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Figure 1: Lighting in a Villa interior obtained from a photon map. For each shading point in the scene, the incoming light energy density is approximated using
64 hemispherical samples. The left image is computed using classical final gathering using a low-discrepancy sequence. For the right image the same samples
were employed but with an integration rule derived using our theory of sampling, providing substantially reduced visual noise and lower numerical error rates.

Abstract

Sampling a scene by tracing rays and reconstructing an image from
such pointwise samples is fundamental to computer graphics. To im-
prove the efficacy of these computations, we propose an alternative
theory of sampling. In contrast to traditional formulations for image
synthesis, which appeal to nonconstructive Dirac deltas, our theory
employs constructive reproducing kernels for the correspondence
between continuous functions and pointwise samples. Conceptually,
this allows us to obtain a common mathematical formulation of
almost all existing numerical techniques for image synthesis. Practi-
cally, it enables novel sampling based numerical techniques designed
for light transport that provide considerably improved performance
per sample. We exemplify the practical benefits of our formulation
with three applications: pointwise transport of color spectra, pro-
jection of the light energy density into spherical harmonics, and
approximation of the shading equation from a photon map. Experi-
mental results verify the utility of our sampling formulation, with
lower numerical error rates and enhanced visual quality compared
to existing techniques.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Radiosity;

Keywords: sampling, light transport simulation, reproducing ker-
nel Hilbert space

1 Introduction

Existing computational techniques for image synthesis rely exten-
sively on pointwise sampling: path tracing computes the transport
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over a finite number of ray paths, photon mapping interpolates dis-
crete “photons”, and Metropolis light transport mutates existing
pointwise paths, to name a few examples. Motivated by this impor-
tance of pointwise techniques, we present an alternative theory of
sampling for image synthesis. In contrast to existing approaches
that rely on nonconstructive sampling operators based on Dirac
deltas, we instead employ constructive reproducing kernels to relate
a continuous function to pointwise samples. This enables point-
wise numerical techniques to be designed for light transport and
devised for the finite sample counts and non-equidistant distribu-
tions employed in practice. Our example applications demonstrate
that this can provide considerably improved visual fidelity and lower
numerical error rates. Through its functional analytic foundation,
our formulation also enables us to employ Galerkin projection to
obtain sampling based algorithms such as path tracing and photon
mapping. This overcomes the dichotomy between radiosity-based
and ray tracing techniques that exists in the current literature.

The foundation of our formulation of sampling are reproducing
kernels. These provide a theoretically insightful yet numerically
practical conceptualization of the correspondence between pointwise
samples and continuous functions. Reproducing kernels kλ(x) have
the sifting property δλ[f ]=〈kλ(x), f(x)〉=f(λ) of the Dirac delta
δλ but are constructive Hilbert space functions. This enables us
to employ kernels kλi(x) “located” at a set of points λi as basis
functions. The basis expansion of an arbitrary signal f(x) in such a
reproducing kernel basis takes the form

f(x) =

m∑
i=1

〈f(y), kλi(y)〉 k̃i(x) =

m∑
i=1

f(λi) k̃i(x).

This equation is at the heart of our work: pointwise samples f(λi)
provide the basis function coefficients—without computing inner
products—and exact reconstruction from only these values f(λi) is
possible using well defined dual basis functions k̃i(x).

Our theory of sampling encompasses many classical results on the
subject. For example, the Shannon sampling theorem arises as an
orthonormal reproducing kernel basis for Fourier-bandlimited func-
tions; the weights of quadrature rules, such as Gauss-Legendre, are
obtained by integrating the dual functions k̃i(x); and reconstruction
kernels, such as those used on the image plane, are dual kernels
k̃i(x) for appropriate function spaces. However, with our formu-
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Figure 2: Importance of point sampling for image synthesis. The light
energy density is a continuous field whose propagation through space is
described by a partial differential equation. Numerically, only the propaga-
tion along individual trajectories can be evaluated. This is equivalently to
a pointwise solution of the partial differential equation using the method of
characteristics. All solutions of the continuous equation have to be recon-
structed from this pointwise information alone.

lation, existing pointwise techniques become instances of a more
versatile construction that provides a recipe to develop numerically
practical sampling, quadrature, and interpolation formulas for arbi-
trary domains and all function spaces admitting a reproducing kernel.
This is crucial for light transport simulation where signals are de-
fined over arbitrary manifolds and where classical approximation
spaces are ill-suited due to frequently occurring discontinuities. The
requirement that a function space must admit a reproducing kernel
might appear as limitation. Moreover, any finite function space,
and hence any function space relevant for numerical computations,
does admit a reproducing kernel. Nonetheless, the question of good
approximation spaces and convergence to the infinite dimensional
limit requires further investigation.

Our formulation of sampling also provides a novel quality measure
for the distribution of sampling points which we call rk-discrepancy.
The measure depends on the domain and function space under con-
sideration. Together with its numerical computability, this enables
the use of computer-based optimization techniques to find nearly op-
timal points–with respect to rk-discrepancy–for a given application.

We demonstrate the constructive nature and practicality of our for-
mulation of sampling with three example applications, as follows:

i) Almost all techniques for image synthesis represent the color
spectrum of light using pointwise samples. Peercy [1993]
showed that this can be inefficient and that continuous basis
functions can reduce the number of samples that is required.
We employ reproducing kernel bases to ensure a well defined
continuous representation of color with only pointwise samples.

ii) Spherical harmonics are used in a variety of techniques for im-
age synthesis. For these, the spherical harmonics basis function
coefficients of signals such as the light energy density have
to be determined. We develop a quadrature rule for spherical
harmonics basis projection and numerically optimize sampling
locations on the sphere to obtain sequences that are nearly
optimal for the problem.

iii) Photon mapping with final gathering is one of the most popu-
lar techniques for image synthesis. An image is thereby gen-
erated by determining the outgoing light energy density to-
wards the camera using (Quasi) Monte Carlo integration in
the hemisphere above each scene point. Based on the eigen-
decomposition of the scattering operator, we develop an optimal
quadrature rule for this problem and demonstrate how impor-
tance sampling can be realized within our formulation.

For all three applications, we provide experimental results that
demonstrate that our formulation significantly increases the effi-
cacy attained per sample. These improvements result from tailoring
the techniques to the function spaces that naturally arise and from
intrinsically constructing them for the finite sample counts to which
we are restricted in practice.

The remainder of the paper is structured as follows. The mathemati-
cal formulation of our constructive theory of sampling is developed
in Sec. 2. In Sec. 3, we will discuss how the theory provides a
unified formulation for a wide range of existing light transport sim-
ulation techniques. Subsequently in Sec. 4, we develop our three
example applications and present experimental results. The paper
concludes in Sec. 5 with an outlook on other possible applications
of our formulation of sampling for image synthesis.

2 From Samples to Functions

In this section, we develop the mathematical formulation of our the-
ory of sampling. To facilitate intuition, its concepts are exemplified
for a 1-dimensional function class in Example 1 (boxed, on the next
page) and the reader is encouraged to use the supplementary source
code to gain some practical understanding. A more pedagogical
exposition of our approach to sampling is presented in the supple-
mentary tutorial. Readers unfamiliar with finite dimensional Hilbert
spaces and their connection to numerical linear algebra should also
consult this material or a standard text such as [Daubechies 1992;
Mallat 2009].

2.1 Motivation
In computer graphics, the Dirac delta δλ[f ] = f(λ) is commonly
used to conceptualize the correspondence between a continuous
function f : X → R and pointwise samples f(λ) of it. However,
the Dirac delta δλ[·] is a distribution in the sense of Schwartz and
provides no information about a function f beyond its pointwise
value f(λ). This makes it ill-suited for the exact reconstruction
of f from only a finite set of pointwise samples f(λi), which is
what we are interested in and restricted to in practice. Reconstruc-
tion from finitely many “samples” fi is well defined using basis
expansions. However, the fi are then basis function coefficients
defined by continuous inner products 〈f, φ̃i〉 = fi whose numerical
evaluation often requires costly approximations. Fortunately, for
regular enough Hilbert spaces there exist functions kλ(x) such that
the inner product is equivalent to point evaluation,

〈f(y), kλ(y)〉 = f(λ) = δλ[f ]. (1)

See Example 1.b for some concrete reproducing kernels. When such
kernels kλi(x) are employed as basis functions, the samples f(λi)
immediately provide basis function coefficients—without the need to
evaluate inner products. As will become clear in the remainder of the
section, the realization of point evaluation as a function kλ(x) and
not a distribution such as the Dirac delta is the essential difference
between classical approaches to sampling and our work.

