
EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel
(Guest Editors)

Volume 21 (2002), Number 3

Angle-Analyzer: A Triangle-Quad Mesh Codec
Haeyoung Lee

USC
Pierre Alliez
INRIA / USC

Mathieu Desbrun
USC

Abstract
We present Angle-Analyzer, a new single-rate compression algorithm for triangle-quad hybrid meshes. Using a
carefully-designed geometry-driven mesh traversal and an efficient encoding of intrinsic mesh properties, Angle-
Analyzer produces compression ratios 40% better in connectivity and 20% better in geometry than the leading
Touma and Gotsman technique for the same level of geometric distortion. The simplicity and performance of this
new technique is demonstrated, and we provide extensive comparative tests to contrast our results with the current
state-of-the-art techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Surface mesh compres-
sion, connectivity coding, geometry coding.

1. Introduction
While a picture is often said to be worth a thousand words,
a 3D model could be said to be worth a thousand pictures.
Therefore, efficient 3D mesh compression algorithms have
been in high demand in the past few years to reduce the stor-
age room needed for large, detailed 3D models and to con-
sequently decrease transmission time over a network.

Single-rate compression of 3D meshes has been a very ac-
tive area of research4, 25, 20, 8, 24, 10, 12, 9, 2, 13, 11 over the last five
years. While an encoder can have various interesting proper-
ties such as efficiency, resiliency, and a small memory foot-
print, the most sought-after and challenging feature is still
low compression rate. Ever since the introduction of the cur-
rent most efficient algorithm25 by Touma and Gotsman for
triangle meshes in 1998, improvements2 and extensions to
polygon meshes13, 11 have been proposed to significantly im-
prove the connectivity encoding. However, there has been
no major improvement on the overall compression ratios be-
cause the geometry still dominates the global bit-rate, with
the connectivity being typically one tenth of the size.

In this paper we propose to focus on triangle-quad hybrid
meshes. We note that most polygon meshes have a high oc-
currence of triangles and quads and very few higher-order
polygons (see Figure 1), and as a consequence, tailoring an
algorithm to only these two cases does result in a both sim-
pler and more robust implementation. Dealing with the re-
maining minority of higher-order polygons will not affect
the bit rate significantly.

By introducing a geometry-driven mesh traversal and en-
coding only the intrinsic properties of a mesh, our Angle-
Analyzer generates code sequences of lower entropy for both
geometry and connectivity. As a result, order-0 or order-1
adaptive arithmetic encoding26, 23 of the sequence of symbols
generates better compression ratios than Touma and Gots-
man’s, i.e., 40% lower in connectivity and 20% lower in ge-

egea_u rockerarm shark

Figure 1: Mesh examples – a uniform triangle mesh, a quad
mesh, and a mesh mainly made of triangles and quads: three
meshes that a single-rate compression technique must typi-
cally encode.
ometry with the same or better level of geometric distortion
measured by the Metro tool3. Before detailing the algorithm
itself, we first review basic knowledge and previous work on
single-rate mesh encoding.

1.1. Related Work
Quads and triangles are widely-used primitives for modeling
the surface of 3D objects. Such primitives are arranged in
the form of polygon meshes that consist of connectivity and
geometry.

Connectivity Previous research on single-rate compres-
sion has been mostly dedicated to connectivity encod-
ing. The innovative valence-based approach25 for triangle
meshes proposed to encode the valence of every vertex
(i.e., its number of emanating edges) in a deterministic
traversal going through successive pivot vertices. Similarly,
the gate-based approaches, “Edgebreaker”20, 21 and “Cut-
Border Machine”8, 7 were also initially developed for trian-
gle meshes. They encode a mesh in a spiraling depth-first20

or breadth-first8 spanning-tree order traversal and generate
one symbol per triangle. The first approach25 outputs ap-
proximately V codes and naturally adapts to the mesh reg-
ularity, while the second20 outputs 2V codes (one per face)

c© The Eurographics Association and Blackwell Publishers 2002. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Lee, Alliez and Desbrun / Angle-Analyzer: A Triangle-Quad Mesh Codec

and has an easily-provable upper bound of 4 bits 20 for sim-
ple triangle meshes, along with a much simpler implementa-
tion — an attractive feature for commercial applications.

A first modification of the valence-based approach25 pro-
posed to change the deterministic mesh traversal by an adap-
tive traversal2 in order to reduce the number of accident
codes and to therefore improve the efficiency. Additionally,
the valence approach has been extended recently to arbitrary
polygon meshes13, 11, and has been provided with a theoreti-
cal study of optimality13.

In parallel to these developments, the gate-based
technique have also been improved in various
aspects10, 12, 7, 16, 15, 22 that even increased the advantage
of simplicity over a valence-based approach. However, the
compression rates obtained by this family of techniques
remain often worse than the best available2, 13, 11.

Geometry The global quantization method associated with
geometry prediction25 is the most widely-used geometry
compression technique by single rate encoders, and has not
been seriously challenged for the past three years. This ap-
proach builds a regular 3D grid inside the mesh bounding
box and snaps all the mesh vertices onto this grid. During
the mesh traversal, every vertex position is predicted from
its adjacent vertices using a linear prediction method (the so-
called parallelogram rule). The resulting (integer) residuals
are then compressed using entropy coding. The main reason
of the success of global quantization (also used recently for
progressive compression1) lies in the simplicity of its imple-
mentation (only one pass is required, and a linear predictor
outputs an integer value ready for entropy encoding).

Recently, the parallelogram prediction was extended us-
ing prediction trees 17. After assigning prediction error of
two adjacent triangles to the weight of the associated edge
in a graph of vertices and edges, a minimal spanning tree
will be created and each vertex position is predicted from
the preceding triangle in the tree.

