dk ◦ dk−1 = 0). Now row#(τ =≡ (Nk)−1 d(k−1)

j) = i (the
inverse of an upper triangular matrix is also an upper triangular ma-
trix). 0 = dk d(k−1)

j = dk′(Nk)−1 d(k−1)
j = dk′τ means

dk′
i = 0 because the columns of dk′ are linearly independent or 0.

Therefore, Card(P k) = Card(Kk) − Card(Ik) =

Dim(Ker(dk)) − Dim(Im(d(k−1))), and we conclude that,
P k spans Ker(dk)/Im(dk−1) as expected.

4.4.5 Example

Consider the 2d simplicial complex in Figure 10(a) again. We will
show an example of running the same procedure described above
to compute homology basis. The only difference is that we use ∂
instead of d.

1. Compute the ∂′’s and N ’s: ∂2′ is trivial, which is the same as
∂2.

∂1′ =

 −1 0 0 0 0
1 −1 0 0 0
0 1 1 0 0
0 0 −1 0 0
0 0 0 0 0

!
, N1′ =

1 0 0 −1 0
0 1 0 −1 −1
0 0 1 1 −1
0 0 0 1 0
0 0 0 0 1

!
,

1Thanks to David Cohen-Steiner for pointing us to the similarities

2. Contruct K’s:

K0 = {

1
0
0
0
0

!
,

0
1
0
0
0

!
,

0
0
1
0
0

!
,

0
0
0
1
0

!
,

0
0
0
0
1

!
}

= {v0, v1, v2, v3, v4}

(N0 is identity)

K1 = {

 −1
−1
1
1
0

!
,

0
1
−1
0
1

!
, } = {(−e0−e1+e2+e3), (e1−e2+e4)}

3. Construct I’s:

I0 = {v1 (1 = row#(∂1′
0)),

v2 (2 = row#(∂1′
1),

v3 (3 = row#(∂1′
2))}

I1 = {(e1 − e2 + e4) (4 = row#(∂2′
0)}

4. Construct homology basis

P 0 = {v0, v1, v2, v3, v4} − {v1, v2, v3} = {v0, v4}

P 1 = {(−e0 − e1 + e2 + e3)}

This result confirms the basis we gave in the example of Sec-
tion 4.4.2 (Note that −(−e0 − e1 + e2 + e3)− (e1 − e2 + e4) =
e0 − e4 − e3 = ∂f0, thus (−e0 − e1 + e2 + e3) spans the same
homology space as (e1 − e2 + e4)).

4.5 Dual Mesh

let us introduce the notion of dual mesh. The main idea is to as-
sociate to each primal k-simplex a dual (n-k)-cell. For example,
consider the tetrahedral mesh in Figure 13, we associate a dual 3-
cell to each primal vertex (0-simplex), a dual face (2-cell) to each
primal edge (1-simplex), a dual edge (1-cell) to each primal face
(2-simplex), and a dual vertex (0-cell) to the primal tet (3-simplex).
By construction, the number of dual (n-k)-cells is equal to that of
primal k-simplices. The collection of dual cells is called a cell com-
plex, which need not be a simplicial complex in general. Yet, the
dual complex inherits several properties and operations from the
primal simplicial complex. Most important is the notion of adja-
cency. For instance, if two primal edges are adjacent (they share
a vertex) then the corresponding dual faces are also adjacent, that
is, they share a common dual edge (which is the dual of the pri-
mal common vertex). As a result of this adjacency property, one
may easily derive a boundary operator on the dual cell complex
and, consequently, a discrete exterior derivative. This means that
the dual cell complex also carries the structure of a chain complex.
The structure on the dual complex may be linked to that of the pri-
mal complex using the Hodge star (a metric-dependent operator),
as we will discuss in Section 5.

4.5.1 Dualization ∗

For simplicity, we use the circumcentric (or Voronoi) duality to con-
struct the dual cell complex. The circumcenter of a k-simplex is
defined as the center of the k-circumsphere, which is the unique k-
sphere that has all k + 1 vertices of the k-simplex on its surface.
In Figure 12, we show examples of circumcentric dual cells of a
2d mesh. The dual 0-cell associated with the triangular face is the
circumcenter of the triangle. The dual 1-cell associated with one of
the primal edges is the line segment that joins the circumcenter of

Figure 12: A 2-dimensional example of primal and dual mesh elements. On
the top row, we see the primal mesh with a representative of each simpli-
cial complex being highlighted. The bottom row shows the corresponding
circumcentric dual cells.

the triangle to the circumcenter of that edge, while the dual 2-cell
associated with a primal vertex is the union of the interior of the
circumcenters of the triangle, the two adjacent edges and the ver-
tex. Thereafter, we will denote as ∗ the operation of duality; that is,
a primal simplex σ will have its dual called ∗σ with the orientation
induced by the primal orientation and the manifold’s orientation.
For a formal definition, we refer the reader to [Hirani 2003] for in-
stance. It is also worth noting that other notions of duality such
as the barycentric duality may be employed. For further details on
dual cell decompositions, see [Munkres 1984].

4.5.2 Wedge Product

In the continuous setting, the wedge product ∧ is an operation used
to construct higher degree forms from lower degree ones; it is the
antisymmetric part of the tensor product. For example, let α and
β be 1-forms on a subset R ⊂ R3, their wedge product α ∧ β is
a 2-form on R. In this case, one can relate the wedge product to
the cross product of vector fields onR. Indeed, if one considers the
vector representations of α and β, the vector proxy to α ∧ β is the
cross product of the two vectors. Similarly, the wedge product of a
1-form γ with the 2-form ω = α ∧ β is a 3-form µ = α ∧ ω (also
called volume-form) on R which is analogous to the scalar triple
product of three vectors.

A discrete treatment of the wedge operator can be found in [Hirani
2003]. In this work, we only need to introduce the notion of a
discrete primal-dual wedge product: given a primal k-cochain γ
and a dual (n-k)-cochain ω, the discrete wedge product γ ∧ ω is an
n-form (or a volume-form). For example, consider Figure 13, the
wedge product of the primal 1-cochain with the dual 2-cochain is
a 3-form associated with the diamond region defined by the primal
edge and dual face.

5 Metric-Dependent Operators on Forms
Notice that up to now, we did not assume that a metric was avail-
able, i.e., we never required anything to be measured. However,
such a metric is necessary for many purposes. For instance, sim-
ulating the behavior of objects around us requires measurements
of various parameters in order to be able to model laws of motion,
and compare the numerical results of simulations. Consequently, a
certain number of operations on forms can only be defined once a
metric is know, as we shall see in this section.

5.1 Notion of Metric and Inner Product

A metric is, roughly speaking, a nonnegative function that describes
the ”distance” between neighboring points of a given space. For ex-
ample, the Euclidean metric assigns to any two points in the Euclid-
ean space R3, say X = (x1, x2, x3) and Y = (y1, y2, y3), the

number:

d(X,Y)=‖X−Y‖2 =
p

(x1−y1)2 + (x2−y2)2 + (x3−y3)2

defining the ”standard” distance between any two points in R3 .
This metric then allows one to measure length, area, and volume.
The Euclidean metric can be expressed as the following quadratic
form:

gEuclid =

0@1 0 0
0 1 0
0 0 1

1A.

Indeed, the reader can readily verify that this matrix g satisfies:
d2(X,Y) = (X − Y)tg(X − Y). Notice also that this metric
induces an inner product of vectors. Indeed, for two vectors u and
v, we can use the matrix g to define:

u · v = utg v.

Once again, the reader is invited to verify that this equality does
correspond to the traditional dot product when g is the Euclid-
ean metric. Notice that on a non-flat manifold, subtraction of
two points is only possible for points infinitesimally close to each
other, thus the metric is actually defined pointwise for the tangent
space at each point: it does not have to be constant. Finally, no-
tice that a volume form can be induced from a metric by defining
µn =

p
det(g)dx1 ∧ . . . ∧ dxn.

5.2 Discrete Metric

In the discrete setting presented in this paper, we only need to mea-
sure length, area, volume of the simplices and dual cells. We there-
fore do not have a full-blown notion of a metric, only a discrete
metric. Obviously, if one were to use a finer mesh, more infor-
mation on the metric would be available: having more values of
length, area, and volume known in each independent directions for
all neighborhoods provides a better approximation of the real, con-
tinuous metric.

5.3 The Differential Hodge Star

Let us go back for a minute to the differential case to explain a new
concept. Recall that the metric defines an inner product for vectors.
This notion also extends to forms: given a metric, one can define
the product of two k-forms ∈ Ωk(M) which will measure, in a
way, the projection of one onto the other. A formal definition can
be found in [Abraham et al. 1988]. Given this inner product, we
can introduce an operator denoted as ?, called the Hodge star, that
maps a k-form to a complimentary (n-k)-form:

? : Ωk(M)→ Ωn−k(M),

and is defined to satisfy the following equality:

α ∧ ?β = 〈α, β〉 µn

for any pair of k-forms α and β (recall that µn is the volume form
induced by the metric g). However, notice that the wedge product
is very special here: it is the product of k-form and a (n-k)-form,
two complementary forms. This fact will drastically simplify the
discrete counterpart of the Hodge star, as we now cover.

5.4 Discrete Hodge Star

In the discrete setting, the Hodge star becomes easier: we only
need to define how to go from a primal k-cochain to a dual (n-k)-
cochain, and vice-versa. By definition of the dual mesh, k-chains
and dual (n-k)-chains are represented by vectors of the same di-
mension. Just like for the discrete exterior derivative (coboundary)

d d d

0-forms (vertices) 1-forms (edges) 2-forms (faces) 3-forms (tets)

d d d

Figure 13: On the first line, the ‘primal’ chain complex is depicted and on
the second line we see the dual chain complex (i.e., cells, faces, edges and
vertices of the Voronoi cells of each vertex of the primal mesh).

operator, we may use a |Kk| × |Kk| square matrix to represent the
Hodge star. Now the question is: what should the coefficients of
this matrix be?

For numerical purposes we want it to be symmetric, positive def-
inite, and sometimes, even diagonal for faster computations. One
such diagonal Hodge star can be defined such as the diagonal el-
ements are the ratio of sizes of a k-simplex and its dual (n-k)-
simplex. In other words, we can define the discrete Hodge star
through the following simple rule:

1

|σk|

Z
σk

ω =
1

| ∗ σk|

Z
∗σk

?ω (8)

Therefore, any primal value of a form can be easily transferred to
the dual mesh through proper scaling—and vice-versa; to be pre-
cise, we have:

? ? = (−1)k(n−k)Id, (9)

which means that ? on the dual mesh is the inverse of the ? on the
primal up to a sign (the result of antisymmetry of wedge product,
which happens to be positive for any k when n = 3).

So we use the inverse of this star to go from dual (n-k)-cochain
to k-cochain. Since there is no ambiguity if we know the form is
primal or dual, we also use ? to denote the star for dual cochain,
just as we use d as a context-dependent operator

Implementation Based on Eq. 8, the inner product of forms αk

and βk at the diamond-shaped region formed by each k-simplex
and its dual (n − k)-simplex is simply the product of the value of
α at that k-simplex and value of ?β at that dual (n − k)-simplex.
Therefore, the sum over the whole space gives the following in-
ner product (which involves only linear algebra matrix and vector
multiplications)

〈αk, βk〉 = αt ? β. (10)

where the Hodge star matrix has, as its only non-zero coefficients,
the following diagonal terms:

(?k)qq = |(∗σ)q|/|(σq)|.

Notice that this definition of the inner product, when α = β, in-
duces the definition of the norm of k-forms.

Again, there are three different Hodge stars in R3, one for each
simplex dimension. But as we discussed for all the other operators,
the dimension of the form on which this operator is applied disam-
biguates which star is meant. So we will not encumber our notation
with unnecessary indices, and will only use the symbol ? for any of
the three stars implied.

The development of an accurate, yet fast to compute, Hodge star
is still an active research topic. However, this topic is beyond the

scope of the current paper and will be addressed in a future publi-
cation.

5.5 Discrete Codifferential Operator δ

We already have a linear operator d which maps a k-form to a k+1-
form, but we do not have a linear operator which maps a k+1-form
to a k-form. Having defined a discrete Hodge star, one can now
create such an adjoint operator δ for the discrete exterior derivative
d. Here, adjoint is meant with respect to the inner product of forms;
that is, this operator δ satisfies:

〈dα, β〉 = 〈α, δβ〉 ∀α ∈ Ωk−1(M), β ∈ Ωk(M)

For a smooth, compact manifold without boundary, one can prove
that (−1)n(k−1)+1?d? satisfies the above condition [Abraham et al.
1988]. Let us try to use the same definition in the discrete setting;
i.e., we wish to define the discrete δ by the relation:

δ ≡ (−1)n(k−1)+1 ? d? = (−1)n(k−1)+1 ? (−1)kdt
p?, (11)

Beware that the exterior derivative here (of rank (n-k)) is the trans-
pose of the corresponding primal d (of rank k, which we denote
in the equation by dp to emphasize we are using the actual matrix
instead of the context-dependent operator) up to a sign, since the
boundary operator on the dual is the transpose of the primal one
up to a sign. It is now straightforward to verify that the following
series of equalities:

〈dα, β〉 Eq. (10)
= (dα)t ? β

Eq. (9)
= αt(−1)(k−1)(n−(k−1)) ? ?dt

p ? β

= αt(−1)n(k−1)+1 ? ?(−1)kdt
p ? β

Eq. (11)
= 〈α, δβ〉

holds on the discrete manifold. So indeed, the discrete d and δ
are also adjoint in a similar fashion in the discrete setting. For this
reason, δ is called the codifferential operator.

Implementation of the Codifferential Operator Thanks to
this easily-proven adjointness, the implementation of the discrete
codifferential operator is a trivial matter: it is simply the product of
three matrices, mimicking exactly the differential definition men-
tioned in Eq. (11).

5.6 Exercise: Laplacian Operator

At this point, the reader is invited to perform a little exercise. Let us
first state that the Laplacian ∆ of a form is defined as: ∆ = δd+dδ.
Now, applied to a 0-form, notice that the latter term disappears.
Question: in 2D, what is the Laplacian of a function f at a vertex
i? The answer is actually known: it is the now famous cotangent
formula [Pinkall and Polthier 1993], since the ratio of primal and
dual edge sizes leads to such a trigonometric equality.

6 Interpolation of Discrete Forms
In Section 3.4, we argued that k-cochains are discretizations of k-
forms. This representation of discrete forms on chains, although
very convenient in many applications, is not sufficient to fulfill cer-
tain demands such as obtaining a point-wise value of the k-form.
As a remedy, one can use an interpolation of these chains to the rest
of space. For simplicity, these interpolation functions can be taken
to be linear (by linear, we mean with respect to the coordinates of
the vertices).

6.1 Interpolating 0-forms

It is quite obvious to linearly interpolate discrete 0-forms (as 0-
cochains) to the whole space: we can use the usual vertex-based
linear interpolation basis, often referred to as the hat function in the
Finite Element literature. This basis function will be denoted as ϕi

for each vertex vi. By definition, ϕi satisfies:

ϕi = 1 at vi, ϕi = 0 at vj 6= vi

while ϕi linearly goes to zero in the one-ring neighborhood of vi.
The reader may be aware that these functions are, within each sim-
plex, barycentric coordinates, introduced by Möbius in 1827 as
mass points to define a coordinate-free geometry.

With these basis functions, one can easily check that if we denote a
vertex vj by σj , we have:

Z
vj

ϕvi =

Z
σj

ϕσi =

Z
σj

ϕi =

(
1 if i = j,

0 if i 6= j.

Therefore, these interpolating functions represent a basis of 0-
cochains, that exactly corresponds to the dual of the natural basis of
0-chains.

6.2 Interpolating 1-forms

We would like to be able to extend the previous interpolation tech-
nique to 1-forms now. Fortunately, there is an existing method to
do just that: the Whitney 1-form (used first in [Whitney 1957]) as-
sociated with an edge σij between vi and vj is defined as:

ϕσij = ϕidϕj − ϕjdϕi.

A direct computation can verify that:

Z
σkl

ϕσij =

8><>:
1 if i = k and j = l,

−1 if i = l and j = k,

0 otherwise.

Indeed, it is easy to see that the integral is 0 when we are not inte-
grating it on edge eij , because at least one of the vertex (say, i) is
not on the edge, thus, ϕi = 0 and dϕi = 0 on the edge. However,
along the edge σij , we have ϕi + ϕj = 1, therefore:

Z
σij

ϕσij =

ϕi=0Z
ϕi=1

(ϕid(1−ϕi)−(1−ϕi)dϕi) =

ϕi=0Z
ϕi=1

(−dϕi) = 1.

We thus have defined a correct basis for 1-cochains this time.

6.3 Interpolating with Whitney k-Forms

One can extend these 1-form basis functions to arbitrary k-
simplices. In fact, Whitney k-forms are defined similarly:

ϕσi0,i1,...,ik
= k!

X
j=0...k

(−1)jϕij dϕi0 ∧ ... ∧ ddϕij ... ∧ ϕik

where d̂ϕip means that dϕip is excluded from the product. No-
tice how this definition exactly matches the case of vertex and edge
bases, and extends easily to higher dimensional simplices.

Remark If a metric is defined (for instance, the Euclidean met-
ric), we can simply identify dϕ with ∇ϕ for the real calculation.
This corresponds to the notion of sharp (]), but we will not develop
this point other than for pointing out the following remark: the tra-
ditional gradient of a linear function f in 2D, known to be constant
per triangle, can indeed be re-written à la Whitney:

∇f =
X

i

fi∇ϕi

ϕi+ϕj+ϕk=1
=

X
i,j,i6=j

(fi−fj)(ϕi∇ϕj−ϕj∇ϕi).

The values (fi−fj) are the edge values associated with the gradient,
i.e., the values of the one-form df .

Figure 14: ∇ϕ for the vertex on top

Basis of Forms The integration of the Whitney form associated
with a k-simplex will be 1 on that particular k-simplex, and 0 on
all others. Indeed, it is a simple exercise to see that the integration
of Whitney k-form basis associated to a k-simplex is 0 on a dif-
ferent k-simplex, because there is at least one hat function ϕj that
is valued 0, and since ϕj or dϕj appears in every term, the inte-
gral is 0. To see that the integral is 1 on the simplex itself, we can
use Stokes’ theorem 9as our discrete forms satisfies it exactly on
simplices): first, suppose k < n, and pick a k + 1-simplex, such
that the k-simplex is a face of it. Since it is 0 on other faces, the
integral is equal to the integral of dϕσ = (k + 1)!dϕi0 ∧ ... ∧ ϕik
on the k + 1-simplex, if we use ϕij as a local reference frame for
the integration,

R
σk+1 dϕi0 ∧ ... ∧ ϕik is simply the volume of a

standard simplex, which is 1
(k+1)!

, thus the integral is 1. The case
when k = n is essentially the same as k = n− 1.

This means that these Whitney forms are forming a basis of their
respective form spaces. In a way, these bases are an extension of
the Finite Element bases defined on nodes, or of the Finite Volume
elements that are constant per tet.

Note finally that the Whitney forms are not continuous; however,
they are continuous along the direction of the k-simplex (i.e., tan-
gential continuity for 1-forms, and normal continuity for 2-forms);
this is the only condition needed to make the integration well de-
fined. In a way, this property is the least we can ask them to be. We
would lose generality if we were to add any other condition! The
interested reader is referred to [Bossavit 1998] for a more thorough
discussion on these Whitney bases.

7 Application to Hodge Decomposition
We now go through a first application of the discrete exterior cal-
culus we have set up up to now. As we will see, the discrete case is
often much simpler that its continuous counterpart; yet it captures
the same properties.

7.1 Introducing the Hodge Decomposition

It is convenient in some applications to use the Helmholtz-Hodge
decomposition theorem to decompose a given continuous vector
field or differential form (defined on a smooth manifold M) into
components that are mutually orthogonal (in L2 sense), and easier
to compute (see [Abraham et al. 1988] for details). In fluid mechan-
ics for example, the velocity field is generally decomposed into a

part that is the gradient of a potential function and a part that is
the curl of a stream vector potential (see Section 8.3 for further de-
tails), as the latter one is the incompressible part of the flow. When
applied to k-forms, such decomposition is known as the Hodge de-
composition for forms and can be stated as follows:

Given a manifoldM and a k-form ωk onM with appropriate
boundary conditions, ωk can be decomposed into the sum of
the exterior derivative of a (k-1)-form αk−1, the codifferential
of a (k+1)-form βk+1, and a harmonic k-form hk:

ωk = dαk−1 + δβk+1 + hk.

Here, we use the term harmonic to mean that hk satisfies the equa-
tion ∆hk = 0, where ∆ is the Laplacian operator defined as
∆ = dδ + δd. The proof of this theorem is mathematically in-
volved and requires the use of elliptic operator theory and similar
tools, as well as a careful study of the boundary conditions to en-
sure uniqueness. The discrete analog that we propose has a very
simple and straightforward proof as shown below.

7.2 Discrete Hodge Decomposition

In the discrete setting, the discrete operators such as the exterior
derivative and the codifferential can be expressed using matrix rep-
resentation. This allows one to easily manipulate these operators
using tools from linear algebra. In particular, the discrete version
of the Hodge decomposition theorem becomes a simple exercise in
linear algebra. Note that we will assume a boundaryless domain for
simplicity (the generalization to domains with boundary is concep-
tually as simple).

Theorem 7.1 LetM be a discrete manifold and let Ωk(M)
be the space of discrete Whitney k-forms onM. Consider the
linear operator dk : W k →W k+1, such that dk+1 ◦ dk = 0,
and a discrete Hodge star which is represented as a symmet-
ric, positive definite matrix. Furthermore, define the codiffer-
ential (the adjoint of the operator d) as done in Section 5.5;
namely, let δk+1 = (−1)n(k−1)+1(?k)−1(dk)t?k+1. In this
case, the following orthogonal decomposition holds for all k:

Ωk(M) = dΩk−1(M)⊕ δΩk+1(M)⊕Hk(M)

where ⊕ means direct sum, and Hk(M) is the space of har-
monic k-forms onM, that is,Hk(M) = {h | ∆kh = 0}.