Some insight into the working principle of reproducing kernels
kλ(x) can be obtained when we consider the Hilbert space basis
expansion of a function f(x) in an orthonormal basis {φi}ni=1:

f(x) =

n∑
i=1

fi φi(x) =

n∑
i=1

〈
f(y), φi(y)

〉
φi(x). (2a)

Exploiting linearity of the inner product 〈 , 〉 and that f(y) does not
depend on the index i we obtain for the right hand side

f(x) =
〈
f(y),

n∑
i=1

φi(y)φi(x)
〉
. (2b)

Comparing Eq. 2b to Eq. 1 we see that

kx(y) = k(x, y) =

n∑
i=1

φi(y)φi(x). (3)



Hence, the reproducing kernel acts by projecting a function f(y)
onto the basis functions φi(y), implicitly yielding coefficients fi,
and then reconstructing it at x using the φi(x). The result is the
pointwise value f(x). The reproduction of f(x) can hence also be
understood as the well known idempotence of projection operators.
Eq. 2 also shows that the reproducing property only holds for f ∈
H(X) and that otherwise f̃(x) = 〈f(y), kx(y)〉 where f̃ is the L2

projection of f ontoH(X).

Example (Shannon sampling theorem (preliminaries)). The repro-
ducing kernel for the space ΩB(R) of B-Fourier bandlimited func-
tions is the sincB-kernel. Its representation in the Fourier domain is
the box function χB(ξ). A convolution of the Fourier representation
f̂(ξ) of an arbitrary signal f(x) with χB(ξ) bandlimits f̂(ξ), which
is the projection operation associated with reproducing kernels.

2.2 Reproducing Kernel Bases
We will now employ reproducing kernels to construct basis repre-
sentations whose basis function coefficients are pointwise samples.

Let H(X) be a separable reproducing kernel Hilbert space of di-
mension n over a set X with reproducing kernel kλ(x), for example
the space spanned by the first N Legendre polynomials in Exam-
ple 1. Furthermore, let Λ = {λi}mi=1 with m ≥ n be a set of
locations λi ∈ X . The set Λ then generates m reproducing kernel
functions ki(x) ≡ kλi(x) (Example 1.b). Moreover, for a suit-
able choice of locations λi, see Sec. 2.3, the kernels ki(x) span
H(X) (Example 1.c). The Hilbert space biorthogonality condition
〈ki(x), k̃j(x)〉 = δij then also defines dual kernel functions k̃j(x)
(Example 1.d). With both the ki(x) and the k̃i(x), any function
f(x) ∈ H can be represented by the basis expansion

f(x) =

m∑
i=1

〈
f(y), ki(y)

〉
k̃i(x). (4a)

By the reproducing property of the ki(y) the equations equals

f(x) =

m∑
i=1

f(λi) k̃i(x). (4b)

Eq. 4b is at the heart of our work: it provides a Hilbert space basis
expansion for which the basis function coefficients are sampled
function values f(λi). We can hence benefit from the convenience of
basis expansions while working directly with the available pointwise
information f(λi). The crucial benefits of this combination will be
the subject of the remainder of the paper. The basis pair({

ki(x)
}m
i=1

,
{
k̃i(x)

}m
i=1

)
(5)

will be called a reproducing kernel basis.

Example (Shannon sampling theorem (cont’d)). The Shannon sam-
pling theorem can be stated as

f(x) =

∞∑
i=−∞

f(i B) sincB(x− i).

The above formula holds only if f ∈ ΩB(R) and the famous Nyquist
condition is satisfied From our point of view, the sincB-functions
form an orthonormal reproducing kernel basis. Hence, the primary
and dual kernel functions coincide and we have that

f(x) =

∞∑
i=−∞

〈
f(y) , sincB(y − i)

〉
sincB(x− i).

The evaluation of the above inner product is made trivial by the
reproducing property of the sincB(y − i).

In Eq. 5, the ki(x) only form a basis forH(X) whenm = n. When
m > n they form an overcomplete frame (see the supplementary tu-
torial for a discussion of frames). In the following, we will continue
to refer to Eq. 5 as a reproducing kernel basis even for m > n and
only distinguish bases and frames when there is, for our purposes, a
material difference.

Example 1 (Legendre Polynomials). LetH≤4 be the space spanned
by the first five Legendre polynomials Pl(x) over X = [−1.0, 1.0]:
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The reproducing kernel for H≤4 can be constructed using Eq. 3.
Three example kernel functions for different locations λ are (the
cross marks the reproducing point λ):
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b.)

It can be observed that the reproducing kernel functions have local
maxima close to the locations λ but their shape has no simple de-
scription and varies with varying λ. For five random points λi in
X = [−1.0, 1.0] the kernel functions ki(x) span H≤4 and hence
provide a reproducing kernel basis for the space. When we choose
five well separated locations we obtain the following reproducing
kernel basis (crosses mark again the reproducing points λi):
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c.)

The corresponding dual kernel functions k̃i(x), defined by the
biorthogonality condition 〈ki(x), k̃j(x)〉 = δij , are (color used to
indicate correspondence with the ki(x) in the above figure):
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d.)

In contrast to the results in the above figure, for clustered locations
λi the dual basis functions oscillate wildly, cf. the supplementary
tutorial. As an example for a numerical technique we can construct
a quadrature rule forH≤4 using Eq. 10. Randomly chosen locations
yield for the quadrature weights wi (wi shown vertically at quadra-
ture nodes, dual kernel functions k̃i(x) in the background):

−200

0

200

400

e.)
When we numerically optimize the sampling locations λi with the
rk-discrepancy µ(Λ) as energy function, cf. Sec. 2.3, then the λi
become more equally distributed and one obtains more uniform and
better scaled quadrature weights:

1.0 f.)

The rk-discrepancies before and after optimization are µ(Λinit) =
1362.9 and µ(Λopt) = 1.4286, respectively. However, both quadra-
ture rules are valid and for the first one the large weights compensate
for the skewed distribution of the locations λi. We will see in Sec. 4
that much of the behaviour observed for H≤4 generalizes to the
more complex settings encountered in light transport.



Kernel and Sampling Matrices Functions in a Hilbert space are
represented numerically by their basis function coefficients. When
we consider Eq. 3 from this perspective, it provides the expansion
of the reproducing kernel function kx(y) = k(x, y) with respect to
basis functions φi(x) with coefficients φi(y). The m functions that
form a reproducing kernel basis {ki(x)}mi=1 are thus conveniently
represented by the m× n matrix

Kφ(Λ) =

 φ1(λ1) · · · φn(λ1)
...

. . .
...

φ1(λm) · · · φn(λm)

 ∈ Rm×n (6)

whose ith row is given by the basis function coefficients φi(λj) of
the ith kernel basis function ki(x) ≡ kλi(x). We call K ≡ Kφ(Λ)
the kernel matrix. The matrix is a special case of a basis matrix, see
the supplementary tutorial, and it hence provides the change of basis
from the orthonormal reference basis {φi}ni=1 to the kernel basis.
This can also be inferred directly by considering the scalar products
of the rows of K with a coefficient vector (f1, · · · , fn). For the j th

row one obtains the reconstruction formula f(λj) =
∑n
i=1 fi φ(λj)

and the resulting pointwise value f(λj) is nothing but the j th basis
function coefficients of the kernel basis. For most applications, the
kernel matrix provides the numerically relevant representation of
a reproducing kernel basis. Importantly, this representation can
typically be determined to very high precision since it only requires
the evaluation of the reference basis functions φi(x) at the λj .

Example (Vandermonde matrix). When φi(x) = xi, namely when
the reference basis functions are the monomials on R, then the kernel
matrix becomes the Vandermonde matrix.

Example (Shannon sampling theorem (cont’d)). By the zero cross-
ings of the sincB-function, the infinite kernel matrix for the Shannon
sampling theorem is

K(Z) = S(Z) = δij . (7)
That K(Z) is diagonal immediately establishes that the Shannon
sampling theorem employs an orthogonal reproducing kernel basis.

In the basis representation, the biorthogonality condition
〈ki(x), k̃j(x)〉 = δij that defines the dual kernel functions k̃i(x) is
given by

KS ≡ KK−1 = Id. (8)
We call the inverse of the kernel matrix the sampling matrix
S ≡ Sφ(Λ) = K−1

φ (Λ) and denote its elements by sij . The
columns of S contain the basis function coefficients of the dual
kernel functions k̃i(x) with respect to {φi}ni=1. Inverting the kernel
matrix hence provides a means to explicitly construct the k̃i(x). It
follows immediately from Eq. 8 that S provides the change of basis
from the kernel basis to the orthonormal reference basis,

fi =

m∑
j=1

sij f(λj). (9)

The above reconstruction formula will be employed extensively in
the following.

Example (Vandermonde matrix (cont’d)). For the kernel functions
ki(x) defined by the Vandermonde matrix, a closed form expression
for the dual kernel functions k̃i(x) is given by the Lagrange inter-
polation polynomials. As shown in the accompanying Mathematica
files, their basis expansion in the monomial basis can be obtained
by inverting the Vandermonde matrix.

