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Abstract

We present a novel haptic rendering technique. Build-
ing on previous work, we propose a haptic model based
on a volumetric description of the geometry of an ob-
ject. Unlike previous volumetric approaches, we also find
a virtual contact point on the surface in order to derive
a penalty force that is consistent with the real geome-
try of the object, without introducing force discontinuity.
We also demonstrate that other surface properties such as
friction and texture can be added elegantly. The resulting
technique is fast (a constant 1000 Hz refresh rate) and can
handle large geometry models on low-end computers.

1 Introduction

A haptic display device is a force output device as well
as a point input device in 3-D space. It renders the virtual
object tangible and provides an intuitive interface with a
virtual environment. When the user touches a virtual ob-
ject, the haptic rendering algorithm generates an adequate
force field to simulate the presence of the object and sur-
face properties such as friction and texture.

The haptic rendering methods can be classified into
roughly two groups according to the surface representa-
tion they use: geometric haptic algorithms [23, 19, 13,
20] used to render surface data and volume haptic algo-
rithms [1, 9, 11] used for volumetric data.

Our novel haptic rendering algorithm takes advantage of
both the geometric (B-rep) and the implicit (V-rep) sur-
face representations for a given 3D object. The geomet-
ric model can effectively represent the interface between
the object in 3D and the rest of the scene, while an im-
plicit surface representation has many properties which
can highly benefit to the haptic rendering algorithm. The
novelty of our technique therefore lies in exploiting both
representations to derive a fast and accurate haptic ren-
dering technique.

We will proceed with a short discussion on previous re-
lated work in section 2. Some background information
about implicit surfaces will be presented in section 3. In
section 4, we will describe the force field generation and
surface properties such as friction and haptic texture. In
section 5 we will present applications for both geometric

and implicit representation based model. We conclude
with some results and future perspectives of this algo-
rithm in section 6.

2 Related Work

Traditional haptic rendering methods are based on geo-
metric surface representations which mainly consist of
triangle meshes. One interesting approach for the ge-
ometric models is the penalty-based method [13, 14]
which suffers from a strong force discontinuity and push-
through for thin and small objects [23, 19]. In order
to overcome these limitations, Zilles and Salisbury [23]
introduced a constraint-based “god-object” method in
which the movement of a god-object (a virtual contact
point on the surface) is constrained to stay on the object’s
surface. Ruspini et al. [19] proposed another constraint-
based and simulation method for additional surface prop-
erties such as friction and haptic texture. They used an
implementation of Force Shading [18] in which a surface
normal is obtained by interpolating the normals from the
vertices of the mesh.

Force discontinuity

Figure 1: Force discontinuity in constraint-based ap-
proach

The constraint-based approach, however, still suffers
from force discontinuity (see Figure 1) and does not scale
well with the complexity of the object’s surface. Force
Shading solves the force discontinuity problem, but in-
troduces a feeling of rounded surfaces due to the discrep-
ancy between the haptic force field and the actual normal
field of the surface [8, 19] as sketched in Figure 2a.

Note that haptic rendering algorithms for geometric mod-
els are not applicable to volumetric data without a prior
conversion, using a Marching Cubes algorithm [12] for
instance. However, the resultant geometric models usu-
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Figure 2: Comparison of two haptic methods without
force discontinuity (a) Force shading method (b) Our ap-
proach

ally contain a large number of polygons, which makes it
impractical.

In the volume haptic rendering, instead, the force field
is computed directly from the volume data. A haptic
rendering algorithm for volumetric data was first intro-
duced by Iwata and Noma [9]. They used the gradient
of the potential value to calculate the force. However,
in this volume haptic rendering technique and those that
followed [1, 11], the amount of force was linearly propor-
tional to the potential value. This approximation does not
take into account the distance to a virtual contact point on
the surface - or in other words, it is a good approximation
only when the haptic device is extremely close to the real
surface. As a result, the haptic surface does not match the
visible surface, as sketched in Figure 3a.

2.1 Contributions

We employ an implicit surface representation to hapti-
cally render a geometric model to take advantage of the
implicit representation as well as the geometric repre-
sentation. In our algorithm, the user ”sees” a geomet-
ric model and ”feels” an implicit surface which wraps
around the geometric model (Figure 4).

Our approach avoids the force discontinuity around vol-
umetric boundaries (edges and vertices) in a geometric
model without a feeling of rounded surfaces (Figure 2b)
using an interpolation function in a volumetric model,
which was first introduced by Avila [1].

