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Abstract

We propose an approach for efficiently simulating elastic objects
made of non-homogeneous, non-isotropic materials. Based on re-
cent developments in homogenization theory, a methodology is in-
troduced to approximate a deformable object made of arbitrary fine
structures of various linear elastic materials with a dynamically-
similar coarse model. This numerical coarsening of the material
properties allows for simulation of fine, heterogeneous structures
on very coarse grids while capturing the proper dynamics of the
original dynamical system, thus saving orders of magnitude in
computational time. Examples including inhomogeneous and/or
anisotropic materials can be realistically simulated in realtime with
a numerically-coarsened model made of a few mesh elements.

Keywords: Homogenization, model coarsening, model reduction.

1 Introduction

Simulating ever larger and more complex dynamical systems re-
quires ever more elaborate computational methods. While im-
proved CPU speed and faster numerical solvers have allowed
exquisitely detailed animation of complex deformable models, one
outstanding limitation in computer animation (and in fact, in com-
putational physics) is that simulation costs scale with structural
complexity: capturing the proper dynamical behavior of a hetero-
geneous object requires a mesh fine enough to resolve the fine-scale
heterogeneities. This sampling requirement can lead to prohibitive
simulation times if the fine scales are geometrically complex, such
as veinal structures in an organ. However, simply ignoring these
fine scales can dramatically affect the overall dynamics of the ob-
ject, rendering the object more or less rigid, or even failing to cap-
ture basic coarse deformation (see Figures 2 and 5).

In this paper, we present an approach to numerical coarsening of
linear elastic objects to allow for interactive, realistic physical an-
imation of structurally complex deformable objects. From a pair
of meshes representing respectively a fine and a coarse geometric
description of the elastic body, we devise a numerical procedure to
turn the heterogeneous elastic properties of the fine mesh into possi-
bly anisotropic elastic properties on the coarse mesh that effectively
capture (in the H1 sense) the same physical behavior. Simulation of
the coarse mesh equipped with these resulting coarse elastic prop-
erties is thus faithful to the dynamics of the original fine-detailed
object, but at a fraction of the cost.

1.1 Previous Work

Simplifying a model while still capturing (numerically or visually)
its coarse physical behavior has been investigated in many areas of
science, of which we discuss the two most relevant to our context.

Figure 1: Numerical coarsening turns a fine mesh with heterogeneous
elastic properties (here, a 200K-tet liver with veins, extracted from MRI
data; courtesy of Dobrina Boltcheva, LSIIT, France) into a coarse mesh
(640 tets) with anisotropic elastic properties that effectively capture the
same physical behavior. The coarse mesh (top) can thus be used as a proxy
to animate the object (falling on the ground) about a hundred times faster
than it would take to compute the elastic behavior on the fine mesh (bottom).
Collision detection is done using the interpolated fine mesh boundary.

Fast Deformable Models As the complexity of objects required
in computer animation grew, several strategies were devised to ad-
dress the problem of efficiency and scalability. Solvers were made
to scale nearly linearly in the number of nodes, through specific
integration schemes providing fast, yet stable updates [Baraff and
Witkin 1998] and/or multiresolution strategies for which adaptive
refinement of the simulation is often based on the local amount of
deformation [Debunne et al. 2001; Grinspun et al. 2002; Capell
et al. 2002b; Nesme et al. 2006]. Physical models were also drasti-
cally simplified to reduce computational requirements [Rivers and
James 2007], leading to a resurgence of (sometimes quasi-static)
linear elasticity [James and Pai 1999] where the well-known limi-
tations for large deformation are nicely compensated for by coro-
tational methods [de Veubeke 1976; Müller et al. 2002; Hauth and
Straßer 2004; Georgii and Westermann 2008].

Another string of contributions focused on model reduction to
achieve further efficiency. These approaches reduced the state space
dimension by limiting the space of possible deformations, typi-
cally though eigen-analysis of either the stiffness matrix [Pentland
and Williams 1989] or of a set of observations [Krysl et al. 2000].
Model reduction, however, often leads to a significantly reduced
set of admissible interactions [James and Fatahalian 2003], to non-
local reduced (Ritz) basis functions and a mismatch between geo-
metric and deformation DOFs [Pentland and Williams 1989; James
and Pai 2002; Choi and Ko 2005; Treuille et al. 2006], and/or to
non-linear runtime complexity [Li and Bai 2005; Barbic̃ and James
2005; An et al. 2008].