As an example for how to utilize reproducing kernel bases for the
development of numerical techniques that only employ pointwise
information, let us consider the construction of quadrature rules.
Representing the integrand in a reproducing kernel basis we obtain∫

X

f(x) dx =

∫
X

( m∑
i=1

f(λi) k̃i(x)
)
dx (10a)

and exploiting linearity yields∫
X

f(x) dx =

m∑
i=1

f(λi)

∫
X

k̃i(x) dx. (10b)

By defining weights wi as wi =
∫
X
k̃i(x) dx we have∫

X

f(x) dx =

m∑
i=1

wi f(λi). (10c)

The right hand side is the prototype for a quadrature rule.

Example (Gauss-Legendre quadrature). Gauss-Legendre quadra-
ture is obtained from Eq. 10 when we employ a reproducing kernel
basis for the space PN−1 spanned by the first N Legendre polyno-
mials, cf. Example 1, with the zero crossings of the N + 1 Legendre
polynomial PN (x) as sampling locations. See Example 36 in the
accompanying tutorial.

Example (Monte Carlo integration). Monte Carlo integration is
obtained from Eq. 10 as a quadrature rule for the space spanned by
a characteristic basis, that is the basis formed by the characteristic
or indicator functions induced by a partition {Xi}ni=1 of the domain
X , see Sec. 1 in the supplementary material for details. The standard
Monte Carlo estimator results from a uniform partition where all
elements Xi have the same size while a partition whose elements
are proportional to a given density p(x) yields the Monte Carlo
estimator with “importance sampling.”

2.3 Choice of Sampling Locations

So far we postulated the existence of a set Λ = {λi}mi=1 of locations
λi such that the resulting reproducing kernel functions ki(x) =
kλi(x) span the space H(X). When mere existence is of interest,
then almost any set of locations λi can typically be employed. In
particular, for globally supported basis functions φi(x) any choice
of distinct locations λi is suitable, up to a set of measure zero [Lessig
2012]. For example, one can employ low discrepancy sequences,
cf. Sec. 4. For locally supported basis functions the situation is
more complicated, but at least one sample point is needed in the
support of every basis function and the distribution of the sampling
points should reflect their local density; see our discussion on local
reconstruction in Sec. 4 in the supplementary material.

For numerical computations, a qualitative characterization of the
admissibility of sampling locations is not sufficient. Instead, we
require the ability to quantitatively distinguish “good” and “bad”
sampling sequences. Eq. 9, which describes the reconstruction of
orthonormal basis function coefficients fi from pointwise samples
f(λj), is equivalent to solving the linear system f(Λ) = Kf(φ).
The accuracy with which the fi can be obtained is hence deter-
mined by the condition number cond(K) of the kernel matrix K. A
quality measure µ(Λ) for the distribution of sampling locations can
therefore be defined as

µ(Λ) ≡ µH(X)(Λ) = cond(Kφ(Λ)). (11)

We will refer to µ(Λ) as rk-discrepancy, in analogy to classical
discrepancy [Niederreiter 1992; Novak and Woźniakowski 2010;
Dick and Pillichshammer 2010] that also measures the suitability
of pointwise locations for numerical computations. With respect to
rk-discrepancy, an optimal sampling sequence satisfies µ(Λ) = 1
and the measure µ(Λ) increases as the quality of the locations de-
creases. When µ(Λ) = ∞ a sequence is not admissible and the
associated kernel functions do not spanH(X). Since µ(Λ) can be
determined numerically, one can employ it as objective function for
the numerical optimization of locations. In contrast to most existing
quality criteria for sampling distributions, µ(Λ) is thereby sensitive
to the domain X and the function space H(X). As we will see in
Sec. 4, this enables the construction of sampling sequences that are
designed for the application at hand and which therefore provide



better performance than generic “well-distributed” sequences. Ex-
ample 1.e) and 1.f) show the effect of optimization on quadrature
weights for the simple example space considered there.

Aside from rk-discrepancy, other notions of optimal sampling se-
quences have been considered before in computer graphics. Classi-
cal Lp-discrepancy was introduced by Shirley [1991]; see [Keller
2006] for the state-of-the-art on the subject for image synthesis.
However, Lp-discrepancy is restricted to functions in the Sobolev
space W 1,1([0, 1]d) over the d-dimensional hypercube and only
very recent work, such as those by Basu and Owen [2014], consid-
ers functions over arbitrary domains. It hence does not allow easy
tuning of sampling sequences to an application. To our knowledge,
our notion of rk-discrepancy is mathematically not related to Lp-
discrepancy. Signal specific sampling sequences were constructed
for importance sampling [Clarberg et al. 2005; Jarosz et al. 2009].
However, these lack a rigorous theoretical basis, in particular for
reconstructing signals. Mitchell [1987; 1991] studied optimal sam-
pling and reconstruction using Fourier theory. His viewpoint only
yields qualitative insights and also does not provide the possibility
to tune sequences to an application. Similar restrictions apply to
recent work by Nehab and Hoppe [2014].

Rather than using numerical optimization, we can also employ over-
sampling to improve the rk-discrepancy µ(Λ). Oversampling cor-
responds to increasing the redundancy of the frame, for which it
is well known that this increases robustness [Mallat 2009]. For re-
producing kernel frames this results in smaller reconstruction error
from samples. As we will see in Sec. 4, often a combination of
oversampling and optimization performs best in practice.

2.4 Non-bandlimited Input
The foregoing discussion did not consider an important aspect of any
computational scheme that only relies on point sampling: insight
into a continuous function from solely pointwise information is only
possible when assumptions about the function are made. In our
formulation, the reproducing property f(x) = 〈f(y), kx(y)〉 only
holds when f(x) is an element in the Hilbert spaceH(X) associated
with the reproducing kernel kλ(x). For light transport, suitable
function spaces H(X) have not been determined. Nonetheless, it
is clear that signals such as the light energy density will typically
not be completely contained in the finite dimensional spaces that are
spanned by a finite number of samples. For practical signals, the
reproducing property will hence only be approximately satisfied and
working with only pointwise samples will incur error.

An advantage of the functional analytic foundations of our formu-
lation of sampling is that a practical characterization of the error
resulting from non-ideal input signals is possible, cf. [Nashed and
Walter 1991]. Assume that {φi}pi=1 is an orthonormal basis for a
Hilbert space G and that the subset {φi(x)}ni=1 is an orthonormal
basis for a Hilbert spaceH ⊂ G. Then for f ∈ G, the error errk(f)
in the kth basis function coefficient fk with respect to {φi(x)}ni=1,
when reconstructed from only pointwise samples f(λi) using Eq. 9,
is bounded by

|errk(f)| ≤ ‖f̂‖ ‖γk‖. (12)

The first term on the right hand side is the norm of the signal com-
ponent f̂ ∈ G \H and the vector γk = (γkn+1, · · · , γkp ) is given
by γki =

∑m
j=1 φi(λj) skj where the skj are the elements of the

sampling matrix. Intuitively, γki can be understood as the aliasing
error of the φi(x), with i > n, when projected onto H using the
sampling matrix. Note that Eq. 12 has the form of the Koksma-
Hlawka inequality with a signal dependent term ‖f̂‖ and a term
‖γk‖ that depends on the distribution of sampling points. See the
supplementary material for a more detailed discussion of the above
formula and experimental results.

Example (Gauss-Legendre quadrature (cont’d)). As discussed pre-
viously, Gauss-Legendre quadrature of order N is designed for the
space PN−1 spanned by the first N Legendre polynomials. Hence,
one would expect that the rule is exact for functions in this space.
However, the rule uses the roots of the N + 1 Legendre polynomial
PN (x) as sampling locations. For G = PN , this leads to γk being
the zero vector so that in fact all functions in PN can be integrated
exactly. See Example 36 in the supplementary tutorial for details.

2.5 Discussion
Our constructive theory of sampling employs reproducing kernels
kλ(x) to relate a continuous function f : X → R to pointwise
samples f(λ) of it. A one-to-one correspondence is obtained using
reproducing kernel bases (or frames) for which the set of samples
{f(λi)}mi=1 provides the basis function coefficients. Such represen-
tations are possible since reproducing kernels kλi(x) are Hilbert
space functions and not Schwartz distributions as Dirac deltas δλi .
As we will see in the following, the Hilbert space setting of repro-
ducing kernel bases is also crucial for the numerical practicality of
our formulation and it ensures the existence of a recipe to translate
from continuous formulas to practical pointwise techniques.

Our formulation of sampling subsumes many classical pointwise
techniques, for example the Shannon sampling theorem, quadrature
rules, and polynomial interpolation. These classical realizations of
reproducing kernel bases are defined over the real line and for tradi-
tional function spaces. Additionally, they often rely on continuous
symmetries and a uniform set of sampling locations. In contrast,
our formulation enables the development of pointwise numerical
techniques for arbitrary domains X and arbitrary functions spaces
admitting a reproducing kernel for any admissible non-uniform sam-
pling distributions. This generality is vital for applications to light
transport where functions are defined over complex manifolds and
signals are discontinuous.