Proof For notational convenience, we will omit the superscript of
the operators when the rank is obvious. We first prove that the three
component spaces are orthogonal. Clearly, using the facts that the
Laplacian operator ∆ is equal to dδ+δd and that d and δ are adjoint
operators, one has that ∀h ∈ Hk:

〈∆h, h〉 = 0 ⇒ 〈dδh, h〉+ 〈δdh, h〉=〈dh, dh〉+ 〈δh, δh〉=0

⇒ dh = 0 and δh = 0

Also, ∀α and β ∈ Ωk(M), one has:

〈dα, δβ〉 = 〈ddα, β〉 = 0

and

〈dα, h〉 = 〈α, δh〉 = 0 〈h, δβ〉 = 〈dh, β〉 = 0

Now, any k-form that is perpendicular to dΩk−1(M) and
δΩk+1(M) must be in Hk(M), because this means dh = 0 and
δh = 0, so ∆h = dδh + δdh = 0.

Alternatively, we can prove that:

Ωk(M) = ∆Ωk(M)⊕Hk(M).

By analogy to the previous argument, it is easy to show that ∆Ωk is
orthogonal toHk. Additionally, the dimension of these two spaces
sum up to the dimension of Ωk, which means the decomposition is
complete.

Note that the reader can find a similar proof given in Appendix B
of [Frankel 2004], where it is used for Kirchhoff’s Circuits Laws.
There, Frankel does not mention that we can actually use cochains
as the discretization of forms, and his operations using a “metric”
of cochains can be interpreted as a Hodge star.

Implementation of the Discrete Hodge Decomposition
Before we discuss how to numerically implement the discrete
Hodge decomposition, we prove a useful result (that has a continu-
ous analog).

Lemma 7.2 In the discrete setting, one can find exactly one har-
monic cochain from each cohomology equivalence class.

Proof It is can be readily shown that the bases of harmonic
cochains and the cohomology groups both have the dimension
equal to dim(Ker dk) − dim(Im dk−1). To this end, recall that
a cohomology basis is defined as is Ker(dk)/Im(dk−1) and has
the dim(Ker dk) − dim(Im dk−1). Now, in order to see that the
space of harmonic cochains has this same dimension, simply note
that: Ker(dk) = dΩk−1 ⊕Hk.

Now, the equation δ(ω + df) = 0 has a solution for each ω in one
cohomology equivalence class. We know that the cochains forming
different cohomology groups are linearly independent, hence, we
conclude that these harmonic cochains spanHk.

By virtue of the above lemma, the implementation of the Hodge
decomposition is simply recursive in the rank of the form (i.e.,
cochain). The case of 0-forms is trivial: fix one vertex to a con-
stant, and solve the Poisson equation for 0-forms. Now suppose
that we have a decomposition working for (k − 1)-forms, and we
look for the decomposition of k-forms. Our approach is to get the
harmonic component hk first, so that we only need to solve a Pois-
son equation for the rest:

∆ωk = fk − hk (12)

One is left with the problem of finding a basis of harmonic forms.
Since we are given a Hodge star operator, we will use it to define
the metric on the space of cochains. This metric allows us to define
a basis for harmonic k-form (the dimension of this harmonic space
is generally small, since it is the k-th Betti number βk). First, one
needs to calculate the cohomology basis {Pi} based on the algo-
rithm in Section 4.4.4. Once we have {Pi}, we solve one special
decomposition of (k-1)-forms by first computing the forms fi sat-
isfying:

∆fi = −δPi (13)

Now Hk = Pi + dfi gives us the forms in basis of harmonic k-
form space. After normalization, we have the basis to calculate the
projection hk = HHtfk, where we assemble all Hk into a matrix
H . This completes the procedure of calculating the decomposition.

A non-singular matrix is often preferable when it comes to solve
a linear system efficiently; we can change the Laplacian matrix
slightly to make the Poisson equation satisfy this requirement. First,
we can get a orthonormal basis for harmonic form space (the di-
mension is βk). Now for basis ej (column vector with j-th element
equal to 1, and 0 everywhere else), take the distance of ej to the har-
monic space |ej−HHtej |; notice that this can be done in constant

time. Now take out the j-th column and j-th row of ∆ if ej has the
smallest distance from harmonic space, and repeat the step for βk

times. We are left with a non-singular matrix, and the solution to
the new linear system is a solution to the original Poisson equation.

8 Others Applications
8.1 Form-based Proof of Tutte’s Theorem

The notion of forms as convenient, intrinsic substitutes for vector
fields has been used to provide a concise proof of the celebrated
Tutte’s Embedding Theorem. This important result in graph theory
states that if one fixes the boundary of a 3-connected graph (i.e., a
typical polygonal mesh) to a convex domain of the plane and en-
sures that every non-boundary vertex is a strict convex combination
of its neighbors, then one obtains a planar straight-line embedding
of the graph. In other words, this embedding procedure will not
result in fold-overs. A significantly shorter alternative to the orig-
inal proof of this theorem was proposed by Gortler, Gotsman, and
Thurston [Gortler et al. 2004], using discrete 1-forms on edges. We
now present a sketch of their approach, using a formulation more in
line with the terms we used in this paper.

A Tutte embedding assigns to each vertex vi of a graph G some
2D coordinates X(vi) = (x(vi), y(vi)). By definition, each inte-
rior vertex vi satisfies a linear condition on its coordinates of the
form: X(vi) =

P
vj∈N (i) wijX(vj), where N (i) is the set of

1-ring neighbors of vertex vi. These coefficients wij are all pos-
itive due to the condition of strict convex combination mentioned
above. Now, for a given Tutte embedding, one can construct a
0-form z(v) = αx(v) + βy(v) for any pair of positive coeffi-
cients α and β. Notice that this 0-form satisfies the same con-
vex combination condition: z(vi) =

P
vj∈N (i) wijz(vj). Be-

cause of their strict positiveness, one can identify these coeffi-
cients wij to the diagonal Hodge star of primal 1-forms (see Sec-
tion 7), defined by a particular metric. Therefore, the relationship
0 =

P
vj∈N (i) wij(z(vj) − z(vi)) is equivalent to: d ? dz = 0.

There are two immediate conclusions:

� the 1-form ω = dz is closed (since it is the exterior derivative
of a 0-form), and

� it is also co-closed since δω = (?d?)dz = ?(d ? dz) = 0.

To use the previously defined 1-form ω to prove Tutte’s theorem,
Gortler et al. then invoke the usual definition of index of vector
fields. This concept is one of the oldest in Algebraic Topology,
initially stated by Poincaré and then developed by Hopf and Morse
in the continuous case. Its discrete counterpart was first proposed
by Banchoff, and used for instance in [Lazarus and Verroust 1999].
A discrete Poincare-Hopf index theorem also holds, stating that the
sum of all indices must be equal to 2 for a genus-0 patch. The final
argument uses the link between (co)closed forms and their indices.
Indeed, because we found a closed and coclosed form ω, it can
be easily shown that these two properties induce that the index of
each face must be less or equal to zero, as well as the index of
each vertex. Because the boundary of the patch is convex, only
two vertices on the boundary have index 1. Since all the indices
must sum to 2 and each interior index must less than zero, we can
conclude that each interior index is zero. Because this argument is
valid for every positive pair (α, β), one can easily deduce that each
interior face is convex and each vertex is a “wheel”; thus, injectivity
can be guaranteed.

This rather elegant proof demonstrates how discrete forms and their
obvious links to Algebraic Topology can be quite powerful in a va-
riety of applications. We also point the interested reader to papers
on conformal parameterizations, such as [Mercat 2001; Gu and Yau
2003], for which special discrete Hodge stars are defined to satisfy

a discrete definition of conformality: there are also very interesting
research on this particular topic, once again using the calculus of
exterior forms.

8.2 Electromagnetism with Forms

Electromagnetism can be formulated very elegantly using differen-
tial forms. For a detailed exposition of the geometric structure in
E&M, we refer the reader to [Bossavit 1998] and [Warnick et al.
1997]. In this approach, the electric field E is represented by a 1-
form, as the integral of E along a path traced by a test charge q is
equal to the electromotive force experienced by that charge. The
electric displacement L as well as the current density J are rep-
resented by 2-forms. The charge distribution ρ is a 3-form. The
magnetic field B is represented by a 2-form since it is measured as
a flux. whereas the magnetic field intensity H is a 1-form.

With these conventions, Maxwell’s equations can be rewritten as
follows:

∂tB + dE = 0, −∂tL + dH = J, dL = ρ, (14)

subject to the constitutive equations:

L = εE, H = µB, (15)

where ε is the permittivity, and µ is the permeability. The consti-
tutive relations (15) are very similar to the Hodge star operator that
transforms a k-form to an (n-k)-form. Here, ε operates on the elec-
tric field E (1-form) to yield the electric displacement L (2-form)
while µ transforms the magnetic field B (2-form) into the magnetic
field intensity H (1-form). To this end, one may think of both ε
and µ as Hodge star operators induced from appropriately chosen
metrics. Note that the balance laws in (14) are metric-independent.

As the reader can guess, one can readily discretize this represen-
tation of the physical quantities E, L, . . . and the associated sys-
tem of equations (14-15) using the tools presented in this chapter.
The resulting numerical algorithm preserves exactly the geometric
structure of the system, see [Bossavit 1998].

8.3 Fluids

The geometric structure of Fluid Mechanics, specifically Euler’s
equations for inviscid fluids, has been investigated (see [Mars-
den and Weinstein 1983] and references therein). In this geomet-
ric framework, vorticity are represented as a two-form (an area-
form) and Euler’s equations can be written as vorticity advection.
Roughly speaking, vorticity measures the rotation of a fluid par-
cel; we say the fluid parcel has vorticity when it spins as it moves
along its path. Vorticity advection means that the vorticity (as a
two-form) moves dynamically as if it is pushed forward by the fluid
flow. The integral of the vorticity on a given bounded domain is
equal, by Stokes theorem, to the circulation around the loop enclos-
ing the domain. This quantity as well as the total energy of the fluid
are conserved in the absence of external forcing. Inspired by this
geometric viewpoint and in light of the present development of Dis-
crete Exterior Calculus, we propose a discrete differential approach
to fluid mechanics and an integration scheme that satisfy the prop-
erties of conservation of circulation and energy, see Chapter 9 for
further detail.

9 Conclusions
In this chapter, we have stated the importance of using discrete dif-
ferential forms in computational science. We have also given a dis-
crete version of the Hodge decomposition, useful for a number of
computations in various fields. This geometric approach to compu-
tations is particularly novel, thus many details need to be explored

and proven superior to the current approaches. In particular, we
have the burden of proof when it comes to the generality of our ap-
proach. In order to work towards this goal, we are currently work-
ing on revisiting the foundations of elasticity, to demonstrate that
this idea of forms as fundamental elements of differential equations
can even be used in this context.

Acks
The authors wish to first thank Jerrold E. Marsden for his tremen-
dous help and support along the way. We also wish to acknowledge
the support of Anil Hirani, Melvin Leok, David Cohen-Steiner, Pe-
ter Schröder, Sharif Elcott, Pierre Alliez, and Eitan Grinspun.

References
ABRAHAM, R., AND SHAW, C., Eds. 1984. Dynamics: The Geom-

etry of Behavior. Ariel Press (Santa Cruz, CA).

ABRAHAM, R., MARSDEN, J., AND RATIU, T., Eds. 1988. Mani-
folds, Tensor Analysis, and Applications. Applied Mathematical
Sciences Vol. 75, Springer.

BJÖRNER, A., AND WELKER, V. 1995. The homology of ”k-
equal” manifolds and related partition lattices. Advances in
Math. 110, 277–313.

BOBENKO, A., AND SEILER, R., Eds. 1999. Discrete Integrable
Geometry and Physics. Clarendon Press.

BOSSAVIT, A. 1998. Computational Electromagnetism. Academic
Press, Boston.

BOSSAVIT, A. 2003. Personal Communications.

BURKE, W. L. 1985. Applied Differential Geometry. Cambridge
University Press.

CARROLL, S. 2003. Spacetime and Geometry: An Introduction to
General Relativity. Pearson Education.

CARTAN, É. 1945. Les Systèmes Differentiels Exterieurs et leurs
Applications Géometriques. Hermann, Paris.

DESBRUN, M., LEOK, M., AND MARSDEN, J. E. 2004. Discrete
Poincaré Lemma . Appl. Num. Math..

DIMAKIS, A., AND MÜLLER-HOISSEN, F. 1994. Discrete Differ-
ential Calculus, Graphs, Topologies, and Gauge Theory. Journal
of Mathematical Physics 35, 6703–6735.

DORAN, C., AND LASENBY, A., Eds. 2003. Geometric Algebra
for Physicists. Cambridge University Press.

EDELSBRUNNER, H., LETSCHER, D., AND ZOMORODIAN, A.
2000. Topological persistence and simplification. In IEEE Sym-
posium on Foundations of Computer Science, 454–463.

ELCOTT, S., TONG, Y., KANSO, E., DESBRUN, M., AND
SCHRÖDER, P. 2005. Discrete, Circulation-preserving and Sta-
ble Simplicial Fluid. under review.

FLANDERS, H. 1990. Differential Forms and Applications to Phys-
ical Sciences. Dover Publications.

FLANDERS, H., Ed. 2001. Geometric Methods for Computational
Electromagnetics. EMW Publishing, Cambridge Mass.

FORMAN, R. 2005. Bochner’s Method for Cell Complexes and
Combinatorial Ricci Curvature. to appear in the J. of Discrete
and Computational Geom..

FRANKEL, T. 2004. The Geometry of Physics. Second Edition.
Cambridge University Press, United Kingdom.

GORTLER, S., GOTSMAN, C., AND THURSTON, D. 2004. One-
Forms on Meshes and Applications to 3D Mesh Parameteriza-

tion. Tech. Rep. TR-12-04, Harvard University.

GRAY, A., Ed. 1998. Modern Differential Geometry of Curves and
Surfaces. Second edition. CRC Press.

GROSS, P. W., AND KOTIUGA, R. 2004. Electromagnetic Theory
and Computation: A Topological Approach. Cambridge Univer-
sity Press.

GU, X., AND YAU, S.-T. 2003. Global conformal surface parame-
terization. In Proceedings of the Eurographics/ACM SIGGRAPH
symposium on Geometry processing, Eurographics Association,
127–137.

HARRISON, J. 2005. Ravello Lecture Notes on Geometric Calculus
– Part I. Tech. rep., UC Berkeley.

HATCHER, A. 2004. Algebraic Topology. Cambridge University
Press.

HILDEBRANDT, K., AND POLTHIER, K. 2004. Anisotropic filter-
ing of non-linear surface features. In Computer Graphics Forum,
M.-P. Cani and M. Slater, Eds., vol. 23. Proc. Eurographics 2004.

HIRANI, A. N. 2003. Discrete Exterior Calculus. PhD thesis,
Caltech.

HYMAN, J. M., AND SHASHKOV, M. 1997. Natural Discretiza-
tions for the Divergence, Gradient, and Curl. International Jour-
nal of Computers and Mathematics with Applications 33, 277–
313.

KANSO, E., ARROYO, M., DESBRUN, M., MARSDEN, J. E., AND
TONG, Y. 2004. On the geometric character of continuum me-
chanics. completed and to be submitted.

LAZARUS, F., AND VERROUST, A. 1999. Level Set Diagrams of
Polyhedral Objects. In Proceedings of the 5th ACM Symposium
on Solid Modeling and Applications, 130–140.

LOVELOCK, D., AND RUND, H. 1993. Tensors, Differential
Forms, and Variational Principles. Dover Publications.

MADSEN, I. H., AND TORNEHAVE, J. 1997. From Calculus to Co-
homology : De Rham Cohomology and Characteristic Classes.
Cambridge University Press, United Kingdom.

MARSDEN, J. E., AND HUGHES, T. 1983. Mathematical Founda-
tions of Elasticity. Dover, New York.

MARSDEN, J. E., AND WEINSTEIN, A. 1983. Coadjoint orbits,
vortices and Clebsch variables for incompressible fluids. Physica
D 7, 305–323.

MARSDEN, J. E., AND WEST, M. 2001. Discrete Mechanics and
Variational Integrators . Acta Numerica.

MCCORMICK, S. F. 1989. Multilevel Adaptive Methods for Partial
Differential Equations — Chapter 2: The Finite Volume Method,
vol. 6. SIAM.

MERCAT, C. 2001. Discrete Riemann Surfaces and the Ising
Model. Commun. Math. Phys. 218, 1, 177–216.

MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H.
2002. Discrete Differential-Geometry Operators for Triangu-
lated 2-Manifolds. In Proceedings of VisMath.

MORITA, S. 2001. Geometry of Differential Forms. Translations
of Mathematical Monographs, Vol. 201. Am. Math. Soc.

MUNKRES, J. R. 1984. Elements of Algebraic Topology. Addison-
Wesley, Menlo Park, CA.

PINKALL, U., AND POLTHIER, K. 1993. Computing Discrete
Minimal Surfaces. Experimental Mathematics 2, 1, 15–36.

POLTHIER, K., AND PREUSS, E. 2000. Variational Approach to
Vector Field Decomposition. Scientific Visualization, Springer

Verlag (Proc. of Eurographics Workshop on Scientific Visualiza-
tion).

POLTHIER, K., AND PREUSS, E. 2002. Identifying Vector Fields
Singularities using a Discrete Hodge Decomposition. Visualiza-
tion and Mathematics III, Eds: H.C. Hege, K. Polthier, Springer
Verlag.

POLTHIER, K. 2002. Computational Aspects of Discrete Minimal
Surfaces. Proceedings of the Clay Summer School on Global
Theory of Minimal Surfaces (Hass, Hoffman, Jaffe, Rosenberg,
Schoen, and Wolf Editors).

SCHREIBER, U. 2003. On Superstrings in Schrödinger Represen-
tation. Preprint.

SHARPE, R. W. 1997. Differential Geometry:Cartan’s General-
ization of Klein’s Erlangen Programme. Springer-Verlag, NY.

TONG, Y., LOMBEYDA, S., HIRANI, A. N., AND DESBRUN, M.
2003. Discrete Multiscale Vector Field Decomposition. ACM
Trans. Graph. 22, 3, 445–452.

WARNICK, K. F., SELFRIDGE, R. H., AND ARNOLD, D. V.
1997. Teaching Electromagnetic Field Theory Using Differential
Forms. IEEE Trans. on Education 40, 1, 53–68.

WHITNEY, H. 1957. Geometric Integration Theory. Princeton
Press, Princeton.

ZAPATRIN, R. 1996. Polyhedral Representations of Discrete Dif-
ferential Manifolds. Preprint.

Further Reading
Despite a large number of theoretical books, we are aware of only a
few books with a truly “applied flavor”, in line with this chapter. For
applications based on this exterior calculus or other geometric alge-
bras, see [Bossavit 1998; Flanders 2001; Bobenko and Seiler 1999;
Doran and Lasenby 2003; Gross and Kotiuga 2004]. The reader
interested in the application of differential forms to E&M is further
referred to [Warnick et al. 1997], for applications in fluid mechan-
ics see [Marsden and Weinstein 1983], and in elasticity see [Kanso
et al. 2004] and [Frankel 2004]. The reader is also invited to check
out current developments of variants of DEC, for instance, in [Di-
makis and Müller-Hoissen 1994; Schreiber 2003; Zapatrin 1996;
Harrison 2005].

Finally, the interested reader can find additional material on the fol-
lowing websites:

Graphics and Discrete Differential Calculus at Caltech:
http://www.multires.caltech.edu/pubs/
http://www.cs.caltech.edu/∼mathieu

Computational E&M (Alain Bossavit):
http://www.lgep.supelec.fr/mse/perso/ab/bossavit.html

Discrete Vector Fields and Combinatorial Topology (Robin
Forman):
http://math.rice.edu/∼forman/

Discrete Mechanics at Caltech (Jerrold E. Marsden):
http://www.cds.caltech.edu/∼marsden/

Chapter 8:
Building Your Own DEC at Home

Sharif Elcott
Caltech

Peter Schröder
Caltech

1 Overview

The methods of Discrete Exterior Calculus (DEC) have given birth
to many new algorithms applicable to areas such as fluid simula-
tion, deformable body simulation, and others. Despite the (possi-
bly intimidating) mathematical theory that went into deriving these
algorithms, in the end they lead to simple, elegant, and straight-
forward implementations. However, readers interested in imple-
menting them should note that the algorithms presume the exis-
tence of a suitable simplicial complex data structure. Such a data
structure needs to support local traversal of elements, adjacency in-
formation for all dimensions of simplices, a notion of a dual mesh,
and all simplices must be oriented. Unfortunately, most publicly
available tetrahedral mesh libraries provide only unoriented rep-
resentations with little more than vertex-tet adjacency information
(while we need vertex-edge, edge-triangle, edge-tet, etc.). For those
eager to implement and build on the algorithms presented in this
course without having to worry about these details, we provide an
implementation of a DEC-friendly tetrahedral mesh data structure
in C++. This chapter documents the ideas behind the implementa-
tion.

1.1 Motivation

Extending a classic pointer-based mesh data structure to 3D is
unwieldy, error-prone, and difficult to debug. We instead take a
more abstract set-oriented view in the design of our data structure,
by turning to the formal definition of an abstract simplicial com-
plex. This gives our implementation the following desirable prop-
erties:

• We treat the mesh as a graph and perform all of our operations
combinatorially.

• There is no cumbersome pointer-hopping typical of most mesh
data structures.

• The design easily generalizes to arbitrary dimension.
• The final result is very compact and simple to implement.

