
Interactive Elastic Motion Editing
through Spacetime Position Constraints

Siwang Li
Zhejiang University

Jin Huang
Zhejiang University

Mathieu Desbrun
Caltech

Xiaogang Jin
Zhejiang University

Abstract
We present an intuitive and interactive approach
for motion editing through spacetime constraints
on positions. Given an input motion of an elastic
body, our approach enables the user to interac-
tively edit node positions in order to alter and
fine-tune the motion. We formulate our motion
editing as an optimization problem with dynamics
constraints to enforce a physically-plausible result.
Through linearization of the editing around the in-
put trajectory, we simplify this constrained optimal
control problem into an unconstrained quadratic
optimization. The optimal motion thus becomes
the solution of a dense linear system, which we
solve efficiently by applying the adjoint method
in each iteration of a conjugate gradient solver.
We demonstrate the efficiency and quality of our
motion editing technique on a series of examples.

Keywords: motion editing, elastic anima-
tion, spacetime constraints, model reduction,
adjoint method.

1 Introduction

Physically-based simulation of deformable ob-
jects has become pervasive in computer graphics.
While current physics-based methods can generate
exquisite results, fine-tuning of an animation often
requires a time consuming trial-and-error process
to find the right simulation parameters. Editing an
existing simulated sequence to meet user-specified
position constraints without making the resulting
motion visually implausible is therefore crucial in
practice. Solutions that offer accurate and flexible
control, fast feedback, yet maintain physical plau-
sibility of the edited motion remain rare.

Existing methods for controlling elastic anima-
tion can be roughly classified into two categories:
key frame interpolation, and sequence editing. The
key frame interpolation methods do not take an
existing animation as input: they typically spec-

ify position constraints for all the nodes of a few
key frames. Significant user interaction is re-
quired since one cannot prescribe only the posi-
tions of a portion of the object, which reduces con-
trol flexibility. Conversely, sequence editing meth-
ods try to find small alterations of an input anima-
tion to satisfy user-specified constraints. This type
of approach lends itself well to partial editing of
an input sequence in space and time. Recently,
Barbič et al. [1] introduced an interactive editing
approach for given complex deformable object an-
imations that allows for direct manipulation of the
deformable body at any time frame; however, this
latest development in motion editing does not pro-
vide precise position control.

In this paper, we propose an efficient solu-
tion to motion editing that offers tight position
control at interactive rates. Our approach casts
the editing process as a constrained optimal con-
trol problem. Previous methods based on opti-
mal control are typically compute-intensive due to
their high dimensional and non-linear nature. In-
stead, we simplify this formulation via model re-
duction and linearization. The resulting uncon-
strained quadratic optimization problem is signifi-
cantly smaller than the original one. To further im-
prove numerical performance and allow for inter-
active feedback, we efficiently solve the resulting
dense linear system using an iterative solver and
the adjoint method. Our specific combination of
well-known numerical techniques (model reduc-
tion, linearization around the input trajectory, and
adjoint method) results in a novel motion editing
approach with the following unique features:

• it allows for interactive editing;
• it inherits the physical behavior of the input

animation;
• it remains physically plausible for reasonable

changes of the animation;
• it allows for partial position constraints in

both space and time;
• and it offers tight position control.

(a) frame 50 (b) frame 90 (c) frame 130 (d) frame 170

Figure 1: Adjusting the complex input motion of a swinging rope bridge. When the user edits the motion
through position constraints, our system produces a new animation at interactive rates in which
the constraints are visually met. The rope bridge in the input animation is displayed with textures
while the one in the output animation is displayed in green (see the accompanying video to see
the animation from various viewpoints).

2 Related Work

Interactive control for physically-based anima-
tion has received significant attention in the past
decade. While motion editing has been proposed
for character animation [2], rigid body simula-
tion [3, 4], and fluid simulation [5–7]. methods
designed specifically to edit elastic object anima-
tion can be classified into two main categories: key
frame interpolation, and sequence editing. (Note
that we do not review techniques that only add dy-
namic details to an existing coarse animation, such
as [8].) Representative interpolation techniques in-
clude [9–11]. These methods use elastic dynam-
ics to provide interpolation between a set of key
frames, thus generating an animation with visually
plausible behavior. However, much alike tradi-
tional geometrical interpolation methods, they are
not suitable to edit an existing physics-based ani-
mation, and cannot accommodate partial position
constraints as a means to locally control an anima-
tion. Sequence editing methods, on the contrary,
take an existing animation as input, and locally
(in both time and space) edit it. Kondo et al. [12]
presented a method to edit an input animation by
user-specified key frames and trajectories. To get
more natural results, researchers adopted space-
time constraints [13–16], and formulated motion
editing as an optimal control problem constrained
by physical equations of motion. Since the result-
ing optimization problem is often non-linear and
involving a large number of variables, such meth-
ods are typically quite slow, but offer tight position
control.