A simple, yet efficient way to simulate complex objects at low cost
is through domain embedding, where a complex geometry is em-
bedded in a coarse mesh (sometimes referred to as a cage). Ani-
mating the coarse volumetric mesh induces deformation of the high
resolution embedded geometry, providing a cheap and easy dy-
namic approximation of a complex object’s behavior [Pentland and
Williams 1989; Debunne et al. 2001; Capell et al. 2002a; Müller
and Gross 2004; Wojtan and Turk 2008]. The main advantage of



Figure 2: Inhomogeneous materials leads to Anisotropic Behavior: In 1D
(left), even a tiny amount of soft material between two rigid rods renders the
resulting bar highly deformable when pulled; a cube of composite material
in 3D (right) made out of two materials (the blue one being softer than the
mauve one) exhibits significant anisotropy due to its composition: in this
case, it stretches much more vertically than horizontally.

this approach is that the geometric and physical DOFs coincide,
eliminating the non-sparsity issue of reduced spaces; one can reuse
the exact same material simulator, but now on a coarse embedding
mesh rather than on a fine, detailed geometry. However, methods
of this last class focus almost exclusively on homogeneous materi-
als. When a heterogeneous object is at play, the coarse mesh must
now be assigned “averaged” material properties to best match the
behavior of the original object. To our knowledge, the only work
that tackled this issue in computer animation is [Nesme et al. 2006],
where a spatial average of the elasticity tensor was proposed on cu-
bical grids 1. Yet, such a simple average does not accurately coarsen
an elastic material: this procedure in 1D amounts to averaging a set
of springs in series by their mean stiffness, while the correct equiv-
alent stiffness is the inverse of the sum of the reciprocal of each
fine stiffness (this relation is easily derived using the well-known
electro-mechanical analogy; unfortunately, no such result in 2D or
3D is known). The difference between these two coarsening ap-
proaches can be quite significant: consider a 1D system made out
of a very small and very soft section sandwiched between two large,
extremely rigid sections; the resulting system is obviously very soft
(see Figure 2(left)), whereas a spatial average would have made it
very stiff. A proper numerical coarsening is thus crucial when ap-
proximating the dynamics of heterogenous objects on coarse grids.
Scalar Homogenization Homogenization theory [Bensoussan
et al. 1978; Jikov et al. 1991] has been developed for this ex-
act purpose of extracting information from fine scales to compu-
tational scales in order to perform efficient computations over com-
posite, inhomogeneous materials (i.e., with spatially varying phys-
ical properties, such as laminates, rebar-reinforced concrete, etc).
In essence, this theory replaces the microscopic structure of a com-
posite by an idealized, locally-homogenous material with equiva-
lent macroscopic physical properties—a procedure referred to as
coarsening, homogenization, or upscaling. A variety of coarsening
methods have been proposed, starting from well-known arithmetic
and harmonic averages, to more involved ones like the renormaliza-
tion method or the representative elementary volume; see [Farmer
2002] for a review. Unfortunately, the numerical homogenization
techniques available so far can offer accurate results only if peri-
odicity, ergodicity, or scale-separation assumptions on the material
properties are satisfied, making them quite poorly adapted to our
needs in computer animation.

Recently a homogenization technique of elliptic equations in diver-
gence form requiring no assumptions on the material at hand was
proposed in [Owhadi and Zhang 2007], providing a way to approx-
imate a fine solution u of the static problem:{

div(C(x)∇u) = f inside a domain D
u = u0 on ∂D

(1)

with spatially-varying conductivity C(x), by a coarse function uh

1See also the contemporaneous extension [Nesme et al. 2009].

that provably satisfies: ||u − uh||H1 ≤ Ch|| f ||L2 .This coarse func-
tion uh is thus a good match (in the H1 sense, thus even better in
the L2 sense) for the real (fine) solution, even if it requires a much
cheaper numerical solve. While seemingly appropriate for elasto-
statics given the similarities between Eq. (1) and the balance equa-
tion in elasticity, this technique is limited to the scalar case (as well
other related recent methods, see [Babuška and Sauter 2008; Shu
et al. 2008]). Additionally, general boundary conditions or non-
conforming coarse meshes are neither discussed nor tackled.

1.2 Overview and Contributions

Problem Statement In this paper, we present a practical solution
to the following numerical coarsening problem:

Given (a) a fine tetrahedral mesh D, in which each tet Tp
(p = 1 . . . |D|) has a different elasticity tensor CTp , and (b) a
coarse tetrahedral mesh � (of much smaller element count,
i.e., |�| � |D|) approximating the same geometry as D, find
an “effective” elasticity tensor ��q per coarse tet �q such
that the overall dynamics obtained by an off-the-shelf elas-
ticity simulator applied to either of them matches well.

Our coarsening procedure is achieved by first computing on D a
set of global harmonic displacements to analyze the heterogeneous
fine-scale properties, then by deducing the effective coarse-scale
property for each coarse mesh element. We show how our approach
can be seen as a mollification of the displacement field to allow
for proper averaging of the physical properties, and how it matches
the simple, known case of elasticity in 1D. Note that even if the
object described by the fine mesh is made out of different isotropic
materials (i.e., with the same stiffness independent of the directional
orientation of the applied force), the resulting elasticity tensors at
the coarse level are often anisotropic as they reflect the object’s fine,
inhomogeneous composition (see Figure 2).

Our approach contrasts with previous work in several ways. Un-
like methods based on Krylov spaces (using various definitions of
“eigen” deformations), our coarse model is not limited to a linear
space of deformations, and does not involve reduced coordinates
not matching the geometric description of the object. Instead, our
coarse model is simulated with a traditional finite-element solver
but on a coarser grid approximating the object’s global geometry.
The resulting dynamical system can thus be deformed arbitrarily
with a computational complexity proportional to the size of the
coarse mesh. Additionally, the accuracy of our approach decays
gracefully with the maximum edge length of the coarse mesh.