Another contribution is that we use a simple variation
of Avila’s volume haptic method [1] to obtain the cor-
rect force magnitude. In previous volume haptic algo-
rithms [1, 11], the force magnitude is a function of the
potential value. This approximation may not allow the
user to feel stiff objects (Figure 3a). In order to solve
the problem, we find a virtual contact point on the sur-
face to render the surface more accurately and robustly
(Figure 3b).

Haptic texturing, in our algorithm, is implemented by
mapping a texture pattern directly into the implicit rep-
resentation unlike previous haptic texturing methods [2,
13, 20] which modulate the friction or perturb the surface
normal. As a result, the geometry of the implicit surface
is changed and it can express texture geometry explicitly
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Figure 3: computing the force magnitude (a) approxima-
tion in previous methods (b) our approach

without additional computations.

Furthermore, our algorithm is fast and stable, and can be
used for huge models on low-end computers.

3 Implicit surface representation

3.1 Definition

The implicit representation of the external surface S of an
object is described by the following implicit equation [3]

S = {(x, y, z) ∈ R3|f(x, y, z) = 0}

where f is the implicit function (also called potential),
and (x, y, z) is the coordinate of a point in 3D space.

If the potential value is 0, then the point (x, y, z) is on the
surface. The set of points for which the potential value is
0 defines the implicit surface. If the potential is positive,
then the point (x, y, z) is outside the object (red points in
Figure 4a). If f(x, y, z) < 0, then the point (x, y, z) is
inside the surface (green points in Figure 4a).

In our algorithm, we define the volumetric representation
using a discrete potential stored on a 3D regular grid. The
potential value of each point in a grid is a signed scalar
value which indicates the proximity to the surface. Poten-
tial values inside a cube of the grid is computed using a
trilinear interpolation between the eight values at the cor-
ner of the cube. Now, the inside/outside property of the
potential function makes the collision detection between
the tool tip of haptic display device and the implicit sur-
face trivial, since we know (at fixed computational cost)
the sign of the potential.

3.2 Surface normal

The surface normals of an implicit surface can be ob-
tained using the gradient of the implicit function as fol-
lows [3]:

n = ∇f/‖∇f‖ (1)

∇f = [
df

dx
,
df

dy
,
df

dz
] (2)



The surface normal of a given point inside the surface can
be computed by interpolating the gradients of the 8 neigh-
boring points around the point. This property is crucial to
achieve smooth changes of the force direction in our al-
gorithm.

3.3 Closest point transform

The potential value of each point is pre-computed using
the closest point transform (CPT) [15]. CPT converts an
explicit representation of a geometric surface into an im-
plicit one.

A fast algorithm for computing the closest distance was
proposed by Mauch [15]. The algorithm computes the
closest point to a surface and its distance from it by solv-
ing the Eikonal equation using the method of character-
istics. The computed distance is accurate and the com-
plexity is linear in the number of grid cells and surface
complexity.

In our algorithm, Mauch’s CPT algorithm is used to gen-
erate the potential value of each point. The user can se-
lect the resolution of the grid depending on the surface
complexity of objects (see Figure 4), or depending on the
computational power available.

(a) (b)

Figure 4: Closest point transform (a) potential values
without a geometric model in a grid (b) wrapping around
the model

4 Haptic Rendering Model

In this section we give a more detailed presentation of our
haptic model including collision detection, force genera-
tion, and surface properties like friction and haptic tex-
ture.

4.1 Collision detection

In geometric haptic rendering models, collision detection
is not trivial to compute. One of the most popular colli-
sion detection algorithms in geometric haptic rendering is
H-Collide [7]. It uses a hybrid hierarchy of spatial subdi-
vision and OBB trees. Ruspini et al. [19] used a bounding
sphere hierarchy to detect collisions.

Using the implicit representation, collision detection be-
comes trivial due to the inside/outside property. We can
obtain the proximity to the surface by interpolating the
potential values of the 8 neighbor points around the tool
tip. If the distance becomes 0 or changes sign, a collision
is detected. The complexity is constant since we are us-
ing a regular grid and is independent of the resolution of
the grid.

4.2 Friction-less Model

Force Direction. As mentioned before, penalty-based
approaches [13, 14] have many limitations such as find-
ing the nearest surface, strong force discontinuity, and
push-through of thin objects. Constraint-based ap-
proaches [23, 19] overcome these problems to some ex-
tent. These approaches, however, still suffer from force
discontinuity (see Figure 1). The force discontinuity gen-
erally occurs when the direction and/or amount of the
force are changed suddenly around volumetric bound-
aries such as edges on the surface. The force disconti-
nuity is a crucial problem in a haptic rendering algorithm
since the human sense of touch is sensitive enough to no-
tice even small force discontinuities.