Crucial to the effectiveness of our formulation of sampling is the
choice of Hilbert space that is spanned by the reproducing kernel
functions. As shown in Sec. 2.4, only when it provides a suitable
approximation space (possibly up to a small residual) is it possible to
effectively work with only pointwise samples. At first sight, an addi-
tional restriction of our theory is that the approximation space has to
be a reproducing kernel Hilbert space. However, any finite function
space, and hence any space that is possibly relevant for numerical
computations, admits a reproducing kernel. Thus, although repro-
ducing kernel Hilbert spaces are only a small subset of all Hilbert
spaces over a fixed set X , all numerically relevant spaces are con-
tained in this subset. A question that requires further investigation is
convergence as the number of samples goes to infinity. We believe
that existing work on meshless finite element methods, which we
discuss in more detail in Sec. 3 in the supplementary material, might
prove useful for this purpose.

A naïve application of our formulation of sampling is effective only
for function spaces of low to moderate dimension since otherwise the
construction and inversion of the sampling matrix becomes compu-
tationally too expensive. This is highly problematic for applications
to light transport where it is not uncommon to have hundreds of
millions of samples per image. One possibility to circumvent this
restriction is to employ the characteristic basis. The kernel matrix
is then diagonal and inversion is trivial. Additionally, for the char-
acteristic basis inversion is a purely local problem, which becomes
important in particular as the dimension increases. As discussed
previously and detailed in Sec. 1 in the supplementary material, the
characteristic basis is the setting of Monte Carlo integration. The
prevalence of Monte Carlo integration in current rendering practice
can hence also be explained from the point of view of our theory.
Our theory, however, also suggests novel ways to generalize and
optimize Monte Carlo techniques, for example by choosing other



bases that yield diagonal or almost diagonal kernel matrices. One
such alternative is sketched in Sec. 4 in the supplementary material
where we exploit that for any sufficiently locally supported basis
the kernel matrix is almost diagonal. In the example, we employ
wavelets over the interval as locally supported basis. By adaptively
choosing the local depth of the wavelet tree this enables us to rep-
resent piecewise smooth functions with discontinuities in a space
of essentially optimal dimensionality, cf. [Mallat 2009], while only
requiring point samples as input.

Reproducing kernels have recently found applications in various
areas of computational science, such as mesh-less finite elements,
machine learning, and Quasi Monte Carlo integration. Since the
literature is vast, we relegate a detailed discussion to Sec. 3 in the
supplementary material. Nonetheless, an important distinction be-
tween existing approaches and our work is the use of reproducing
kernel bases. These ensure an easy translation of continuous for-
mulas to pointwise numerical techniques, which is of particular
importance to an applied field such as computer graphics.

3 Light Transport Techniques Revisited

In this section, we employ reproducing kernel bases together with
Petrov-Galerkin projection to develop a common theoretical basis
for existing techniques for light transport simulation, including ones
typically considered from a probabilistic perspective such as path
tracing and photon mapping. We will begin by recalling the essen-
tials of light transport theory in Sec. 3.1 and introducing reproducing
kernel Galerkin projection in Sec. 3.2.

3.1 Light Transport Theory
Globally, light transport is described by the balance equation

ˆ̀= `0 + T ˆ̀ (13)
where `0 is the emitted light energy density and ˆ̀ the steady state
light energy density to be determined, cf. [Kajiya 1986; Arvo 1995a;
Veach 1997; Lessig 2012]. Both `0 and ˆ̀are defined over the tensor
productM2 ≡ M×M of the scene manifoldM and describe
light energy density `(x̄→ x) transported from x̄ ∈M to x ∈M.
The operator T in Eq. 13 is an integral operator with kernel

t(x̄→ x→ ¯̄x) = ρ(x̄→ x→ ¯̄x)G(x̄↔ x) (14)
which is formally defined over the double tensor productM2×M2

and but for which we additionally require that path edges x̄ → x
and x→ ¯̄x meet in a common point x for the kernel to be nonzero.
The operator T encodes transport in space, described through the
so called geometry term G(x̄ ↔ x) [Veach 1997], and surface
scattering, given by the scattering kernel ρ(x̄→ x→ ¯̄x). The kernel
is more commonly parametrized in local spherical coordinates at
a point x ∈ M. It then describes scattering as part of the shading
equation

¯̀
x(ω̄) =

∫
H2

x

ρx(ω, ω̄) `x(ω) (nx · ω) dω (15)

where ω, ω̄ ∈ S2
x are directions. We will often write ρ̄x(ω, ω̄) =

ρx(ω, ω̄)(nx · ω). Since the transport operator is coercive for the
physical scenes of interest to us and satisfies ‖T‖ < 1, Eq. 13 can
be formally solved using the Neumann series [Kajiya 1986]

ˆ̀=

∞∑
k=0

T k`0 = `0 + T`0 + T 2`0 + · · · . (16)

Each application of T on the right hand side of Eq. 16 corresponds
to one bounce of light propagation in the scene. T k is hence defined
over the (k + 1)-fold tensor product Mk+1. A point in Mk is
known as a path pk = (x0 → · · · → xk) and the unit-amount of
light that is transported along a path pk is given by the throughput
π(pk) = t(x0 → x1 → x2) · · · t(xk−2 → xk−1 → xk). (17)

The space of all paths of length k is denoted by P k and by the
Neumann series the path space for a scene is P =

⋃∞
k=0 P

k.

3.2 Reproducing Kernel Galerkin Projection
Galerkin projection [Galerkin 1915; Petrov 1940] transforms an
infinite-dimensional operator equation

Af = g, (18)
into a finite or infinite-dimensional matrix-vector equation, see for
example [Trenogin 2002]. For our purposes, we will assume that
A maps a Hilbert space H into itself and furthermore that H is
a reproducing kernel Hilbert space with orthonormal reproducing
kernel basis {ki} defined over locations Λ = {λi}. Carrying out
Galerkin projection of Eq. 18 then yields

〈Af, kj〉 = 〈g, kj〉 (19a)〈
A
(∑

if(λi) ki
)
, kj
〉

= 〈g, kj〉 (19b)

and by linearity ∑
if(λi) 〈Aki, kj〉 = 〈g, kj〉 . (19c)

Exploiting now the reproducing kernel property of the ki we obtain∑
if(λi)A(λi, λj) = g(λj). (19d)

Hence, when Galerkin projection is performed with a reproducing
kernel basis then the resulting matrix-vector equation only depends
on pointwise values of the functions and operator. This is to be
contrasted with Galerkin projection for an arbitrary basis where the
finite representations of the input signal and operator are obtained
by the evaluation of inner products. These can typically only be
approximated and, as the experience with radiosity shows, in par-
ticular the approximation of the operator can be highly non-trivial.
In the following, it will be convenient to call a reproducing kernel
basis tight when it is either an orthonormal reproducing kernel basis,
as we used above in the derivation in Eq. 19, or a normalized tight
(or “snug” [Daubechies 1992]) reproducing kernel frame; see the
supplementary material for a discussion of tight frames. Tightness is
the essential condition for Eq. 19 to hold (possibly up to a constant).

3.3 Reproducing Kernel Galerkin Projection Light Transport
In the following, we will derive pointwise image synthesis tech-
niques using reproducing kernel Galerkin projection.

Distributed Ray Tracing was introduced by Cook et al. [1984]
to account for non-specular, global light transport effects. The
technique approximates the shading equation in Eq. 15 using a
Monte Carlo estimator [Cook 1986; Kajiya 1986] of the form

¯̀
x(ω̄) ≈ 1

n

n∑
i=1

`x(λi) ρ̄x(λi, ω̄) (20)

where the λi ∈ H2
x are uniformly distributed random directions in

the hemisphere H2
x above x ∈M. Let us assume that the incoming

light energy density `x(ω) can be represented in a tight reproducing
kernel basis {ki(ω)}ni=1 over sampling points Λ = {λi}mi=1 as

`x(ω) =

n∑
i=1

`x(λi) ki(ω). (21)

Performing Galerkin projection by inserting this representation of
`x(ω) into the shading equation in Eq. 15 we obtain

¯̀
x(ω̄) =

n∑
i=1

`x(λi)

∫
H2

x

ki(ω) ρ̄x(ω, ω̄) dω (22a)

and by the reproducing property of the ki(ω) we have

¯̀
x(ω̄) =

n∑
i=1

`x(λi) ρ̄x(λi, ω̄). (22b)

Eq. 22b, obtained using reproducing kernel Galerkin projection, is,
up to a factor of 1/n, equivalent to Eq. 20. The factor of 1/n can be
obtained by using a uniform characteristic reproducing kernel basis
for {ki}ni=1, as one would expect from our previous discussion of
Monte Carlo integration.