1.3 Tensor Notation

Our exposition will make heavy use of tensors of various ranks as
required in elasticity theory. To facilitate the direct implementa-
tion of our approach, we will often employ an index-based nota-
tion, where a rank-1 tensor X (i.e., vector, or 1D array for cod-
ing purposes) has its components denoted as Xi (where i takes on
the values 1, 2, or 3), a rank-2 tensor Y (i.e., a matrix, or 2D ar-
ray) will have its components referred to as Yi j, and so forth. The
“Einstein” summation convention (where summation is implied by
repeated indices [Barr 1989]) will be assumed. We will also em-
ploy the concise notion of tensor contraction. A single contraction,
where a summation over a single index is used, will be denoted
as “·”; X ·Y will therefore refer to either a matrix-vector product
[X ·Y]i = XiaYa or a matrix-matrix product [X ·Y]i j = XiaYa j. A
double contraction, where now a summation over two indices is
performed, will be denoted as “:”. It will be used for products
of a rank-4 tensor by a rank-2 tensor, or products of two rank-4
tensors—[F : G]i j = Fi jabGab, and [F : G]i jkl = Fi jabGabkl respec-
tively. Finally, a comma will indicate differentiation with respect to
one or several of the coordinates as customary, while ∇ will refer
to the gradient operator; e.g., (∇Y)i j = Yi, j = ∂Yi/∂x j for a rank-1
tensor, (∇Y)i jk = Yi j,k = ∂Yi j/∂xk for a rank-2 tensor, etc.



2 Background on Linear Elasticity
Linear elasticity has received extensive attention, and many detailed
explanations of its foundations can be found throughout the litera-
ture. We recap the main notions nonetheless, by way of introduction
to our notation and to the delicate issues of tensor symmetries that
will arise in our coarsening approach.
Strain Tensor Given a displacement field u defined over the unde-
formed configuration of an object, the symmetric part of the defor-
mation gradient ε, computed as

ε =
1
2

(∇u + ∇uT ) (i.e., εi j =
1
2

(ui, j + u j,i) ), (2)

represents the strain undergone by the object. Indeed, the remain-
ing part is antisymmetric, and thus only represents a pure (infinites-
imal) rotation–which does not induce a deformation. Note that by
definition, we have εi j =ε ji. This strain tensor is a linearized version
of the more general Cauchy strain tensor considered in non-linear
elasticity.
Potential Energy Hookean materials are assumed to have, just like
a simple spring, a potential function W(u) that is quadratic in the
strain tensor:

W(u) =
1
2
ε : C : ε =

1
2
εi j Ci jkl εkl, (3)

where C = {Ci jkl} is a rank-4 tensor called the elasticity tensor
(sometimes referred to as the compliance tensor, or tensor of elastic
compliances).
Stress Tensor The stress tensor σ, describing the forces acting
inside the body, is then defined as: σ=∂W/∂ε. Each component σi j
of this tensor represents, pointwise, the i-component of the force on
a surface with unit area whose normal is in the j-direction. Conse-
quently, body forces are expressed by the divergence of the stress
tensor, resulting in the usual equation of motion for linear elasticity:

ρ ü = divσ + f,
where f represents the external forces applied to the material.
Material Law From these basic definitions, one can deduce that,
for a Hookean (linear elastic) material, the elasticity tensor C de-
fines a linear relationship between stress and strain since σ=C : ε.
In slot-naming index convention, it yields:

σi j = Ci jkl εkl (4)

Symmetries of Elasticity Tensor While being a rank-4 tensor
(thus with 81 components in 3D), the elastic tensor C possesses
several symmetries. The symmetry of the stress tensor implies that
C is symmetric in its first pair of indices (Ci jkl = C jikl), while the
symmetry of the strain tensor results in C being symmetric in its
second pair of indices (Ci jkl =Ci jlk). Finally, since the strain energy
is a quadratic form, we also have symmetry under an interchange
of the first and second pairs of slots (Ci jkl = Ckli j) [Feynman et al.
2006]. This leaves only 21 independent components in 3D.

However, if the material is further assumed to be isotropic, as is
pervasive in graphics, then C only possesses 2 independent compo-
nents, usually expressed as Lamé coefficients λ and µ, or as Young
modulus E and Poisson ratio ν. Note that this isotropic assumption
amounts to assuming that deformations within the medium have no
preferred direction. While this is a valid simplification for a ho-
mogenous material, this clearly breaks in our coarsening context:
anisotropy has to be accounted for as Figure 2 demonstrates.

3 Coarsening Methodology
We now present how we derive, from an elastic, inhomogeneous
object, a coarse approximation that possesses a similar physical be-
havior. We assume that the procedure is performed in dimension
d, where d = 1, 2, or 3 for generality. Additionally, for consistency
and clarity, we use ROMAN characters to refer to quantities living
on the fine mesh D, and ���������� characters to refer to
quantities on the coarse mesh �.

3.1 Coarsening Procedure Setup and Overview

We start from a fine mesh D, in which each tet Tp (p=1 . . . |D|) has
a different elasticity tensor CTp (i.e., a different set of Lamé coeffi-
cients if we assume isotropy of each fine elements). We wish to ap-
proximate its dynamics on a given coarser mesh� (with |�| � |D|)
that describes the same geometry. That is, we need to find, as a
precomputation, an effective elasticity tensor ��q on each coarse
mesh element �q so that the dynamics of the resulting coarse sys-
tem closely matches the original fine object.