Other than this prediction approach that depends signifi-
cantly on the order of the mesh traversal, one finds the inno-
vative “occurrence approach” 5 where a progressive vertex
localization is obtained through transmission of vertex oc-
currences in smaller and smaller bins. The authors demon-
strate a gain due to the bit-sharing coming from the trans-
mitted occurrence until complete vertex isolation (i.e., once
every bin contains only one vertex). Since this latter tech-
nique gets rid of the order over the vertices, it cannot benefit
from a prediction coming from a mesh traversal. A “vector
quantization approach” 18 was also introduced. It suggested
to transform each vertex to the corresponding model space
based on previous triangle. The resulting model space vector
set and the correction vector set are quantized. Their result-
ing bit rates were better than Touma-Gotsman’s technique
for 8 bit quantization only, which is often not visually ac-
ceptable.

1.2. Overview
Improvement on Connectivity Encoding A first reading
of the theoretical analysis in 13 may make one consider that
it is impossible to significantly improve the bit-rates from
the valence/degree approach13, 11. This seems especially true
since any modification of the conquest order will not change
the distribution of symbols that still has the same valence
dispersion, and therefore the same entropy, if one consid-
ers order-0 arithmetic encoding only. However, the anal-
ysis demonstrates the near-optimality only for worst-case
meshes, and there could still be large margin for improve-
ment on any given mesh with a completely different ap-
proach.

Our initial approach for connectivity is to mix the simplic-
ity of the Edgebreaker/Cut-border approaches and the effi-
ciency of the valence-based approach. As we will see in de-
tail, this can be done by revisiting the definition of the Edge-
breaker’s five descriptors (plus the additional two for higher
genus and holes) and the design of the traversal to minimize
the entropy of the resulting sequence. The connectivity en-
coding is therefore performed by going back to a gate-based
approach along with a novel cooperation between connec-
tivity and geometry, in order to perform an efficient adap-
tive mesh traversal driven by both criteria. The basic item
required for the mesh traversal is a gate, i.e., an oriented edge
(see Figure 2). For each gate processed one symbol is out-
put, in order to indicate how to stitch its front face with the
current encoded/decoded part of the mesh. Gates are orga-
nized in ordered lists, and a stack of gate lists will be needed
to handle special symbols.

V1 V0

front vertex

V1 V0

left front right front

gate gate

back face

front face

Figure 2: Left: local gate configuration for a triangle mesh.
Right: local gate configuration for a quad mesh. A gate is
an oriented edge from V 0 to V 1. The back face is the one
already visited and the front face is the next visited during
the traversal. Both hybrid configurations (triangle to quad,
and quad to triangle) can also happen.

Improvement on Geometry Encoding We have exten-
sively experimented with several geometry encoding meth-
ods and measured the resulting rates and distortions 3. The
best results have been obtained by encoding the intrinsic
properties of a mesh, i.e., the dihedral and internal angles
between or inside triangles. These angles have a naturally
bounded range and obvious peaks in symbol distribution
so a simple, one-pass linear quantization followed by arith-
metic encoding is very efficient. We have also experimented

c© The Eurographics Association and Blackwell Publishers 2002.

Lee, Alliez and Desbrun / Angle-Analyzer: A Triangle-Quad Mesh Codec

with linear or non-linear prediction, and even entropy-driven
quantization. Additional results are detailed in19.

Pseudo-code The resulting compression algorithm inter-
leaves connectivity and geometry encoding until there is no
more gate to process, as follows:
repeat

init
pick the next uncoded connected component

1. pick a seed face (degree 3 or 4)
2. store its gates in ordered list
3. put the list on top of the stack of lists

mesh traversal
repeat

pop the first ordered list off the stack
repeat

1. pick the best gate in the ordered list
2. if the front face is unprocessed,

– process it (triangle or quad)
– store the resulting gates in ordered list
– if new front vertex, encode geometry

3. remove processed gate from the list
until the list is empty

until the stack is empty
Until no more connected component
This very simple pseudo-code, very similar to the associated
decompression algorithm, will result in approximately 40%
better rates than previous published results for connectivity
and 20% better rates for geometry with equal or less distor-
tion. A complete description of our algorithm is detailed in
Section 2 for connectivity and Section 3 for geometry cod-
ing. Results and conclusions are given in Section 4.

2. Connectivity coding
We first notice that the counterclockwise traversal of edges25

or faces13 around successive pivots manages to deduce more
local information than an Edgebreaker-type algorithm. In-
deed, by turning around each vertex of a gate in clockwise
or counterclockwise order, we can identify relationships be-
tween the gate and front vertices and generate symbols ac-
cordingly, potentially saving unnecessary symbols. More-
over, local geometric information can be used to determine
the adaptive traversal to minimize the occurrences of special
symbols. We now present our encoding approach, first for
triangles, then for quads, and finally, for hybrid quad/triangle
meshes.

2.1. Triangle Meshes
Contrary to the seven descriptors used in the original Edge-
breaker or the six operations in the improved Cut-border Ma-
chine algorithm, we define only five relationships and their
associated symbols between a front vertex and an active gate
for an arbitrary-genus triangle mesh: C (create), CW (mesh
clockwise), CCW (mesh counterclockwise), S (skip), and J
(join).

Encoding If the front vertex has not been visited yet, a sym-
bol C will be generated. Two new gates will replace the

V1V1 V0 V1 V1

V0

symbol C
(create)

symbol CW
(mesh clockwise)

symbol S
(skip)

V0V1

V1

V1

V0

V1

V1

V0

symbol CCW
(mesh counterclockwise)

symbol J
(join)

Figure 3: Set of symbols used for a triangle mesh: the red
vertices are front ones. The red gates are new gates to be
inserted into the gate list to continue the conquest.

current gate in the ordered gate list, just like in the origi-
nal Edgebreaker algorithm (see Figure 3). If the front vertex
has been previously visited, we can locate the front vertex
by turning either clockwise around V1 or counterclockwise
around V0 (Figure 3). A symbol CCW or CW will therefore
be generated accordingly. A new gate will replace both the
current gate and the next gate in the list. If the active gate is
on the mesh boundary, there is no front face and a symbol S
(skip) will be generated (Figure 3).

