
Meshes on Fire
Haeyoung Lee† Laehyun Kim† Mark Meyer‡ Mathieu Desbrun†

†U. of So. Cal. - ‡Caltech

Abstract.
We present a new method for the animation of fire on polyhedral surfaces. Us-
ing the notion of discrete straightest geodesics, we evolve fire fronts directly on
the surface of arbitrarily complex objects. Animator control and motion com-
plexity is achieved by driving the fire motion using multi-scale turbulent wind
fields and geometric quantities. Our model also supports adaptivity of the fire
fronts, multiple simultaneous fires, and merging of multiple fires. This new tech-
nique produces convincing simulations at interactive rates even on a low-end PC,
greatly increasing the productivity of the animation design process.

1 Introduction

Fire is a common, yet mysterious entity used in widely varying areas such as entertain-
ment and training. The physical use of fire can however be both costly and dangerous.
Computer simulation of fire offers many benefits including increased control, reduced
expense and danger, and reproducibility. However, most previous work has been focus-
ing on fire rendering, while we propose to concentrate our effort on fire propagation.

1.1 Previous Work

Fire simulation has been extensively researched in computer graphics [9, 10, 2, 6, 11,
4, 1]. The earliest computer graphics fire model was presented by Reeves [9]. The
model used a large number of particles to animate a fire engulfing a planet. Although
particles can easily represent fuzzy objects, representing well defined boundaries is
more problematic and many particles are required to represent the fire.

Stam and Fiume [11] discretize the flammable object using a texture that represents
fuel density, temperature, etc at every point on the object. A finite difference scheme is
used to simulate the resulting fire. A turbulent wind field [10] is simulated and interacts
with the fire to produce complex animations. The method is computationally expensive
and requires a fine discretization to accurately represent the fire boundary.

Perry and Picard [6] and Beaudoin et al. [1] represent the boundary of the fire
directly using several connected sample points. This results in far fewer particles being
required to adequately animate the evolving fire boundary. Our model most closely
resembles this work, with several important extensions including adaptivity, multiple
simultaneous fires, and fire merging.

Our work also formalizes the use of geodesic flow to simulate the evolution of the
fire boundary over a polyhedral object. Polthier et al. [7, 8] recently used geodesic flow
to investigate surface properties. However, as our intended application area is different,
several modifications were required to produce an appropriate geodesic flow algorithm,
such as an appropriate handling of swallow tails created by conjugate vertices.



a b
Fig. 1. (a) The flame front (in green) propagates on the surface according to the wind field and
geodesic flow. (b) As the front progresses, flame particles [10] are dropped to visualize the fire.

1.2 Overview

In this paper, we present a technique for modeling fires over polygonized objects (see
figure 1). Our system represents a fire as an evolving front (also known as the inception
boundary) and a system of particle-based flames. Since the front should only propagate
on the object’s surface, we use discrete straightest geodesics as defined in [7, 8] to
evolve the fire front’s motion directly on the surface itself. Using the formalism of
geodesics we can guarantee that the front evolves correctly and always remains on any
triangulated 2-manifold, regardless of its complexity.

To create rich, complex motion for the front, as well as to allow for general ani-
mation control, we drive the front motion using dynamic wind fields [10]. This multi
scale technique allows the animator to describe large scale motions while a stochastic
process creates the visually rich, small scale, turbulent motions.

As the front moves across the objects’ surface it deposits particle-based flames.
These flames evolve as standard fire particles [11] - flickering in the wind and even
flying off the surface given a large enough wind field. These flames are rendered as
blobs and leave a charred residue on the burnt surface.

Our system also incorporates advanced effects such as multiple, simultaneous flame
fronts, merging of multiple fronts, fire ignition due to flying flame particles, and adaptiv-
ity for accurate fronts at minimal computational cost. Even with these complex features
our system runs at interactive rates on a standard PC - extremely useful when designing
a fire animation. Higher quality renderings [11, 1] can then be produced offline.

The remainder of the paper is organized as follows. The basics of geodesics for
both continuous and discrete surfaces are described in detail in section 2. Our fire prop-
agation model is introduced in section 3. Results are presented in section 4 followed by
conclusions in section 5.