(D = {Tp},C = {CTp })
coarsening
−−−−−−−→ (� = {�q},� = {C�q })

Our approach first “probes” the fine material by computing d(d +
1)/2 harmonic displacements to capture how the fine mesh behaves
when linear forces are applied to the boundary of the material. This
set of displacements will in turn be used to derive a coarsening pro-
cedure to enforce that the potential energy of the coarse mesh (�,�)
exactly matches the integral of the potential of the fine mesh (D,C)
within each coarse tet �q. This coarsening procedure can be seen
as an extension of the upscaling procedure with discontinuous el-
ements introduced in Section 1.3 of [Owhadi and Zhang 2007] for
scalar equations.

3.2 Downsampling Fields

Downsampling a field from the fine mesh D to the coarse mesh
� is easily achieved. Each coarse-mesh vertex position �i is ex-
pressed as a linear combination (through barycentric coordinates)
of the fine-mesh vertices xi defining the fine tetrahedron in which
�i lies at rest. In other words, the vertex positions xi of the fine
mesh are first interpolated by linear finite elements on the fine mesh
D, then the coarse nodes are defined as samples of this linear re-
construction. Boundary nodes that lie outside of the fine domain D
require special treatment: for these nodes that do not have a bound-
ing fine tet, we find one (or more) fine element(s) closest to it and
use barycentric extrapolation instead (i.e., negative barycentric co-
ordinates). More details of this procedure and special handling of
boundaries will be discussed in Section 4.

Notice however that such a downsampling is accurate only if the
field we downsample is sufficiently smooth. While displacements
of the objects throughout an animation can be assumed to be fairly
smooth, this is far from true for a field like the elasticity tensor C,
as we assume the material to be inhomogeneous on fine scales.

3.3 Numerical Coarsening Rationale

While displacements are easily downsampled, the elasticity tensor
and mass matrix require more care to enforce that the coarse dy-
namics closely approximates the fine dynamics.

Potential Energy We first need to derive a tensor ��q per coarse
tet �q. In order to correctly reproduce the force field within the
object, we should enforce that the potential energy of each coarse
tet matches the integral of the potential energy over the fine tets
contained within the coarse tet; i.e., given our setup, we should
target the following equality:∫

�q

ε(u) : C : ε(u) dV =

∫
�q

ε(�) : � : ε(�) dV

on each coarse tet �q for all possible deformation fields u. This is a
tall order, as even if each (potentially anisotropic) coarse elasticity
tensor has 21 degrees of freedom, the space of possible fine defor-
mations is significant. Therefore the best we can hope to achieve is
to perfectly capture this equality on a few displacements: if these
displacements are characteristic of the typical deformations that the
fine mesh can endure, we will have achieved our goals. As we
will show below, we will introduce characteristic displacements hαβ
(with 1 ≤ α ≤ β ≤ d, for a total of d(d + 1)/2 displacement fields)



and derive coarse elasticity tensors that enforce:∫
�q

ε(hαβ) : C : ε(hδγ) dV =

∫
�q

ε(�αβ) : � : ε(�δγ) dV (5)

on each coarse tet �q, and for all α ≤ β and δ ≤ γ (note that �αβ is
the upscaled displacement based on hαβ as defined in Section 3.2).
This results in 21 independent equations in 3D after accounting for
the major symmetry of C, and their enforcement is equivalent to
enforcing potential energy equality for all linear combinations of
the test displacements. We will also demonstrate that our particular
choice of characteristic displacements leads to a variational inter-
pretation, giving another justification of our approach. Note that
for clarity we will continue to use Greek letter indices for index-
ing among characteristic displacements, while Roman letter indices
will still be used for coordinates and gradients.
Kinetic Energy As one of our goals in this paper is to be able to
reuse a conventional finite-element solver on the coarse model, we
do not allow the coarse mass matrix to be anisotropic since most
implementations that we are aware of in graphics assume a lumped,
diagonal mass matrix. Therefore, we define the mass matrix� to
be a diagonal matrix, for which the diagonal elements represent the
usual lumped mass around each node of the coarse mesh. Note that
to obtain a better coarsening of the mass matrix such that the kinetic
energies match well:

1
2

∫
�

�̇
T ·� · �̇ ≈

1
2

∫
D

u̇T ·M · u̇,

our treatment of the potential energy could also be used–where now
we need to compute “characteristic frequencies” as it involves time
derivatives. We omit this treatment here because unless the mass
density contrast in the object is significant, phase errors on the final
behavior of the coarsened system are unlikely to be visually crucial
to be worth the extra computational time required by non-lumped
(non-diagonal) mass matrices.