V1
V0

symbol J

V2

V1 V0

V3
V4

Range of the offset

Figure 4: Symbol J: When the gate list merges, a symbol
J occurs. The range of the offset is restricted to # (neigh-
bors - visited neighbors) of V1. If there were other vertex
like V2 not connected to V1 having smaller distance to V1,
no J (red) but C(green) would be occurred due to minimum
angle based choice of the gate (not v0-v1 but v3-v4 would
have been chosen).

When the decoder has no means to identify the location of
a previously-visited front vertex, a symbol J followed by an
offset will be generated. J occurs when the gate list merges
as described in Figure 4. The offset enables the decoder to
locate the front vertex within the array of visited vertices
sorted by the Euclidean distance to V1 of the gate. The off-
set will always be between 0 and the number of neighboring
vertices decreased by the number of visited neighboring ver-
tices. There should be at least four visited neighboring ver-
tices for V1 for a J to occur, and we use 12 symbols in total
for triangles and quads. (if there were other vertices not con-
nected to V1 having a smaller Euclidean distance to V1, J
would not occur, but a C instead, due to the minimum angle
based choice of the gate as shown in Figure 4). As a result,
the offset will only take up one symbol for any vertex V1
of valence up to 16. If the offset is greater than 12 we use

c© The Eurographics Association and Blackwell Publishers 2002.

Lee, Alliez and Desbrun / Angle-Analyzer: A Triangle-Quad Mesh Codec

the last symbol of the table (i.e., 11) as a reserved unfolding
symbol.

In this J mode, splitting or merging of gate lists should be
performed. This plays a similar role to the Split and Merge
codes of the valence-based approach 25, 2, or the connect and
union of the gate-based approach 7. If the front vertex be-
longs to the current gate list, the current gate list should be
split into two gate lists around the front vertex. If the front
vertex belongs to another gate list in the stack, the current
gate list and this particular gate list should be merged to a
single list19. An example of a symbol sequence generated
during a mesh traversal is depicted in Figure5.

V1 V0

Seed face C C, C

V1

V0
V1

V0

V1

V0

V1

V0

C, C, C C, C, C, CW C, C, C, CW, C

Figure 5: Example of symbol sequence: in red are the new
front vertices. The red wedge shows the minimum angle be-
tween two consecutive gates.

Decoding Initially, three vertices will be decoded and used
as the seed face. Three initial gates are then added to the gate
list and the reconstruction starts by always applying the same
rule over and over again: the next best gate is chosen accord-
ing to a simple test detailed in Section 2.4 and the decoding
traversal proceeds to the next symbol. For the symbol C, a
new front face will be created, along with a new front vertex.
Two new gates will be added to the gate list. For the symbol
CW and CCW, we localize the front vertex by a clockwise or
counterclockwise rotation around the appropriate gate vertex
until we find the next gate vertex. The new front face is then
created and a new gate will be added to the gate list as well.
For the symbol S, nothing has to be done. For the symbol J,
the front vertex will be located by using the decoded offset
value as an index to the sorted array of visited vertices.

2.2. Quad Meshes
Due to the presence of two front vertices facing a gate in a
quadrilateral, eight relationships and their associated sym-
bols are defined to encode the connectivity of quad meshes:
C2 (create 2 vertices), CL (create left), CR (create right), M
(just mesh), DCW (double-clockwise turn), DCCW (double-
counterclockwise turn), JQ (join for quad), and S (the same
skip as in the previous section).

Encoding If both front vertices have not been visited, a
symbol C2 will be generated. Three new gates will replace
the current gate in the ordered gate list (Figure 6). If the right
front vertex can be located by turning a counterclockwise
around V0 and the left front vertex has not been visited, a

V1 V0 V1 V0 V1 V0

V1 V0 V1 V0 V1 V0

symbol C2 symbol CR symbol CL

symbol Mesh symbol DCW symbol DCCW

Figure 6: Set of symbols for a quad mesh: the red vertices
are new front vertices. The grey vertices are already-visited
front vertices. The red gates are new gates to be inserted into
the ordered gate list.

symbol CL will be generated. If this is true for the oppo-
site direction, a symbol CR will be encoded with two new
gates replacing the two consecutive gates found as described
by Figure 6. There are three cases where we can find both
front vertices by turning around the gate vertices: by a coun-
terclockwise turn around V0 and a clockwise turn around
the V1 (symbol M); by double counterclockwise turn around
V0 (symbol DCCW); by double clockwise turn around V1
(symbol DCW). One new gate replaces three consecutive
gates in the ordered gate list (Figure 6). The symbol S is
for the gate without the front face, the same one as for tri-
angle meshes. If one or both of the front vertices have al-
ready been visited, the symbol JQ will be generated as de-
scribed by Figure 7. It will be used in different cases: when
both front vertices have been visited, when one of the front
vertices has not been visited, and when one of them can be
found by turning around a pivot. A single symbol is suffi-
cient to handle all these cases since the decoder will be able
to deduce the exact case by local exploration. For each case,
the symbol JQ and two offsets will be generated. The pres-
ence of a new front vertex to create will be determined by a
negative unitary offset. The offset for the left or right front
vertex is the index of the array of vertices on the boundary
sorted by the distance to V0 or V1 accordingly and also re-
stricted to neighboring vertices of V0 or V1 as for the offset
of J in triangle meshes. Splitting/Merging of the gate lists
should be processed in the same way as for triangle meshes:
if the front vertices belong to the current gate list, we must
split the current gate list; if not, merging should occur.

V1 V0 V1 V0

Figure 7: Detailed cases of the extra symbol JQ: splitting or
merging of the gate lists occurs. Some of the yellow quads or
yellow vertices have not been visited yet.

c© The Eurographics Association and Blackwell Publishers 2002.