2 Front Propagation on Meshes

Under the assumption of no external factors (i.e., no wind field, uniform fuel density,
etc.) a fire front on a flat surface would propagate out equally in all directions, creating
concentric fronts as shown in figure 2(a). Each point on the front travels in a (euclidean)
straight line. Therefore, we can determine the next front by simply advancing each point
on the front along its respective propagation line. To extend this technique to curved
surfaces, we must extend the notion of straight lines from the euclidean plane onto the
surface. In this section, we review and extend a technique originally defined by Polthier
and Schmies [7].



a b
Fig. 2. (a) Evolving a front on a flat plane. All points on the front move along euclidean straight
lines. (b) Evolving a front on a polyhedral surface. All points on the front move along discrete
straightest geodesics.
2.1 Geodesics on Polyhedral Surfaces

Geodesic curves are the extension of euclidean straight lines to a surface and are defined
for a smooth surface as:

Definition 1: Let S be a smooth 2-dimensional surface. A smooth curve γ � S is a
geodesic curve if any of the following equivalent properties hold:

� γ is a locally shortest curve
� γ is a straightest curve (has zero geodesic curvature)

Using definition 1, we can now solve for the evolution of a front moving on a smooth
surface by simply moving all points on the front appropriately. Given a point p on the
front and the direction (in the tangent plane of S) of front motion d(p) at p, move p
along the geodesic γ at p in the direction d(p).

Although definition 1 allows one to update a front on a smooth surface, we often
need to work with discrete polyhedral meshes. While geodesic curves on smooth sur-
faces are both straightest and locally shortest, on polyhedral meshes these two concepts
differ. In fact, shortest geodesics on polyhedral meshes are not necessarily unique while
the straightest geodesic given a point and direction on the polyhedral mesh is uniquely
defined. As our original motivation was to determine how to move straight in a given
direction on a polyhedral mesh, we require only the definition of straightest geodesics
on polyhedral meshes, as introduced in [7]:

Definition 2: Let M be a polyhedral 2-dimensional surface. A curve γ�M is a straight-
est geodesic curve if for every point p � γ the left and right curve angles, θl and θr are
equal - where θl and θr measure the angle to the left or right of the curve at p within the
surface.

Definition 2 then allows one to advance a front on a polyhedral mesh by uniquely
solving the following initial value problem:

Discrete straightest geodesic initial value problem: Given a polyhedral mesh M, a
point p � M, and a polyhedral tangent vector d at p, there exists a unique straightest
geodesic γ � M solving the initial value problem:

γ(0) = p
γ 0(0) = d



where the set of all polyhedral tangent vectors at a point p � M is defined to be all
vectors within the faces of M adjacent to p.

Advancing a front on a polyhedral surface now amounts to advancing each point
on the front along a unique straightest geodesic. This can be accomplished by a simple
Euler integration. Given a point p(ti), and a polyhedral tangent direction d(ti) to follow,
the next point p(ti+∆t) is found as:

p(ti+∆t) = p(ti)+d(ti)∆t (1)

For each pair of vertices p(ti) and p(ti +∆t) three cases must be considered (see
figure 3):

� p(ti) and p(ti+∆t) lie on the same face - since the surface is locally flat, this case
is trivial to handle. Tangent values for p(ti) and p(ti+∆t) are the same.

� p(ti+∆t)�p(ti) first crosses an edge - using the intersection with the edge q, we
must rotate d(ti) around the edge by the angle between the two normal vectors
of two neighboring surfaces. Using this rotated vector as the new polyhedral
tangent, we continue on towards p(ti +∆t), possibly crossing more edges on the
way.

� p(ti+∆t)�p(ti) first crosses a vertex - we calculate the polyhedral tangent vector
d(q) at the intersected point q such that the resulting curve through p(ti), q, and
q+d(q) will have equal left and right curve angles. Using this new tangent, we
continue on from q.

Every single particle update will be a succession of any of these three simple cases.
Propagation on arbitrary meshes, even with a very irregular connectivity, is therefore
handled robustly.

θl

θr

θl

θl

θr

θr

Fig. 3. Three cases for integrating straightest geodesics: (green) both points on the same face,
(blue) path between points intersects an edge, (red) path between points intersects a vertex. In
each case, the two angles θr and θl are equal.