In effect we are taking advantage of the fact that during assembly
of all the necessary structures one can use high level, abstract data
structures. That way formal definitions can be turned into code al-
most verbatim. While these data structures (e.g., sets and maps)
may not be the most efficient for computation, an approach which
uses them during assembly is far less error prone. Once every-
thing has been assembled it can be turned easily into more efficient
packed representations (e.g., compressed row storage format sparse
matrices) with their more favorable performance during the actual
computations which occur, e.g., in physical simulation.

1.2 Outline

We will begin with a few definitions in Section 2, and see how
these translate into our tuple-based representation in Section 3. The
boundary operator, described in Section 4, facilitates mesh traver-
sal and implements the discrete exterior derivative. We show how

face

face

face
face

Figure 1: Some typical examples of 2D mesh representations
(from [Joy et al. 2002]; used with permission). Such pointer-based
data structures become quite difficult to manage once they are ex-
tended to 3D.

everything is put together in Section 5. Finally, we discuss our im-
plementation of the DEC operators in Section 6.

2 Definitions

We begin by recalling the basic definitions of the objects we are
dealing with. The focus here is on the rigorous mathematical def-
initions in a form which then readily translates into high level al-
gorithms. The underlying concepts are simply what we all know
informally as meshes in either two (triangle) or three (tet) dimen-
sions.

Simplices A simplex is a general term for an element of the
mesh, identified by its dimension. 0-simplices are vertices, 1-
simplices are edges, 2-simplices are triangles, and 3-simplices are
tetrahedra.

Abstract Simplicial Complex This structure encodes all the
relationships between vertices, edges, triangles, and tets. Since we
are only dealing with combinatorics here the atomic element out
of which everything is built are the integers 0 ≤ i < n referencing
the underlying vertices. For now they do not yet have point po-
sitions in space. Formally, an abstract simplicial complex is a set
of subsets of the integers 0 ≤ i < n, such that if a subset is con-
tained in the complex then so are all its subsets. For example, a 3D
complex is a collection of tetrahedra (4-tuples), triangles (3-tuples),
edges (2-tuples), and vertices (singletons), such that if a tetrahedron
is present in the complex then so must be its triangles, edges, and

vertices. All our simplicial complexes will be proper three or two
manifolds, possibly with boundary and may be of arbitrary topol-
ogy (e.g., containing voids and tunnels).

Manifold The DEC operators that we build on are defined only
on meshes which represent manifolds. Practically speaking this
means that in a 3D simplicial complex all triangles must have two
incident tets only (for a boundary triangle there is only one incident
tet). Every edge must have a set of tets incident on it which form
a single “ring” which is either open (at the boundary) or closed (in
the interior). Finally for vertices it must be true that all incident tets
form a topological sphere (or hemisphere at the boundary). These
properties should be asserted upon reading the input. For example,
for triangles which bound tets one must assert that each such tri-
angle occurs in at most two tets. For an edge the “ring” property
of incident tets can be checked as follows. Start with one incident
tet and jump across a shared triangle to the next tet incident on the
edge. If this walk leads back to the original tet and all tets incident
on the edge can thusly be visited, the edge passes the test. (For
boundary edges such a walk starts at one boundary tet and ends
at another.) The test for vertices is more complex. Consider all
tets incident on the given vertex. Using the tet/tet adjacency across
shared triangles one can build the adjacency graph of all such tets.
This graph must be a topological sphere (or hemisphere if the vertex
is on the boundary).

Since we need everything to be properly oriented we will only allow
orientable manifolds (i.e., no Möbius strips or Klein bottles).

Regularity To make life easier on ourselves we also require the
simplicial complex to be strongly regular. This means that sim-
plices must not have identifications on their boundaries. For ex-
ample, edges are not allowed to begin and end in the same vertex.
Similarly, the edges bounding a triangle must not be identified nor
do we allow edges or triangles bounding a tet to be identified. In
practice this is rarely an issue since the underlying geometry would
need to be quite contorted for this to occur. Strictly speaking though
such identifications are possible in more general, abstract settings
without violating the manifold property.

Embedding It is often useful to distinguish between the topol-
ogy (neighbor relationships) and the geometry (point positions) of
the mesh. A great deal of the operations performed on our mesh can
be carried out using only topological information, i.e., without re-
gard to the embedding. The embedding of the complex is given by
a map p : [0,n) 7→ (x,y,z) ∈ R3 on the vertices (which is extended
piecewise linearly to the interior of all simplices). For example,
when we visualize a mesh as being composed of piecewise linear
triangles (for 2D meshes) or piecewise linear tets, we are dealing
with the geometry. Most of the algorithms we describe below do
not need to make reference to this embedding. When implementing
these algorithms it is useful to only think in terms of combinatorics.
There is only one stage where we care about the geometry: the com-
putation of metric dependent quantities needed in the definition of
the Hodge star.

3 Simplex Representation

Ignoring orientations for a moment, each k-simplex is represented
as a (k + 1)-tuple identifying the vertices that bound the simplex.
In this view a tet is simply a 4-tuple of integers, a triangle is a 3-
tuple of integers, an edge is a 2-tuple, and a vertex is a singleton.

Note that all permutations of a given tuple refer to the same sim-
plex. For example, (i, j,k) and (j, i,k) are different aliases for the
same triangle. In order to remove ambiguities, we must designate
one representative alias as the representation of the simplex in our
data structures. We do this by using the sorted permutation of the
tuple. Thus each simplex (tuple) is stored in our data structures as
its canonical (sorted) representative. Then if we, for example, need
to check whether two simplices are in fact the same we only need
to compare their representatives element by element.

All this information is stored in lists we designate V, E, F, and T.
They contain one representative for every vertex, edge, triangle, and
tet, respectively, in the mesh.

3.1 Forms

The objects of computation in an algorithm using DEC are forms.
Formally, a differential k-form is a quantity that can be integrated
over a k dimensional domain. For example, consider the expression∫

f (x)dx (x being a scalar). The integrand f (x)dx is called a 1-
form, because it can be integrated over any 1-dimensional interval.
Similarly, the dA in

∫ ∫
dA would be a 2-form.

Discrete differential forms are dealt with by storing the results of
the integrals themselves, instead of the integrands. That is, discrete
k-forms associate one value with each k-simplex, representing the
integral of the form over that simplex. With this representation we
can recover the integral over any k-dimensional chain (the union of
some number of k-simplices) by summing the value on each sim-
plex (using the linearity of the integral).

Since all we have to do is to associate one value with each simplex,
for our purposes forms are simply vectors of real numbers where
the size of the vector is determined by the number of simplices of
the appropriate dimension. 0-forms are vectors of size |V|, 1-forms
are vectors of size |E|, 2-forms are vectors of size |F|, and 3-forms
are vectors of size |T|. Such a vector representation requires that we
assign an index to each simplex. We use the position of a simplex in
its respective list (V, E, F, or T) as its index into the form vectors.

3.2 Orientation

Because the vectors of values we store represent integrals of the as-
sociated k-form over the underlying simplices, we must keep track
of orientation. For example, reversing the bounds of integration on∫ b

a f (x)dx flips the sign of the resulting value. To manage this we
need an intrinsic orientation for each simplex. It is with respect
to this orientation that the values stored in the form vectors receive
the appropriate sign. For example, suppose we have a 1-form f
with value fi j assigned to edge e = (i, j); that is, the real number
fi j is the integral of the 1-form f over the line segment (pi, p j). If
we query the value of this form on the edge (j, i) we should get
− fi j.

i

 (i,j,k)
 (j,k,i)
–(j,i,k)

 (j,i,k)
 (i,k,j)
–(i,j,k)

j

k

i

j

k

...
...

Figure 2: All permutations of a triple (i, j,k) refer to the same tri-
angle, and the sign of the permutation determines the orientation.

Hence every tuple must be given a sign indicating whether it agrees
(+) or disagrees (−) with the intrinsic orientation of the simplex.
Given a set of integers representing a simplex, there are two equiv-
alence classes of orderings of the given tuple: the even and odd
permutations of the integers in question. These two equivalence
classes correspond to the two possible orientations of the simplex
(see Fig. 2).

Note that assigning a sign to any one alias (i.e., the representative)
implicitly assigns a sign to all other aliases. Let us assume for a
moment that the sign of all representatives is known. Then the sign
S of an arbitrary tuple t, with representative r, is

S(t) =
{

S(r) if t is in the same equivalence class as r
−S(r) if t is in the opposite equivalence class.

More formally, let P be the permutation that permutes t into r (i.e.,
r = P(t)). Then

S(t) = S(P)S(P(t)).

(Here S(P) denotes the sign of the permutation P with +1 for even
and −1 for odd permutations.)

All that remains, then, is to choose an intrinsic orientation for each
simplex and set the sign of the representative alias accordingly. In
general the assignment of orientations is arbitrary, as long as it is
consistent. For all subsimplices we choose the representative to be
positively oriented, so that the right-hand-side of the above expres-
sion reduces to S(P). For top-level simplices (tets in 3D, triangles
in 2D), we use the convention that a positive volume corresponds to
a positively oriented simplex. We therefore require a volume form
which, together with an assignment of points to vertices, will allow
us to orient all tets. Recall that a volume form accepts three (for 3D;
two for 2D) vectors and returns either a positive or negative num-
ber (assuming the vectors are linearly independent). So the sign of
a 4-tuple is:

S(i0, i1, i2, i3) = S(Vol(pi1 − pi0 , pi2 − pi0 , pi3 − pi0)).

4 The Boundary Operator
The faces of a k-simplex are the (k−1)-simplices that are incident
on it, i.e., the subset of one lower dimension. Every k-simplex has
k + 1 faces. Each face corresponds to removing one integer from
the tuple, and the relative orientation of the face is (−1)i where i is
the index of the integer that was removed. To clarify:

• The faces of a tet +(t0, t1, t2, t3) are −(t0, t1, t2), +(t0, t1, t3),
−(t0, t2, t3), and +(t1, t2, t3).

• The faces of a triangle +(f0, f1, f2) are +(f0, f1),−(f0, f2), and
+(f1, f2).

• The faces of an edge +(e0,e1) are −(e0) and +(e1).

We can now define the boundary operator ∂ which maps simplices
to their their faces. Given the set of tets T we define ∂ 3 : T→ F4 as

∂
3(+(i0, i1, i2, i3)) = {−(i0, i1, i2),+(i0, i1, i3),

−(i0, i2, i3),+(i1, i2, i3)}.

Similarly for ∂ 2 : F→ E3 (which maps each triangle to its three
edges) and ∂ 1 : E→V2 (which maps each edge to its two vertices).

We represent these operators as sparse adjacency matrices (or,
equivalently, signed adjacency lists), containing elements of type
+1 and −1 only. So ∂ 3 is implemented as a matrix of size |F|× |T|
with 4 non-zero elements per column, ∂ 2 an |E|× |F| matrix with
3 non-zero elements per column, and ∂ 1 a |V|× |E| matrix with 2
non-zero elements per column (one +1 and one −1). The trans-
poses of these matrices are known as the coboundary operators,

and they map simplices to their cofaces—neighbor simplices of one
higher dimension. For example, (∂ 2)T maps an edge to the “pin-
wheel” of triangles incident on that edge.

Figure 3: The boundary operator identifies the faces of a simplex
as well as their relative orientations. In this illustration, arrows
indicate intrinsic orientations and signs indicate the relative orien-
tation of a face to a parent.

These matrices allow us to iterate over the faces or cofaces of any
simplex, by walking down the columns or across the rows, respec-
tively. In order to traverse neighbors that are more than one dimen-
sion removed (i.e., the tets adjacent to an edge or the faces adjacent
to a vertex) we simply concatenate the appropriate matrices, but
without the signs. (If we kept the signs in the matrix multiplication
any such consecutive product would simply return the zero matrix
reflecting the fact that the boundary of a boundary is always empty.)

5 Construction
Although we still need a few auxiliary wrapper and iterator data
structures to provide an interface to the mesh elements, the simplex
lists and boundary matrices contain the entirety of the topological
data of the mesh. All that remains, then, is to fill in this data.

We read in our mesh as a list of (x,y,z) vertex positions and a list of
4-tuples specifying the tets. Reading the mesh in this format elimi-
nates the possibility of many non-manifold scenarios; for example,
there cannot be an isolated edge that does not belong to a tet. We
assume that all integers in the range [0,n) appear at least once in
the tet list (this eliminates isolated vertices), and no integer outside
of this range is present.

Once T is read in, building E and F is trivial; for each tuple in T,
append all subsets of size 2 and 3 to E and F respectively. We must
be sure to avoid duplicates, either by using a unique associative
container, or by sorting the list afterward and removing duplicates.
Then the boundary operator matrices are constructed as follows:

for each simplex s
construct a tuple for each face f of s

as described in Section 4
determine the index i of f by locating

its representative
set the entry of the appropriate matrix

at row i, column s to S(f)

Figure 4 shows a complete example of a mesh and its associated
data structure.

6 DEC Operators

Now we discuss the implementation of the two most commonly
used DEC operators: the exterior derivative and the Hodge star.
As we will see, in the end these also amount to nothing more than
sparse matrices that can be applied to our form vectors.

1

0

1
2

0 5

76

4
8

3
3

2

4
30 4

1

2

5

6

V E F T
[0] [0,1] [0,1,2] [0,1,2,3]
[1] [0,2] [0,1,3] [1,2,3,4]
[2] [0,3] [0,2,3]
[3] [1,2] [1,2,3]
[4] [1,3] [1,2,4]

[1,4] [1,3,4]
[2,3] [2,3,4]
[2,4]
[3,4]

∂ 3 =

−1
1
−1

1 −1
1
−1

1

∂ 2 =

1 1
−1 1

−1 −1
1 1 1

1 −1 1
−1 −1

1 1 1
1 −1

1 1

∂ 1 =

−1 −1 −1

1 −1 −1 −1
1 1 −1 −1

1 1 1 −1
1 1 1

Figure 4: A simple mesh and all associated data structures.

6.1 Exterior Derivative

As we have seen earlier in the course, the discrete exterior derivative
is defined using Stokes’ theorem such that∫

σ

dω =
∫

∂σ

ω

where ω is a k-form, and σ is a (k + 1)-simplex. In words, this
equation states that the evaluation of dω on a simplex is equal to
the evaluation of ω on the boundary of that simplex.

Let us try to understand this theorem with a few examples. Consider
a 0-form f , i.e., a function giving values at vertices. With that, d f is
a 1-form which can be integrated along an edge (say with endpoints
denoted a and b) and Stokes’ theorem states the well known fact∫

[a,b]
d f = f (b)− f (a).

The right hand side is simply the evaluation of the 0-form f on the
boundary of the edge (i.e., its endpoints), with appropriate signs
indicating the orientation of the edge.

What about triangles? If f is a 1-form (one value per edge), then
d f is a 2-form that can be evaluated on a triangle abc as∫

∆abc
d f =

∫
∂ (∆abc)

f

=
∫
[a,b]

f +
∫
[b,c]

f +
∫
[c,a]

f

= fab + fbc + fca

using the subscript notation from Section 3.2. Again, the right hand
side is simply the evaluation of the 1-form f on the boundary of the
triangle—its three edges.

We can restate the general form of the theorem for our discrete
forms as

dωσ = ∑
s∈∂σ

ωs

Written this way, it is easy to see that this can be implemented as
the multiplication of a form vector by the coboundary matrix ∂ T .

6.2 The Dual Mesh and the Hodge Star

Every complex has a dual. The dual of a simplicial complex is a cell
complex where primal k-simplices correspond to dual (n−k)-cells.
So in our case there are |V| dual polyhedra, |E| dual polygons, |F|
dual edges, and |T| dual vertices, corresponding to primal vertices,
edges, triangles, and tetrahedra, respectively (see Fig. 5). Note that,
since every dual cell is co-located with a primal simplex and the
cardinality is the same, in the code there is no explicit representa-
tion for the dual mesh. Where appropriate, dual cells are queried
through the corresponding primal simplex index.

Figure 5: There is one dual polyhedron for every primal vertex, one
dual polygon for every primal edge, one dual edge for every primal
triangle, and one dual vertex for every primal tetrahedron.

The operator that transforms a primal k-form into a dual (n− k)-
form is known as the Hodge star. There are many different kinds
of Hodge stars, the simplest of which is the diagonal Hodge star.

We again attempt to motivate the definition with some intuition.
When transferring a quantity from a primal simplex to a dual cell,
the quantities must “agree” somehow. Since these are integral val-
ues, simply setting the value on the dual to be equal to the value
on the primal does not make sense, as the domain of integration is
unrelated. Instead, we require that the integral density be equal. So,
if ω denotes the evaluation of a form on a primal k-simplex σ , then
?ω is the value on the dual (n− k)-cell σ̃ such that

ω

Vol(σ)
=

?ω

Vol(σ̃)

allowing us to define ? as

? =
Vol(dual)

Vol(primal)
.

In effect the diagonal Hodge star requires that the averages of the
integrand over the respective domains agree.

This is represented as a diagonal matrix so that, again, applica-
tion of the operator becomes a simple matrix-vector multiplication.
Note that when transforming quantities from the dual to the primal,
the inverse of this matrix is used. Since the matrix is diagonal we
only store the diagonal entries. There are as many of these as there
are simplices of the appropriate dimension. Consequently the diag-
onal Hodge star can be represented with vectors of length |V|, |E|,
|F|, and |T| respectively.

6.2.1 Calculating Dual Volumes

So far the entire implementation has been in terms of the combina-
torics of the mesh, but when constructing the Hodge star we must
finally introduce the geometry. After all, the purpose of the Hodge
star is to capture the metric. The volumes of the primal simplices
are straightforward: 1 for vertices, length for edges, area for tri-
angles, and volume for tetrahedra. The dual volumes are similarly
defined, but in order to avoid constructing the graph of the dual
mesh explicitly, we calculate the dual volumes as follows.

If we use the circumcentric realization of the dual mesh (i.e., dual
vertices are at the circumcenters of the associated tets), we can ex-
ploit the following facts when calculating the dual volumes.1

• A dual edge (dual of a primal triangle t) is linear, is normal to
t, and is collinear with the circumcenter of t (though the line
segment need not necessarily pass through t).

• A dual polygon (dual of a primal edge e) is planar, is orthogonal
to e, and is coplanar with the center of e (though it need not
intersect e).

• A dual cell (dual of a primal vertex v) is the convex intersection
of the half-spaces defined by the perpendicular bisectors of the
edges incident on v.

Just as with primal vertices, the volume of a dual vertex is defined to
be 1. For the others, we can conceptually decompose each cell into
pieces bounded by lower dimensional cells, and sum the volumes
of the pieces. For example, a dual polyhedron can be seen as the
union of some number of pyramids, where the base of each pyramid
is a dual polygon and the apex is the primal vertex. Similarly, a
dual polygon can be seen as a union of triangles with dual edges
at the bases, and dual edges can be seen as a union of (two) line
segments with dual vertices at the bases. The following pseudocode
illustrates how the volumes are calculated.

vec3 C(Simplex s); // gives the circumcenter of s

// Initialize all dual volumes to 0.

// Dual edges
for each primal triangle f

for each primal tet t f incident on f
b← t f .dualVolume // 1
h← ||C(f)−C(t f)||
f .dualVolume← f .dualVolume+ 1

1 bh

// Dual polygons
for each primal edge e

for each primal triangle fe incident on e
b← fe.dualVolume
h← ||C(e)−C(fe)||
e.dualVolume← e.dualVolume+ 1

2 bh

// Dual polyhedra
for each primal vertex v

for each primal edge ev incident on v
b← ev.dualVolume
h← ||C(v)−C(ev)||
v.dualVolume← v.dualVolume+ 1

3 bh

Note that, even when dealing with the geometry of the mesh, this
part of the implementation still generalizes trivially to arbitrary di-
mension.

1 Circumcentric duals may only be used if the mesh satisfies the Delau-
nay criterion. If it does not, a barycentric dual mesh may be used. However,
care must be taken if a barycentric dual mesh is used, as dual edges are no
longer straight lines (they are piecewise linear), dual faces are no longer
planar, and dual cells are no longer necessarily convex.

7 Summary

All the machinery discussed above can be summarized as fol-
lows:

• k-forms as well as the Hodge star are represented as vectors of
length |V|, |E|, |F|, and |T|;

• the discrete exterior derivative is represented as (transposes of)
sparse adjacency matrices containing only entries of the form
+1 and −1 (and many zeros); the adjacency matrices are of
dimension |V|×|E| (boundary of edges), |E|×|F| (boundary of
triangles), and |F|× |T| (boundary of tets).

In computations these matrices then play the role of operators such
as grad, curl, and div and can be composed to construct operators
such as the Laplacian (and many others).

While the initial setup of these matrices is best accomplished with
associative containers, their final form can be realized with standard
sparse matrix representations. Examples include a compressed row
storage format, a vector of linked lists (one linked list for each row),
or a two dimensional linked list (in effect, storing the matrix and its
transpose simultaneously) allowing fast traversal of either rows or
columns. The associative containers store integer tuples together
with orientation signs. For these we suggest the use of sorted inte-
ger tuples (the canonical representatives of each simplex). Appro-
priate comparison operators needed by the container data structures
simply perform lexicographic comparisons.

And that’s all there is to it!

Acknowledgments This work was supported in part through
a James Irvine Fellowship to the first author, NSF (DMS-
0220905, DMS-0138458, ACI-0219979), DOE (W-7405-ENG-
48/B341492), nVidia, the Center for Integrated Multiscale Mod-
eling and Simulation, Alias, and Pixar.

References

JOY, K. I., LEGAKIS, J., AND MACCRACKEN, R. 2002. Data
Structures for Multiresolution Representation of Unstructured
Meshes. Springer-Verlag, Heidelberg, Germany.