Lee, Alliez and Desbrun / Angle-Analyzer: A Triangle-Quad Mesh Codec

Decoding The initial four vertices will be decoded and form
the seed quad face. Four initial gates are pushed to the gate
list. The best next gate is then selected from this list of gates.
Based on the decoded symbol, a new front face will be cre-
ated with newly/previously visited front vertices and new
gates will be added to the gate list like the decoding pro-
cess for triangle meshes. We will discuss the gate selection
process as for the triangle meshes in Section 2.4.

2.3. Hybrids of Triangle/Quad meshes
Based on the front face type, one of the two schemes pre-
viously mentioned can be applied. Overall, 12 symbols are
generated for hybrid meshes (S, 4 symbols for a triangle
front face, and 7 symbols for a quad front face). With these
12 symbols, there is no ambiguity for the decoder at any
time.

2.4. Geometry-Driven Adaptive Traversal
The gate located at the most inner part of the concave shaped
gate list should be selected as the next best gate to avoid J or
JQ, which causes splitting or merging. We tried two methods
to choose the next best gate:

• choose the best gate based on the number of polygons al-
ready visited around V0 of the gate,

• choose the best gate having the minimum angle with the
following gate along the active border.

The first method is similar to the pivot selection inspired by
the valence-driven edge conquest described in 2. We noticed
that there still could be a better choice for the next best gate.
By choosing the gate having the minimum angle between
two consecutive gates in the current gate list, the gate at the
inner part can always be selected to better localize concave
parts of the conquered region. This geometry-driven traver-
sal removes or dramatically decreases the occurrences of J as
shown in Table 1 and moreover generates low-entropy code
sequence as shown in Table 2 and Figure 8. An order-1 adap-
tive arithmetic coder 26 is used to benefit from this distribu-
tion of symbols.

0

10000

20000

30000

40000

50000

#C2 #CL #CR #Mesh #QCW#QCCW #QJ

Venus.quad rockerarm.quad Head.quad

Figure 8: Example of symbol distribution for quad meshes.
Notice the large majority of CR and the low occurrence of
other symbols.

2.5. Discussion
The compression ratios of our connectivity are listed in Table
3 for the triangle meshes shown in Figure 9 and in Table 4
for the quad meshes shown in Figure 10.

model #V AD01 J AA J
(b/v) in AD01 (b/v) in AA

feline 49864 2.37 1951 1.50 106
max 2545 2.36 808 1.45 13
horse 19851 2.38 694 1.35 20
tf2 14169 1.70 106 1.00 18
dino 14070 2.47 571 1.69 59
nefer_u 10413 1.52 1 0.65 0
foot 10016 2.38 301 1.56 14
venus 8268 2.96 727 1.95 149
egea_u 5315 1.71 4 0.82 0
body 711 3.14 11 2.12 4
nefer 299 3.37 7 2.27 0

Table 1: Comparisons between two adaptive traversals on
triangle meshes for connectivity compression: the third and
the fifth columns show the compression ratios in b/v of the
first method (Alliez-Desbrun 2001) and the second method
accordingly. Notice the dramatically decreased occurrences
of J symbols when using the minimum-angle gate. nefer_u
and egea_u are uniform meshes.

model #V C CW CCW J S

feline 49864 49861 49653 111 106 0
max 25445 25442 25316 29 13 87
horse 19851 19848 19817 12 20 0
tf2 14169 14166 13898 21 18 232
dino 14070 14067 13962 47 59 0
nefer_u 10413 10410 10011 0 0 402
foot 10016 10013 9982 18 14 0
venus 8268 8265 7950 167 149 0
egea_u 5315 5312 5060 0 0 255
body 711 708 677 6 4 24

Table 2: Symbol distribution for triangle meshes: the second
column shows the number of vertices. The others show the
number of the occurrences for each symbol. Notice very high
occurrences of C/CW. There is no CCW and no J for uniform
meshes, nefer_u and egea_u, explaining the extremely low
bit-rate.

Our Angle-Analyzer is especially good for meshes with
irregular or uniform triangulation. For uniform meshes, the
number of symbols generated are further reduced to 3: C,
CW, and S as shown in Table 2. On average, for triangu-
lar meshes, our Angle-Analyzer uses 40% less bits than the
Touman-Gotsman’s valence-driven approach in determinis-
tic traversal, and 35% less than Alliez-Desbrun’s valence-
driven approach in adaptive traversal — the two current
best compression ratios on connectivity. But for very regular
meshes, the valence-driven approach will generate at most 3
symbol types (i.e., 6, Split and Merge) so the bit rate will be
usually lower than ours.

Even though the bounds of the bit rates of our connec-
tivity should be investigated further for general cases, a

c© The Eurographics Association and Blackwell Publishers 2002.

Lee, Alliez and Desbrun / Angle-Analyzer: A Triangle-Quad Mesh Codec

model TG AD AA vs TG vs AD

feline 2.38 2.27 1.50 37% 34%
max 2.31 2.22 1.45 37% 35%
horse 2.34 2.24 1.35 42% 40%
dino 2.39 2.27 1.69 29% 26%
nefer_u 1.59 1.44 0.65 59% 55%
foot 2.33 2.2 1.56 33% 30%
venus 2.82 2.74 1.95 31% 29%
egea_u 1.73 1.63 0.82 53% 50%
body 2.62 2.38 1.96 25% 18%

Table 3: Bit-rate (in b/v) comparisons for triangle meshes:
the second column shows bit rates from Touma-Gotsman’s
and the third shows bit rates from Alliez-Desbrun’s. The
fourth column shows bit rates of our Angle-Analyzer (AA).
The fifth shows ratio of AA over TG while the sixth shows
ratio of AA over AD. AA produced more than 50% lower
bit rates than TG and AD for uniform meshes, nefer_u and
egea_u.