Linearization is a common approach to reduce
the complexity of a physical model, unfortunately
leading to noticeable artifacts when applied to
large deformations. Corotational methods [17–19]
have been employed to drastically reduce lin-

earization artifacts. Choi and Ko further proposed
modal warping [20] to handle rotations in modal
space, while Huang et al. [10] linearized the equa-
tions of motion in the rotation-strain space to sup-
port large deformations. In Barbič et al. [21], lin-
earization was made around the input trajectory
to treat moderate perturbations from user-specified
external forces. Our approach is inspired by this
approach, but we instead directly apply position
constraints in order to edit an existing animation.

To reduce simulation complexity, model re-
duction [22, 23] has been widely applied in re-
cent years. Barbič and James [24] added modal
derivatives to better approximate large deforma-
tions. Choi and Ko [25] proposed an approximate
time integration to compute positions and recon-
struct the shape without large distortions. Kim and
James [26] even proposed an approach to adap-
tively build reduced models as the simulation pro-
gresses. Model reduction has also been used in
the context of spacetime constraints. To avoid
noticeable artifacts when applied to large defor-
mations, the interpolation method of [9] built the
reduced equations of motion from the vibration
modes around the key frames. By combining
model reduction and linearization around the key
frames, the interpolation method of [11] achieved
much faster performance. Recently, Barbič et al.
presented an approach to adjust input animations
interactively [1]: they solve the optimal control
problem in a linearly reduced space around the
rest shape. To alleviate the artifacts caused by
linearization, they use post-warping to reconstruct
the final shape. As a consequence, their results
may not satisfy the user-specified constraints.

Many optimal control problems involve the gra-
dient computation of the cost function respect to
control variables using the discrete adjoint method.
The adjoint method [27] has been used for fluid

control [28], cloth control [29], and elastic ob-
ject interpolation [9]. In our approach, this adjoint
method is used, but in the particularly simple case
of linearized and reduced equations, which makes
it two orders of magnitude faster than previous us-
ages.

3 Algorithm
We now present our algorithm which amounts to
an ODE-constrained optimization: we solve for
a new trajectory that matches user-specified con-
straints while satisfying simplified equations of
motion.

3.1 Trajectory Offset as ODE
The dynamics of an elastic object discretized
through a mesh with N nodes is formulated as:

M̃ ¨̃u = f̃(ũ, ˙̃u) + g̃, (1)

where ũ(t), f̃(ũ, ˙̃u), g̃(t) ∈ R3N are respectively
the displacements (with velocity ˙̃u and accelera-
tion ¨̃u), internal elastic forces, and external forces
of the nodes, while M̃ ∈ R3N×3N is the mass ma-
trix.

Modal reduction is a conventional technique to
reduce the space of deformations to a set of vi-
bration modes, that is especially useful for solv-
ing space-time problem efficiently. As in [9], we
project the constraint Equation (1) into the re-
duced space of r vibration modes using a matrix
W ∈ R3N×r satisfying WT M̃W = I , yielding a
simplified set of equations:

ü = f(u, u̇) + g, (2)

where the modal coordinates,

u = WT M̃ũ, g = WT g̃,

f(u, u̇) = WT f̃(Wu,Wu̇).
(3)

If one stacks the resulting displacements and
velocities into a configuration vector q =
(u̇T , uT)T ∈ R2r, the second order Equation (2)
is turned into a first order ODE

q̇ = A(q) +Bg (4)

where we used:

A(q) =

(
f(q)
u̇

)
, B =

(
I
0

)
. (5)

From a trajectory q(t) satisfying the above equa-
tion of motion (Equation (4)), a small modifica-
tions of the external forces from g(t) to g(t) +
w(t) (where w(t) is small in magnitude) induces

a nearby trajectory q(t)+ z(t). Through lineariza-
tion of Equation (4), one can easily show [21] that
z(t) and w(t) are related via

ż =
∂A(q)

∂q
z +Bw. (6)

This last equation indicates how the configuration
offset z(t) of a trajectory q(t) depends on the addi-
tion of external forces w(t). If we use an implicit
integrator [30] with a time step h to discretize this
differential equation, we obtain

zi+1 =

(
I − h

∂A(q)

∂q

∣∣∣∣
qi

)−1

(zi + hBwi+1) (7)

where zi is the configuration offset at t0+ih, wi+1

is the additional external force acting between t0+
ih and t0 + (i + 1)h. The value z0 is the initial
condition that we set to z0 = w0.