3.4 Global Harmonic Displacements
We first compute a few defining displacements hαβ to study how
the fine mesh behaves under a set of chosen conditions. For our
purposes of simulating elastic objects, we compute these displace-
ments by solving the following set of static boundary value prob-
lems for {hαβ}1≤α≤β≤d:div

(
C : ε(hαβ)

)
= 0 inside Ω(

C : ε(hαβ)
)
· n = ε(xα eβ) · n for x ∈ ∂Ω,

(6)

where xα denotes the α-th coordinate of space and eβ is the unit vec-
tor in the β-th coordinate direction. Note that we can thus rewrite
ε(xα eβ) as 1

2 (eα⊗eβ+eβ⊗eα). We fix the last six degrees of freedom
(translation and rotation) of Eq. (6) by fixing the zero-th and first
moments, resulting in a unique solution. The reader may recog-
nize the typical requirement of C−harmonicity, along with Neu-
mann boundary conditions prescribing surface tractions equal to
ε(xα eβ) · n. We will thus refer to this family of d(d + 1)/2 static
solutions as “global harmonic displacements” (see Figure 3 for ba-
sic examples on both homogeneous and inhomogeneous materials).
These static solutions represent characteristic displacements result-
ing from a global “probing” of the object by a set of linear traction
fields on the boundary. For notational simplicity, we will denote by
H the rank-3 tensor whose components are the coordinates of ev-
ery harmonic displacement hαβ, i.e., Hkαβ = (hαβ)k.We finally sym-
metrize H through Hkαβ = Hkβα for simplicity, as it avoids having
the restriction α ≤ β in further equations.

3.5 Harmonic Mollifier
The symmetric part of the gradient of the tensor Hkαβ will play a
crucial role in coarsening. This rank-4 tensor G is defined as

Gklαβ =
1
2

(
Hkαβ,l + Hlαβ,k

)
.

Note that this last expression is a generalization of the symmetrized
gradient operator ε for rank-2 tensors, and therefore the resulting G
has the minor symmetry Gklαβ = Glkαβ as well as Gklαβ = Gklβα
thanks to the symmetry of H. Although of higher-order in our
case, this tensor can be shown to help mollify solutions of the elas-
tic equation just as [Owhadi and Zhang 2007] demonstrated in the
scalar case of anisotropic Poisson equations: we also observe that
for any displacement u of our fine object, the field G−1 : ε(u) be-
comes Hölder continuous, i.e., quite smooth, though not necessarily
Lipschitz. This will be particularly useful: this “mollified” field can
be approximated (for any reasonably smooth displacement field) on
the coarse level without significant loss of information, by subsam-
pling each term:

G−1 : ε(u) ≈ �−1 : ε(�) (7)

where � is the coarse mesh analogue of G. This property is crucial
in getting accurate coarsening.

3.6 Homogenization of Fine Scales

We finally “downsample” the elasticity tensor � as follows, so as to
preserve the symmetries of the coarse elasticity tensor mentioned
in Section 2:

��q := �−T
�q

: 〈GT : C : G〉�q : �−1
�q
, (8)

or rewritten using tensor notation,[
C�q

]
i jkl

:=
[
�−T
�q

]
i jαβ

[
〈GT : C : G〉�q

]
αβγδ

[
�−1
�q

]
γδkl

.

This coarsening is achieved by first averaging quantities on the fine
mesh D through:[
〈GT : C : G〉�q

]
αβγδ

:=
∑

Tp∈D
Tp∩�q,∅

|Tp ∩ �q|

|�q|
[GT

Tp
]αβi j[CTp ]i jkl[GTp ]klγδ,

then by computing the inverse of the tensor � on the coarse mesh.
We stress that this inverse needs to be done with care: this is an in-
verse in the (reduced) space of tensors acting on symmetric tensors.
However, as we will represent this tensor in the reduced space, this
will be a standard 6x6 matrix inverse. Please refer to Appendix B
if unaccustomed to this matrix representation of tensors.

This procedure for deriving an effective tensor not only respects the
symmetries that any elastic tensor should have, but also satisfies
Eq. (5).

3.7 Variational (Finite Element) Interpretation

Since the traditional finite-element variational treatment of elastic-
ity considers the weaker form of the divergence term by pairing it
with another arbitrary “test” deformation z, we can now write (dis-
carding boundary terms for clarity):∫

�

div(C : ε(u)) z =

∫
�

ε(z) : C : ε(u)

=

∫
�

ε(z) : G−T : GT : C : G : G−1 : ε(u)

∗
≈

∫
�

ε(�) : �−T : GT : C : G : �−1 : ε(�)

=

∫
�

ε(�) : � : ε(�) =

∫
�

div(� : ε(�)) �

where the step marked by the asterisk is a consequence of the mol-
lification property in Eq. (7) used on both u and z. Therefore, our
definition of the upscaled elasticity tensors can be seen as a particu-
lar choice of a test function z for which the upscaled test function �
is a linear basis function of the coarse mesh�, so that a typical lin-
ear finite-element treatment of the coarse mesh closely corresponds
to a finite-element treatment of the fine mesh.



Figure 3: Harmonic Displacements: The six harmonic displacements obtained from a homogenous material (top), and a heterogeneous material made of
layers of 2 different elastic materials (bottom). The deformations correspond to respectively: h11,h22,h33,h12,h23, and h13.