feline horsebody

foot

max
tf2

venus

nefer_u

dino

egea_u

random sphere

Figure 9: Triangle meshes used: feline, body, horse, venus,
max, nefer_u, tf2, egea_u, foot, dino, random, and sphere.
random is an irregular non-uniformly meshed sphere and
sphere is a regular mesh. Feline is a genus 2 mesh. body,
max, tf2, venus, foot, nefer_u, and egea_u have a boundary.

quick analysis for a 2-manifold triangle mesh without a
boundary can be sketched as follows. For such a mesh, there
will be only 4 codes generated: C, CW, CCW, and J, which
will take 2 bits to encode. The number of occurrences of
C is (|V | − 3), where |V | is the number of vertices of the
mesh. The sum of occurrences of CW, CCW, and J will
be up to |V |+ |J| where |J| is the number of symbols for
offsets in J. Since Table2 exhibits a negligible number of
symbol J in practice, the sum of occurrences of CW, CCW,
and J can be assumed to be |V |. Therefore, the expected
(yet, unguaranteed) maximum bit rate for arbitrary triangle
meshes with handles and no holes will be 2∗2∗ |V |/|V | = 4
b/v. In practice, the usual bit rate is around 1.5 b/v for
triangle meshes, and 0.8 b/v for quad meshes.

model #V AD01 AA rate

feline.quad 205210 1.29 0.65 50%
head.quad 48099 0.73 0.36 51%
rockerarm.quad 41312 1.27 0.74 42%
venus.quad 34104 1.56 0.89 43%
david.quad 24599 1.70 1.08 36%
genus3.quad 6796 0.75 0.44 41%
body.quad 2891 1.28 0.64 50%
uglybox.quad 1432 2.12 1.36 36%
tiger.quad 1254 1.24 0.94 24%
nefertiti.quad 1191 1.5 0.81 46%

Table 4: Bit rates (in b/v) of quad meshes: The third column
shows the bit rates of 2’s adaptive traversal and the fourth
for the bit rates of our angle-based traversal. The fifth shows
the improvement ratio of our Angle-Analyzer over 2.

david.quad

head.quadbody.quad

tiger.quad nefertiti.quadgenus3.quad

uglybox.quad felline.quad

Figure 10: Quad meshes used: david.quad, tiger.quad,
genus3.quad, nefertiti.quad, uglybox.quad. body.quad, fe-
line.quad(genus2), head.quad. rockerarm.quad(genus1) is
shown in Figure 1. venus.quad is the same geometry as the
triangulated venus, remeshed using quads. david, nefertiti,
body, and head have a boundary.

3. Geometry encoding
Geometry represents the dominant part of the overall bit rate
of a compression algorithm. We therefore attempted to find
a novel method to better encode the geometry of arbitrary
meshes. In this section, we propose two different techniques,
resulting in similar compression rates. We also introduce a
novel entropy-driven geometry compression algorithm that
can further reduce the bit-rate and offers an increased flexi-
bility. Since a quad can be considered as two triangles glued
together as shown in the right of Figure11, the following de-
tailed description will be restricted to a triangle mesh: for a
quad mesh, a similar method will simply be applied twice in
a row to encode the position of each pair of front vertices.

3.1. Local Coordinate Based Geometry Encoding
The first approach we tried is a simple extension of the most
widely used geometry quantization.

Global vs. Local Quantization This global quantization
method originally used in25 divides the bounding box of the
mesh into a 3D regular grid for linear quantization. However,
this simple approximation fails to accurately reproduce flat
surfaces that are not parallel to one of the grid axes, adding

c© The Eurographics Association and Blackwell Publishers 2002.

Lee, Alliez and Desbrun / Angle-Analyzer: A Triangle-Quad Mesh Codec

αβ
γ

V0

V1

x-axisy-axis

z-axis V1

V0

(α, β, γ) (x,y,z)

front
face

α
β

γ

V0

front
face V1

δ

ε

τ

(α, β, γ, τ, ε, δ)

Figure 11: Left: encoding three angles is sufficient to locate
the front vertex across a gate. Middle: the front vertex co-
ordinates can also be expressed in a local coordinate frame
based on the gate and the back face. Right: encoding six an-
gles for a quad.

an important amount of distortion even for such a simple
geometry. On the other hand, previous work on progressive
geometry compression has demonstrated the interest of local
coordinate frames to better encode positions14, 1, due to the
natural separation between geometry and parameterization.
We have therefore modified the single-rate geometry encod-
ing technique to include this simple idea.

A local coordinate system can be defined at each front
face as shown in Figure 11. The active gate will define the
local x-axis. V0 is assumed to be the origin. For the local
y-axis, the unit vector on the local x-axis is rotated by −π/2
around the normal vector of the back face. The local z-axis is
then obtained by computing the cross product of the local x
and y axes or by reversing the normal of the back face. Since
the range of each local coordinate value is not predefined,
one initial pass is necessary to find the range of displace-
ments between V0 and the front vertex expressed in these
local frames. Storing the range values in the header file will
allow the decoder to perform the exact same computation
and therefore to decode the mesh properly.

Encoding Local Coordinates The vector (V0 - front ver-
tex) is projected onto the unit vector on each local coor-
dinate. These local coordinates are then quantized linearly
and encoded. A decoding simulation is then needed to infer
the decoded position of the front vertex. The encoder will
then use this updated front vertex position in the following
computations to synchronize with the decoder. Due to this
decoding simulation, there is no need to encode correction
vectors separately in our geometry encoding, which was the
main factor for higher bit rates in the vector quantization
method 18.

Decoding Local Coordinates The decoding is simply the
reverse process. After finding the unit vectors on the lo-
cal coordinate axis, the decoded local coordinates should be
transformed to the global coordinate values to finally set the
new position for the front vertex.