Chapter 9:
Discrete, Vorticity-Preserving, and Stable Simplicial Fluids
Sharif Elcott Yiying Tong Eva Kanso

Caltech
Peter Schröder Mathieu Desbrun

Figure 1: Discrete Fluids: we present a novel integration scheme for fluid simulation applicable to tetrahedral meshes of arbitrary domains. Aside from
resolving the exact boundaries, our approach also provides an accurate treatment of the vorticity through a discrete preservation of Kelvin’s circulation
theorem. Here, a hot smoke cloud rises inside a bunny shaped domain of 32K tets, significantly reducing the computational complexity of the simulation for
such an intricate boundary compared to regular grid-based techniques (less than 2s per frame on Pentium IV 3GHz).

Abstract
Visual accuracy, low computational cost, and numerical stability
are foremost goals in computer animation. An important ingre-
dient in achieving these goals is the conservation of fundamental
motion invariants. For example, rigid or deformable body simula-
tion have benefited greatly from conservation of linear and angular
momenta. In the case of fluids, however, none of the current tech-
niques focuses on conserving invariants, and consequently, they of-
ten introduce a visually disturbing numerical diffusion of vorticity.
Visually just as important is the resolution of complex simulation
domains. Doing so with regular (even if adaptive) grid techniques
can be computationally delicate.

In this chapter, we propose a novel technique for the simulation of
fluid flows. It is designed to respect the defining differential prop-
erties, i.e., the conservation of circulation along arbitrary loops as
they are transported by the flow. Consequently, our method of-
fers several new and desirable properties: (1) arbitrary simplicial
meshes (triangles in 2D, tetrahedra in 3D) can be used to define the
fluid domain; (2) the computations are efficient due to discrete op-
erators with small support; (3) the method is stable for arbitrarily
large time steps; and (4) it preserves a discrete circulation avoid-
ing numerical diffusion of vorticity. The underlying ideas are easy
to incorporate in current approaches to fluid simulation and should
thus prove valuable in many applications.
Keywords: Fluid Dynamics, Discrete Exterior Calculus, Compu-
tational Algorithms, Circulation Preservation

1 Introduction
It is now taken for granted that properties such as conservation of
linear and angular momentum in solid mechanics simulations are
a key ingredient in both numerical stability and the realism of the
resulting animations. Much of the progress in this direction has
been enabled by a deeper understanding of the underlying geomet-
ric structures and how they can be preserved as we go from continu-
ous models to discrete computational realizations. So far, advances
of this type have not yet deeply impacted fluid flow simulations.
Current methods in fluid simulation are rarely designed to conserve

defining physical properties. Consider, for example, the need in
many methods to continually project the numerically updated ve-
locity field onto the set of divergence free velocity fields.

1.1 Previous Work
Fluid Mechanics has been studied extensively in the scientific com-
munity both mathematically and computationally. The physical be-
havior of incompressible fluids is usually modeled by Navier Stokes
(NS) equations for viscous fluids and by Euler equations for invis-
cid (non-viscous) fluids. Numerical approaches in computational
fluid dynamics typically discretize the governing equations through
Finite Volumes (FV), Finite Elements (FE) or Finite Differences
(FD) methods. We will not attempt to review the many methods
proposed (an excellent survey can be found in [Langtangen et al.
2002]) and instead focus on approaches used for fluids in computer
graphics. Some of the first fluid simulation techniques used in the
movie industry were based on Vortex Blobs [Yaeger et al. 1986] and
Finite Differences [Foster and Metaxas 1997]. To circumvent the
ill-conditioning of these iterative approaches for large time steps
and achieve unconditional stability, Jos Stam [1999; 2001] pio-
neered in graphics the use of the method of characteristics for fluid
advection, and of the Helmholtz-Hodge decomposition to preserve
the divergence-free nature of the fluid motion [Chorin and Marsden
1979]. This extremely successful semi-Lagragian approach based
on an Eulerian discretization through a regular space partitioning
has led to a series of refinement over the past years. We mention
the use of Galilean invariance [Shah et al. 2004], staggered grids,
and monotonic cubic interpolation [Fedkiw et al. 2001], which have
all significantly contributed to visual impact of fluid animations. In
the wake of this success, improvements were made on the handling
of the interfaces with air [Foster and Fedkiw 2001], extensions to
curved surfaces [Stam 2003; Tong et al. 2003; Shi and Yu 2004]
and visco-elastic objects [Goktekin et al. 2004], and goal oriented
control of the fluid motion [Treuille et al. 2003; McNamara et al.
2004; Pighin et al. 2004].

However, the Stable Fluids technique is not without drawbacks.
First, complex domain boundaries are difficult to handle with regu-
lar grids due to scaling issues. This can be addressed through local
adaptivity of the domain [Losasso et al. 2004], but the associated

octree structures require significant overhead and lead to possible
loss of accuracy. Second, regular as well as octree partitionings of
space suffer from preferred direction sampling, leading to artifacts
similar to aliasing in rendering. Lastly, due to numerical dissipa-
tion, the current methods do not preserve fundamental invariants
aside from the divergence-free nature of the flow. While exagger-
ated loss of total energy is often difficult to notice, excessive dif-
fusion of vorticity affects the motion significantly. The presence
of vortices in liquids and volutes in smoke is one of the most im-
portant visual clues to our perception of fluidity. Vorticity confine-
ment [Steinhoff and Underhill 1994; Fedkiw et al. 2001] counter-
acts this diffusion by locally reinjecting vorticity. Unfortunately, it
is hard to control how much can safely be added back into the flow
without affecting stability.

Our main argument in this chapter is that a careful setup of dis-
crete differential quantities together with their structural relation-
ship (e.g., well known vector calculus identities) is a necessary first
step in building discrete simulation methods for fluids which can
respect some of the underlying physics and in this way overcome
limitations of earlier approaches. As it turns out this setup also
provides guidance in designing time integration methods with at-
tractive features such as stability and efficiency. The key ingredient
to this approach is a return to the geometric foundations of physics.

1.2 Towards a Geometric Approach to Simulation
In recent years, there has been a renewed emphasis on the geometric
structure of physical systems as a key feature for developing reliable
and efficient numerical methods that better respect the underlying
physics. Computational Electro-Magnetism (E&M) and Discrete
Variational Mechanics, for instance, have independently demon-
strated that geometric understanding of the continuous model and
proper geometric discretization are crucial for obtaining stable nu-
merical results that conserve charge, momentum, and even energy
(see, for example, [Bossavit 1998; Marsden and West 2001; Kane
et al. 2000; Lew et al. 2003; Fetecau et al. 2003]).

The geometric structure of Fluid Mechanics, specifically Euler’s
equations for inviscid fluids, has been investigated from a theoreti-
cal point of view (see [Marsden and Wenstein 1983] and references
therein). In this geometric framework, vorticity plays a central role
since Euler’s equations can be written directly as a simple vortic-
ity advection (see Section 2 for details). Inspired by this geomet-
ric viewpoint and the recent advances in Discrete Exterior Calcu-
lus (DEC—see [Bossavit 1998; Hirani 2003] , and Chapter 7), we
propose to mimic these geometric properties on the discrete level
through a discrete differential approach to fluid mechanics.

1.3 Contributions and Outline
In this chapter, we present a radically different approach to fluid
simulation based on a tailored discretization of the geometric struc-
ture of the fluid equations. We depart from the concepts of most
previous computational approaches by locating physical quanti-
ties on vertices, edges, faces, or cells, depending on their geo-
metric nature. Through a proper discrete calculus on simpli-
cial complexes, our novel integration scheme directly manipulates
intrinsically divergence-free variables, alleviating the need for a
numerically-detrimental Hodge projection. Our technique offers
control over the structural invariants in fluid flows thanks to our
structure-preserving space and physical discretization. Finally, our
novel technique fits the specific requirements of the CG commu-
nity that are simplicity and unconditional stability, with high visual
quality even for very large time steps.

The organization of this chapter is as follows. In Section 2, we
motivate our approach through a brief overview of the theory and
computational algorithms for Fluid Mechanics. We propose a novel

Figure 2: Domain Mesh: our fluid simulator uses a simplicial mesh to dis-
cretize the equations of motion; (left) the domain mesh (shown as a cutaway
view) used in Fig. 1; (up) a coarser version of the flat 2D mesh used in
Fig. 8; (right) the curved triangle mesh used in Fig. 10.

discrete fluid theory in Section 3 and we discuss the associated
circulation-preserving integration algorithm in Section 4. Several
numerical examples are shown and discussed in Section 5.

2 Background on Fluid Mechanics
2.1 Theory and Geometry of Euler Equations
Consider an ideal (inviscid, incompressible and homogeneous)
fluid flow on a domain D in two- or three-dimensional physical
space. The Euler equations, governing the motion of this fluid (with
no external forces for now), can be written as:

∂u
∂ t

+u ·∇u = −∇p ,

div(u) = 0 , u ‖ ∂D .

(1)

Here, we have set the density of the fluid ρ = 1 and used u to denote
the fluid velocity, p the pressure, and ∂D the boundary of the fluid
region D . The pressure term in Eq. (1) can be easily dropped by
rewriting the Euler equations in terms of vorticity. Recall first that,
in traditional vector calculus notation, the vorticity ωωω is defined as
the curl of the velocity field; then, by taking the curl (∇×) of Eq.(1),
we obtain:

∂ωωω

∂ t
+Luωωω = 0 ,

ωωω = ∇×u , div(u) = 0 , u ‖ ∂D .

(2)

where L represents the Lie derivative. To put it simply, this last
expression states that vorticity is advected along the fluid flow.
Roughly speaking, vorticity measures the local rotation of a fluid
parcel. We say the fluid parcel has vorticity when it spins as it
moves along its path. Therefore, vorticity advection means that the
local spin moves dynamically as if pushed forward by the flow.

Now, since the integral of the vorticity on a given bounded domain
is equal, by Stokes’ theorem, to the circulation around the loop en-
closing the domain, one can explain the geometric nature of an ideal
fluid flow in particularly simple terms: the circulation around any
closed loop C is conserved throughout the motion of this loop in
the fluid. This key result is known as Kelvin’s circulation theorem,
and is usually written as:

Γ(t) =
∮
C (t)

u ·dl = constant , (3)

where Γ(t) is the circulation of the velocity on the loop C at time t
as it gets advected in the fluid.

Additionally, one can readily verify that Euler equations (1), equiv-
alently (2), also preserve the total energy of the fluid which can be

written as:

E =
1
2

∫
D
‖ u ‖2 , or,equivalently, E =

1
2

∫
D

ωωω ·∆−1
ωωω . (4)

2.2 Navier-Stokes Equations
In contrast to ideal fluids, incompressible viscous fluids generate
very different fluid behaviors. However, they can be modelled by
the Navier-Stokes equations which look very similar to Euler equa-
tions:

∂u
∂ t

+u ·∇u = −∇p+ν∆u ,

div(u) = 0 , u|∂D = 0 .

(5)

where ∆ represents the Laplacian operator, and ν is a parameter
called the kinematic viscosity. Note that various types of boundary
conditions are sometimes added, depending on the chosen model.
Despite the apparent similarity between these two models for fluid
flows, it is important to notice that the added diffusion term damp-
ens the motion, resulting in a slow decay of both circulation and
total energy. This diffusion also implies that the velocity of a vis-
cous fluid at the boundary of a domain must be null, whereas an
inviscid fluid could have a non-zero tangential component on the
boundary. Here again, one can avoid the pressure term by taking
the curl of the equations, finally yielding :

∂ωωω

∂ t
+Luωωω = ν∆ωωω ,

ωωω = ∇×u , div(u) = 0 , u|∂D = 0 .

(6)

2.3 Stable Fluids Discretization
The different variants of the original Stable Fluids algorithm [Stam
1999] are all based on a class of discretization approaches known in
Computational Fluid Dynamics as fractional step methods. In order
to numerically solve the Euler equations over a time step h, they
proceed in two stages. They first update the velocity field assuming
the fluid is inviscid and disregard the divergence-free constraint of
Eq. (1). Then, the resulting velocity is projected onto the closest
divergence-free flow (in the L 2 sense) through a Helmholtz-Hodge
decomposition.

Although each step of this approach is unconditionally sta-
ble, one of the consequences of this fractional integration
is the exaggerated energy loss it creates: advecting ve-
locity before reprojecting onto a divergence-free field cre-
ates major energy loss and, more importantly in a CG
context, diffusion of vorticity as reported
in [Fedkiw et al. 2001] for instance. One
can understand this numerical flaw through
the following geometric argument: physically
speaking, the solution of Euler equations are
geodesic (i.e., shortest) paths on the manifold of all possible
divergence-free flows; advecting the fluid out of the manifold is not
a proper substitute to this intrinsic constrained minimization, even
the post re-projection is, in itself, exact.

2.4 Our Geometric Approach
Given the difficulties discussed above a natural question is whether
these problems can be overcome by designing more careful dis-
cretizations which are better suited to maintain the underlying geo-
metric structures—for example, flows that are always divergence
free without the need to continually project onto the space of diver-
gence free fields and incurring the associated losses. Or, perhaps
even more importantly for visual simulation, one may wonder if it
is possible to find discretizations that conserve circulation.

It is known that it is not possible to exactly preserve momenta
and total energy simultaneously in the discrete setting [Zhong and
Marsden 1988]. However, stable numerical techniques have been
reported to exactly preserve momenta while keeping the total en-
ergy remarkably close to constant [Marsden and West 2001]. Such
properties are obtained through the use of variational integrators,
i.e., by guaranteeing a discrete version of the least-action principle.
Their design proceeds by keeping underlying geometric structures
intact as one goes from the continuous to the discrete formulation.
More precisely, appropriate geometric discretization of the physics
allows one to construct discrete analogs of momenta and energy.
Equipped with these discrete structure-preserving quantities, inte-
gration schemes can then be designed to enforce their invariant na-
ture. We will loosely follow this path by using vorticity as our
primary simulation variables (see Eq. (2)) and designing a time in-
tegration scheme which will conserve circulation (Eq. (3)) through
vorticity advection. As a by-product our velocity fields will be di-
vergence free without any need to continually reproject to keep this
property. For comparison, and to the best of our knowledge, none
of the integration schemes proposed in CFD have been designed
to satisfy the conservation properties of the underlying equations
(aside from the limited case of linearized NS equations [Morton
and Roe 2001]).

We will limit ourselves to the investigation of such a scheme with-
out focusing on the separate issue of order of accuracy. Coming up
with an integration scheme that is of higher-order accuracy will be
the object of further research.

3 Spatial and Physical Discretization
In this section, we define proper discrete analogs for the velocity
and vorticity fields u and ωωω on simplicial grids. We emphasize that
the construction of these discrete fields is quite general as it does
not depend on the assumption of an ideal fluid.

3.1 Space Discretization
We discretize the spatial domain (in which the flow takes place)
using a locally oriented simplicial complex, i.e., either a tet mesh
for 3D domains or a triangle mesh for 2D domains, and refer to this
discrete domain as M (see Figure 2). The domain may have non-
trivial topology, e.g., it can contain tunnels and voids (3D) or holes
(2D), but is assumed to be compact. To ensure good numerical
properties in the subsequent simulation we require the simplices of
M to be well shaped, i.e., the aspect ratios of tets (resp., triangles)
are not near zero. This assumption is quite common since many
numerical error estimates depend heavily on the element quality.
Collectively we refer to the sets of vertices, edges, triangles, and
tets as V , E, F , and T .

We will also need the concept of a dual mesh. It associates with
each original simplex (vertex, edge, triangle, tet, respectively) its
dual (dual cell, dual edge, dual face, and dual vertex, respectively)
(see Fig. 3). The geometric realization of this dual mesh is defined
as follows: we take circumcenters of tets as the dual vertices and
the Voronoi cells as the dual cells; dual edges are then line segments
connecting dual vertices of neighboring tets and dual faces are the
faces of the Voronoi cells.

3.2 Physical Quantity Discretization
In order to faithfully capture the geometric structure of fluid me-
chanics on the discrete mesh, we need to define the usual physical
quantities such as velocity and vorticity, for example, through inte-
gral values over the simplices of the mesh M . This is the sharpest
departure from traditional numerical techniques in CFD: we not
only use values at nodes and tets (as in FEM and FVM), but also
allow association (and storage) of field values at any appropriate

Figure 3: Primal and Dual Cells: the simplices of our mesh are vertices,
edges, triangles and tets (up); their circumcentric duals are dual cells, dual
faces, dual edges and dual vertices (bottom).

simplex. In particular, some quantities will live on edges (primal or
dual), others on faces. Before our formal exposition of how these
quantities are defined, we motivate our discretization choice with
some physical intuition first.

Velocity as a Discrete Flux We wish to define a discrete quan-
tity that encodes the fluid velocity field while being intrinsic to the
mesh, i.e., with a coordinate-free representation. To do this, we
consider the flux of the fluid, i.e., the mass of fluid transported
across a given surface per unit time. Note that the flux across a
surface incorporates the area of the surface, indicating that it is an
integrated quantity rather than a pointwise quantity. On the discrete
mesh, a natural place to store the flux is on the triangles of a tet
mesh (or edges in a 2D triangle mesh). This discrete flux is co-
ordinate free, i.e., it does not depend on whatever local or global
coordinate frame we choose (vectors on the other hand have differ-
ent representations depending on the coordinate system).

One can equivalently think of the flux as living on dual edges; the
proper term should, however, be circulation in that case: recall that
a dual edge connects the dual vertices associated with the two in-
cident tets and is thus (in a sense) “transverse” to a shared primal
face. This point of view is reminiscent of the staggered grid method
used in [Fedkiw et al. 2001] and other non-collocated grid tech-
niques (see [Goktekin et al. 2004]). In the staggered grid approach
one does not store the x,y,z components of a vector at nodes but
rather associates them with the corresponding grid faces. We may
therefore think of the idea of storing fluxes on the triangles of our
tet mesh as a way of extending the idea of staggered grids to the
more general simplical mesh setting. This was previously exploited
in [Bossavit and Kettunen 1999] in the context of E&M compu-
tations. It also makes the usual no-transfer boundary conditions
easy to encode: boundary faces experience no flux across them.
Encoding this boundary condition when storing velocity vectors at
vertices is far more cumbersome.

Divergence as Net Flux on Tets Given the incompressibil-
ity of the fluid, the velocity field must be divergence-free (∇ ·u =
0), hence the integral of ∇ ·u is constant. We would like to write
this condition in the discrete setting. Given the flux across all the
faces of a tet, the integral of the divergence over the tet, or, said
differently, the net flux of the tet, becomes particularly simple. Ac-
cording to the generalized Stokes’ theorem this integral equals the
sum of the integral of the flux on all four faces. Divergence is thus
naturally thought of as a value at each tet (see Fig. 4). Physically
speaking, the notion of a divergence-free velocity field is equivalent
to saying that, at each tet, everything that gets in must get out.

Vorticity as Flux Spin Finally we need to define vorticity on
the mesh. To see the physical intuition behind our definition, con-
sider an edge in the mesh. It has a number of faces incident on it,
akin to a paddle wheel (see Figure 4). The flux on each face con-
tributes a net torque to the edge. The sum of all these, when going
around an edge, is the net torque that would “spin” the edge. We

Figure 4: Discrete Physical Quantities: in our discrete geometric discretiza-
tion of fluid mechanics, fluid flux lives on faces (left), divergence lives on tets
(middle), and vorticity lives on edges (right).

can thus give a physical definition of vorticity as the sum of fluxes
on all faces incident to a given edge: this quantity is now associated
with primal edges—or, equivalently, dual faces.

3.3 Discrete Differential Structure
The definition of these intuitive physical quantities living at differ-
ent simplices on the mesh can be made precise through the defini-
tion of a discrete differential structure. In this framework, a mesh
is seen as the only given structure to work with, with no reference
to the continuous space that it approximates, and Discrete Exterior
Calculus (DEC) defines a coherent calculus on the mesh using only
discrete combinatorial and geometric operations [Munkres 1984;
Hirani 2003; Tong 2004]1. Although we can not discuss at length
such a vast mathematical machinery, we briefly cover the funda-
mental aspects and the discrete differential operators we need to
link flux and vorticity (just as in the differential case). For a com-
prehensive exposition, we refer the interested readers to Chapter 7
on discrete differential forms.
Discrete Forms As Integrals Before we discuss the discrete
exterior structure inherent to the mesh, we briefly review exterior
forms in the continuous setting (for a more comprehensive discus-
sion, see, for example, [Abraham et al. 1988]). To this end, recall
that, given a three-dimensional space, a 0-form is simply a function
on that space; a 1-form ω is a proxy to a vector field; a 2-form,
or area-form, is to be integrated over a surface, that is, it can be
viewed as a proxy to the vector perpendicular to that surface; and,
a 3-form, or volume-form, is to be integrated over a volume and is
viewed as a function.

A discrete differential k-form, k = 0,1,2, or 3, is then the evalu-
ation (i.e., the integral) of the differential k-form on all k-cells, or
k-simplices. In practice, discrete k-forms can simply be consid-
ered as vectors of numbers according to the simplices they live on:
0-forms, live on vertices, and are expressed as a vector of length
|V |; and correspondingly, 1-forms live on edges (length |E|), 2-
forms live on faces (length |F |), and 3-forms live on tets (length
|T |). Dual forms are treated similarly. In the examples above, flux
is thus a primal 2-form (integrated over faces), vorticity a dual 2-
form (integrated over dual faces), and divergence a primal 3-form
(integrated over tets).
Discrete Differential Calculus on Simplicial Meshes
These discrete differential forms can now be used to build the tools
of calculus. The mesh has a natural structure, called the DeRham
complex, which offers discrete operators on discrete forms, mim-
icking the continuous setting. At the core of its construction is the
definition of the discrete dk operators (analog to the continuous ex-
terior derivative).
Discrete Exterior Derivatives A key ingredient to define this
discrete derivative is Stokes’ theorem on a k-form:∫

σk+1

dkωk =
∫

∂k+1σk+1

ωk,

1Although we use many notions from DEC in this chapter, the theory
presented here is self-contained and does not assume previous knowledge
of this machinery.

where σk denotes a k-cell while ωk is a k-form. Stokes’ theorem
states that the integral of dkωk (a (k + 1)-form) over a (k + 1)-cell
equals the integral of the k-form ωk over the boundary of the (k +
1)-cell. The boundary of a (k+1)-cell of course consists of k-cells,
making everything well defined. Stokes’ theorem can thus be used
as a way to define the d operator in terms of the boundary operator
∂ . Or, said differently, once we have the boundary operator, the
operator d follows immediately if we wish Stokes’ theorem to hold
on the simplicial complex.