Path Tracing was introduced by Kajiya as the first algorithm that
could solve the complete light transport problem [Kajiya 1986]. The
algorithm approximates the Neumann series in Eq. 16 using the
Monte Carlo estimator

` |cam≈
1

n

∞∑
k=0

∑
pki

`0(xi0 → xi1)π(pki ) (23)

where ` |cam is the light energy density reaching the camera plane
and the pki are uniformly distributed random paths with throughput
π(pki ), cf. Eq. 17.

Assuming we have a tight reproducing kernel basis that is defined
over path edges λi = (x̄i → xi) as sampling “points”, a representa-
tion of the light energy density `(x̄→ x) is given by

`(x̄→ x) =

m∑
i=1

`(λi) ki(x̄→ x) =

m∑
i=1

`(x̄i → xi) ki(x̄→ x).

We will furthermore assume that for every edge λi = (x̄i → xi)
there is only one other edge λj that continues from the endpoint xi
and satisfies λj = (x̄j = xi → xj); this condition will ensure that
the samples connect to paths as used in path tracing. Performing
Galerkin projection with the reproducing kernel representation of
`(x̄→ x), a bounce `k+1= T`k in the Neumann series in Eq. 16 is
given by

`k+1(x→ ¯̄x) =

∫
M
`k(x̄→ x) t(x̄→ x→ ¯̄x) dA

=

m∑
i=1

`(λi)

∫
M

ki(x̄→ x) t(x̄→ x→ ¯̄x) dA.

By the reproducing property of the ki(x̄→ x) this equals

`k+1(x→ ¯̄x) =

m∑
i=1

`(λi) t(λi, x→ ¯̄x).

Carrying out also the second part of the Galerkin method and pro-
jecting the left hand side onto the basis function kj(x → ¯̄x), we
obtain, after the usual steps and exploiting the reproducing kernel
property, that

`k+1(λj) =

m∑
i=1

t(λi, λj) `
k(λi) (25)

where, by its locality, the transport kernel t(λi, λj) is nonzero if
and only if sample points “line up” and for λi = (xi1 → xi2) and
λj = (xj1 → xj2) it holds that xi2 = xj1. With Eq. 25, we obtain for
the next iterate `k+2 = T 2`k = T (T`k) = T`k+1 in the Neumann
series that

`k+2(λa) =

m∑
i=1

t(λi, λj) `
k+1(λi) (26a)

=

m∑
i=1

t(λj , λa) t(λi, λj) `
k(λi) (26b)

where, by our assumptions on the edges, `k+2(λj) is nonzero only
if λi, λj , and λa line up. Eq. 26 holds analogously for all following
iterates of T k. Inserting the definitions of a path and path throughput
into Eq. 26 we immediately obtain

T k`0 =
∑
pki

`0(λi)π(pki ). (27)

By the Neumann series in Eq. 16, the sought after steady state light
energy density ˆ̀ is thus given by

ˆ̀=

∞∑
k=0

∑
pki

`0(λi0)π(pki ). (28)

where λij is the j th edge of the ith path pki . Eq. 28, obtained using
reproducing kernel Galerkin projection, is, again up to a factor of
1/n equivalent to Eq. 23, and again the factor can be recovered when
we employ a characteristic reproducing kernel basis.

Photon Mapping was introduced by Jensen in the mid-
1990s [Jensen and Christensen 1995; Jensen 1995] and it is the
most popular of a larger class of algorithms based on density estima-
tion, e.g. [Shirley et al. 1995; Walter et al. 1997]. Photon mapping
represents the incoming light energy density ` in a scene by a set of
pointwise samples `(λi) = `(xi, ωi) called photons. The continu-
ous density `(x, ω) is reconstructed from the photons by

`(x, ω) =

m∑
i=1

`(λi) p̂(λi) (29a)

=

m∑
i=1

`(λi)

(
1

mh

m∑
j=1

k

(
|xi − xj |

h

))
(29b)

where p̂(λi) is a density estimate for some suitable kernel k(x, y) =
k(x − y) and kernel width h. The above estimate is typically em-
ployed for the incoming light energy density in final gathering, which
is used for actual image generation.

In the supplementary material we show how density estimation can
be interpreted using reproducing kernel Galerkin projection. When
the light energy density is represented in a tight reproducing kernel
basis, then the density estimate `(x, ω) can be understood as the
image under a Green’s function G(x, y):

`(x, ω) =

∫
`(z)G(z, z̄) dz =

n

m

m∑
i=1

`(λi)G(λi, y) (30)

where z, z̄ ∈ S2M. Eq. 29 results from Eq. 30 for special choices
of G(λi, y) such as the heat kernel, i.e. a scaled Gaussian. Green’s
functions are the reproducing kernel for the time flow of an associ-
ated partial differential equation [Aronszajn 1950]. This provides
an alternative explanation for the smoothing that occurs when den-
sity estimation is employed. A reproducing kernel formulation of
final gathering is presented in Sec. 4.3 where we also employ it for
numerical computations.

Metropolis Light Transport was introduced by Veach and Guibas
for the simulation of light transport in scenes that are difficult to
handle with other approaches [Veach and Guibas 1997]. The tech-
nique constructs a continuous Markov chain whose steady state
distribution is proportional to the steady state light energy density ˆ̀.
Traversing this Markov chain many times then generates a sample
distribution that is approximately proportional to ˆ̀.

For a continuous Markov chain with transition kernel π(p, q) : P ×
P → [0, 1] defined over path space P , the steady state distribution
ˆ̀(p) is characterized by

ˆ̀(p) =

∫
P

π(p, q) ˆ̀(q) dq, (31)

that is, ˆ̀(p) is the eigenfunction of the above integral operator asso-
ciated with the largest eigenvalue λ = 1. When ˆ̀ is represented in
a tight reproducing kernel basis, then Galerkin projection of Eq. 31
yields, in full analogy to the other examples we have already seen,

ˆ̀(λj) =

m∑
i=1

ˆ̀(λi)π(λi, λj). (32)

From our derivation it is not apparent that Eq. 32 is a faithful dis-
cretization of the Markov chain, that is that Π = {π(λi, λj)} forms
a stochastic matrix. Representing π(p, q), as a function of p, in the
reproducing kernel basis we obtain

1 =

∫
P

π(p, q) dp =

∫
P

m∑
i=1

π(λi, q) ki(p) dp (33a)

=

m∑
i=1

π(λi, q)

∫
P

ki(p) dp. (33b)



Thus, P is a stochastic matrix when
∫
P
ki(x) dx = 1. This is sat-

isfied for the characteristic basis, with slight modifications in the
above argument to accommodate for the fact that the basis is orthog-
onal but not orthonormal, cf. Sec. 1 in the supplementary material.
Eq. 32 also immediately implies that ˆ̀= (ˆ̀(λ1), · · · , ˆ̀(λn)) is an
eigenvector of Π and since

ˆ̀(x) =

m∑
i=1

ˆ̀(λi) ki(x) (34)

it is in fact a faithful finite representation of the sought after contin-
uous steady state distribution. Now taking a frequentist approach
and replacing the stationary distribution f(x) with a distribution
of samples proportional to it yields the Metropolis-Hastings algo-
rithm. The Hasting’s acceptance step is thereby justified by the
balance condition which implies that the sample distribution has to
be proportional to the steady state distribution.

3.4 Discussion

In this section, we showed that a wide range of existing sampling-
based image synthesis techniques can be obtained using reproducing
kernel Galerkin projection. For light transport, Galerkin projec-
tion was used previously for diffuse scenes with classical finite ele-
ments [Nishita and Nakamae 1984; Goral et al. 1984; Heckbert and
Winget 1991] and higher order basis functions [Zatz 1993; Gortler
et al. 1993; Schröder et al. 1993]. Christensen [1996; 1997] also
explored its applicability for glossy environments. However, these
techniques require the computation of basis function coefficients
using inner products, which is typically expensive and can often
only be approximated. In contrast, with reproducing kernel Galerkin
projection one obtains techniques in which functions and operators
are represented by their pointwise values. These can readily be de-
termined numerically. The ansatz additionally provides a functional
analytic alternative to the traditional probabilistic interpretation of
techniques such as path tracing or Metropolis light transport, open-
ing up new directions to improve and extend them, and to develop
error formulas.