3.8 Discussion

Our specific procedure to accurately downsample the elasticity ten-
sor field of a fine elastic object can be understood either from the
variational point of view (through mollification of the displacement,
Section 3.7), or from the exact matching of the potential energy for
a set of characteristic displacements. Other variants can also be
derived, potentially at the cost of losing one of these two proper-
ties. For instance, characteristic functions satisfying an alternate
set of boundary value problems could be chosen. In particular, the
boundary conditions of the harmonic equation should be changed to
mixed Dirichlet/Neumann conditions if we know that some vertices
will be fixed during simulation: this will capture harmonic displace-
ments that are more appropriate to this particular use. Other exten-
sions could relax the exact enforcement of Eq. (5), and consider
a least square solution for a larger family of carefully-tuned char-
acteristic displacements instead if prior knowledge on the use of
the coarse simulation is available. Also, computing local harmonic
characteristic fields would become attractive if the mesh topology
is allowed to change over time: we will leave this local approach for
future work, as a careful study of the consequences of these multi-
ple local solves versus a global solve for coarsening is delicate to
perform, by lack of a proper metric to use for fair comparison.

With our proposed approach, we can piggyback on the analy-
sis provided in [Owhadi and Zhang 2007] (with further details
in [Berlyand and Owhadi 2009]) to conclude that our coarse simu-
lation using � will satisfy: ‖u − �‖H1 ≤ αh‖f‖L2 (where h is the
maximum size of a coarse element), thus by duality, ‖u − �‖L2 ≤

Cαh2‖f‖L2 . In practice, this implies that the error made by the
coarsening procedure is of the order of the size of the coarse mesh.

4 Implementation Details
Although 3D numerical coarsening is mostly achieved by solving
six harmonic displacement fields and a few linear algebra opera-
tions as we explained in the previous section, several components
deserve more details.

4.1 Symmetric Tensor Representation

While our presentation has consistently used tensor notation, im-
plementation can be done using 6D vectors to represent symmetric
rank-2 (3x3) tensors, and 6x6 matrices to encode rank-4 tensors:
this memory-efficient representation often used in computer graph-
ics exploits the symmetries of the tensor we have to deal with. For
completeness, we spell out this conversion in Appendix B. In this
representation, double contractions can be performed by 6x6 matrix
products, and the entity �−1 is exactly the inverse of the 6x6 matrix
� used to encode the harmonic mollifier. Alternatively, one can im-
plement coarsening by copying literally the formulae provided in
our explanations using arrays and their indices—although �−1 will
then require special care.

Figure 4: Coarsening of Cracks: (left) In this 2D example, coarsening is
used to turn a bar-like object (blue) containing a thin slice of soft material
(green) into a very coarse mesh (peach-colored mesh); (right) when de-
formed under gravity, both models present similar deformations; (bottom)
a simple spatial averaging of the material elasticity coefficients or stiffness
tensors does not capture this bending behavior, not accounting properly for
the weak material in the middle.

4.2 Boundary Treatment

As briefly mentioned earlier, we treat coarse nodes that are out-
side the fine domain through barycentric extrapolation, i,e,, when
a field needs to be evaluated on this coarse node, we rely on the
values of a few closest fine boundary nodes (between one and three
in our implementation, depending on the local curvature of the ob-
ject) to extrapolate the field based on the positions of the respective
positions at rest. Additionally, we found it beneficial to alter the
local definition of the normal n used in the Neumann condition of
Eq. (6) to become the normal N of the coarse bounding tet instead.
This change is more in line with the variational interpretation de-
scribed in Section 3.7, as the test function near the boundary should
be reverted to the coarse element basis function, hence improving
boundary coarsening. Note that only the external boundary of the
object should be subjected to traction: holes inside the domain must
be left without traction to be treated as such when computing har-
monic displacements.

4.3 Coarse-to-Fine Mapping for Display

The tensors used for numerical coarsening can also be reused to de-
duce fine-mesh vertex positions deduced from coarse deformations.
This coarse-to-fine interpolation is a quasi-static approximation, as
it assumes equilibrium inside each coarse tetrahedron, so it is de-
void of higher temporal frequencies of the fine mesh. However, it
can be an effective way to reuse some of the information gathered
about the anisotropy of the object being simulated.

For each coarse tet �q = {v1, v2, v3, v4} with undeformed vertex po-



Figure 5: Physical Accuracy: On the inhomogeneous layered cube used in Fig 3, a fine simulation (top, left and middle) is well captured by our coarsening
approach (bottom, left and middle), despite the anisotropy of the object; if, however, the material coefficients (right, showing the most extreme positions reached
during the motion) or the stiffness matrices of the original object are simply averaged, coarse simulations do not match the fine behavior.