In the implicit surface representation, we can obtain
smooth surface normals as the tool tip moves along the
surface. When the tool tip is inside the surface, the posi-
tion of the tool tip lies on a certain isosurface inside the
real surface. The isosurface works like an inner constraint
of the surface. When the user touches the surface of an
object, the algorithm first computes the gradient of each
point of 8 neighbors around the tool tip in a 3D grid. Then
the gradient at the position of the tool tip is computed by
interpolating the neighbor’s gradients. The resulting gra-
dient is equal to the surface normal of “a” virtual con-
tact point on the surface and becomes the direction of the
force (see Figure 2b). The next section shows how to
find the exact virtual point in the direction of the force,
so that the force magnitude is consistent with the surface
we have at hand.

Force Magnitude. In the previously introduced vol-
ume haptic algorithms [1, 9, 11], the force magnitude has
been approximated using the potential value. However,
the potential value may not be proportional to the virtual
contact point on the surface. This occurs for instance in
thin convex and concave surface of rugged objects (see
Figure 3a). As a result, the user usually feels the surface
smoother than he sees it.

In our algorithm we first find the virtual contact point on
a surface in order to determine the amount of the force.
This means that the force magnitude is not a function of
the arbitrary potential value. The virtual contact point is
constrained by, and moves along the surface, just as the
constraint-based approach for the geometric representa-
tion (see Figure 3b). The contact point is found as the
intersection point between the surface and a ray along the



computed force direction. The position of that point can
be quickly calculated by binary search. As the tool tip
is usually very close to the surface, the computation re-
quired is extremely simple (usually only a few steps along
the ray suffice).

Once the virtual contact point is found, a spring-damper
model [22] is used in order to compute the force vector
that tries to keep the virtual contact point and the tool tip
at the same position:

�F = (pc − pt) ∗ k − �V ∗ b (3)

where �F is the force vector, pc is the coordinate of the
contact point, pt is the coordinate of the tool tip, k is
stiffness, �V is velocity of the tool tip, and b is viscos-
ity (see Figure 5). Spring stiffness has a reasonably high
value and viscosity is to prevent oscillations. By mod-
ulating stiffness and viscosity, the user can vary surface
stiffness.

To provide more robustness, we also threshold the result-
ing magnitude. When the tool tip penetrates deeply in-
side the surface with a low stiffness, instability can occur
in a very complex surface since isosurfaces are getting
smoother as the depth of penetration increases.

4.3 Adding Friction to the Model

If the model has no friction (viscosity), it creates the
feeling of a very slippery surface, since the direction of
the force vector is always perpendicular to the surface.
Therefore, the algorithm should incorporate a friction
term in order to simulate various surfaces with different
friction properties.

Figure 5: The new virtual contact point due to friction.

In our algorithm, friction is implemented by limiting
the movement of the virtual contact point like in the
constraint-based method. The friction term takes into ac-
count a friction coefficient and the depth of penetration.

fv = fc ∗ (1 + (‖pc+�t − pt+�t‖) ∗ d) (4)

where fv is the friction term which ranges from 0.0 to
1.0, fc is the friction coefficient, ‖pc+�t − pt+�t‖ is

the penetration depth and d is a depth constant. Due to the
depth term in the equation above, the user feels a stronger
retarding force as he/she is moving inside the object.

By using the friction term fv, we can compute the retard-
ing force �Fr and the new contact point as follows:

�Ft = pc+�t − pc (5)

�Fr = − �Ft ∗ fv (6)

pn = pc + ( �Ft + �Fv) (7)

where �Ft is the tangential force, pc+�t is the current con-
tact point coordinate, pc is the previous contact point co-
ordinate, �Fr is the retarding force and pn is the new po-
sition of the tangential force after applying friction (the
green point in Figure 5). The new position pn, how-
ever, may not lie on the surface. We have to find the new
contact point (the red point in Figure 5) which is on the
surface and intersects with a ray along the new surface
normal vector (pn − pt+�t). The final force is finally
calculated using the equation 3.

4.4 Haptic texture

Haptic texturing is the term used to describe the way we
can simulate surface roughness. It can enrich the user
interaction with a haptic device just as graphical texture
enhances visual realism.