Notice that evolving the front using discrete straightest geodesics guarantees a unique
solution to the problem. This method correctly handles even the case when a point on
the front evolves directly through a vertex. There is however a problem when the front
passes through a hyperbolic point (a point where gaussian curvatue is negative) or a
conjugate point (a point where the gaussian curvature is positive): a swallow tail effect



appears (see Figures 5 and 9(a)), after a conjugate point, creating a front interference.
Our fire propagation model modifies the initial approach [7] to correctly deal with this
case, as described next.

2.2 Continuous Fire Front

Although the original work [7] was designed to handle swallow tails, our fire propa-
gation method should not contain these features. Since the fire burns the surface as it
moves, front interferences (corresponding to double burning) should not occur. To rem-
edy this problem, we first describe how we can keep the front ordered and uniformly
sampled.

Adaptive, Ordered Front. To represent the continuous fire front, we maintain an
ordered list of the front particle emitters allowing each particle access to its immediate
neighbors. Often, as the front progresses, our original sampling becomes inadequate —
especially after a hyperbolic vertex with negative gauss curvature, neighboring flame
particles will diverge excessively.

In order to provide a smooth description of the front, at each time step, new front
particle emitters are deposited dynamically between the diverged particle emitters. If
the distance between two consecutive particles becomes too large compared to the
bounding box of the object (or any other geometry-driven criteria), we insert a new
particle in between. To find the position and direction of the inserted particle, we tested
two methods. In the first method, we start a new particle on the initial starting point
of the front, with a tangent direction equal to the average of the 2 particles, and we
compute its path up to the current time. However, after a hyperbolic vertex, this first
method fails since there is always a ”shadow” cone that will never be reached.

To suppress this issue, we use a second method that uses the current positions and
tangents of the two consecutive particles apart and simply adds a particle in between.
When the consecutive particles are either on the same face or on adjacent faces, the
insertion is easy to do. In the rare cases (for a mesh extremely irregular and non uni-
form) when the particles are too far away, we first find the faces lying inside a small
bounding box of the segment we want to split, then project the midpoint of the segment
to the closest face in the bounding box. The new tangent vector is simply the average
of the two consecutive tangent vectors. This technique also has the advantage of being
significantly faster than the first method since it doesn’t have to start from the original
position and simulate to the current time.

Inversely, we destroy particles in highly sampled regions when they become too
close. This adaptive refinement of the front as illustrated in Figure 4.

Using this adaptive sampling, the initial front can be sampled with a small number
of points. This greatly reduces the memory and computational requirements for evolv-
ing smooth fronts on complex objects. As explained in the next paragraph, this ordering
of the front also helps us to remove the undesirable interferences that may appear during
propagation.

Suppressing Swallow Tails. Using this notion of an ordered front, we propose a sim-
ple technique to detect and handle these swallow tail effects. Since these tails develop
large tangent discontinuities around the interference (see Figure 5(a)), we simply re-
move particles that have a large tangent difference with their immediate neighbor. As
shown in Figure 5(b), this alleviates the interference problem, and leads to a smooth
evolving front as desired.



a b
Fig. 4. (a) No adaptive sampling: Many points must be created at the start in order to ensure an
adequate discretization. (b) Adaptive sampling: Starting with a small number of points (eight) a
smooth curve is created by adaptively refining where necessary.

(a) (b)
Fig. 5. Swallow tail effect: (a) after crossing a point, a front can develop a swallow-tail-like
inteference. (b) By simply removing points with wildly different tangent directions, the front is
fixed.

2.3 Discussion

We have described in detail how to propagate fronts on a triangulated surface, regard-
less of mesh discretization. We have also described how every front particle follows a
geodesic path at an arbitrary speed. Therefore, in the next section, we show how to use
these different features to animate a realistic fire propagation on a 2-manifold.

3 Fire on Meshes

In this section we discuss in detail the process of animating fire propagation on meshes.
In particular we discuss our wind field and front propagation models, effects of terrain
slope, flame particles, avoiding double burning, and multiple fronts.

3.1 Wind Field Model

Using the front propagation and straightest geodesics described in the previous section
we can propagate a fire front over our polyhedral model. However, using solely the
geodesic flow to evolve the front results in extremely uniform and simple motion. This
is due to the fact that we evolve the front using a constant geodesic velocity while the
speed of fire propagation should depend on several complex factors including wind,
fuel density, and terrain slope. Additionally, we currently have no mechanism to allow
for animator control over the fire.