To use a very simple example, consider a 0-form ω0, i.e., a function
giving values at vertices. With that d0 f0 is a 1-form which can be
integrated along an edge (say with end points denoted a and b) and
Stokes’ theorem states the well known fact∫

[a,b]
d0 f0 = f0(b)− f0(a).

The right hand side is simply the evaluation of the 0-form f0 on
the boundary of the edge, i.e., its endpoints (with appropriate signs
indicating the orientation of the edge). Actually, one can define a
hierarchy of these operators that mimic the operators given in the
continuous setting by the gradient (∇), curl (∇×), and divergence
(∇·), namely,

� d0: maps 0-forms to 1-forms and corresponds to the Gradient;
� d1: maps 1-forms (values on edges) to 2-forms (values on faces).

The value on a given face is simply the sum (by linearity of the
integral) of the 1-form values on the boundary (edges) of the face
with the signs chosen according to the local orientation. d1 corre-
sponds to the Curl;

� d2: maps 2-forms to 3-forms and corresponds to the Divergence.

From this basic setup, we see that all that is required now is to de-
fine the boundary operator. This is done using incidence matrices,
which then act on the vectors of our discrete k-forms. For example
d0 follows as the incidence matrix of vertices and edges. The inci-
dence matrix has |E| rows and |V | columns. Each row contains a
+1 and −1 for the two end points of the given edge (and zero oth-
erwise). The sign is determined from the orientation of the edge.
Similarly for the incidence relations of edges and faces: this is a
sparse matrix with |F | rows and |E| columns, with appropriate +1
and −1 entries according to the relation of the orientation of edges
as one moves around a face (according to its orientation). More
generally dk is the incidence matrix of k-cells on k +1-cells.

Implementation Given the oriented mesh M all that is required
to implement the necessary operators is to assemble the incidence
matrices. Note that these are sparse and contain only entries of type
0, +1, and −1. As we pointed out earlier, care is required in assem-
bling these incidence matrices: the orientation must be taken into
account in a consistent manner. A simple debugging sanity check
(necessary but not sufficient) is to compute consecutive products:
d0 followed by d1 must be a matrix of zeros, as must be d1 multi-
plied by d2. This reflects the fact that the boundary of any boundary
is the empty set. It also corresponds to the calculus fact that curl of
grad is zero as is divergence of curl.
Hodge Stars We need one last operation to complete our ma-
chinery. We noted earlier that fluxes can be seen as 2-forms on
primal faces, or as dual 1-forms on dual edges. This desirable
projection of a primal k-form to a conceptually-equivalent dual
(3− k)-form is called the kth Hodge star. We will denote ?0 (resp.,
?1,?2,?3) the Hodge star taking a 0-form (resp., 1-form, 2-form,
and 3-form) to a dual 3-form (resp., dual 2-form, dual 1-form, dual
0-form). These linear operators, describing the local metric, can
also be stored in sparse matrices. In this chapter, we will use what
is known as the diagonal Hodge stars [Bossavit 1998] as they are
particularly simple to compute: only the diagonal terms are non-
zero, and they are equal to the ratio of sizes of corresponding dual

and primal cells: let vol(.) denote the volume of a cell (i.e., 1 for
vertices, length for edges, area for 2D cells, and volume for 3D
cells), then the diagonal matrix entries are

(?k)qq = vol(σ̃q)/vol(σq)

where σ is a primal k-simplex, and σ̃ its dual. The subscript q in-
dicates the index in the list of all cells. The Hodge star matrices are
therefore symmetric positive definite. More accurate metric repre-
sentations can be used, leading to less sparse Hodge stars; however,
for our purposes, this one is sufficient. It also has the nice property
that its inverse is trivial to compute.

The Hodge stars allow us to go from primal forms to dual forms
of complementary dimension. In order to complete the deRham
complex, we now need to define the dual version of the operators
dk; i.e., their equivalents on the dual side. These operators turn
out to be quite simple: one can prove that the transpose of the dk
operators (and therefore, the transpose of their matrices) serve this
purpose [Bossavit 1998]. Figure 5 summarizes the various oper-
ations between forms that we just defined. Equipped with these

0-form 2-form1-form 3-form

3-form 1-form2-form 0-form
dualdualdualdual

� �
-1

0 0 � �
-1

1 1 � �
-1

2 2 � �
-1

3 3
0d

T
0d

1d
T
1d

2d
T
2d

Figure 5: Discrete Differential Calculus: the operators dk and ?k allow
proper manipulation of arbitrary discrete forms on the domain mesh.

matrices, we can now formalize the definition of the various quan-
tities we need for fluid mechanics—and see how they parallel their
continuous analogs.

3.4 Revisiting Fluid Discretization
The fluid velocity u is treated as a flux, i.e., as a 2-form. It is there-
fore represented by a vector U of values on faces (size |F |). Since
we store fluxes on faces, the circulation can be derived as values
on dual edges through ?2U (Hodge star of the 2-form U). Vortic-
ity, typically a 2-form in fluid mechanics [Marsden and Wenstein
1983], is easily computed by summing this circulation along the
dual edges that form the boundary of a dual face. So we store the
vorticity (seen as a dual 2-form) on dual faces. In other words,
our choice of flux representation imposes that d1

T ?2 U be used to
represent ωωω = ∇×u (see Fig. 5). This is a vector Ω of size |E|, rep-
resenting the vorticity on each dual face. These formal discretiza-
tions match our physically-motivated definitions previously given
in Section 3.2.

With the appropriate Hodge star, we can go from a 2-form to a
dual 1-form and vice-versa, so the reader may notice that it is in a
sense equivalent to use a 2-form (resp., a dual 2-form) to represent
a flux or to use the associated dual 1-form (resp., primal 1-form) to
represent circulation. The reason we chose a 2-form instead of dual
2-form for vorticity is that it is easier to represent the boundary of
our 3D domain by faces rather than dual faces.

3.5 From Vorticity Back To Flux
We have just seen how the vorticity can be directly derived from
the set of all face fluxes. However, during the simulation, we will
also need to recover flux from vorticity. For this we employ the
Helmholtz-Hodge decomposition theorem, stating that any vector
field u can be decomposed into three components (given appropri-
ate boundary conditions)

u = ∇φ +∇×ψψψ +h.

A generalization to nD-domains and for k-forms reads as follows:

fk = dk−1φk−1 +?k
−1dk

T ?k+1 ψk+1 +hk (7)

Because of our use of 2D fluxes, we only need the latter for k = 2.
For the case of incompressible fluids (i.e., with zero divergence),
two of the three components are sufficient to describe the velocity
field: the curl of a vector potential and a harmonic field. This im-
plies that when decomposing the 2-form U , we may set ψ3 to 0.
If the topology of the domain is trivial, we can furthermore ignore
the harmonic part h2 (we will discuss a full treatment of arbitrary
topology in Section 4.8), leaving us with U = d1φ1.

Thus, we can recover the velocity field solely from the vorticity by
solving a Poisson equation to get the potential φ1 and then applying
the curl operator to the potential. The Poisson equation to solve for
the 1-form φ (values on primal edges) is as follows:

(?1d0?0
−1dT

0 ?1 +dT
1 ?2 d1)φ1 = dT

1 ?2 U = ω (8)

To arrive at this equation, we applied dT
1 ?2 to both sides of Eq. (7),

and set the gauge of this Poisson problem as d0
T ?1 φ1 = 0. As

the Laplacian ∆ in differential calculus is d ? d ? + ? d ? d, one
can readily verify that the previous equation is, indeed, a dis-
crete version of the Poisson equation: it literally corresponds to
∆φ1 = (∇∇· −∇×∇×)φ1 = ∇×u. Notice that the left-side matrix
is symmetric and sparse, thus ideally suitable for fast numerical
solvers.

Our linear operators (and, in particular, the discrete Laplacian) dif-
fer sharply from another discrete Poisson setup on simplicial com-
plexes proposed in [Tong et al. 2003]: the ones we use have smaller
support, which results in sparser and better conditioned linear sys-
tems [Bossavit 1998]—an attractive feature in the context of nu-
merical simulation.

3.6 Interpolating Velocity and Circulation
So far we have only defined physical quantities as values on sim-
plices. Although most computations can be carried out in this for-
mat, evaluation of such quantities anywhere in space is also neces-
sary in practice.

Figure 6: Bunny Snow Globe: the snow in the globe is advected by the inner
fluid, initially stirred by a vortex to simulate a spin of the globe.

Piecewise-Constant Velocity Field When considering the
fluxes on the primal mesh, we can interpolate within each tet using
the usual 1-form linear basis functions for discrete forms, known as

Whitney forms, and described in detail in [Bossavit 1998] and in
these course notes in Chapter 7. These interpolating basis functions
are piecewise linear within each tet, and easy to compute. However,
in our context of incompressible fluids, it turns out that we do not
even need to use them. Since our velocity field is divergence free
(the sum of the four fluxes on a tet equals 0), it can be shown that
this piecewise-linear interpolation of the velocity field is piecewise
constant within each tet. That is, there is a unique vector ui per tet
Ti that simultaneously agrees with all four fluxes. It is thus a trivial
matter to deduce these vectors inside the tets given the vector U of
all fluxes, rendering the Whitney forms unnecessary. Notice finally
that the normal component to a face Fi of such a tet-based vector
agrees (by definition) with the normal component of its neighbor-
ing tet through Fi, as they must both be equal to the flux of the
velocity field on that face; therefore, advection along this velocity
field is properly defined (i.e., you can always step over a face and
will never get stuck somewhere) and easy to compute.

Piecewise Rational Circulation We will also need to inter-
polate the circulation from dual edges to the whole space. Un-
fortunately, Whitney forms are defined only for primal forms. In
order to bypass this limitation, we propose a novel dual 1-form in-
terpolant based on generalized barycentric coordinates. Taking a
dual cell in isolation, note that each vertex of this dual cell has 3
dual edges incident on it. Given values of circulation on these ad-
jacent dual edges, there exists a unique vector (or covector, to be
mathematically correct) at the vertex that will fit these circulations.
That is, we find the vector whose projection onto each dual edge
is equal to the magnitude of the circulation along that edge. This
amounts to reconstructing a vector based on its projection onto 3
independent vectors. Coincidentally, in our application (and once
again, because of the divergence-free property), this vector turns
out to be the vector value ui of the velocity field defined in the
tet associated with this dual vertex—we already have stored this
value in the tet, and have no need to recompute it on the fly. With
these vectors at each dual vertex, we can now interpolate them us-
ing generalized barycentric coordinates on 3D polytopes as recently
proposed in [Warren et al. 2004]. This technique offers a fast eval-
uation of weights at each corner of an arbitrary polytope that pro-
vide a smooth interpolation of the corner values. It is also proved
that this interpolation is linear acurate, i.e., it reconstructs exactly
constant and linear fields. Finally, because these 3D barycentric
weights have the property to degenerate into their 2D equivalents
on the polytope’s faces, the reader can verify that such an interpo-
lation of circulation does fit the initial values of the circulation on
dual edges, providing a good and fast computational method to han-
dle circulation. Notice finally that this interpolation, just like their
(simpler) primal equivalent (Whitney forms), are only tangentially-
continuous across dual edges, reflecting that a dual 1-form has only
meaning as a circulation as already explained in Chapter 7.

4 A Circulation-Preserving Integration
Once the proper discretization of space has been defined, we
can now turn our attention to the actual integration of the Euler
and Navier-Stokes equations. We propose a numerical integration
scheme that solves Eq. (2) and preserves the circulation as stated in
Eq. (3). We give details on how to efficiently implement this novel
integration scheme.

4.1 Rationale: Vorticity Advection
Equipped with the spatial discretization defined above, we want to
integrate the fluid equations. As noticed earlier, we wish to avoid
having to resort to a projection to divergence-free (i.e., incompress-
ible) flows. Therefore, what is truly needed is an integration of the
vorticity of the fluid: this particular physical variable is by nature

divergence-free, and we have shown in Section 3.5 that the flow it-
self can be entirely derived from its vorticity (modulo a proper treat-
ment of the genus of the domain and boundary condition, which we
will detail in Section 4.8). In other words, and as we cover next, our
approach can be summarized as effectively performing a vorticity
advection.

Discrete Loops Guided by Kelvin’s theorem, we wish to drive
the integration by preserving the circulation along loops as they
are advected in the flow. Since we are now working in a discrete
space, satisfying this property for any loop C does not make sense.
Remember that we are limited by the resolution of the spatial dis-
cretization that the mesh M provides and that we decided to de-
scribe the vorticity as a dual 2-form. Thus, we propose to satisfy
Kelvin’s property on each boundary of dual 2-cells. These Voronoi
loops can indeed generate any discrete, dual loop C : the sum of ad-
jacent loops is a larger, outer loop since all the interior edges cancel
out due to opposite orientation as sketched in Fig. 7(right). Con-
sequently, preserving Kelvin’s theorem on each of these Voronoi
loops will provide a discrete analog of the continuous case.

Figure 7: Kelvin’s Theorem: (left) in the continuous setting, the circulation
on any loop being advected by the flow is constant. (middle) our discrete
integration scheme enforces this property on each Voronoi loop, (right) thus
on any discrete loop.

Backtracking Discrete Loops For a given discrete Voronoi
loop Ci(t) considered at time t, we can conceptually backtrack it
in time to find the loop Ci(t − h) it originated from if the fluid ve-
locity is assumed constant during the time step. Notice that this
amounts, in the discrete case, to backtracking each circumcenter,
as the piecewise-linear loops are exclusively defined by their posi-
tions. Ensuring circulation preservation is now a trivial matter: we
simply have to compute the current circulation of this backtracked
loop Ci(t −h) and assign this value to the loop Ci(t). By construc-
tion, we have advected the circulation along the flow. Using Stokes’
theorem, this circulation is also the integral of the vorticity over the
Voronoi face: thus we have formally found the new, advected vor-
ticity. Notice that this backtracking is similar in spirit to the origi-
nal Stable Fluids approach, but with a fundamental difference: the
vorticity is advected instead of velocity. Again, its divergence-free
nature makes it the natural variable to advect to avoid spurious nu-
merical diffusion.

4.2 Setup and Pseudocode
An implementation of this vorticity advection algorithm requires
rather usual data structures. We input a tet mesh M of the do-
main first, and start the preprocessing stage by storing the (signed)
incidences between all simplices. The incidence matrices dk de-
scribed in Section 3.3 are subsequently stored. We also precompute
the position of the circumcenter of each tet as we will repeatedly
need them throughout the algorithm. Finally, we assemble the dual
(Voronoi) cell of each vertex as they are used in the generalized
barycentric coordinates interpolation described in Section 3.6. The
integration from time t to time t + h is then performed by succes-
sive updates of the vorticity according to the following pseudocode,

starting from an initial set of fluxes Ut and corresponding vorticities
Ωt :

� Advect Vorticity (see Section 4.3 and Fig. 7)
1. Backtrack each circumcenter through the flow, along the

current piecewise-linear primal velocity field defined by Ut .
2. Integrate circulation along each backward-advected

Voronoi loop using numerical quadrature.
3. Deduce the advected vorticity on each edge accordingly,

and store the result in ΩA
t+h

� Add Body Forces: From a set of external body forces (gravity,
buoyancy) on each face, we further update the previous vorticity
and store it in ΩB

t+h as explained in Section 4.4.
� Apply Diffusion If we wish to simulate NS equations, we add

an (optional) diffusion step on the resulting vorticity field to get
Ωt+h (see Section 4.5). Otherwise, we set Ωt+h = ΩB

t+h.
� Convert Vorticity to Fluxes We finally need to update the veloc-

ity field Ut+h for the next step, by converting the final value of
Ωt+h as detailed in Section 4.6.

For each item of this pseudocode, we now give details on what is
involved and how it relates to the machinery previously developed.

4.3 Vorticity Advection
As sketched earlier, we can compute the new, advected vorticity on
each edge through the following procedure: given the current veloc-
ity field Ut , we calculate the new vorticity on each dual face at time
t +h by backtracking its boundary (Voronoi) loop Ci(t) through Ut
and integrating the current circulation around Ci(t − h) using nu-
merical quadrature. The backtracking of all the loops is done by
simply backtracking each tet’s circumcenter through the flow using,
for instance, a simple Euler integration. Note that this is particularly
easy as the primal, divergence-free velocity field is constant per tet
(see Section 3.6). We then use a simple quadrature to compute the
circulation of the piecewise-linear loop defined by the backtracked
circumcenters. The loop is considered as the union of each segment
going from one backtracked circumcenter to the next. Using the
generalized barycentric interpolation described in Section 3.6, we
evaluate the interpolated velocity field at each segment end point.
The circulation over each segment is then taken as the average of
the velocity field at its two endpoints dotted with the segment. The
new circulation around the loop is just the sum of the circulations
on all these sample segments, giving us the advected vorticity ΩA

t+h.

The quadrature accuracy could be easily improved by increasing
the number of quadrature points on each segment, or by formally
computing the circulation on the resulting piecewise-linear loops
(a numerically expensive procedure as the circulation is locally ex-
pressed as a rational polynomial due to the necessary use of gen-
eralized barycentric coordinates). However, note that our spatial
discretization is entirely based on linear basis functions; a linear-
accurate quadrature suffices, as our numerical tests confirmed.

Note that one would be tempted to shortcut this quadrature by sim-
ply using the circulation computed from the primal velocity field.
Unfortunately, such a procedure introduces significant inaccuracy
since even in the case of stationary flows, the circulation would not
be exactly preserved: the use of generalized barycentric coordinates
and linear-accurate quadrature is a computationally-efficient must.

4.4 External Body Forces
The use of external body forces, like buoyancy, gravity, or stirring,
is common practice to create interesting motions. Incorporating
external forces into Eq. (5) is, fortunately, straightforward, resulting
in:

∂u
∂ t

+u ·∇u = −∇p+ν∆u+ f .

Again, taking the curl of this equation allows us to recast this equa-
tion in terms of vorticity:

∂ωωω

∂ t
+Luωωω = ν∆ωωω +∇× f . (9)

Thus, we note that an external force influences the vorticity only
through the force’s curl (the ∇ · f term is compensated for by the
pressure term keeping the fluid divergence-free). Thus, if we ex-
press our forces through the vector F of their resulting fluxes in
each face, we can directly add the forces to the domain by incre-
menting ΩA

t+h by the circulation of F , i.e.:

Ω
B
t+h = Ω

A
t+h +h dT

1 ?2 F.

4.5 Adding Diffusion
If we desire to simulate a viscous fluid, we must add the diffusion
term present in Eq. (6). Note that previous methods were some-
times omitting this term because their numerical dissipation was
already creating (uncontrolled) diffusion. In our case, however, this
diffusion needs to be properly handled if viscosity is desired. This
is easily done through an unconditionally-stable implicit integra-
tion as done in Stable Fluids (i.e., we also use a fractional step ap-
proach). Using the discrete Laplacian in Eq. (8), we simply solve
for the diffused vorticity Ωt+h using the following linear system:

(I−νh∆)Ωt+h = Ω
B
t+h.

4.6 Converting Vorticity Back To Velocity
Finally, given the updated value of the vorticity Ωt+h, we need to
update the corresponding velocity field. This step is straightforward
by solving the linear system given in Eq. (8), and taking the circu-
lation of the resulting potential field φ1 around each face to derive
the new set of fluxes Ut+h.

One may argue that solving this Poisson equation is strictly equiv-
alent to the projection step in Stable Fluids. While it is true that
this step has the same computational cost, their respective roles are
very different: while the Poisson equation is used as a projection in
Stable Fluids, it is used as a mere conversion in our case, and does
not incur numerical dissipation.

4.7 Boundary Conditions
Special treatment of boundaries is needed to ensure proper behavior
of the resulting simulations.

Enforcing Boundary Conditions No-transfer boundary con-
ditions are easily imposed by setting the fluxes through the bound-
ary triangles to zero. Non-zero flux boundary conditions (i.e, forced
fluxes through the boundary as in the case of Fig. 8) are, however,
more subtle to handle. First, remark that all these boundary fluxes
must sum to zero; otherwise, we would have little chance of getting
a divergence-free fluid in the domain! As the total divergence is
zero, there must exist a harmonic velocity field satisfying exactly
these conditions, as stated by the Helmholtz-Hodge decomposition
theorem with normal boundary conditions [Chorin and Marsden
1979]. Thus, this harmonic part h∂M can be computed once and for
all through a Poisson equation using the same setup as described in
Section 3.5. This precomputed velocity field allows us to deal very
elegantly with these boundary conditions: we simply perform the
same algorithm as we described by setting all boundary conditions
to zero (with the exception of backtracking which takes the precom-
puted velocity into account), and reinject the harmonic part at the
end of each time step (i.e., add h∂M to the current velocity field).

Viscous Fluids near Boundaries The Voronoi cells at the
boundaries are slightly different from the usual, interior ones, since
boundary vertices do not have a full 1-ring of tets around them. In
the case of NS equations, this has no significant consequence: we
set the velocity on the boundary to zero, resulting also in a zero
circulation on the dual edges on the boundary. The rest of the algo-
rithm can be used as is.