3.2. Angle-based Geometry Encoding
We then experimented with an alternative geometry com-
pression algorithm that resulted in roughly similar bit-rates
with, however, an easier implementation. The initial idea
was to substitute angles for positions, therefore introducing a
non-linear quantization in the encoding. To define a triangle
in 3D space adjacent to a given back face, three angle val-
ues around that common gate are sufficient: two “intrinsic”

angles (α,β) and an “extrinsic” angle (γ) between the neigh-
boring faces as shown in Figure 11. The ranges of angles
are naturally bounded regardless of the size of the triangles:
[0,π] for α and β, and [−π,π] for γ. In addition, the level
of quantization for each angle can be properly adapted: for
instance, since γ, related to the mean curvature, has a wider
range than α and β, a finer quantization of the γ range is rec-
ommended for a highly curved mesh. The distribution of α
and β is expected to be mainly concentrated around π/3 for
fairly uniform meshes and around 0 for γ for smooth sur-
faces. Due to the usual distribution of angles shown in Fig-
ure 12, an arithmetic coder will be particularly efficient at
compressing this series of angles.

0

500

1000

1500

2000

2500

3000

3500

0 32 64 100

occurrences

quantized α, β

Distribution of α, β

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90 100

occurrences

quantized γ

Distribution of γ

Figure 12: Angle distribution for the uniform nefer_u mesh.
Codes for α and β are concentrated around 32, which is 1.01
radians (57.6 degree) in the interval [0,π] quantized between
0 and 100. The codes for γ are concentrated around 50, cor-
responding to 0 in the interval [-π,π] quantized also between
0 and 100.

Encoding Angles During the traversal of the gates, when-
ever a front vertex is visited for the first time, the appropriate
angles needed to infer the position of the front vertex should
be quantized and encoded as follows:

• Find the angles, α, β, and γ,
• Quantize them linearly to integer values, qα, qβ, and qγ

with given numbers of quantization for each angle,
• Simulate the decoding process to infer the decoded posi-

tion of the front vertex. Use this updated front vertex po-
sition in the following computations to synchronize with
the decoder.

Decoding Angles The geometry decoding to recover the
front vertex position proceeds as follows:

• Convert the integer values qα, qβ, and qγ to the actual real
values rα, rβ, and rγ

c© The Eurographics Association and Blackwell Publishers 2002.

Lee, Alliez and Desbrun / Angle-Analyzer: A Triangle-Quad Mesh Codec

• Calculate the normal vector Qnormal of the back face us-
ing the previously decoded vertices,

• Rotate the vector Left(V0-V1) around Qnormal by rα and
normalize it,

• Calculate the length of the edge(V0-front vertex) using
the sine law: edgeLength = sin(rα)/sin(π − rα − rβ) *
length of Left,

• Find the decoded front vertex position by adding the vec-
tor edgeLength*normalizedLeft to V0.

As we will demonstrate later, both the local coordinate
approach and the angle approach give similar bit-rates. The
choice of one over the other may be very arbitrary. In our
experience, the angle approach was actually slightly easier
to implement, and requires only one pass.

3.3. Entropy-driven Encoding
We take advantage of the lossy nature of geometry compres-
sion to further decrease the bit rate. When a front vertex po-
sition is encoded, one could easily adjust the position of the
encoded vertex without adding much distortion. This (small)
degree of freedom can therefore be used to drive the encod-
ing in order to locally minimize the number of bits used to
encode this position.

Error Margin in Position For each vertex, we can deter-
mine a “safe” region within which this vertex can be arbitrar-
ily placed without significantly impeding the visual appear-
ance or the distortion. Quadrics like in 6 can be used to define
these regions for every vertex depending on the local geome-
try; for instance, a locally planar mesh could allow the vertex
to be moved in the plane a bit without introducing substan-
tial geometric error. In our trials, we only experimented with
identical cubic regions around each vertex to allow for a fair
comparison with previous encoding techniques. More com-
plex regions may be highly desirable in practice.

Entropy-driven Selection From all the possible vertices in
the safe region, we now want to pick one that minimizes the
number of bits needed to encode it, saving few extra bits
without degrading the geometry dramatically. This can be
done relatively easily by trying all possible quantized values
(be they angles or local coordinates) that lie in the safe re-
gion. For each of them, we compute the number of bits it
would take to encode it. We then pick the best one.

Entropy Evaluation If we denote by E0 the entropy before
the candidate integer code is added to the code sequence,
and by E1 the entropy after the candidate is added, we can
directly compute the number of bits used to encode this par-
ticular vertex since:

• E0 = ∑ni/N log2(N/ni),
• E1 = ∑ n′i/(N +1)∗ log2((N +1)/n′i)

where N is the total number of codes encoded until now,
ni is the number of i code used until now, and n′i the updated
number after the new vertex is encoded. Obviously, only one
of the ni (refer it as i0) will have its value incremented by
one, meaning that n′i0 = ni0 + 1 and for all other i, n′i = ni.

Now, the additional number of bits needed to encode this
particular vertex position is equal to:

(N +1) E1 −N E0 = ∑
i6=i0

ni (log2(N +1)/N)+ ni0 log2(ni0 /N)

+(ni0 +1) log2((N +1)/(ni0 +1))

Since the first term is the constant, the last two terms are to
be compared. The candidate with minimum entropy differ-
ence is chosen to ensure the locally lowest bit-rate. Notice
that this entropy-driven encoding does not guarantee a lower
global bit-rate, but only a local lowest bit-rate. However, we
have only experienced a decrease in bit-rate in practice as
shown in Figure 14, 15, and 16. Again, a better definition for
the safe region could potentially save additional bits. How-
ever, to make the comparison with previous single-rate meth-
ods fair, we stuck to a fixed size.