(a) (b) (c)
Fig. 6. Wind field: (a) large scale (upward direction), (b) small scale , (c) sum of the two scales.

To add both animator control and visual complexity to the front propagation, we
drive the front velocity using a multi scale turbulent wind field model proposed by Stam
et al.[10]. The wind field models wind velocity as a sum of two terms: a large scale
term, wl(x; t), used to describe global wind motion, and a small scale term, ws(x; t),
used to describe local turbulence (see Figure 6):

w(x; t) = wl(x; t)+ws(x; t) (2)

The large scale field can be specified by the animator or built by combining several wind
field primitives. The small scale field is created using stochastic techniques to model
turbulence. By separating the field this way, the animator has high level control and is
not burdened with the specification of small, complex motions such as turbulence.

In order to reduce runtime computation the wind field is precomputed and stored
in a 4D grid. During the simulation, the wind velocity at any point and time can be
obtained by a 4D linear interpolation of the nearest grid points. Since the wind field can
be constructed to have periodic boundaries, the grid can be tiled in both space and time.
Additional wind fields can be combined with the precomputed field at runtime to allow
for interactive wind field modifications (eg. mouse interaction).

3.2 Front Propagation

Given the wind field and the surface, we must now evolve the front in a plausible,
visually complex way. We represent the front as a set of sample points, p, each with
an associated direction of propagation, d, as explained in Section 2. The velocity of
propagation for one of these points is given by:

v(t) = d(t)(1+ kwind d(t) �w(p; t)) (3)

where kwind is a coefficient specifying how strongly the wind influences the fire
velocity and the term (1+ kwind d(t) �w(p; t)) is clamped to zero when it is less than
zero. Note that this formulation reduces to the uniform geodesic flow in the absence of
external wind. Using this velocity, we update the particle position using the geodesic
flow technique of section 2 updating the tangential v(t) and d(t) when crossing edges
and vertices.

We initialize the fire by placing a sampled front on the surface with the initial direc-
tions of the samples in the direction normal to the front. It is also possible to allow the
user to specify the starting position of a fire by just clicking somewhere on the mesh.
Given this starting position, we simply place several front samples at this location each
with a different initial radial direction. The system then evolves the fire naturally and
automatically.



3.3 Effects of Terrain Slope

In the absence of external wind the fire front should propagate up a vertical wall more
quickly than across a horizontal floor. This is due to the upward convection of the air
near the combustion area. We can simulate this by adding a wind-like term that opposes
gravity. The velocity equation is then:

v(t) = d(t)(1+ kwind d(t) �w(p; t)� kslope d(t) �g) (4)

where kslope is a coefficient specifying how strongly the slope affects the velocity and g
is the gravity vector.

Using this new velocity formulation the front is updated as described in the previ-
ous section. Our current implementation uses only the wind field and terrain slope to
modulate the front velocity. However, it is possible to modify the velocity function to
account for other factors including fuel density and fuel thickness. The animator can for
instance spray-paint directly on the surface fuel densities, to direct the fire propagation
at her will. However, our simple model using only wind and slope factors already leads
to visually complex and realistic propagation over a mesh without any user interaction.

3.4 Flame Particles

In order to visualize the fire, flame particle emitters are deposited on the surface as the
the front evolves. These emitters are deposited in the small area swept out by the front
samples (see Figure 7). They can have values determined by local surface properties
such as temperature, fuel density, and front velocity. These emitters then emit flame
particles according to their internal state. These flame particles are standard particles
as defined in [11]. Their motion is determined by a combination of advection due to
the wind field, diffusion and decay, to simulate the integration of the PDE defining fire
motion. Additionally, the size, transparency and color (from red when hot to dark grey
for the smoke) of each flame particle can vary over time. After a period of time the
particles and emitters die off.

a b c
Fig. 7. (a) Flame emitters are deposited by the moving front. (b) Flame particles are emitted to
give shape to the fire out of the surface. (c) Changing the luminance or the color of the vertices
depending on their distance to the front allows for a smooth transition between standard surface
and burnt surface. Note that we only used a sparse field of emitters in this figure to clearly see
the mesh surface.