Figure 6: Fine Mesh Display: A 2-material composite object (left) is sub-
jected to gravity with its top vertices fixed, resulting in a elongated defor-
mation (middle). From a coarse mesh deformation made of a single triangle
(right, dashed), we can reconstruct a quasi-static fine solution (right) using
precomputed harmonic displacements: this cheap linear map from coarse
to fine deformation enhances visual impact at low cost.

sitions {x0
0, x

1
0, x

2
0, x

3
0} and current deformed positions {x0, x1, x2, x3}

we solve for a rotation matrix R and a symmetric matrix S such that R(x1 − x0)
R(x2 − x0)
R(x3 − x0)

 =

 x1
0 − x0

0
x2

0 − x0
0

x3
0 − x0

0

 +

 (H1 −H0) : S
(H2 −H0) : S
(H3 −H0) : S

 (9)

where Hi is the component of H corresponding to the vertex vi. The
interpolated current deformed position for any fine vertex x inside
this tet can then be computed as

x = x0 + RT (x0 − x0
0 + (Hx −H0) : S) (10)

where Hx is the component of H for x. This amounts to finding a ro-
tation and linear combination of the harmonic displacements which
matches the coarse tet vertices exactly, and then using this same ro-
tation and linear combination to place the fine vertices. Blending of
the displacements across adjacent coarse tets can also be added to
avoid derivative discontinuities. As this interpolation relies on lin-
ear elasticity, it may not not be appropriate for large coarse defor-
mations, and a robust solution based on projection onto the shape
space spanned by harmonic displacements is left as future work.
While Figure 6 shows how this coarse-to-fine map behaves on a
simple example, all other figures use barycentric interpolation.

4.4 Animating Coarse Models
We hereafter assume that the reader is familiar with the finite ele-
ment implementation of linear elasticity, where displacements are
stored in a vector uk for each time step tk and a stiffness matrix K
is assembled so that the potential energy becomes uT

k Kuk/2. We
will make no distinction between coarse and fine meshes, as the
time integration of elasticity applies to both equivalently. We will
also limit our discussion to the topics for which our implementation
differs from usual practices.
Corotational Method for Potential Evaluation Corotational
methods all share the same intent: they try to render the linear strain
tensor (Eq. (2)) more accurate for large deformation by removing
as much of the current local rotation as possible. For each tetra-
hedral element a corotated reference frame is chosen, “with respect

to which the relative displacements [...] due to the current defor-
mations are minimum in some global sense” [de Veubeke 1976].
Instead of expressing the position of the deformed body always in
the same coordinate frame (by adding the current displacements u
to the rest state x0), a corotational approach defines a matrix Re per
element e (expressing a rotation around the current barycenter be of
the element) such that the current deformed position ϕe of the node
elements satisfies:

Reϕe = xe
0 + ue − be,

where Re removes the purely rotational part of the current defor-
mation. This amounts to defining a “corotated displacement” ûe

per element as:

ûe = ReT (xe
0 + ue − be) − (x0 − be

0),

where b0 denotes the barycenter of the element in the rest config-
uration. The potential W = 1

2 uT Ku is then replaced by 1
2 ûT Kû,

thus turning into a sum over all elements now function of both the
displacement field u and the rotation field R = {R1, . . . ,R|T |}. The
force field in the elastic body thus becomes:

∇W =
1
2

∑
e

[
ReKeReT (xe

0 + ue − be) − 2ReKe(xe
0 − be

0)
]
.

Notice that the material velocity ϕ̇ is still equal to u̇: the corota-
tional treatment presented above only affects the potential energy
computations (and thus, the internal forces).

While corotational methods define various procedures to derive the
rotation matrix Re of each element [Müller et al. 2002; Hauth
and Straßer 2004; Nesme et al. 2006], we follow the treatment
of [de Veubeke 1976]. That is, we pick the corotational frame
of each element by minimizing |̂ue|2: our tests show much im-
proved behavior compared to QR or polar decomposition, as re-
ported in [Georgii and Westermann 2008]. We followed the im-
plementation of this latter reference to solve the small non-linear
system for each tetrahedral element.
Time Integration Once the rotation matrix for each element if
solved for, we use an midpoint integration scheme for the time up-
date of our elasticity models. While this integrator is symplectic,
the corotational treatment affects the numerics and energy is not
as accurately preserved as with non-corotational simulations; how-
ever, this scheme was used in all our examples, without noticeable
visual artifacts. A truly variational integrator for corotational meth-
ods would be a valuable tool in the future.

5 Results
In order to demonstrate the efficacy of numerical coarsening, we
tested our approach on models of varying size, shape, and material
composition. A first sanity check was to test that a homogenous
object is coarsened into the same material—for coarse tets entirely
inside the model. We then tried a layered object (Figures 2(right),
3(bottom), and 5) made out of two distinct materials. As expected,



Fine mesh and cross sections
(35K tets, top), along with its

harmonic deformations.

Fine (left) and Coarse (right)
animations. The coarse mesh

has only 200 tets.

Figure 7: Cheese: Elastic properties of a wheel of cheese with holes of var-
ious sizes in half of the wheel are turned into anisotropic elastic properties
on a coarse mesh (200 tets). Animating the coarse object (right) takes only
a fraction (∼1/150) of the cost it would take to compute the elastic behavior
on the fine mesh. Notice that the side containing the holes behaves softer,
even though the coarse mesh does not spatially capture these cavities.

we witness an “accordion” effect when the object is deformed per-
pendicular to its layers, while lateral deformation are much less
pronounced. This example is simple yet anisotropic enough to con-
vincingly prove that other forms of coarsening (average of stiffness
matrices, or of material coefficients) are just not enough to capture
the proper dynamics on the coarse mesh.