3.4. Discussion
In the two geometry encoding methods we presented, we
experimented with further refinements, including prediction
rules (using average local γ, or predicting α and β from
neighborhood values) and non-linear quantizations. We exe-
cuted extensive comparisons on eight different methods for
geometry encoding and compared them with 12 and 11 bit
global quantization methods 25 using the Metro tool3. Due
to doubled ranges, more dispersed distributions, or penalty
cases of predictions, the net gain was null. More detailed
explanations for the extensive study can be found in19. As
a result, and surprisingly, the best rates came from simple
encoding techniques: no-entropy driven, linear quantization
without any prediction rule for both methods. We also ex-
perimented with single or multiple arithmetic coders for en-
coding generated sequences, also detailed in 19. Separate
coders for each angle value or coordinate value produced
the best compression ratios. On average, the bit rates of our
two techniques are 20% better than the global quantization
as shown in Table 5. Even for the very randomized, small
model tf2 with 0.49X0.69X0.99 as the bounding box and
0.0001196 (0.49/212) as the unit grid of x in global quan-
tization method, our method can decrease the bit rate 5%
smaller.

model #V TG12 Local Angle
(b/v) (b/v) (b/v)

sphere 10242 6.96 5.15 4.91
random 4338 15.64 11.66 11.20
nefertiti_u 10413 13.43 9.17 9.47
max 25445 16.43 11.93 12.69
horse 19851 15.17 12.68 12.88
feline 49864 14.17 12.84 13.17
egea_u 5315 16.50 14.90 15.45
egea_tf2 14169 14.90 14.62 14.18

Table 5: Geometry compression rates for triangle meshes
with 12-bit global quantization, and our results for the same
L2 geometric distortion.

c© The Eurographics Association and Blackwell Publishers 2002.

Lee, Alliez and Desbrun / Angle-Analyzer: A Triangle-Quad Mesh Codec

Extensive Comparisons for each model by Metro The re-
sults of extensive comparisons on two meshes using Metro
are depicted in Figure 13. Our methods offer more aggres-
sive and adaptive quantizations than the global quantization.
Additionally, the user have much more freedom in the bit
budget, while the global quantization offers only the choice
between 9- to 12-bit quantization. As a result, a better visual
appearance of decompressed meshes for very lossy cases can
be obtained even with smaller bit rates as shown in Figure
14, 15, and 16. Overall, we recommend the use of the angle-
based geometry encoding for the following reasons:

• negligible difference of bit rates compared to the local
frame encoding scheme,

• better bit rates on very randomized meshes,
• better visual look of decompressed meshes for very lossy

cases (i.e.,9 or 10 bit global quantization),
• as simple to implement as the previous methods,
• more efficient processing as a one-pass algorithm.

max

10

12

14

16

18

0.0001 0.00015 0.0002 0.00025 0.0003

Local Angle

distort.

b/v

TG12-geo

TG11-geo

6

8

10

12

14

0.0001 0.0002 0.0003 0.0004

Local Angle

nefer_u
b/v

distort.

TG12-geo

TG11-geo

Figure 13: Rate-distortion curves. The L2 distortion was
computed using the Metro tool3. The horizontal axis repre-
sents distortion, while the vertical axis represents bit rates
(b/v). We varied the degrees of quantization of the angles
and/or the local coordinates to obtain the different bit-rates
on these curves.
4. Results and Conclusions
The compression ratios of our Angle-Analyzer on a se-
ries of surface meshes are listed in Table 6. Our geometry-
driven connectivity encoding behaves on average 40% better
than Touma and Gotsman’s 25. If the models are uniformly

TG-9bit AngleAnalyzer Angle (6.88b/v)

TG (7.32b/v)

Figure 14: Geometry compression: Decoded random
sphere, (a) using the 9-bit global quantization of 25 with a re-
sulting bit rate of 7.32 b/v and (b) using our entropy-driven
local coordinate encoding with a resulting bit rate of 6.88
b/v.

TG-10bit AngleAnalyzer Angle (6.58b/v)

TG (7.94b/v)

Figure 15: Geometry compression: Decoded nefer_u, (a)
using the 10-bit global quantization of 25 resulting in 7.942
b/v, and (b) using our entropy-driven angle encoding result-
ing in a bit rate of 6.58 b/v.

remeshed, the bit rates of our connectivity encoding will be
reduced by more than 50%. The geometry encoding uses on
average 19% less bits to encode surfaces with comparable
distortion to the Touma-Gotsman’s algorithm25 with 12-bit
quantization. The sphere model is very regular, therefore our
bit rate for the connectivity is higher than Touma-Gotsman
but due to the dominance of the geometry, the overall com-
pression ratios of our AA is 26% better. The total bit rates
are, on average, 20% better. Our Angle-Analyzer technique
is therefore both more flexible and more efficient than previ-
ous single-rate encoding methods.

In summary, we introduced a novel single-rate compres-
sion algorithm for 3D triangle-quad hybrid meshes that per-
forms a simple geometry-driven mesh traversal, along with
an encoding of the extrinsic and intrinsic angles of the mesh.
We show that an angle-based adaptive selection of gates dur-

TG-10bit AngleAnalyzer Angle(10.50b/v)

TG(10.56b/v)

Figure 16: Geometry compression: Decoded Max, (a) using
the 10-bit global quantization of 25 resulting in 10.558 b/v,
and (b) using our entropy-driven angle encoding resulting in
10.498 b/v.

c© The Eurographics Association and Blackwell Publishers 2002.

Lee, Alliez and Desbrun / Angle-Analyzer: A Triangle-Quad Mesh Codec

model TG12 L2d-error AA L2d-error rate
(b/v) in TG12 (b/v) in AA

sphere 6.98 0.000104 5.14 0.000089 26%
random 16.07 0.000104 11.77 0.000102 27%
nefer_u 15.02 0.000178 10.21 0.000178 32%
max 18.74 0.000131 14.17 0.000127 24%
horse 17.51 0.000221 14.25 0.000215 19%
feline 16.55 0.000055 14.68 0.000052 11%
egea_u 18.23 0.000040 16.26 0.000039 11%
tf2 16.53 0.000040 15.19 0.000039 8%

Table 6: Results of the overall compression ratios of
our Angle-Analyzer (AA) using angle-based geometry with
Touma and Gotsman’s 12bit quantization. The distortion is
measured in L2 norm using the Metro tool3.

ing the connectivity traversal also helps in suppressing the
occurrences of special symbols and generates low-entropy
code sequences. Angles between edges and faces allow the
design of an efficient one-pass geometry encoding scheme.
As a result, our Angle-Analyzer technique demonstrates
competitive compression ratios compared with other single-
rate encoding schemes, with a significantly-increased ver-
satility in the choice of the compression rates. These two
contributions, for connectivity and geometry, can also be in-
dependently used in existing compression algorithms as a
better and simpler substitute.