Inviscid Fluids near Boundaries For Euler equations, how-
ever, the tangent velocity at the boundary is not explicitly stored
anywhere. Consequently, the boundary Voronoi faces need an ad-
ditional variable to remedy this lack of information. We store in
these dual faces the current integral vorticity, bootstrapping it with
an initial vorticity imposed by the initial velocity field. From this
additional information, we can deduce at each time step the miss-
ing circulation on the boundary (since the circulation over the inside
dual edges is known, and the total integral must sum to the vorticity
through Stokes’ theorem).

4.8 Handling Arbitrary Topology
Although the problem of arbitrary domain topology (e.g., when its
first Betti number is not zero) is rarely discussed in CFD or in our
field, it is important nonetheless. We first note that for Euler equa-
tions, Kelvin’s theorem is also valid for loops that are not shrink-
able to a point (i.e., loops around a tunnel, or obstacle). Therefore,
in the absence of external forces, the circulation along each loop
around a tunnel (note: for one period around the obstacle!) is con-
stant in time. So once again, we precalculate a constant harmonic
field based on the initial circulation around each tunnel, and sim-
ply add it to the current velocity field for advection purposes. This
procedure serves two purposes: first, notice that we now automat-
ically enforce the discrete equivalent of Kelvin’s theorem on any
(shrinkable or non-shrinkable) loop; second, arbitrary topologies
are handled very efficiently.

5 Results and Discussion
We have tested our method on some of the usual “obstacle courses”
in CFD. We start with the widely studied example of a flow past
a disk (see Fig. 9). Starting with zero vorticity, it is well known
that in the case of an inviscid fluid, the flow remains irrotational
at all times. By construction, our method does respect this physical
behavior since circulation is preserved for Euler equations. We then
increase the viscosity of the fluid incrementally, and observe the
formation of a vortex wake behind the obstacle, in agreement with
physical experiments. As evidenced by the vorticity plots, vortices
are shed from the boundary layer formed as a result of the adherence
of the fluid to the obstacle, thanks to our proper treatment of the
boundary conditions.

The behavior of vortex interactions observed in existing exper-
imental results is now compared to numerical results based on
our novel model and those obtained from the semi-Lagrangian
advection method. It is known from theory that two like-
signed vortices with a finite vorticity core will merge when
their distance of separation is smaller than some critical value.
This behavior is captured by the experimental data and shown
in the first series of snapshots of Fig. 9. As the next
row of snapshots indicates, the numerical results that our
model generates present striking similarities to the experimental

time (seconds)

in
te

gr
al

 v
or

tic
ity

0.6
0.4

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

0 20 40 60 80 100

(b)

(c)

data. In the last row, we see that a tradi-
tional semi-Lagrangian advection followed
by re-projection misses most of the fine
structures of this phenomenon. This can be
attributed to the loss of total integral vor-
ticity as evidenced in this inset; in compari-
son our technique preserves this integral ex-
actly.

Figure 8: Obstacle Course: in the usual experiment of a flow passing around a disk, the viscosity as well as the velocity can significantly affect the flow
appearance; (left) our simulation results for increasing viscosity and same left boundary flux; (right) the vorticity magnitude (shown in false colors) of the
same frame. Notice how the usual irrotational flow is obtained (top) for zero viscosity, while the von Karman vortex street appears as viscosity is introduced.

(b)

(c)
2.0s 9.1s 13.7s

2.0s 9.1s 13.7s

(a)

Figure 9: Two Merging Vortices: discrete fluid simulations are compared
with a real life experiment (courtesy of Dr. Trieling, Eindhoven Univer-
sity; see http://www.fluid.tue.nl/WDY/vort/index.html)
where two vortices (colored in red and green) merge slowly due to their
interaction (a); while our method faithfully simulates the merging phenom-
enon (b), a traditional semi-lagrangian scheme does not capture the correct
motion because of vorticity damping (c).

We have also considered the flow on curved surfaces in 3D with
complex topology, as depicted in Fig. 10. We were able to easily
extend our implementation of two-dimensional flows to this curved
case thanks to the intrinsic nature of our approach.

The integration method we proposed can be directly applied to
solve three-dimensional fluid flows. We consider a smoke cloud
surrounded by air filling the body of a bunny as an example of
flow in a domain with complex boundary. The buoyancy drives
the air flow which, in turn, advects the smoke cloud in the three-
dimensional domain bounded by the bunny mesh as shown in Fig. 1.

In the last simulation, we show a snow globe with a bunny inside
in Fig. 6. We emulate the flow due to an initial spin of the globe
using a swirl described as a vorticity field. The snow particles are
transported by the flow as they fall down under the effect of gravity.

6 Conclusion
In this chapter, we have introduced a novel theoretical approach to
fluid dynamics, along with its practical implementation and vari-
ous simulation results. We have carefully discretized the physics
of flows to respect the most fundamental geometric structures that
characterize their behavior. Amongst the several specific benefits
that we demonstrated, the most important is the circulation preser-
vation property of the integration scheme, as evidenced by our nu-
merical examples. The discrete quantities we used are intrinsic,
allowing us to go to curved manifolds with no additional compli-
cation. Finally, the machinery employed in our approach can be
used on any simplicial complex. We wish to emphasize, however,
that the same methodology also applies directly to more general
spatial partitionings, and in particular, to regular grids or hybrid

meshes [Feldman et al. 2005]—rendering our approach widely ap-
plicable to existing fluid simulators.

For future work, a rigorous analysis (beyond the scope of this chap-
ter) of the advantages of the current method over some of the stan-
dard approaches should be properly investigated.

Figure 10: Weather System on Planet Funky: the intrinsic nature of the
variables used in our algorithm makes it amenable to the simulation of flows
on arbitrary curved surfaces.

References
ABRAHAM, R., MARSDEN, J., AND RATIU, T., Eds. 1988. Manifolds, Tensor Analy-

sis, and Applications. Applied Mathematical Sciences Vol. 75, Springer.

BOSSAVIT, A., AND KETTUNEN, L. 1999. Yee-like schemes on a tetrahedral mesh.
Int. J. Num. Modelling: Electr. Networks, Dev. and Fields 12 (July), 129–142.

BOSSAVIT, A. 1998. Computational Electromagnetism. Academic Press, Boston.

CHORIN, A., AND MARSDEN, J. 1979. A Mathematical Introduction to Fluid Me-
chanics, 3rd edition ed. Springer-Verlag.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual Simulation of Smoke. In
Proceedings of ACM SIGGRAPH, Computer Graphics Proceedings, Annual Con-
ference Series, 15–22.

FELDMAN, B. E., O’BRIEN, J. F., AND KLINGNER, B. M. 2005. A method for ani-
mating viscoelastic fluids. ACM Transactions on Graphics (SIGGRAPH) (Aug.).

FETECAU, R. C., MARSDEN, J. E., ORTIZ, M., AND WEST, M. 2003. Nonsmooth
Lagrangian Mechanics and Variational Collision Integrators. SIAM J. Applied Dy-
namical Systems 2, 381–416.

FOSTER, N., AND FEDKIW, R. 2001. Practical Animation of Liquids. In Proceedings
of ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series,
23–30.

FOSTER, N., AND METAXAS, D. 1997. Modeling the Motion of a Hot, Turbulent
Gas. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual
Conference Series, 181–188.

GOKTEKIN, T. G., BARGTEIL, A. W., AND O’BRIEN, J. F. 2004. A method for
animating viscoelastic fluids. ACM Transactions on Graphics 23, 3 (Aug.), 463–
468.

HIRANI, A. 2003. Discrete Exterior Calculus. PhD thesis, California Institute of
Technology.

KANE, C., MARSDEN, J. E., ORTIZ, M., AND WEST, M. 2000. Variational in-
tegrators and the Newmark algorithm for conservative and dissipative mechanical
systems. Internat. J. Numer. Methods Engrg. 49, 1295–1325.

LANGTANGEN, H.-P., MARDAL, K.-A., AND WINTER, R. 2002. Numerical Meth-
ods for Incompressible Viscous Flow. Advances in Water Resources 25, 8-12 (Aug-
Dec), 1125–1146.

LEW, A., MARSDEN, J. E., ORTIZ, M., AND WEST, M. 2003. Asynchronous Varia-
tional Integrators. Arch. Rational Mech. Anal. 167, 85–146.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating water and smoke with
an octree data structure. ACM Transactions on Graphics 23, 3 (Aug.), 457–462.

MARSDEN, J. E., AND WENSTEIN, A. 1983. Coadjoint orbits, vortices and Clebsch
variables for incompressible fluids. Physica D 7, 305–323.

MARSDEN, J. E., AND WEST, M. 2001. Discrete Mechanics and Variational Integra-
tors. Acta Numerica, 357–515.

MCNAMARA, A., TREUILLE, A., POPOVIC, Z., AND STAM, J. 2004. Fluid Control
Using the Adjoint Method. ACM Transactions on Graphics 23, 3 (Aug.), 449–456.

MORTON, K. W., AND ROE, P. 2001. Vorticity-Preserving Lax-Wendroff-Type
Schemes for the System Wave Equation. SIAM Journal on Scientific Computing
23, 1 (July), 170–192.

MUNKRES, J. R. 1984. Elements of Algebraic Topology. Addison-Wesley.

PIGHIN, F., COHEN, J. M., AND SHAH, M. 2004. Modeling and Editing Flows Using
Advected Radial Basis Functions. In ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, 223–232.

SHAH, M., COHEN, J. M., PATEL, S., LEE, P., AND PIGHIN, F. 2004.
Extended Galilean Invariance for Adaptive Fluid Simulation. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 213–221.

SHI, L., AND YU, Y. 2004. Inviscid and Incompressible Fluid Simulation on Triangle
Meshes. Journal of Computer Animation and Virtual Worlds 15, 3-4 (June), 173–
181.

STAM, J. 1999. Stable Fluids. In Proceedings of ACM SIGGRAPH, Computer Graph-
ics Proceedings, Annual Conference Series, 121–128.

STAM, J. 2001. A Simple Fluid Solver Based on the FFT. Journal of Graphics Tools
6, 2, 43–52.

STAM, J. 2003. Flows on Surfaces of Arbitrary Topology. ACM Transactions on
Graphics 22, 3 (July), 724–731.

STEINHOFF, J., AND UNDERHILL, D. 1994. Modification of the Euler Equations
for Vorticity Confinement: Applications to the Computation of Interacting Vortex
Rings. Physics of Fluids 6, 8 (Aug.), 2738–2744.

TONG, Y., LOMBEYDA, S., HIRANI, A. N., AND DESBRUN, M. 2003. Discrete
Multiscale Vector Field Decomposition. ACM Trans. Graph. 22, 3, 445–452.

TONG, Y. 2004. Towards Applied Geometry in Graphics. PhD thesis, University of
Southern California.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J. 2003. Keyframe
Control of Smoke Simulations. ACM Transactions on Graphics 22, 3 (July), 716–
723.

WARREN, J., SCHAEFER, S., HIRANI, A., AND DESBRUN, M., 2004. Barycentric
Coordinates for Convex Sets. Preprint.

YAEGER, L., UPSON, C., AND MYERS, R. 1986. Combining Physical and Visual
Simulation - Creation of the Planet Jupiter for the Film 2010. Computer Graphics
(Proceedings of SIGGRAPH 86) 20, 4, 85–93.

ZHONG, G., AND MARSDEN, J. E. 1988. Lie-Poisson Hamilton-Jacobi Theory and
Lie-Poisson Integrators. Physics Letters A 133, 3 (Nov.).

Chapter 10:
Variational Tetrahedral Meshing

Pierre Alliez
INRIA

David Cohen-Steiner
INRIA

Mariette Yvinec
INRIA

Mathieu Desbrun
Caltech

Abstract
In this chapter, a novel Delaunay-based variational approach to
isotropic tetrahedral meshing is presented. To achieve both robust-
ness and efficiency, we minimize a simple mesh-dependent energy
through global updates of both vertex positions and connectivity.
As this energy is known to be the L1 distance between an isotropic
quadratic function and its linear interpolation on the mesh, our min-
imization procedure generates well-shaped tetrahedra. Mesh design
is controlled through a gradation smoothness parameter and selec-
tion of the desired number of vertices. We provide the foundations
of our approach by explaining both the underlying variational prin-
ciple and its geometric interpretation. We demonstrate the quality
of the resulting meshes through a series of examples.
Work published in ACM SIGGRAPH’05 proceedings

Keywords: Isotropic meshing,Delaunay mesh,sizing field,slivers.

1 Introduction
Three-dimensional simplicial mesh generation aims at tiling a
bounded 3D domain with tetrahedra so that any two of them are
either disjoint or sharing a lower dimensional face. Such a dis-
cretization of space is required for most physically-based simula-
tion techniques: realistic simulation of deformable objects in com-
puter graphics, as well as more general numerical solvers for par-
tial differential equations in computational science, need a discrete
domain to apply finite-element or finite-volume methods. Most ap-
plications have specific requirements on the size and shape of sim-
plices in the mesh. Isotropic meshing is desirable in the common
case where nearly-regular tetrahedra (nearly-equal edge lengths)
are preferred.

Creating high quality tetrahedral meshes is a difficult task for a va-
riety of reasons. First, the mere size of the resulting meshes re-
quires robust, disciplined data structures and algorithms. There are
also basic mathematical difficulties which make tetrahedral mesh-
ing significantly harder than its 2D counterpart: the most isotropic
3D simplex, the regular tetrahedron, does not tile 3D space (let
alone specific domains), while the equilateral triangle does tile the
plane; unlike the 2D case, even well-spaced vertices can create de-
generate 3D elements such as slivers (see Fig. 2). Dealing with
boundaries is also fundamentally more difficult in 3D: while there
exists 2D triangulations conforming to any set of non intersecting
constraints, this is no longer true in 3D [Shewchuk 1998a]. All
these facts conspire to make both the development of algorithms
and suitable error analysis for the optimal 3D meshing problem
very challenging. Given that one can often observe in applications
that the worst element in the domain dictates accuracy and/or effi-
ciency [Shewchuk 2002a], it is clear that great care is required to
design the underlying meshes and ensure that they meet the desired
quality standards.

1.1 Previous Work & Nomenclature
The meshing community has extensively studied a number of tech-
niques over the last 20 years. We do not aim at covering all previ-
ous work since comprehensive surveys are available [Carey 1997;
Owen 1998; Frey and George 2000; Teng et al. 2000; Eppstein
2001]. To motivate our work we briefly review both the usual

Figure 1: Variational Tetrahedral Meshing: Given the boundary of a do-
main (here, a human torso), we automatically compute the local feature size
of this boundary as well as an interior sizing field (left, cross-section), be-
fore constructing a mesh with a prescribed number of vertices (here 65K)
and a smooth gradation conforming to the sizing field (right, cutaway view).
The resulting tetrahedra are all well-shaped (i.e., nearly regular).

nomenclature and the main difficulties involved in isotropic tetra-
hedral mesh generation. Throughout tet will be the abbreviation for
tetrahedron.

Proper mesh generation requires a number of successive stages,
which are governed by a number of key factors:

� Shape Quality Measures: Element shape/size requirements are
typically application-dependent. Consequently, an extraordinar-
ily large number of quality measures has been proposed, rang-
ing from minimum or maximum bounds on dihedral or solid
angles, to more complex geometric ratios. We warmly recom-
mend [Shewchuk 2002a] for a clear exposition of both the history
behind these measures and their relation to (1) the conditioning
of finite element stiffness matrices and (2) the accuracy of linear
interpolation of functions and their gradients. Among the most
popular quality measures of a tet are the radius and radius-edge
ratios. The latter measures the ratio between the circumsphere ra-
dius and the shortest edge length. It is not a fair measure since it
does not approach zero for a class of degenerate tets called slivers
(slivers result when four tet vertices are close to a great circle of
a sphere and spaced roughly equally along this circle, see Fig. 2).
The radius ratio, which takes the quotient of inscribed and cir-
cumscribed sphere radii (times three for normalization purposes),
is a good measure for any kind of degeneracy.

Figure 2: Tet shapes: the regular tet (leftmost) is well shaped, unlike the
other tets displayed: each represents a type of degeneracy. The rightmost
one with 4 near-cocircular vertices is usually referred to as a sliver.

� Sizing requirement: Accuracy and efficiency of numerical
solvers depend on the local size of tets. Consequently, a sizing
field, prescribing the ideal local edge length as a function of space,
must be added. Obvious choices include the constant field for a

uniform mesh, and a priori or a posteriori error estimators for sim-
ulations. To avoid bad dihedral angles in the simplices one typi-
cally requires the sizing field to vary smoothly [Ruppert 1993].
� Boundary Requirements: Some approaches aim at conforming

to (i.e., matching exactly) the domain boundary by adding Steiner
points if necessary [Cohen-Steiner et al. 2002; Krysl and Ortiz
2001; Cheng and Poon 2003]. Others require of the mesh bound-
ary to only approximate the domain boundary. The latter allows
for higher tet quality since the boundary is not required to match
the input surface. In particular the latter is important when the
initial input is a low quality surface triangulation.
� Strategy: Existing meshing techniques can be roughly classified

by the general strategy they employ:
� Advancing front: Starting from the boundary of the domain,

new vertices are added by a local heuristic to ensure that the
generated tets have acceptable shapes and sizes and conform to
the desired sizing field. Global optimization steps can also be
performed sporadically to improve the mesh quality further. A
number of variants exist, such as sphere or bubble packing [Li
et al. 2000], which provide better tet shape and size control al-
beit adding a significant computational overhead.
�Octree-based methods: An octree is first refined until each of

its leaves is either strictly inside or strictly outside of a finely
voxelized version of the domain. Proper connections of the in-
terior leaves through, for instance, a red-green strategy [Molino
et al. 2003] then ensure a good initial mesh of the domain, usu-
ally improved through optimization or physically-based relax-
ation in particular to better approximate the domain boundary.
Other similar methods offer bounds of worst dihedral angles
even without a relaxation stage [Mitchell and Vavasis 2000].
Unfortunately, octree-based meshes have preferred edge direc-
tions, which may be detrimental to subsequent use in simulation.
�Delaunay approaches: For a given set of sample points in

3D, its Delaunay triangulation has the canonical property of
minimizing the maximum radius of the minimum containment
sphere. This property is very useful in approximation theory:
this radius provides an upper bound on the L∞ difference be-
tween any function f and its piecewise linear approximant, as-
suming f has bounded second derivatives. Thus a Delaunay
triangulation provides good control over the worst interpola-
tion error inside a domain. Consequently a large body of work
in numerical analysis provides error estimates for a variety of
applications using these meshes. Because of these as well as
many other optimality properties, mesh generation relying on
Delaunay triangulation such as Delaunay refinement [Ruppert
1993; Shewchuk 1998b; Shewchuk 2002b; Cheng et al. 2004],
unit mesh [Borouchaki et al. 1997a; Borouchaki et al. 1997b],
or centroidal Voronoi tessellations [Du and Wang 2003] have
flourished in the meshing and Computational Geometry com-
munities. Delaunay refinement methods offer some theoretical
guarantees on the resulting meshes: they provide bounds on the
radius-edge ratio, and are shown to be asymptotically optimal
with respect to the number of elements in the mesh. Delau-
nay refinement, however, can generate slivers; some attempts
have been made to handle the sliver problem within Delaunay
refinement [Cheng et al. 1999; Cheng and Dey 2002; Li and
Teng 2001]. Unfortunately the theoretical guarantees are quite
poor, and the mesh either is no longer Delaunay but a regu-
lar (weighted Delaunay) triangulation, or comes with degraded
bounds on the radius-edge ratio.
�Mesh Optimization Techniques: Even if fast and robust Delau-

nay triangulators are available, the previous strategies can re-
quire substantial implementation effort to make them robust to
arbitrary input domains. A large number of practical meshing
techniques instead employ local optimization methods which
move vertices adjacent to poorly-shaped tets to improve mesh

Figure 3: Stanford bunny: meshing the interior of the bunny with adapted
tets (smaller near the boundary, larger inside, and smooth gradation (K =
1) in between). The cutaway views show the well-shapedness of the mesh
elements inside the domain; notice also the quality of the boundary mesh.

quality. Coupled with local face swapping between adjacent tets
as well as tet insertions and deletions, these strategies can result
in nice final meshes [Freitag and Ollivier-Gooch 1996; Cutler
et al. 2004]. Unfortunately, these optimizations often use highly
non-convex functionals and get easily stuck in local minima.

From this brief overview we see that meshing has been approached
with two very different emphases: theory and practice. Theoreti-
cal methods, most commonly using iterative Delaunay refinement
approaches, come with quality guarantees that are often not suited
to further use in practical applications: the presence of fairly de-
generated tets are a serious problem for many numerical methods.
Alternatively, optimization methods provide viable solutions with
relatively little implementation effort, and the quality obtained is
satisfactory for a class of applications. Alas, their ad-hoc nature
does not warrant high-quality meshes. When seeking high qual-
ity meshes, a method combining optimization with solid theoreti-
cal foundations would provide the best of both worlds, promising
meshes of a quality that none of the existing approaches could ob-
tain by themselves.

1.2 Approach and Contributions
In this chapter, we present a Delaunay-based optimization tech-
nique, that we call Variational Tetrahedral Meshing, to efficiently
mesh a bounded 3D domain Ω of arbitrary topology or number of
connected components. The domain boundary ∂Ω is assumed to be
a manifold, watertight and intersection-free triangular mesh. Draw-
ing on recent work on surface approximation [Cohen-Steiner et al.
2004] and Optimal Delaunay Triangulations [Chen and Xu 2004],
we propose a simple minimization procedure that alternates global
3D Delaunay triangulation and local vertex relocation to consis-
tently and efficiently minimize a global energy over the domain.
It results in a robust meshing technique that generates high qual-
ity isotropic meshes in terms of radius ratios, as well as angles.
A notable feature of the method is that it removes slivers inside
the domain. To provide a flexible meshing tool, we also introduce
an automatic sizing field construction that guarantees an arbitrary
smooth gradation of the mesh together with faithful approximation
of the domain boundary. Equipped with these tools, the user has full
control over the mesh design, and can require a specific number of
vertices for the final mesh. We demonstrate the versatility and ro-
bustness of our method through a series of results and comparisons;
we also give details on the current limitations.