3.5 Blackening of Burnt Regions

Once a region has burnt down, we must change its color accordingly. In order to im-
plement a smooth color change in the burnt area, the color of each vertex is darkened
according to the distance to the fire front (to simulate the alteration due to the heat of



the flames). Each time a particle is advanced in a triangle (or across a triangle dur-
ing its integration step), we increase the darkness of the vertices of the current triangle
depending on the distance from the particle. To do so, we use a simple color lookup
table to compute a luminance; if the current luminance of the vertex is higher than this
new luminance, we change the color accordingly. When the three vertices of a triangle
have been completely burnt, the whole triangle will be completely dark. If, however,
only a corner has been burnt, the Gouraud shading used to display the mesh will pro-
vide a smooth ramping of the color. This effect can be seen in Figure 7(c), where we
voluntarily reduced the number of flame emitters to clearly show the blackening.

3.6 Multiple Fronts

An important characteristic of fire propagation is that a flame can ignite another fire at
a remote location. For instance, if a fire flame reaches an overhanging part of the object
not yet burnt, a new fire front can develop at this point. In order to simulate this remote
fire ignition, we should know how close to the surface each flame particle is. Comput-
ing the distance to the closest surface triangle at runtime would be prohibitive as the
number of particles can be significant. Instead, we employed an implicit representation
of the object’s surface through a regular grid approximation. We used the closest point
transform [5] to store the distance to the burning object on a coarse, regular grid, as a
pre-process (Figure 8(a) shows the grid nodes around the object). We can then keep
track of whether a particle penetrates the object by checking the interpolated distance
from grid points near the particle. In addition, in order to quickly find the position
where to start the new fire, an index of the closest vertex as well as the distance value
will be assigned at each grid point before the simulation.

a b c
Fig. 8. (a) The closest point transform generates the distance from each grid point to the closest
surface as implicit representation. The color of the grid nodes indicates the proximity of the
surface. (b) New fire starts at the intersection between a flame and a surface. (c) New flames
start spreading from new origin. Note that each flame is represented by very few particles in
order to illustrate the new ignition more clearly.

Once an interpenetration is detected during the animation, we proceed as follows:
we first move the flame particle out of the object (the flame will therefore ”lick” the
object’s surface), and then, if this particle is still hot enough, we start another fire front
at this very location on the surface. This new fire front is initialized and assigned a
unique front ID (we use a simple integer counter that we increment each time a new
front is created) for further distinction between fronts. This behavior is illustrated in
Figure 8(b) and (c).



3.7 Fire Front Merging

Although we already solved the interference problem in the previous section (as de-
picted, this time for a real fire front, in Figure 9), there is another issue that needs to be
dealt with: a fire front can/will eventually collide with itself or another fire front at some
point during the propagation. The front must then to stop, since the area it is entering
has already been burnt.

a b
Fig. 9. (a) Swallow tail effect generated after a conjugate point. (b) The swallow tail is removed
by simple particle deletions where an inversion of direction is detected (see Section 2).

This case of ”double burning”, when two different fire fronts are to be merged into
one fire front as shown in Figure 10(c)), can easily be avoided. Although it would be
easy to keep a pointer on each triangle to the list of the front IDs currently propagating
over it, and then find the exact intersection(s) within the triangle, we opted for a simpler
procedure. Whenever a triangle becomes completely burnt, we simply declare the front
particles on it as dead: they will no longer move or emit flame particles. As demon-
strated in Figure 10, this is sufficient to deal with both self-intersection and collision of
different fronts. Notice that this procedure does not change the fact that we still have an
ordered description of every front: some parts are simply no longer moving, but they
still form the contour of the whole front. If one was to set fires at different points on the
mesh, the final contours of the fronts (once everything has burnt) would be the Voronoï
regions of these starting points, if no wind and slope effects are taken into account.

3.8 Rendering

Our simulation is visualized in real time using the OpenGL library. We used glPoint to
render our evolving particles. A particle can be displayed as a transparent disk using
the GL POINT SMOOTH mode and the GL BLEND mode of the OpenGL library,
generating automatic billboards for the blobby particles. To ensure correct transparency,
we have to order the points in decreasing depth value. The transparency of each particle
is determined mainly by the distribution of mass, decay constant and size. The size is
changed over time to account for diffusion [10]. The color of the flames changes with
temperature which decreases with time, as does its mass. We assume that the color of a
flame is a function of its distribution of mass and its size.