We also tested more subtle geometric details that can significantly
affect the dynamics. In particular, Figure 4 shows that a fine, but
deep crack is properly taken into account, resulting in a coarsened
motion exhibiting much larger deformation due to the local “weak-
ening” of the material. In Figure 7, we coarsen a cheese wheel
model, with half of the wheel containing gruyere-like holes. As
the harmonic deformations clearly exhibit, the coarsened material
properties are significantly affected by the inhomogeneity of the
model. We also compare the motion of the coarsened model (200
tets) to the much finer original tetrahedral mesh (35K tets needed
in order to represent the holes) of the wheel, indicating good vi-
sual agreement while reducing the computational complexity: the
coarse animation runs 150 times faster than the fine one. Finally,
we applied our numerical coarsening technique to a medical model,
consisting of a liver and its two interior veins (portal vein, and in-
ferior vena cava; see Figure 1). The veins act as reinforcement,
rendering the liver stiffer. We started from a MRI dataset made out
of 200K tets tagged as either belonging to the liver, or one of the
two veins. After assigning material properties to these three compo-
nents, we numerically coarsened this model to obtain an anisotropic
coarse material made out of 210 vertices behaving dynamically
similar to the original model.

Limitations. It should be reemphasized that our coarsening is cur-
rently limited to linear elasticity. The use of corotational methods
injects geometric nonlinearity to coarse simulations, thus limiting
the visual drawbacks of linear elasticity. However, the same use of
corotated elements for fine meshes will add non-linear details that
low tet-count meshes will be unable to match, even after proper
coarsening. An extension to non-linear coarsening is thus desirable.

6 Conclusions

In this paper, we proposed a formulation of elasticity on coarse
resolutions, where the influence of known fine scales is modeled
through the derivation of effective elasticity tensors. The effec-
tive tensors are obtained by solving inhomogeneous Laplace equa-
tions with Neumann boundary conditions, leading to non-trivial,
symmetry-respecting averaging of the material properties.

Directions of future work are manifold. As we mentioned earlier,
an extension for which coarsening is performed through a series of
local computations over each coarse tetrahedron would be highly
desirable: this would allow for fast updates of fine structures dur-
ing tearing for example. Geometric approaches to reconstruct fine
deformations from the coarse ones would be valuable complements
to further improve visual impact at low cost. Using non-diagonal
mass matrices on the coarse mesh would also most likely bring ben-
efits, albeit at a nonnegligible computational cost. We could also
restrict our coarse meshes to be logically rectangular to simplify
computations. Finally, medical applications such as virtual surgery
on complex inhomogeneous organs are being further explored.
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A Applying Coarsening in 1D
We briefly demonstrate how our numerical coarsening applied in
1D leads to the known stiffness equivalence rule for springs in se-
ries. (Remember that a spring’s stiffness k is equal to the spring’s
elastic compliance C divided by its rest length.) For simplicity,
consider just two springs, one with stiffness k1 between x0 and
x1, and the other with stiffness k2 between x1 and x2 (see below).

rest shape

deformed shape

k1 k2

x0

x0

x1

x1+h1

x2

x2+h2

-

qq qq q
The harmonic displacement h, for which we set h(x0) = h0 = 0 to
fix the gauge of the system, must satisfy Eq. (6), i.e.,{

k1h1 = k2[h2 − h1] (balance of forces at x1)
k2[h2 − h1] = k2(x2 − x1) (Neumann condition at x2).

We deduce that: h1 = k2(x2 − x1)/k1 and h2 = (x2 − x1)(k1 + k2)/k1.
We can then compute the mollifier per element:

G[x0 ,x1] =
h1

x1 − x0
=

k2

k1

x2 − x1

x1 − x0
G[x1 ,x2] =

h2 − h1

x2 − x1
= 1.

If we now wish to replace the two springs by a single one, we get:

�[x0 ,x2] =
h2

x2 − x0
=

k1 + k2

k1

x2 − x1

x2 − x0
.

Using Eq. (8), the equivalent stiffness k satisfies:

k(x2 − x0) = �−1
[x0 ,x2]

[
k1(x1 − x0) G2

[x0 ,x1]
x1 − x0

x2 − x0

+ k2(x2 − x1) G2
[x1 ,x2]

x2 − x1

x2 − x0

]
�
−1
[x0 ,x2].

Therefore we get the traditional stiffness equivalence between two
springs in series:

1
k

=
1
k1

+
1
k2
.

B Tensor-Matrix Conversion
Tensors T = Tabcd of rank-4 in 3D (i.e., 1 ≤ a, b, c, d ≤ 3) con-
tain 81 components, and are thus traditionally converted into a 9x9
matrix M through, assuming zero-based indexing:

Tabcd = M[3(a − 1) + b, 3(c − 1) + d]. (11)
When T has minor symmetries (Tabcd = Tbacd and Tabcd = Tabdc,
like all the tensors used in this paper), one can further reduce the
size of the representation by introducing a 6x6 matrix N such that:

N = R MRT with R =


1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

 ,
where R is called the reduction matrix. Converting back from this
reduced matrix space to a full tensor is easily achieved as well: from
a 6x6 matrix N, the equivalent 9x9 matrix M is found through:

M = ET NE with E =


1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0

 ,
where E is called the expansion matrix, and the final conversion to
a tensor uses Eq. (11).
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