2 Variational Approach to Meshing
Variational approaches (that is, methods relying on energy mini-
mization) have been advocated as a powerful and robust tool in
meshing both in graphics for triangle [Hoppe et al. 1993; Cohen-
Steiner et al. 2004] and tet [Molino et al. 2003; Cutler et al. 2004]

meshes and in mechanical engineering for volumetric meshes [Fre-
itag and Ollivier-Gooch 1996; Du and Wang 2003]. These methods
basically define (often highly) non-convex energies that they mini-
mize through vertex displacements and/or connectivity changes in
the current mesh. Our method also falls into this broad category.
However, in contrast to earlier work, we use a simple quadratic
energy (which we analyze) and allow for global changes in mesh
connectivity during energy minimization. We will point out both
the theoretical and practical consequences of such a strategy. We
begin by motivating our choice of energy.

2.1 Consistent Energy Minimization
Among the earlier variational approaches, a few [Cohen-Steiner
et al. 2004; Du and Wang 2003] have an attractive theoretical prop-
erty resulting in remarkable results: vertex positions and connectiv-
ity updates are performed alternately in order to minimize the same
quadratic energy. This specificity has rich consequences. First,
each update can be done optimally due to the simplicity of the en-
ergy used. Second, assuming convexity of the boundary, the energy
decreases monotonically, implying eventual convergence. Lastly,
since both optimization steps minimize the same energy, their fi-
nal meshes have a concrete, variational nature with all the qualities
that it entails: these meshes are (quasi) minimizers of a “quality”
functional.

Centroidal Voronoi Tessellations Du and Wang [2003] pro-
pose to generate meshes that are dual to optimal Voronoi diagrams.
These diagrams are achieved by minimizing the quadratic energy:

ECVT =
∑

i=1..N

∫
Vi

||x− xi||2dx (1)

where the xi are vertex positions and Vi a local cell associated with
each xi; the union of these cells forms a partition of the domain Ω.
Du and Wang used Lloyd relaxation [Lloyd 1957] to robustly mini-
mize this energy: for a given set of vertices, compute their Voronoi
diagram (restricted to the domain Ω) since it is the energetically op-
timal partition for the current vertex positions. In a second phase,
the partition is held fixed and vertex positions xi are optimized.
Even though these steps of partitioning and vertex position opti-
mization are quite different in character, each of them decreases the
same energy. Du and Wang explain how a mesh that minimizes this
energy has each vertex at the centroid of its own Voronoi cell: hence
the name Centroidal Voronoi Tessellation (CVT). Aside from the
theoretical properties of CVTs, Du and Wang also note the superior
results they get in comparison to conventional Laplacian smooth-
ing (a widespread technique in graphics due to its simplicity, but
for which the associated energy only relies on edge length, not on
spatial distribution).

Figure 4: Nomenclature: Left: We denote by Ωi the 1-ring of vertex xi.
Middle: Vi is the Voronoi cell of vertex xi. Right: The center of the circum-
circle of triangle Tj , is denoted cj , while its radius is denoted Rj .

From the analysis of ECVT it is well known that its minimiza-
tion corresponds to minimizing the volume between a paraboloid
f(x) = ||x||2 and an underlaid, circumscribing piecewise linear
approximant f dual

PWL, which is formed by planar patches tangent to the
paraboloid (see Fig. 5(a)):

ECVT = ||f − f dual
PWL||L1 .

In 2D, without invoking much approximation theory, the reader
can convince herself that this approach will lead to isotropically

sampled meshes since it has been shown that any Lp optimal ap-
proximation of a smooth function asymptotically tends to align and
shape its elements according to the eigenvectors and eigenvalues
of its Hessian [Shewchuk 2002b]: given the isotropic nature of
the Hessian of the quadratic function f(x) = ||x||2 the resulting
meshes must have nearly hexagonal Voronoi cells, i.e., nearly equi-
lateral triangles in the dual Delaunay mesh.

Unfortunately, and despite Du’s proposal [2003] to use CVTs for tet
meshing, there exists no proof of such a dual property in 3D. Our
own tests show that using Du’s suggestion for tet meshing gives rise
to numerous degenerate sliver tets (see Fig. 2). We can attribute the
slivers to the fact that ECVT tends to optimizes the compactness of
the dual Voronoi cells, but not the compactness of simplices in the
primal Delaunay triangulation: therefore, the presence of a sliver
is not penalized by this energy. In other words, this variational
approach ensures that the vertices in the domain are well spaced
(i.e., isotropic point sampling—see [Hardin and Saff 2004] for an
overview of this interesting problem); sadly, well-spacedness does
not guarantee anything in terms of the quality of the resulting 3D
mesh [Eppstein 2001].

Optimal Delaunay Triangulations Recently, Chen [2004]
proposed an approach “dual” to the above in the context of mesh
optimization. He used the following energy:

EODT = ||f − f primal
PWL ||L1 ,

i.e., the volume between a paraboloid and an overlaid, circumscrib-
ing piecewise linear approximant f primal

PWL formed by a linear interpo-
lation of points on the paraboloid (see Fig. 5(b)). Chen made the
observation that changing the energy from ECVT to EODT amounts to
only a slight change in Eq. (1), turning it into:

EODT =
1

n + 1

∑
i=1..N

∫
Ωi

||x− xi||2dx. (2)

The integral is now taken over each 1-ring region Ωi (also called the
star of the vertex xi, see Fig. 4). Notice that these regions overlap.
These quadratic energies differ quite significantly: Chen’s EODT en-
ergy measures a quality of the simplicial mesh, not of its dual. It
is thus more prone to generate well-shaped primal elements, while
ECVT was maximizing the compactness of the dual Voronoi cells.

Figure 5: PWL approximations: A paraboloid can be approximated by an
underlaid circumscribed PWL function (left), or by an overlaid one (right).

Although no formal guarantee on the resulting meshes is given
in [Chen and Xu 2004], the 2D results presented are of high qual-
ity. The smoothing technique presented in [Chen 2004] updates the
mesh connectivity through only-local edge flips when an inverted
triangle is detected. Unfortunately, this local connectivity optimiza-
tion in the 2D triangle case does not carry over to 3D: there is no
theorem proving that an arbitrary mesh is only a few flips away
from the optimal connectivity.

2.2 Our Variational Approach
We propose an algorithm to consistently minimize the primal en-
ergy EODT. This is achieved not just through a smoothing procedure
(as suggested in [Chen 2004]), but through a full-blown minimiza-
tion procedure for both vertex positions and connectivity.

Figure 6: Complex Topology: As stressed in this chapter, our approach can
as well mesh complex domains with arbitrary genus. Four nested spheres
define a multi-layer object (top); a bunny immersed in a sphere (bottom).

Optimizing Connectivity Connectivity optimization is easily
achieved: for a given set of vertex positions xi, its Delaunay tri-
angulation is again (remarkably!) the optimal connectivity which
minimizes EODT (as shown in [Chen and Xu 2004]) just as it is
optimal for ECVT. Therefore, we compute the (global) Delaunay
connectivity systematically, guaranteeing optimality of the connec-
tivity at each iteration.

Optimizing Vertex Positions One can show that for a given
mesh M with vertices xi’s, EODT can be written as:

EODT =
1

4

∑
i

xi
2|Ωi| −

∫
M

x2dx, (3)

where |Ωi| is the measure (volume in 3D) of the 1-ring neighbor-
hood of vertex xi (Appendix B gives a short proof). From this new
expression and after noting that the last term is constant given a
fixed boundary ∂M, a simple derivation of this quadratic energy in
xi leads to the following optimal position x?

i of the interior vertex
xi in its 1-ring:

x?
i = − 1

2 |Ωi|
∑

Tj∈Ωi

∇xi |Tj |
[∑

xk ∈ Tj
xk 6= xi

||xk||2
]. (4)

The term ∇xi |Tj | is the gradient of the volume of the tet Tj with
respect to xi. Replacing function f(x) = ||x||2 by the translated
function f(x) = ||x−xi||2, which has the same interpolation error
and thus leads to the same optimal position, we get the following
equivalent expression used to update a vertex position :

x?
i =xi −

1

2 |Ωi|
∑

Tj∈Ωi

∇xi |Tj |
[∑
xk∈Tj

||xi − xk||2
]. (5)

Geometric and Physical Interpretations As shown in the
Appendix C, we can express the latter optimality condition in more
obvious geometric terms, to further our understanding of the bene-
fits of this variational approach:

x?
i =

1

|Ωi|
∑

Tj∈Ωi

|Tj |cj . (6)

where cj is the circumcenter of tet Tj (see Fig. 4). This last expres-
sion shows that, although we move each vertex to a local average,
the optimal placement heavily depends on the local distribution.
For instance, if all the 1-ring neighbors are on a common sphere,
the optimal position will be the sphere center. In fact, as evidenced

by Eq. 4, this optimal location depends only on the 1-ring neigh-
bors, not on the current location. Note also the similarities with the
generalized barycentric coordinates in the Voronoi polytope pro-
posed in [Warren et al. 2004].

If we further transform the energy (see Appendix B), we get:

EODT =
∑

j

(
|Tj |R2

j−
∫

Tj

||x−cj ||2dx
)
= 2

∑
j

|MSj−MTj | (7)

where MTj is the sum of the principal moments (i.e., the trace of
the inertia tensor) of the tet Tj w.r.t. the circumcenter cj , while
MSj is the same quantity for the circumshell Sj of equivalent mass
(i.e., a shell in the shape of the circumsphere, with the same mass
as tet Tj). Minimizing this energy amounts to make the average
moment of inertia of each tet match the one of its circumshell of
equivalent mass. Even Eq. (6) can be re-expressed in terms of these
circumshells: a vertex is moved at the barycenter of its neighboring
circumshells, which is reminiscent of the CVT property, this time
on the primal mesh. We believe that these series of observations
provide further insights on this simple quadratic energy, and how it
relates to the well-shapedness of the resulting tets. It also provides a
straightforward generalization to graded meshing as explained next.

2.3 Extension to Graded Meshes
Since the previous expressions only apply to uniform meshing,
we extend the optimality condition next to allow for more flexible
meshing capacities. For this purpose, we will make use of a sizing
field µ as a roadmap to the desired tet sizes within the domain.

Generalized Optimality Conditions Eq. (6) gives us a
straightforward means to extend the previous approach to create
graded meshes. One can simply define a mass density in space, and
use this mass density in the computation of the inertia tensors. This
density should be in agreement with the sizing field, i.e., the desired
size of a tet locally. In order to simplify the computations, we use a
one-point approximation of the sizing field µ in a tet and define the
mass density as being 1/µ3 since the local volume of a tet should
be roughly equal to the third power of the ideal edge size. Thus, we
modify the optimality condition of a vertex as follows:

x?
i =

1∑
Tk∈Ωi

|Tk|
µ3(gk)

∑
Tj∈Ωi

|Tj |
µ3(gj)

cj . (8)

where gk is the centroid of Tk. A formal integration of the siz-
ing field within each tet would provide more precision. However
it would also significantly affect the computational cost without a
drastic change in the results thanks to our choice of sizing field (de-
scribed next). Finally, we keep the Delaunay triangulation (of the
new point positions) as the optimal connectivity.

Automatic Design of Sizing Field The sizing field can be
virtually any function tuned to the specific application the mesh
is being designed for. However we wish to provide a default siz-
ing field construction that can robustly achieve a large spectrum of
mesh types. Notice that the sizing field defined here is relative; it
describes the inhomogeneity of the desired edge length. The actual
edge length will be proportional to this relative value to fit whatever
prescribed vertex budget. (Alternatively the user may want to use
as many vertices as needed to produce a specific edge size.)

Because we aim at an isotropic approximation of the input domain
boundary, the sizing field on the boundary should be a function of
the local absolute maximum curvature. Since we also aim at ap-
proximating the domain topology, we need to make sure that the
boundary approximation error will never exceed the local “thick-
ness” of the domain: for instance, a dumbbell shape should have
small tets in its bottleneck. Therefore we propose to build our sizing
field on the notion of local feature size (lfs) introduced by Amenta

and Bern [1998] and widely used in the field of shape reconstruc-
tion: it corresponds to the combination of curvature and thickness
as we require. To define the local feature size, one first introduces
the medial axis Sk(Ω), of the domain (its intuitive skeleton) which
is the locus of all the centers of maximal balls included in either Ω
or its complement. Note that this skeleton has already been iden-
tified in the meshing community as playing a central role in siz-
ing [Quadros et al. 2004]. Then the local feature size lfs(x) at a
point x of δΩ is defined as the distance d(x, Sk(Ω)) from x to the
medial axis (where d(., .) is the Euclidean distance function).

Given the local feature size on the boundary, we need a canonical,
as well as controllable way to extrapolate this function to the in-
terior. Two conflicting constraints are desirable: we could try to
minimize the number of total tets by forcing the inside of the object
to have the largest tets possible; however, in order to maintain good
shape quality, the mesh gradation (i.e., how fast tet sizes vary within
a neighborhood) must remain bounded [Ruppert 1993]. We propose
to recast the problem of finding an ideal sizing field to finding the
maximal K-Lipschitz function that does not exceed lfs(x) on δΩ.
The parameter K will control the gradation (0 being the uniform
case) of the resulting field. As we prove in the Appendix A, the
function:

µ(x) = inf
s∈∂Ω

[K d(s,x) + lfs(s)] (9)

satisfies these requirements. Consequently, we used it in all the
examples shown in the figures. Now that the theoretical aspects of
our approach have been addressed, we describe in the next section
the details of a concrete implementation of these ideas.

3 Algorithm
In this section, we go through the details of each step of the follow-
ing pseudo-code which summarizes our approach:

Read the input boundary mesh ∂Ω

Setup Data Structure & Preprocessing
Compute sizing field µ

Generate initial sites xi inside Ω

Do
Construct Delaunay triangulation({xi})
Move sites xi to their optimal positions x?

i

Until (convergence or stopping criterion)
Extract interior mesh

For efficiency as well as robustness, we opted to use the Compu-
tational Geometry Algorithms Library (CGAL [Fabri et al. 2000])
for the input mesh data structure, as well as for the 3D Delaunay
triangulation using robust arithmetics.

3.1 Input Domain Boundary
Our algorithm takes as input an intersection free closed surface tri-
angle mesh defining the domain boundary ∂Ω. We have no re-
striction on the topology of the domain Ω: it may contain multiple
connected components, or have multiple voids, or both (see Fig. 6).

3.2 Setup & Preprocessing
The vertices of the input surface mesh ∂Ω are inserted in a 3D De-
launay triangulation, to create what we call the control mesh. This
control mesh is used by our algorithm to estimate the local fea-
ture size of ∂Ω as well as to answer inside/outside queries. For
efficient inside/outside queries, we require that the control mesh
contains all triangle facets of the input boundary ∂Ω, guarantee-
ing that it is the restricted Delaunay triangulation of the input
vertices [Cohen-Steiner et al. 2002]. This allows us to tag the
corresponding faces of the control mesh and in turn its tets with
inside/outside tags. To achieve these goals, ∂Ω is originally ei-
ther enriched or remeshed using an isotropic surface meshing algo-
rithm [Boissonnat and Oudot 2005].

Discrete Skeleton Once the control mesh has been generated,
we extract its poles by selecting a subset of Voronoi vertices (i.e.,
circumcenters of tets) in the following manner. For each Delaunay
vertex v we first select as a pole the farthest circumcenter from all
incident tets. The vector formed by v and this pole is considered as
the local normal estimate. We deduce a local tangent plane estimate
in v, and two half-spaces bounded by this plane. Next we search in
the half-space that does not contain the pole the farthest Voronoi
vertex incident to the site. If it exists it is added as a pole too. We
refer the reader to [Amenta and Bern 1998] for a more detailed de-
scription of this simple procedure. By definition, and assuming a
sufficiently dense set of points sampled on the boundary, the result-
ing set of all these poles is a discrete approximation of the skeleton
(or medial axis) of the domain boundary ∂Ω (see Fig. 7).

Figure 7: Poles: The set of all poles (depicted as red dots) represents a
discrete approximation of the skeleton of a 2D (left) or 3D (right) shape.

Local Feature Size At each vertex of the boundary ∂Ω, we
approximate its local feature size lfs by measuring the distance to
its closest pole (Fig. 8). To improve the efficiency of these queries
(the set of poles is a dense point set for a complex boundary), we
create a static kD-tree search data structure from the poles.

Figure 8: Left: poles extracted from the Bunny model. Middle, right: the
distance from each input vertex to the set of poles is the approximated local
feature size, capturing both local thickness and curvature of the shape.

Boundary Supersampling The input boundary is initially
sampled with a large number of quadrature samples (used later
on to find a good approximation of the surface). More precisely,
three sets of quadrature samples are generated: on the boundary it-
self, on its sharp creases, and on its corners (for piecewise smooth
domains—see, e.g., Fig. 16); this will allow us to both approximate
the boundary and fit its features. Each quadrature sample stores its
position x as well as a quadrature value, incorporating the area ds
(for surface quadrature samples) or length dl (for feature quadrature
samples) it covers. These values are set to ds/µ(x)4 and dl/µ(x)3

respectively, in order to conform to our mass density field [Du and
Wang 2003]. Each corner sample is given an infinite density to
guarantee that a vertex will be assigned there.

3.3 Fast Marching Construction of Sizing Field
Recall that a parameter K is used to adjust the sizing field accord-
ing to the desired mesh gradation (see Section 2.3, and Figure 9
for illustration). We store the sizing field on a uniform grid bound-
ing the domain. Each node of the grid must store the local sizing
field value µ and an additional bit to specify whether this grid node
lies inside or outside the domain as these grid nodes will be used
to efficiently generate initial positions for the vertices of the mesh.
However, computing µ in the interior of Ω would require the evalu-
ation of a minimum over each vertex of ∂Ω. To provide a faster grid

initialization we use a fast marching method on the uniform grid us-
ing the 6-neighborhood incidence relationship beginning with the
grid cells that intersect ∂Ω. We define a candidate cell x as a cell
for which we have stored a temporary buddy cell, denoted hereafter
y(x). The latter is astride of the boundary, and has the property that
K d(x, y(x)) + lfs(y(x)) is the current known minimum value of
the sizing field µ(x). The candidate cells are maintained in a prior-
ity queue ordered by their current estimated value of µ. This queue
is initialized with all grid cells that are neighbors of a grid cell in-
tersecting ∂Ω. At each step of the marching process we pop the
candidate cell with minimum µ value out of the queue, set its final
sizing field value to µ, and push other possible adjacent candidates
in the queue with the same buddy cell. This fast marching method
will thus propagate values of µ from the initial boundary to the in-
side of the domain. Note that this could introduce an approximation
in the evaluation of the sizing field, since the boundary cell c(x)
such that K d(x, c(x)) + lfs(c(x)) is globally minimal might not
be among the buddy cells of x’s neighbors. We argue that the error
is negligible. The reason is that the set of points p that have a same
buddy cell y is star-shaped around y. Indeed, on the line segment
from p to y(p), the function λ(s) = K d(s, y(p)) + lfs(y(p))
decreases with speed K; as µ is K-Lipschitz, we have that λ ≤ µ,
therefore λ = µ since µ is the minimum over all y ∈ ∂Ω, and
finally y(s) = y(p). Hence, the first grid cell q met by the ray
p − y(p) is most likely such that y(q) = y(p). One then has
µ(q) ≤ µ(p); thus, µ(q) must have been already computed by the
time p is taken care of. This simple procedure enables an efficient
and robust initialization of our sizing field grid.

Figure 9: Sizing fields computed for three increasing values for K. The
smaller K, the smoother the grading. For large values, the ideal edge size
is rapidly increasing as one moves away from the boundary.

3.4 Initial Point Sampling
Given the potential complexity of the input boundary and the opti-
mized 3D Delaunay triangulation in terms of geometry and topol-
ogy (with possibly multiple connected components and holes), a
good initialization of the tet mesh vertices is desirable. We “spread”
the requested number of vertices throughout the domain while
roughly matching the desired local density through error diffusion
over the sizing field. This initial sampling proceeds in two passes.
In order to calibrate the sampling so as to fit the vertex budget spec-
ified by the user, the first pass sums up the values dv/µ(x)3 for
each interior node of the sizing field grid, where dv denotes the
volume of the node and x its position. The second pass iterates
over the same grid nodes in serpentine order, computing for each
node its corresponding (floating point) number of initial vertices to
lay down locally, quantizes this number to the nearest integer and
diffuses the corresponding residual to its neighbors: this process is
a straightforward extension of [Ostromoukhov 2001] to volumetric
images. Although these placements do not guarantee any quality on
the resulting Delaunay mesh, we achieve a local density of vertices
consistent with the sizing field for a very low computational effort.

3.5 Energy Minimization
The energy minimization phase, alternating connectivity and geom-
etry optimization, is the core of our algorithm. From the current
vertex positions, the energy is minimized by computing the 3D De-
launay triangulating of these sites. For a given connectivity, the
energy is further minimized by moving each interior vertex xi to
its optimal placement within its 1-ring (Eq. 8).

Boundary Vertices require a different treatment to provide ad-
equate boundary conditions to our minimization, as well as a good,
isotropically-sampled approximation of the domain boundary. A
simple and practical solution is to use a variant of the constrained
centroidal Voronoi tessellation approach (CCVT [Du et al. 2003]).
First, we go over all the boundary quadrature samples si mentioned
earlier. For each si we locate the nearest vertex in the current mesh
(through a fast kD tree query), and accumulate at that vertex the
quadrature value at si times the coordinates of si. Subsequently, we
focus on the vertices with a non-zero quadrature sum, since those
are the boundary vertices that require a specific treatment. Their po-
sition update is straightforward: we move these boundary vertices
to the average value they each have accumulated during the pass
over all quadrature samples. This position provides, at low cost, a
good approximation of the centroid of the intersection between the
3D Voronoi cell of the boundary vertex and the input boundary ∂Ω.
Note that we proceed similarly for the feature quadrature samples
involved in the piecewise smooth case, where we have to fit sharp
creases as well. As demonstrated in our results (see Fig. 10 for an
illustration of several steps of optimization on a simple boundary),
this simple procedure results in well-shaped triangles that fit the
domain boundary, and whose size is in agreement with the sizing
field.