Obviously, our implementation uses only one of the many possible rendering tech-
niques. Other more sophisticated renderings of flames [11, 1] could be used instead.
However, our simple rendering method allows for real-time display, which is very con-
venient for rapid design of an animation.



(a)

(b) (c) (d)
Fig. 10. Grass fires: (a) Animation with wind and slope effects of a fire propagation on a mesh.
(b) to (d): Fire fronts merging — when a front reaches a burnt region, it merges with the other
fire front(s) appropriately. On all these snapshots taken during an interactive session, we can see
the blackening of the mesh around the fire fronts.

4 Results

The interactivity of our technique allowed us to test fire propagation on arbitrary meshes
very quickly. Figure 10(a) illustrates a typical session, where the animator clicks on a
point on the mesh to start near the top of the model: the flame front then propagates on
the surface instantaneously. The shape, speed, and the direction of the front flames are
influenced by wind, geodesic flow, and terrain slope, and the result has a natural look of
real fire propagation. Blackening of burnt regions are also spreading as the front flames
evolve. Other examples, like the heightfield on Figure 1(b) or the complex shape in
Figure 8 demonstrates that we can handle any boundary or genus too, as long as the
mesh is a 2-manifold.

5 Conclusion

In this paper, we developed a fire propagation technique designed for arbitrary trian-
gle meshes. We define the fire propagation as a set of front particles following simple
geodesics on the mesh, with a velocity depending on external wind and/or forces, slope,
and other possible attributes. Contrary to previous methods, we define an lazy, adap-
tive front description, and handle conjugate points, front merging, and remote ignition



to mimic real fire behavior. We also offer control to the animator by describing the
wind field as a sum of a small scale and a large scale field. We demonstrated that our
approach leads to complex and visually realistic fire front propagation. We used [10]
for rendering of the flame, but this technique is open to other good offline rendering
techniques if necessary.

Merging geometric properties of the meshes and physical properties of the wind
contributes to the realism of this natural phenomenon simulation. This combination
of geodesics and random wind fields can also be applied directly to other complex
simulations such as spreading liquids on meshes or for the visualization of heat distri-
bution. Future work includes the handling of non-manifold meshes, which should be
done by keeping track of bifurcations in the fire fronts happening at each non-manifold
edge/vertex.

Acknowledgements

Many thanks to Eitan Grinspun for initial discussions and support. This work has been
partially supported by the Integrated Media Systems Center, a NSF Engineering Re-
search Center, cooperative agreement number EEC-9529152, and the NSF STC for
Computer Graphics and Scientific Visualization (ASC-89-20219).

References

1. P. Beaudoin, S. Paquet, and P. Poulin. Realistic and controllable fire simulation. Graphics
Interface 2001, 2001.

2. N. Chiba, S Ohkawa, K. Muraoka, and M Miura. Two-dimensional visual simulation of
flames. The Journal of Visualization and Computer Animation, 1994.

3. A. C. Fernandez-Pello. Flame spread modeling. Combustion Science and Technology, 1983.
4. W. W. Hargrove. Simulating fire patterns in heterogeneous landscapes. Ecological modeling

2000, 2000.
5. Sean Mauch. Closest point transform. http://www.ama.caltech.edu/s̃eanm/software/cpt/cpt.html,

2000.
6. C. H. Perry and R. W. Picard. Synthesizing flames and their spreading. Eurographics Work-

shop on Animation, 1994.
7. K. Polthier and M. Schmies. Straightest geodesics on polyhedral surfaces. Mathematical

Visualization, pages 135–150, 1998.
8. K. Polthier and M. Schmies. Geodesic flow on polyhedral surfaces. Proceedings of

Eurographics-IEEE Symposium on Scientific Visualization ’99, 1999.
9. W. T. Reeves. Particle systems-a technique for modeling a class of fuzzy objects. ACM

Transactions on Graphics, pages 91–108, 1983.
10. Jos Stam and Eugene Fiume. Turbulent wind fields for gaseous phenomena. Computer

Graphics Proceedings, ACM SIGGRAPH, pages 369–376, 1993.
11. Jos Stam and Eugene Fiume. Depicting fire and other gaseous phenomena using diffusion

processes. Computer Graphics Proceedings, ACM SIGGRAPH, 1995.
12. F. A. Williams. Mechanisms of fire spread. Sixteenth Simpomsium on Combustion, 1976.