As for future work, we plan to design better prediction
rules, as well as to adapt the current technique to naturally
handle non-manifold meshes. In order to improve the com-
pression ratios even further, we also start to think about a
hierarchical approach (yet still for single-rate encoding) in
the spirit of 5.

Acknowledgements Many thanks to Yiying Tong for his
help. Also many thanks to Weonjoon Choi for his inspi-
rational support. The work reported here was supported in
part by IMSC NSF Engineering Research Center (EEC-
9529152), and by a NSF CAREER award (CCR-0133983).

References
1. ALLIEZ, P., AND DESBRUN, M. Progressive Encoding for

Lossless Transmission of 3D Meshes. ACM Siggraph Confer-
ence Proceedings (2001), pp.198–205.

2. ALLIEZ, P., AND DESBRUN, M. Valence-Driven Connectiv-
ity Encoding of 3D Meshes. Eurographics Conference Pro-
ceedings (2001), pp.480–489.

3. CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. Metro:
Measuring Error on Simplified Surfaces. Computer Graphics
Forum 17(2) (1998), pp.167–174.

4. DEERING, M. Geometry Compression. ACM Siggraph Con-
ference Proceedings (1995), pp.13–20.

5. DEVILLERS, O., AND GANDOIN, P.-M. Geometric Com-
pression for Interactive Transmission. Visualization 2000 Con-
ference Proceedings (2000), pp.319–326.

6. GARLAND, M., AND HECKBERT, P. Surface Simplification
Using Quadric Error Metrics. ACM Siggraph Conference Pro-
ceedings (1997), pp.209–216.

7. GUMHOLD, S. Improved cut-border machine for triangle
mesh compression. Erlangen Workshop’99 on Vision, Mod-
eling and Visualization (1999).

8. GUMHOLD, S., AND STRASSER, W. Real Time Compression
of Triangle Mesh Connectivity. ACM Siggraph Conference
Proceedings (1998), pp.133–140.

9. HOPPE, H. Progressive Meshes. ACM Siggraph Conference
Proceedings (1996), pp.99–108.

10. ISENBURG, M. Triangle Strip Compression. Proceedings of
Graphics Interface 2000 (2000), pp.197–204.

11. ISENBURG, M. Compressing polygon mesh connectivity with
degree duality prediction. Graphics Interface 2002 (2002),
pp.161–170.

12. ISENBURG, M., AND SNOEYINK, J. Face fixer: Compressing
polygon meshes with properties. In ACM SIGGRAPH 2000
Conference Proceedings (2000), pp.263–270.

13. KHODAKOVSKY, A., ALLIEZ, P., DESBRUN, M., AND

SCHRÖDER, P. Near-Optimal Connectivity Encoding of 2-
Manifold Polygon Meshes. The Journal of Graphical Mod-
els/special issue (2002).

14. KHODAKOVSKY, A., SCHRÖDER, P., AND SWELDENS, W.
Progressive Geometry Compression. ACM Siggraph Confer-
ence Proceedings (2000), pp.271–278.

15. KING, D., AND ROSSIGNAC, J. Guaranteed 3.67v bit encod-
ing of planar triangle graphs. 11th Canadian Conference on
Computational Geometry (1999), pp.146–149.

16. KING, D., ROSSIGNAC, J., AND SZMCZAK, A. Connectivity
compression for irregular quadrilateral meshes. Tech. Rep.
TR–99–36, GVU, Georgia Tech, 1999.

17. KRONROD, B., AND GOTSMAN, C. Optimized triangle mesh
compression using prediction trees. Proceedings of 8th Pacific
Graphics 2000 Conference (2000).

18. LEE, E.-S., AND KO, H.-S. Vertex data compression for tri-
angle meshes. Proceedings of the 8th Pacific Graphics Confer-
ence on Computer Graphics and Application (2000), pp.225–
234.

19. LEE, H. Thesis proposal on 3d mesh single-rate compression.
http://www-scf.usc.edu/ leeh/qual/qual.pdf (2002).

20. ROSSIGNAC, J. EdgeBreaker : Connectivity Compression for
Triangle Meshes. IEEE Transactions on Visualization and
Computer Graphics (1999).

21. ROSSIGNAC, J., SAFONOVA, A., AND SZYMCZAK, A. 3d
Compression Made Simple: Edgebreaker on a Corner-Table.
Shape Modeling International Conference (2001).

22. ROSSIGNAC, J., AND SZYMCZAK, A. Wrap& zip decom-
pression of the connectivity of triangle meshes compressed
with EdgeBreaker. Journal of Computational Geometry, The-
ory and Applications 14 (1999).

23. SCHINDLER, M. A Fast Renormalization for Arithmetic Cod-
ing. Proceedings of IEEE Data Compression Conference,
Snowbird, UT (1998), p. 572.

24. TAUBIN, G., AND ROSSIGNAC, J. 3D Geometry Compres-
sion, 1999-2000. ACM Siggraph conference course notes.

25. TOUMA, C., AND GOTSMAN, C. Triangle Mesh Compres-
sion. Graphics Interface 98 Conference Proceedings (1998),
pp.26–34.

26. WITTEN, I., NEAL, R., AND CLEARY, J. Arithmetic Coding
for Data Compression. Communications of the ACM 30(6)
(june 1987), pp.520–540.

c© The Eurographics Association and Blackwell Publishers 2002.