The main limitations of our formulation are the assumptions that a
tight reproducing kernel basis exists for the domain of a technique
and that all signals lie in the associated function space. Different
examples of tight reproducing kernel bases exist for Rn, for exam-
ple the sinc-basis of the Shannon sampling theorem. On general
domains, however, the only example we are aware of are charac-
teristic bases. Using the characteristic basis is consistent with our
formulation of Monte Carlo integration as a quadrature rule and it
connects the classical, probabilistic interpretation of sampling-based
techniques with our functional analytic one. Additionally, the char-
acteristic basis becomes dense in L2 as the number of partitions
increases so that any signal can be approximated arbitrarily well
for a sufficiently large number of partitions. For most signals, how-
ever, the order of approximation achieved with the characteristic
basis is far from optimal. The formulation presented in this section
enables the development of pointwise numerical techniques with
bases that are better adapted to the properties of the light energy
density and hence yield faster convergence rates; our example in
Sec. 4.3 can be seen as a first realization of this idea. Next to ideal
tight reproducing kernel bases one can often employ oversampling
together with the numerical optimization of sampling locations to
obtain frames that behave in practice like their ideal counterparts.
The application of such representations for light transport provides
an interesting direction for future work. Another avenue for future
works is to employ existing results on meshless finite element meth-
ods to study convergence of reproducing kernel Galerkin projection
for light transport.

4 From Theory to Practice

In this section, we will employ our constructive theory of sampling
to develop three applications: the representation and transport of
color information using pointwise samples, the projection of the
angular part of the light energy density into spherical harmonics,
and the approximation of the local shading equation from a photon
map.

For all three applications we will employ the same recipe to develop
a pointwise numerical technique:

1. Choose a reference basis that is well suited for the approxima-
tion of the signals of interest.

2. Construct a reproducing kernel basis for the space spanned
by the reference basis by choosing sampling locations. If
the locations are pre-determined, optimize the locations to
minimize rk-discrepancy.

3. Employ reproducing kernel Galerkin projection to map the
continuous description to a pointwise formula.

4. Implement the technique using the kernel and sampling matri-
ces of the reproducing kernel basis.

For each application, some adjustments to the above recipe are nec-
essary. Nonetheless, following the four steps is typically sufficient
for the remaining details to become transparent.

4.1 Representation of Color Information
Most techniques for light transport simulation represent color using
pointwise samples of the continuous frequency spectrum, for exam-
ple using three samples λ{r,g,b} that correspond to red, green, and
blue, cf. Fig. 4. A notable exception is the technique proposed by
Peercy [1993] where color `(λ) as a function of wavelength λ is
represented using basis functions γi(λ),

`(λ) =

n∑
i=1

〈
`(λ̄), γi(λ̄)

〉
γi(λ). =

n∑
i=1

`i γi(λ). (35)

In this formulation, surface interactions are modelled by

¯̀
j =

n∑
i=1

Rji `i (36)

where `i and ¯̀
j are the basis function coefficients before and after

scattering, respectively, and the Rij are determined using Galerkin
projection of the reflection model. Peercy demonstrated that his
technique can lead to substantially improved results, in particular
when PCA is used to determine a suitable basis {γi}ni=1. Using
our formulation of sampling, we can obtain a technique that only
uses point samples at discrete wavelengths λi, as is common in
existing rendering systems, but properly represents the continuous
spectrum. Using the PCA basis proposed by Peercy, we construct a
reproducing kernel basis for the same space using Eq. 3. Then `(λ)
is given by

`(λ) =

m∑
i=1

`(λi) k̃i(λ). (37)

With K ≡ Kγ(Λ) being the kernel matrix for the reproducing
kernel basis, Eq. 36 becomes

¯̀(λj) =

m∑
i=1

(KRK−1)ji `(λi). =

m∑
i=1

R(λj , λi) `(λi) (38)

We hence have the following algorithm:

Experimental Results In Fig. 3 we compare classical point sam-
pling with Peercy’s linear model and our technique. The results
demonstrate that our technique leads to substantially less color distor-
tion than traditional point sampling while using the same pointwise
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Figure 3: Experimental results for the representation of color information using (from left to right) point sampling with four spectral samples, Peercy’s linear
model with two basis functions, our technique with two basis functions and four samples, a reference solution with 50 spectral samples.

Precomputation:
– Construct PCA basis and choose sampling locations Λ = {λi}.
– Construct kernel matrix K ≡ K(Λ).
– Compute Rb(λj , λi) = KRK−1 for every shading model Rb.
At every bounce: compute `(λj) using Eq. 38.

information only. The figures were generated with a basic implemen-
tation of the above algorithm in pbrt [Pharr and Humphreys 2010].
Additional results are provided in the supplementary material.

4.2 Computation of Spherical Harmonics Coefficients

In various areas of image synthesis, such as precomputed radiance
transfer [Sloan et al. 2002; Lehtinen 2007], volume rendering [Ka-
jiya and von Herzen 1984], shading [Sillion et al. 1991; Westin
et al. 1992], and irradiance probes [Greger et al. 1998; Pharr and
Humphreys 2010], spherical harmonics ylm(ω) are used to represent
signals defined over the sphere. A typical example, and the one we
will consider in the following, is the representation of the incoming
light energy density `x(ω) in the basis One then has to compute
coefficients

`lm = 〈`x(ω), ylm(ω)〉 =

∫
S2

`x(ω) ylm(ω) dω (39)

from typically only pointwise values `x(λj) of the light energy den-
sity for directions λj ∈ S2. In the literature, Monte Carlo integration
is typically used to determine the `lm. Instead, we formulate the
problem as a change of basis from a reproducing kernel basis for the
spaceH≤L spanned by all spherical harmonics up to band L to the
Legendre spherical harmonics basis for the space. Using Eq. 9, the
i ≡ (l,m)-th spherical harmonics coefficient is then given by

`i =

m∑
j=1

sij `x(λj) (40)

where the sij are the elements of the sampling matrix Sylm(Λ). We
hence have the following algorithm:

Precomputation:
– Choose sampling directions Λ = {λi} and optimize locations.
– Construct Kylm(Λ) and Sylm(Λ) = K−1

ylm(Λ) .
At every sampling point x in the scene:
– Trace rays for the directions λi and determine incoming `x(λi).
– Reconstruct spherical harmonics coefficients `lm using Eq. 40.

For an orthonormal or tight reproducing kernel basis the sampling
matrix Sylm(Λ) is given by Kylm(Λ)T . Eq. 40 then becomes

`i =

m∑
j=1

yi(λj) `(λj). (41)

Up to a constant, this is the Monte Carlo estimator for the basis
function coefficients `i. The entries sij of the sampling matrix S for
a non-orthogonal kernel basis can hence be interpreted as correcting
for non-ideal sampling locations. Note that this correction incurs
almost no additional cost, in particular when compared to the costs
for tracing rays.

Experimental Results We developed two implementations to
experimentally evaluate the reconstruction of spherical harmonics
coefficients using the above algorithm. We employed Matlab to
perform synthetic experiments with precise control of the inputs
and parameters and we modified the existing irradiance probe im-
plementation in pbrt [Pharr and Humphreys 2010] to understand
the behavior for real-world applications. As sampling directions we
used well known low discrepancy sequences [Niederreiter 1992]
and the spiral points proposed by Saff and Kuijlaars [1997]. Sample
point optimization as discussed in Sec. 2.3 was performed using
an existing L-BFGS algorithm [Zhu et al. 1997]. Fig. 5 and Fig. 6
show that our technique can lead to substantial performance im-
provements compared to classical (Quasi) Monte Carlo integration.
The figure also demonstrates that the numerical optimization of
sampling points provides significant performance benefits, both for
synthetic tests and real world applications, and that it is useful to
combine it with oversampling. A visual comparison of unoptimized
and optimized sampling locations is shown on the right in Fig. 6 and
in the accompanying video.

4.3 Final Gathering
Photon mapping [Jensen 1995; Jensen and Christensen 1995; Jensen
2001] with final gathering is a widely used techniques for image
synthesis. Classically, final gathering approximates the outgoing
light energy density ¯̀

x(ω̄) towards the camera given by

¯̀
x(ω̄) =

∫
H2

x

ρ̄x(ω, ω̄) `x(ω) dω (42a)

using a Monte Carlo or Quasi Monte Carlo approximation

¯̀
x(ω̄) ≈ 1

n

n∑
i=1

ρ̄x(λi, ω̄) `x(λi). (42b)

The integral kernel ρ̄x(ω, ω̄) is the cosine-weighted scattering kernel
at x and `x(ω) is the incoming light energy density estimated from
the photon map for directions λi ∈ H2

x .