In previously introduced algorithms, haptic textures are
implemented by modulating the surface friction and/or
local surface normals. Minsky et al. [17] first demon-
strated simulation of some haptic textures by lateral force
fields proportional to the local gradient of the textured
surface. Basdogan et al. [2] implemented a bumpy sur-
face by perturbing the direction and magnitude of the sur-
face normal. Several approaches are based on the stick-
slip friction model [13, 20]. In this model, the tool tip of
the haptic device is ’stuck’ (restrained) by the means of a
static friction until the user applies enough force to over-
come this static friction. Then, the tool tip moves away
from the sticking point and ’slips’ until it meets the next
snagging point.

In our algorithm, haptic texturing is simulated by apply-
ing Gaussian noise (Figure 6a) and texture patterns (Fig-
ure 6b) directly to the potential value of each point in
the 3D grid, without any need for preprocessing. No
modification to the existing algorithm is necessary in or-
der to accommodate the new texture features of the sur-
face. Moreover, there is no additional computational cost
imposed due to haptic texturing since the direction and
amount of the force are computed dynamically as the tool
tip moves along the surface, whether or not this one has
been modified by additional textures.
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Figure 6: Haptic Texture (a) Gaussian noise (b) Lattice
pattern

5 Results

As mentioned before, our algorithm is applicable to both
geometric models and volumetric data without any mod-
ifications. This section presents two applications. One
application is the direct haptic simulation on geometric
models, and the other is an example of how this algorithm
is used in a rapid modeling prototyping toolkit (VST),
based on implicit representation.

In our algorithm, the collision detection and the force
generation are integrated into the servo-loop which sends
the force directly to the PHANTOM haptic device at
1000 Hz. A sample program is available at ”http://www-
grail.usc.edu/Haptic”.

5.1 Haptic simulation for geometric models

In the geometric representation, the user ”sees” a geo-
metric model and ”feels” the implicit surface which is
converted from the geometric model by the fast CPT (see
Figure 4). The preprocessing stage to compute the dis-
tance field is generally a matter of seconds (2-4 seconds
on a 150x150x150 grid for two models in Figure 7), and
needs to be done only once before the haptic simulation.
Due to the use of only local computations, we can ad-
just the resolution of a grid without any noticeable per-
formance degradation on low-end computers.

5.2 Virtual sculpting based on the implicit represen-
tation

We developed a virtual sculpting toolkit (VST) as an al-
ternative to existing digital sculpting implementations.
Our haptic rendering algorithm is integrated into VST to
haptically render the implicit surface and to intuitively
manipulate the deformation (Figure 8).

VST is based on the work by Desbrun and Cani-
Gascuel [4] in which they first introduced the concept of
using active implicit surfaces in order to animate objects
defined using an implicit potential on a regular grid. We
use active implicit surfaces to compute the deformations
created by the haptic device. When we apply the tool on

(a) (b)

Figure 7: Haptic display for geometric models (a) model
with non-zero genus (3328 triangles) (b)David model,
with complex geometry (11820 triangles).

a region close to the actual surface and for the period of
time the tool is activated, it creates a force field which
propagates through time to the neighboring nodes like a
wind field, altering their potential values. Using VST, we
created the snoopy model (Figure 8b) which has 7468 tri-
angles on a 70x70x70 grid. All surface modification is
achieved in real time on a 1GHz Pentium III CPU and a
Geforce 3 64 mb video card.

(a) (b)

Figure 8: Virtual sculpting tool (a) making a hole in a
model (b) snoopy model created by VST

6 Conclusion and future works

Combining geometric and volumetric haptic rendering
methods takes advantage from both approaches. Our hap-
tic algorithm is mainly based on an implicit surface repre-
sentation which represents the surface with potential val-
ues in a 3D regular grid. Thanks to the implicit properties,
the user can feel a smooth surface without force discon-
tinuity. In addition, we compute the position of a virtual
contact point, which is constrained to be on the surface
just like in constraint-based approaches. As a result, the
user feels the real geometry of the surface unlike previous



volumetric haptic simulations.

Our algorithm also simulates effectively surface proper-
ties like friction, stiffness, and haptic texture. Especially,
haptic texture is implemented by directly modulating the
potential values of the grid.

The algorithm allows to update forces at the 1 kHz rate
due to the fast computation of the collision detection and
force model.

The current method is based on an implicit representation
in a regular spacing grid where the potential is a scalar.
We would like to test our method on the refined implicit
implementation proposed by Kobbelt et al. [10] where
models produced are significantly more detailed and also
see how it performs if we use Adaptively Sampled Dis-
tanced Fields (ADF) proposed by Frisken et al [5].

In addition, we are going to extend our haptic algorithm
to support image-based haptic texturing [2] which allows
the user to feel a texture image and haptic painting [6]
which draws directly on a 3D model using a haptic de-
vice.
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