Figure 10: Optimization steps for 1000 vertices in a torus.100Kquadrature
samples were spread on the boundary, and the sizing field is constant to get
a uniform mesh. Observe how the radius ratio distribution shifts towards1.

3.6 Accelerating Convergence
Although our quadratic energy minimization provides a powerful
tool to design high-quality meshes, the convergence rate can be
slow for large number of vertices. We have successfully experi-
mented with the following practical shortcuts to get faster results.

Delaunay Refinement Direct minimization of more than
100, 000 vertices can be computationally expensive. Instead, we
prefer starting the energy minimization with a much smaller num-
ber of vertices. Before it even reaches a minimum, we increase the
number of vertices by adding a specified fraction (typically, 50%)
of the vertices at a subset of the Voronoi centers of the current mesh.
To select the latter subset, we sort all tets by decreasing size of cir-
cumradius divided by the local desired edge length (to know where
refinement is most needed). After another round of minimization
steps, we repeat this procedure, until the requested number of ver-
tices is reached. The speed-up is considerable, while achieving the
same final quality.

Selective Optimizations A straightforward improvement of
vertex position update optimizes only the vertices adjacent to bad
quality tets (say, with a radius ratio less than 0.3) and their imme-
diate neighbors. Although no theoretical guarantees back up this
trick, it works remarkably well in practice. We recommend switch-
ing to such a selective optimization once the full-blown optimiza-
tion steps are relatively small in amplitude.

Boundary Vertex Jittering As expected from our energy, the
inside tets are well shaped after minimization. However, because of
the boundary constraints that we must satisfy, a few slivers can re-
main adjacent to boundary vertices. We have implemented a fast
”jittering” of these points; in order to snap a sliver, we slightly
move one of its adjacent boundary vertices in the local tangent
plane. Similar in spirit to the more general procedure of sliver
exudation [Cheng et al. 1999], but for the easier case of tets on
boundaries, this jittering suffices to remove the remaining slivers.

Vertex Teleportation or Insertion We also recommend to
sporadically remove the vertex with the smallest Voronoi cell w.r.t.
the desired edge length (i.e., in the densest region), and insert it at
the centroid of the interior tet with the worst radius ratio. Such tun-
nelling of vertices is particularly useful when tight control over the
worst element is required. If the vertex budget does not have to be
maintained, one can directly add vertices inside the worst tets.

Figure 11: Final Extraction: As the Delaunay triangulation covers the con-
vex hull, the last stage of our algorithm must extract the inside tets.

3.7 Final Mesh extraction
To produce the final mesh, we need to peel off the Delaunay tets
of our mesh that are outside the domain (remember that a Delau-
nay mesh triangulates the convex hull of the vertices). A first ap-
proach is to consider the Delaunay triangulation restricted to the
input domain, by tagging a tet as outside when its circumsphere
center is located outside Ω. Similar in spirit to the Cocone algo-
rithm [Amenta et al. 200], we consider instead the Delaunay tri-
angulation restricted to a slightly thicker version of the input do-
main Ω. So for each tet initially classified outside, we compute the
ratio between the distance d from the circumsphere center to the
boundary ∂Ω and the circumradius; if this ratio is smaller than a
predefined threshold (we used 0.4 in our experiments) we tag the
tet inside.

4 Results and Discussions
The figures in this chapter illustrate the robustness and versatility of
our technique: our implementation can handle large and/or complex
domains of arbitrary topology in a matter of minutes. Although a
visual inspection cannot provide a thorough assessment of our re-
sults, all the cutaway views as well as the radius ratio distributions
that we obtained exhibit high quality tet shapes throughout the do-
main. In contrast to many other methods we do not a priori assign
vertices to be either on the boundary or in the interior. It is the min-
imization procedure that will make them stick to boundary or not,
driven by the sizing field and number of vertices required. This fea-
ture partially explains the quality of the results, since the mesh is not
constrained to a given budget of boundary vertices. Also, our expe-
rience shows that global optimization of the connectivity through a
Delaunay triangulation renders the results significantly better: this
handling of the connectivity is possibly the sharpest departure from
common approaches that perform local updates only.

Figure 12: Scanned hand: on this highly detailed mesh (36K vertices,
174K tets, with color-coded lfs), mesh gradation is a must: a uniform mesh
fine enough to capture the surface details would have millions of tets; In-
stead, our algorithm can reproduce all the fine surface features while using
large tets inside the domain. Sizing field parameter: K = 1. As the radius
ratio distribution shows, there are no degenerate tets. Worst radius ratio
= 0.29, average radius ratio = 0.86, average dihedral angle = 70o. Mean
symmetric distance from input boundary: 0.024% of the bounding box.

Results can be obtained in a matter of seconds or minutes. For in-
stance, Fig. 10 was obtained in 16 seconds (for the 50 iterations,
which include a Delaunay triangulation and the vertex position op-
timizations at each iteration) on a Pentium IV 3GHz. A more com-
plex model, such as the hand in Fig. 12 requires on average 2.1
seconds per iteration, including Delaunay triangulation, boundary
quadrature, and vertex updates for the 36K vertices. For good
meshes, 10 to 20 iterations are sufficient, but we often increase this
number to 50, and use the speed-ups described in Section 3.6 for
a final high quality result. Although very few timings are available
for previous optimization methods, we consider the time involved
in our technique for mesh design practical. Notice that we can also
deal with sharp features, as Figure 16 demonstrates—a full treat-
ment treatment of such mechanical would however require a good
Constrained Delaunay mesher.

Figure 13: Mean symmetric approximation error against the number of sites
measured with Metro. The approximation error is expressed in percentage
of the bounding box. The four bunnies shown correspond respectively to 2,
4, 6 and 8K sites, with their approximation error in false colors.

Figure 13 demonstrates the quality of approximation of the bound-
ary for the Bunny model, for increasing vertex budgets ranging
from 1K to 10K vertices. We plot the mean symmetric (L2) dis-
tance in percentage of the bounding box against the number of sites,
as well as a color-coded illustration of the approximation error.

Judging the quality of the results is, however, a difficult task. First,

Figure 14: Gargoyle: a comparison with [Cutler et al. 2004] further demon-
strates the excellent results of a variational approach. Our distribution in
terms of radius ratios (one of the fairest measures [Shewchuk 2002a]) is far
superior to a standard optimization technique (mesh courtesy B. Cutler).

many (often contradictory) quality measures have been proposed
over the years. Second, averages of radius ratios are often given,
but they do not tell the whole story: many slivers can be present
even when the average is high. Finally, we could not find or get
tet meshes of usual CG models (such as the bunny) or of canoni-
cal shapes, aside from the results presented in [Cutler et al. 2004]
(see Fig. 14 for comparison). As a consequence, we simply pro-
vide some relevant numbers of our typical results. For a torus mesh
with 8.4K tets obtained in less than 1 min., the radius ratios are
between 0.42 and 0.99 (average=0.88), and the dihedral angles be-
tween 20.86o and 145.8o (average=69.95o). The hand in Fig. 12
has radius ratios from 0.29 to 0.99, aspect ratios from 0.22 to 1.13,
and dihedral angles from 15o to 157o (see figure for more statis-
tics).

Figure 15: Comparison of our method (right, obtained in 4 minutes) with the
unit mesh approach [Frey and George 2000] (left, obtained in 12 seconds).
To make a fair comparison we provide as input a uniform mesh and specify a
uniform density for both methods. The distribution of radius ratios (middle)
demonstrates the quality of our resulting tetrahedra.

Finally, in Fig. 15 we compare our optimization technique with the
unit-mesh approach [Frey and George 2000] used in commercial
meshers. This technique has been applied on a high-quality uniform
input boundary mesh of the bunny generated using the technique
presented in [Surazhsky et al. 2003], resulting in 275K tets and 49K
vertices in 12.5s (the number of vertices cannot be specified and
results from the conforming of the boundary). As this unit-mesh
approach splits long edges into smaller equal-length edges during
the meshing process, the final mesh exhibits directional aliasing in
the form of lines of tets, potentially detrimental to the simulation
of isotropic phenomena. To provide a fair comparison, we used our
technique with a uniform sizing field and the same number of final
vertices. Our mesh was obtained in 4 minutes. Both distributions of
radius ratios show no slivers; however, our approach results in bet-
ter shaped tets overall, albeit at the price of a higher computational
cost.

Limitations Our design choice to approximate the input bound-
ary instead of conforming to it can also be seen as a limitation
for certain applications. Additionally, we do not have theoretical
bounds on the quality measures of the resulting tets. However, our
results indicate that in practice, our minimization procedure gener-
ates well-shaped tets inside the domain, with better radius ratio dis-
tribution curves than any of the tet meshes we came across. Note
that this high quality, most desirable for simulation purposes, natu-
rally comes with higher computational cost than typical greedy (e.g.
Delaunay refinement) methods.

5 Conclusions
We have introduced a novel approach to the construction of high-
quality, isotropic tetrahedral meshes. Based on a sound variational
principle, our technique provides a robust mesh design tool that can
accommodate requirements on the final number of vertices and on
the mesh gradation, for arbitrary domain complexity and topology.
We demonstrated the scalability of our approach by meshing large,
complex domains, even with sharp features. In future work, we
wish to explore how to extend our approach to anisotropic meshing
using not just a mass density, but a tensor field. Other boundary
conditions for our optimization could also be studied.

Acknowledgments The authors wish to thank Peter Schröder as one of the
instigators of this project. Many thanks to Alexandre Olivier-Mangon and George
Drettakis for providing us with the torso model. Our gratitude also goes to Joe
Warren, Sean Mauch, Peter Krysl, Fehmi Cirak and Tamer, Barbara Cutler, Steve
Oudot, Sylvain Pion, and Andreas Fabri for precious help along the way. Sponsors
include NSF (CARGO DMS-0221669 and DMS-0221666, CAREER CCR-0133983,
and ITR DMS-0453145), DOE (DE-FG02-04ER25657), the EU Network of Excel-
lence AIM@SHAPE (IST NoE No 506766), and Pixar.

References
AMENTA, N., AND BERN, M. 1998. Surface Reconstruction by Voronoi Filtering. In

Proc. of 14th Symp. on Computational Geometry (SCG’98), 39–48.
AMENTA, N., CHOI, S., DEY, T., AND LEEKHAU, N. 200. A Simple Algorithm

for Homeomorphic Surface Reconstruction. In Proceedings of the Symposium on
Computational geometry, 213–222.

BOISSONNAT, J.-D., AND OUDOT, S. 2005. Provably Good Sampling and Meshing
of Surfaces. Graphical Models (special issue on Solid Modeling). To appear.

BOROUCHAKI, H., GEORGE, P., HECHT, F., LAUG, P., AND SALTEL, E. 1997.
Delaunay mesh generation governed by metric specifications. Part 1 : Algorithms.
Finite Elements in Analysis and Design 25, 61–83.

BOROUCHAKI, H., GEORGE, P., AND MOHAMMADI, B. 1997. Delaunay mesh
generation governed by metric specifications. Part 2 : Application examples. Finite
Elements in Analysis and Design 25, 85–109.

CAREY, G. F. 1997. Computational Grids: Generation, Adaptation, and Solution
Strategies. Taylor & Francis eds.

CHEN, L., AND XU, J. 2004. ”Optimal Delaunay triangulations”. Journal of Compu-
tational Mathematics 22, 2, 299–308.

CHEN, L. 2004. Mesh smoothing schemes based on optimal Delaunay triangulations.
In Proceedings of 13th International Meshing Roundtable, 109–120.

CHENG, S. W., AND DEY, T. K. 2002. Quality meshing with weighted Delaunay
refinement. In Proc. 13th ACM-SIAM Sympos. Discrete Algorithms, 137–146.

CHENG, S.-W., AND POON, S.-H. 2003. Graded conforming Delaunay tetrahedral-
ization with bounded radius-edge ratio. In Proc, of the 14th ACM-SIAM Sympo-
sium on Discrete algorithms (SODA), 295–304.

CHENG, S.-W., DEY, T. K., EDELSBRUNNER, H., FACELLO, M. A., AND TENG,
S.-H. 1999. Sliver Exudation. In Proc. 15th ACM Symp. Comput. Geom., 1–13.

CHENG, S.-W., DEY, T. K., RAMOS, E., AND RAY, T. 2004. Quality Meshing for
Polyhedra with Small Angles. In Proc. of ACM Symp. on Comp. Geom., 290–299.

COHEN-STEINER, D., DE VERDIERE, E. C., AND YVINEC, M. 2002. Conforming
Delaunay triangulations in 3D. In Proc. of Symp. on Comp. Geom., 237–246.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004. Variational Shape
Approximation. ACM Trans. on Graphics (SIGGRAPH), 905–914.

CUTLER, B., DORSEY, J., AND MCMILLAN, L. 2004. Simplification and Improve-
ment of Tetrahedral Models for Simulation. In Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing, 95–104.

DU, Q., AND WANG, D. 2003. Tetrahedral mesh generation and optimization based
on centroidal Voronoi tessellations. International Journal on Numerical Methods
in Engineering 56(9), 1355–1373.

DU, Q., GUNZBURGER, M., AND JU, L. 2003. Constrained Centroidal Voronoi
Tessellations for Surfaces. SIAM J. Sci. Comput. 24, 5, 1488–1506.

EPPSTEIN, D., 2001. Global optimization of mesh quality. Tutorial at the 10th Int.
Meshing Roundtable, Newport Beach.

FABRI, A., GIEZEMAN, G.-J., KETTNER, L., SCHIRRA, S., AND SCHÖNHERR, S.
2000. On the Design of CGAL, a Computational Geometry Algorithms Library.
Softw. – Pract. Exp. 30, 11, 1167–1202. www.cgal.org.

FREITAG, L., AND OLLIVIER-GOOCH, C. 1996. A comparison of Tetrahedral Mesh
Improvement Techniques. In Proc. of 6th Int. Meshing Roundtable, 87—1000.

FREY, J. L., AND GEORGE, P. L. 2000. Mesh Generation: Applications to Finite
Elements. Hermès, Paris.

HARDIN, D. P., AND SAFF, E. B. 2004. Discretizing Manifolds via Minimum Energy
Points. Notices of the AMS 51(10), 1186–1194.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W.
1993. ”Mesh Optimization”. ACM Trans. on Graphics (SIGGRAPH), 19–26.

KRYSL, P., AND ORTIZ, M. 2001. Variational Delaunay Approach to the Generation
of Finite Element Meshes. Int. J. for Num. Meth. in Eng. 50(7), 1681–1700.

LI, X.-Y., AND TENG, S.-H. 2001. Generate Sliver Free Three Dimensional Mesh.
In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms.

LI, X.-Y., TENG, S.-H., AND UNGOR, A. 2000. ”Biting: Advancing Front Meets
Sphere Packing”. Int. J. on Num. Methods in Eng. 49, 1, 61–81.

LLOYD, S. P. 1957. Least Squares Quantization in PCM’s. Tech. rep., Bell Telephone
Laboratories, Murray Hill, NJ.

MITCHELL, S., AND VAVASIS, S. 2000. Quality Mesh Generation in Higher Dimen-
sions. SIAM J. Sci. Comput. 29, 1334–1370.

MOLINO, N., BRIDSON, R., TERAN, J., AND FEDKIW, R. 2003. A Crystalline,
Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra. In
Proceedings of the 12th International Meshing Roundtable, 103–114.

OSTROMOUKHOV, V. 2001. A simple and efficient error-diffusion algorithm. In
Proceedings of ACM SIGGRAPH, 567–572.

OWEN, S. J. 1998. A Survey of Unstructured Mesh Generation Technology. In
Proceedings of the 7th International Meshing Roundtable, 239–267.

QUADROS, W. R., SHIMADA, K., AND OWEN, S. J., 2004. 3D Discrete Skeleton
Generation by Wave Propagation on PR-Octree for Finite Element Mesh Sizing.
Poster, Solid Modeling Conference.

RUPPERT, J. 1993. A New and Simple Algorithm for Quality 2-Dimensional Mesh
Generation. In Proc. of the 4th ACM/SIAM Symp. on Disc. Algo. (SODA), 83–92.

SHEWCHUK, J. R. 1998. A Condition Guaranteeing the Existence of Higher-
Dimensional Constrained Delaunay Triangulations. In Proc. 14th Annu. ACM
Sympos. Comput. Geom., 76–85.

SHEWCHUK, J. R. 1998. Tetrahedral mesh generation by Delaunay refinement. In
Proc. 14th Annu. ACM Sympos. Comput. Geom., 86–95.

SHEWCHUK, J. 2002. What Is a Good Linear Element? Interpolation, Conditioning,
and Quality Measure. In Proc. of 11th Int. Meshing Roundtable, 115–126.

SHEWCHUK, J. R. 2002. Delaunay Refinement Algorithms for Triangular Mesh
Generation. Computational Geometry: Theory and Applications 22, 21–74.

SURAZHSKY, V., ALLIEZ, P., AND GOTSMAN, C. 2003. Isotropic Remeshing of Sur-
faces: a Local Parameterization Approach. In Proc. of 12th Int. Meshing Round-
table.

TENG, S.-H., WONG, C. W., AND LEE, D. T. 2000. Unstructured Mesh Generation:
Theory, Practice, and Perspectives. International Journal Computational Geometry
and Applications 10, 3 (June), 227–266.

WARREN, J., SCHAEFER, S., HIRANI, A., AND DESBRUN, M., 2004. Barycentric
Coordinates for Convex Sets. Preprint.

A Lipschitz Sizing Field
We wish to prove that the sizing field defined in Eq. (9) is both K-Lipschtiz and maxi-
mal. Because we want the function to be K-Lipschitz and agree with lfs on the bound-
ary, one can easily show the following property:

µ(x) ≤ inf
s∈∂Ω

[K d(x, s) + lfs(s)] .

We now need to show that the rhs is K-lipschitz and coincides with the lfs on the
boundary: if so, the rhs will be the maximal sizing field we seek.

For x ∈ Ω, let

y(x) = argmins∈∂Ω [K d(x, s) + lfs(s)] .

If x′ is in Ω, we have by definition:

µ(x
′
) ≤ K d(x

′
, y(x)) + lfs(y(x))

≤ K d(x
′
, x) + K d(x, y(x)) + lfs(y(x))

≤ K d(x
′
, x) + µ(x)

Figure 16: Mechanical parts: Even in the presence of sharp features, our tet
meshing algorithm exhibits excellent behavior for low or high vertex count
while capturing features and corners remarkably well. We tagged edges as
sharp features if their dihedral angles are more than 20o—more sophisti-
cated segmentation techniques could of course be used. (Top, middle) Joint
model (1.2K vertices); (Bottom) Fan disk model (3K vertices, mean/max
symmetric distance from input boundary: 0.021%/0.5% of the bounding
box), along with its radius ratio distribution. Notice the good aspect ratio
of both tets (see cutaway views) and surface triangles. A constant sizing
field has been used for both models to obtain uniform tet meshes.

which shows that µ is K-Lipschitz. Since lfs is 1-Lipschitz,
we cannot hope that µ coincides with lfs on ∂Ω unless K is at
least 1. If so, then for x ∈ ∂Ω we have

K d(x, y) + lfs(y) ≥ lfs(x)

for all y ∈ ∂Ω, with equality when y = x. Thus, µ does
coincide with lfs on ∂Ω. Note that when K =1, µ(x) boils down to the length of the
shortest path from x to the medial axis of ∂Ω while passing by a point on ∂Ω. When
K is less than 1, we get that µ(x) can be less than lfs(x) on the boundary due to the
Lipschitz constraint; however, the gradation is respected and the boundary sampling
will be better than what is necessary: it is therefore still a good choice of sizing field.

B Transforming the Energy EODT
Let us start with the definition:

EODT = ||f − f
primal
PWL ||L1 =

∑
j

∫
Tj

|f − f
primal
PWL |. (10)

In the tet Tj with vertices xi i = 1 . . . 4, the error function can be expressed as a
function of the barycentric coordinates λi(x):

|f(x)− f
primal
PWL (x)| =

∑
i

λi(x)x
2
i − x

2
=

∑
i

λi(x) (xi − x)
2

. (11)

Notice that Eq. (3) is easily derived from this last expression by plugging it into
Eq. (10). Rewriting xi−x as ((xi − cj) + (cj − x)), where cj is the circumcen-
ter of Tj , and plugging it into Eq. (10), we get the following confirmation of Eq. (7):

EODT =
∑

j

∫
Tj

(
R

2
j−||x−cj ||2

)
dx=

∑
j

(
|Tj |R2

j−

∫
Tj

||x−cj ||2dx

)
.

C Updates as Weighted Circumcenters
Notice that the energy EODT inside a tet T is always extremal at the circumcenter
cT . As a consequence, the optimal position of a vertex that has only four neighbors
is exactly at cT . Using Eq. (5) in this special case of a 1-ring in the shape of a tet
T = (xp, xq, xr, xs), and taking the point xi to be located on xp, we get:

cT = xp −
1

2 |Ωi|
(∇xp |T |)

[∑
xk∈T

||xp − xk||2
]

+ F(xp, xq, xr)

+ F(xp, xq, xs) + F(xp, xr, xs))

where the extra terms on the rhs only depend on each face of the tet. Applying this
formula to an arbitrary 1-ring centered on xp, the face terms cancel each other if
we sum the contributions from all the tets, simplifying the expression drastically, and
resulting in Eq. (6).