Our alternative technique for final gathering is based on the operator
formulation ¯̀ = P` of the shading equation [Arvo 1995b]. The
shading operator P is of Hilbert-Schmidt type [Lessig 2012] and
hence has a well defined eigen-decomposition consisting of distinct
eigenvalues σi and eigenfunctions ϕi. The incoming light energy
density `x can thus be applied very efficiently to P by representing
`x in the eigenbasis {ϕi}ni=1 and multiplying the basis function coef-
ficients `i with the eigenvalues σi. For numerical computations, only
a finite subset of the in general infinitely many σi can be employed.
The optimal approximation using k eigenvalues is obtained when the
k largest ones are used and `x(ω) is represented using the associated
eigenfunctions [Mallat 2009]. To implement the approach, we hence
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Figure 4: Spectrum of CIE fluorescent light illuminant F1 (black),
typical point samples for blue, green, and red (vertical lines), and
reproducing kernel basis functions for Peercy’s PCA basis (dotted)
for these locations.
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Figure 5: Experimental results for the projection of signals into the space H≤L spanned by the first L spherical harmonics bands. Left: To demonstrate the
effect of oversampling, we reconstruct an ideal input signal from different sampling sequences mapped from [0, 2π] × [0, π] onto the sphere using an area
preserving mapping. As expected, for all sequences the reconstruction error decreases as the oversampling rate, and hence the number of samples, increases. The
plot also demonstrates that random points provide consistently higher error rates than well distributed ones. Shown in the graph as dashed lines are the condition
numbers of the kernel matrices for the different sampling sets. These correlate well with the reconstruction error. Middle: To demonstrate the robustness of our
approach, we reconstruct spherical harmonics coefficients forH≤15 from a large number of non-ideal input signals with bandwidth L = 20 and L = 25.
Reported are average error rates. Our technique (RK Niederreiter, i.e. Niederreiter points mapped to the sphere used with our technique for reconstruction)
outperforms quasi Monte Carlo integration (QMC Niederreiter) in both cases although the performance advantage becomes smaller as L increases. Point
locations optimized for our technique (blue curves) attain considerably lower error rates. Right: Reconstruction error for spherical harmonics coefficients for
the incoming light energy density at points in the Cornell box scene; shown is the error averaged over a large number of scene points. Continued in Fig. 6.

need the first k basis function coefficients `i of the incoming light
energy `x(ω) in the eigenbasis. Since only pointwise values `x(λi)
are available, we will employ our theory to efficiently determine the
coefficients `i.

Derivation By performing Galerkin projection of the shading
equation using the first k eigenfunctions ϕi we obtain

¯̀
x(ω̄) ≈ P ` =

k∑
i=1

(σi `i)ϕi(ω̄) (43)

and we know that this is the optimal linear k-term approxima-
tion [Mallat 2009] of the continuous shading equation. To determine
the outgoing light energy density ¯̀(ω̄) using Eq. 43, we need the
expansion coefficients `i = 〈`x(ω), ϕi(ω)〉 with respect to the
eigenbasis {ϕi}ki=1. However, the only information about `x(ω)
that is immediately available are samples `(λi) ≡ `x(λi). We com-
pute the coefficients `i from only this information by constructing a
reproducing kernel basis for the space spanned by the first k eigen-
functions for the given sampling directions Λ = {λj}mj=1. The
reproducing kernels for the basis can be obtained using Eq. 3 and
the corresponding dual kernel functions k̃i(x) are defined by the
biorthogonality condition. We then have

`x(ω) ≈
m∑
j=1

`(λj) k̃j(ω) (44)

and by Eq. 9 the coefficients `i are given by

`i ≈
m∑
j=1

sij `(λj) (45)

where the sij are the elements of the sampling matrix. Inserting into
Eq. 43 we obtain

¯̀(ω̄) ≈
k∑
i=1

(
σi

m∑
j=1

`(λj) sij

)
ϕi(ω̄). (46a)

Reordering the summation over i and j yields

¯̀(ω̄) ≈
m∑
j=1

`(λj)

k∑
i=1

σi sij ϕi(ω̄)︸ ︷︷ ︸
wj(ω̄)

(46b)

and with the weights wj(ω̄) we have

¯̀(ω̄) ≈
m∑
j=1

wj(ω̄) `(λj). (46c)

Eq. 46c provides a quadrature rule for final gathering that deter-
mines the outgoing light energy density towards the camera using
an optimal k-term approximation of the scattering operator P . Be-
fore we turn to its implementation, let us consider how to perform
importance sampling for the quadrature rule.

The weights wj(ω̄) in Eq. 46c are associated with the sampling
directions λj and evidently when |wj(ω̄)| is small then the as-
sociated sample `(λj) will have a small contribution to the out-
going light energy density ¯̀(ω̄). Hence, “important” directions
λj are those where the
weight wj(ω̄) is large. For
example, the figure on the
right shows the weights
wj(ω̄) for a Phong BRDF
with the red cross marking
the direction of specular re-
flection for the outgoing di-
rection ω̄. To generate im-
portance sampled directions
we therefore begin with a
larger number M > m of
sampling points λj than is desired, compute the wj(ω̄) for these
points, and retain only the m directions λj with largest weights.

Numerical Realization To implement our technique, we have to
determine the eigenfunctions for an arbitrary scattering operator
P . Except for special cases, such as in [Mahajan et al. 2008], no
analytic form exists and the eigenfunctions have to be determined
numerically. We employ again Galerkin projection to obtain a con-
tinuous representation of the eigenfunctions that allows us to easily
evaluate them in any direction ω̄. Using Eq. 19 yields

P̂ij = 〈ψi(ω) | ρ̄(ω, ω̄) | ψj(ω̄)〉 (47)

where ψi is a suitable, finite dimensional reference basis. For its
numerical convenience and since the scattering functions of inter-
est to us are smooth, and hence can be approximated efficiently
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Figure 6: Continuation of Fig. 5. Left: Reconstruction error for spherical harmonics coefficients for the Sponza scene and a room interior. The lighting in the
room scene is more complex than in the Sponza scene and hence the advantage of our technique designed for signals inH≤15 is smaller. Right: Niederreiter
sequence on the sphere S2 before (left) and after optimization (right) for the spaceH≤10 with 10% oversampling. Shown are also the quadrature weights for
the projection onto one spherical harmonics basis function (violet = large, cyan = small). Note how, in accordance with our theory, the optimization increases
the uniformity of the points on S2 and homogenizes the quadrature weight. An animation of the optimization process is shown in the accompanying video.

using a smooth basis [Mallat 2009], we employ spherical harmon-
ics yi(ω) ≡ ylm(ω) up to some band L as reference basis. With
the matrix P̂ formed by the P̂ ij we numerically compute its eigen-
decomposition and obtain a representation of the eigenfunctions in
the spherical harmonics domain. Note that since we included the co-
sine term in our definition of the scattering kernel, P̂ is not symmet-
ric and hence the singular value decomposition P̂ = Ûl Σ̂ ÛTr must
be computed to obtain the eigen-decompositon. This also requires
distinguishing between left and right eigenfunctions ϕli and ϕri , re-
spectively, in Eq. 45 and Eq. 46. Given the eigen-decomposition, we
can compute the quadrature weights wj(ω̄) in Eq. 46c by construct-
ing the kernel matrix

K =

 ϕr1(λ1) · · · ϕrn(λ1)
...

. . .
...

ϕr1(λm) · · · ϕrn(λm)

 (48)

and solving for the elements sij of its inverse. The weights are then

wj(ω̄) =

k∑
i=1

σi sij ϕi(ω̄) (49a)

=

k∑
i=1

σi sij

n∑
j=1

ϕl,ij yj(ω̄) (49b)

where ϕl,ij is the basis function coefficients of the left eigenfunction
ϕli with respect to the j th spherical harmonic; equivalently ϕl,ij is
the (j, i)th element of the matrix Ûl. We thus have the following
algorithm to determine the outgoing light energy density ¯̀

x(ω̄) for
all shading point x ∈M:

Precomputation:
– For every scattering model ρ compute P̂ ij using Eq. 47 and

compute P̂ = Û lΣ̂Û
T
r .

At every shading point x in the scene:
– Trace rays for directions Λ = {λi(x)} and determine `x(λi).
– Construct kernel matrix Kx(Λ) in Eq. 48 and Sx(Λ) = Kx(Λ)−1.
– Compute quadrature weights using Eq. 49.
– Evaluate outgoing light energy density ¯̀

x(ω̄) using Eq. 46c.

Implementation Details We briefly describe important aspects of
our reference implementation of the above final gathering technique
in pbrt [Pharr and Humphreys 2010]; additional details are provided
in the supplementary material.

In the previous discussion, we considered one scattering function.
The scattering kernels used in most rendering systems are linear

combinations of elementary scattering functions,

ρx(ω, ω̄) =

r∑
i=1

αi(x) ρix(ω, ω̄). (50)

where the ρix(ω, ω̄) are, for example, the Lambertian, Phong, or
Microfacet scattering model and the spatially varying linear weights
αi(x) are obtained from a texture. A naïve implementation of our
technique would require the computation of the eigen-decomposition
of ρx(ω, ω̄) for every point x on the scene manifold that is sampled
from the camera. This is infeasible even for simple scenes. Fortu-
nately, both Eq. 46c and Eq. 50 are linear. We can hence determine
the eigen-decomposition and quadrature weights wij(ω̄) for each
model ρix(ω, ω̄) separately and independent of x and then linearly
combine them,

wj(ω̄) =

r∑
i=1

αi(x)wij(ω̄). (51)

In addition to the spatial variations of the linear weights αi(x) one
sometimes also varies a nonlinear parameter. A classical example
is the modulation of the Phong exponent. This can currently not be
accommodated by our technique.

As sampling directions λi in the hemisphere above each point x we
currently use quasi-random points generated by pbrt. This requires
computing weights for each x, which takes a substantial amount of
time. However, it allows for better comparisons to classical final
gathering, which uses the same locations, and it also simplifies the
implementation. Alternatives will be discussed shortly.

Experimental Evaluation We evaluated our technique for final
gathering using three scenes available for pbrt: the classical Sponza
scene, a room with a Killeroo, and a Villa interior. For the Sponza
scene we used a Phong shading model with exponent 8.0 and not
a purely Lambertian shading since the eigenspace for the latter
one is 1-dimensional and our technique then exactly reproduces
classical importance sampling with respect to the cosine term. As
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Figure 7: Eigenvalue distribution for different scattering functions. The
vertical lines are at 95% of the spectral energy.
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Figure 8: Signal-to-Noise ratio, L1 error, and L2 error (from left to right) for our technique with importance sampling (full), without importance sampling
(dashed), and QMC with importance sampling (dash-dot, full circles) for the Villa scene (see Fig. 9 for the corresponding images).

reference, we employed pbrt’s implementation of final gathering
with importance sampling. To avoid distortion due to the image
filter, all images were generated with one sample per-pixel and with
a per-pixel box filter. Error rates as a function of gather samples
are reported in Fig. 8 and Fig. 9 for the Villa scene and in the
supplementary material for the other two scenes. For each scene and
sample count we report the best result from using {85%, 85%, 90%,
92.5%, 95%, 97.5%, 99%, 99.5%} of the total spectral energy.

The experimental results demonstrate that for the Villa and the
Killeroo scene our technique provides substantially lower error rates
and signal-to-noise ratios than Quasi Monte Carlo integration and
the latter technique only asymptotically attains our performance.
The lower error rates also correspond to substantially reduced visual
noise. Visible in the images is a small distortion and slight banding
artifacts. These result from the finite truncation of the spectrum
and the fact that the eigenfunctions in general do not align with a
visually pleasing subdivision of the domain of the shading operator.
We experimentally confirmed that the possible negativity of ¯̀(ω̄),
see below, does not substantially contribute to the distortion. The
graphs also show that importance sampling is beneficial mainly for
low sampling densities. For the Sponza scene the improvements
are more modest than for the other two scenes and in fact there we
attain higher Lp error rates than Quasi Monte Carlo integration. This
results mainly from the very diffuse light scattering in the scene and
the hence very low effective dimension of the shading operator, cf.
Fig. 7. The effect of the spherical harmonics bandwidth is shown in
the supplementary material and the accompanying video.

Limitations and Future Work With the use of spherical harmon-
ics and the singular value decomposition, we cannot guarantee that
the outgoing light energy density is positive. In future work it would
be interesting to develop a positive basis for the hemisphere and to
explore if the eigen-decomposition can be replaced by a positive
matrix factorization, cf. [Donoho and Stodden 2004]. Instead of
developing a positive basis, improvements can also be expected from
using spherical Slepian functions [Simons 2010; Lessig and Fiume
2010], localized for the hemisphere, which are readily available. Se-
lecting the L2-optimal k-term approximation is not always visually
most pleasing. One can hence envision selecting k basis functions
based on visual reconstruction quality, cf. [De Witt et al. 2012]. This
might alleviate the slight banding artifacts that are present for exam-
ple in the Killeroo scene. In our implementation most computation
time is spent on determining the quadrature weights at each location
x ∈ M. Since this involves inverting a matrix, our current imple-
mentation is substantially slower than classical final gathering. This
can be avoided by precomputing a set of sampling sequences over
the hemisphere and randomly selecting one of them at runtime or by
applying a random rotation to one or more precomputed sequences.
Applying a random rotation is interesting in particular with our

choice of spherical harmonics as reference basis since then the diag-
onal representation of the shading operator is closed under rotation
and efficient algorithms for the rotation exist [Pinchon and Hoggan
2007; Lessig et al. 2012]. A precomputation of sequences would
also enable the use of optimized sampling locations which provided
significant benefits in Sec. 4.2. Another limitation of our technique is
that it requires a linear parameter dependence. For a varying Phong
parameter, one possibility might be to take the logarithm before
computing the eigen-decomposition and exponentiating afterwards.
In general, one could envision parameter dependent eigen- or tensor
decompositions.

4.4 Discussion
In this section, we demonstrated the versatility of our constructive
formulation of sampling for light transport with three example ap-
plications: pointwise sampling of color information, projection of
the angular part of the light energy density into spherical harmon-
ics, and approximation of the shading equation for final gathering.
Another application of reproducing kernel bases has appeared else-
where [Lessig et al. 2012]. In contrast to existing approaches to
sampling, our formulation is inherently designed for a finite number
of samples and it can be adapted to a specific setting, for example
by choosing a suitable function space or by optimizing sampling
locations. We believe that this explains our improved experimental
results. The source code for all applications is available online.1

5 Outlook

In this paper, we developed a constructive theory of sampling for
light transport simulation. In contrast to traditional formulations
that are based on the Dirac delta, our theory employs reproducing
kernels to conceptualize the correspondence between continuous
signals f(x) and their pointwise samples f(λ). Since reproducing
kernels are Hilbert space functions and not Schwartz distributions,
they can be employed as basis functions. The resulting reproducing
kernel bases provide the numerical convenience of Hilbert space
representations while only requiring pointwise samples f(λi) as
basis function coefficients. With this:

• We enable the construction of sampling theorems, quadrature
rules, and interpolation schemes for arbitrary domains and
approximation spaces. This is crucial for light transport where
signals are defined over complex manifolds and the spaces
classically used in approximation theory are ill-suited. Addi-
tionally, we can tailor techniques to the finite sample counts
and non-equidistant sample distributions employed in practice.
This provides precise condition for their applicability, for ex-
ample when they yield perfect reconstruction, and enables the
derivation of error formulas.

1www.dgp.toronto.edu/people/lessig/cosalt/.

www.dgp.toronto.edu/people/lessig/cosalt/


Figure 9: Experimental results for final gathering for our technique (top row) and classical final gathering (bottom row). The columns correspond to 16, 32,
64, 128, 256, 512, and 1024 samples in the hemisphere, respectively. See Fig. 8 for the corresponding error rates. Results for other scenes are presented in the
supplementary material.

• We overcome the dichotomy between radiosity-based and ray
tracing techniques that persists in the literature. By introducing
reproducing kernel Galerkin projection we are able to also
derive sampling-based techniques such as path tracing and
Metropolis light transport using a functional ansatz. This
also provides an alternative to the more common probabilistic
formulation of these techniques.

• We introduce rk-discrepancy as a novel quality measure for
the distribution of sampling points. The measure can be de-
termined numerically, which enables us to optimize sampling
locations for an application.

We demonstrated the practical utility of our formulation of sam-
pling for image synthesis with three applications: the pointwise
representation of color information, the projection of the angular
part of the light energy density into spherical harmonics, and the
approximation of the shading equation. For all applications, our
techniques provide significant visual and numerical improvements
over existing approaches for an equal number of samples. Nonethe-
less, the present work should be understood as a first step and much
theoretical and algorithmic development needs to be done to make
our theory truly practical.

Central to our constructive formulation of sampling is its functional
analytic foundation. This enabled in Sec. 3 the derivation of almost
all existing light transport simulation techniques from the common
ansatz of Galerkin projection. It was also vital for our final gathering
application in Sec. 4.3 by enabling the use of the spectral theory of
Hilbert-Schmidt operators for a technique that directly employs point
samples. A classical problem of functional analytic techniques is the
curse of dimensionality, that is the exponential dependence of the
computational complexity on the dimension of the domain [Traub
and Werschulz 1999]. For light transport, which is defined over a six
or even higher dimensional space, it is one of the main motivation
for the use of Monte Carlo methods. Over the past few years, other
techniques to break the curse of dimensionality have been developed,
such as sparse and multigrid methods [Bungartz and Griebel 2004]
and neuronal networks [Donoho 2000]. In the future, we would like
to combine these results with reproducing kernel bases to obtain
novel, sampling-based image synthesis techniques that do not suffer
from the curse of dimensionality. A functional analytic formulation
is a prerequisite for quantifying the optimality of computations and
to analyse error. For light transport, these objectives were considered
by Arvo [1994] but received little attention since. Currently missing
for such analyses is a characterization of the function spaces of light
transport, analogous to what is available for images [Mallat 2009].
We consider such a characterization to be an important objective for
future research.
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