Given an n-frame animation sequence qi, i =
0, · · · , n − 1, the equations we presented above
represent a linear relationship between the con-
trol variables w = (wT

0 , w
T
1 , · · · , wT

n−1)
T (ini-

tial condition and external forces acting on the
shape) and the resulting trajectory offset z =
(zT0 , · · · , zTn−1)

T . We encode them as a linear sys-
tem of the form:

Fz +Gw = 0. (8)

Given a set of control variables w, solving for the
trajectory offsets z is efficiently achieved by incre-
mentally evaluating the offsets via Equation (7).

We now need to find a way to define what the
optimal control variables are in order to achieve
user-specified position constraints in time, which
we address next.

3.2 Cost Functional

Trajectory editing often proceeds by starting from
an input trajectory q and constraining the posi-
tions of some nodes in R3 in several selected key
frames.

Position constraints. To account for general
point-to-point constraints, we assume that the user
defines the set of position constraints through a lin-
ear equation:

C̃

 ũ0

...
ũn−1

 = ũc, (9)

where ũi is the resulting node position at frame i.
We can further rewrite these linear constraints on

positions as Cz = zc, where:

C = C̃

(0 W) ··· 0

...
. . .

...
0 ··· (0 W)

, zc= ũc− Cq. (10)

Constrained optimization. We now wish to de-
fine an optimal trajectory by finding small exter-
nal forces wi that make the resulting physically-
derived trajectory offset as close as possible to
what the user specified. We propose to define a
cost function E that measures how well the node
positions in full space ũ match the user-specified
position constraints and how small the additional
external forces w are through:

E(z, w) =
1

2

(
‖P (Cz − zc)‖2 + ‖Rw‖2

)
, (11)

where P and R are weight matrices. Our cost is
thus simply the P -weighted L2 norm between the
actual vs. desired positions, plus the R-weighted
L2 norm of the added external forces. Since w
and z are linearly dependent (Equation (8)), the
second term implies a minimal deviation from the
reference motion.

The final optimization problem is therefore:

min
w

E(z, w), s.t. Fz +Gw = 0. (12)

It will enforce a physical trajectory via the con-
straints, but will match the user-specified edits of
the animation through small added forces.

4 Numerical Method
We now present a numerical approach to solve the
trajectory editing problem we formulated in Equa-
tion (12). We leverage the structure of our formu-
lation to devise a particularly efficient computa-
tional procedure.

4.1 Unconstrained Optimization
through Substitution

The constrained optimization (Equation (12)) can
first be easily turned into an unconstrained prob-
lem: by substituting z = −F−1Gw into Equa-
tion (11), solving the optimization reduces to solv-
ing the following linear system:

Hw = −b. (13)

where H = d2E(z,w)
dw2 , and b = dE(z,w)

dw

∣∣∣
w=0

.

Note that both H ∈ Rnr×nr and b ∈ Rnr

(where n is the number of frames in the in-
put sequence) are constant and can be precom-
puted. However, this matrix H is typically a large

and non-sparse matrix. Direct solvers, such as
Cholesky factorization, are ill-suited to solve such
a large and dense linear system. Iterative methods,
such as the Conjugate Gradient method, would not
fare any better as they involve matrix-vector mul-
tiplications, which are also quite computationally
expensive for dense matrices.

One of our contributions is to propose an effi-
cient approach to solve this problem through Con-
jugate Gradient method with the use of the adjoint
method. We first rewrite the product Hw, evalu-
ated repeatedly in the iterations of the Conjugate
Gradient method, using:

Hw =
dE(z, w)

dw
− b. (14)

As we show next, the gradient dE(z,w)
dw can be com-

puted efficiently using the adjoint method, leading
to a significant acceleration of each iteration of the
Conjugate Gradient process.

4.2 Adjoint Method
The adjoint method is a common technique in op-
timal control which has been widely used in com-
puter graphics [9, 28, 29]. We can use it in our
framework for a fast evaluation (through forward
and backward propagation) of the gradient of our
cost function—and thus of the matrix-vector mul-
tiplication Hw through Equation (14).

We proceed in two passes over the n frames of
the trajectory. First, the configuration offsets zi
are integrated forward in time according to Equa-
tion (7). We then proceed backwards from the last
configuration to generate a series of adjoint vectors
ri through:

rn−1 = ∂E(z, w)/∂zn−1

iteratively followed by

ri =

(
∂zi+1

∂zi

)T

ri+1 +
∂E(z, w)

∂zi
,

where

∂zi+1

∂zi
=

(
I − h

∂A(q)

∂q

∣∣∣∣
qi

)−1

,

and

∂E(z, w)

∂z
= CTPTP (Cz − zc).

Finally, at the end of the second pass, the gradient
of E with respect to w is obtained through:

dE(z, w)

dw
=

 hBT (∂z1∂z0
)T r1

...
hBT (∂zn

∂zn−1
)T rn

+RTRw,

Figure 2: The adjoint method is used to greatly ac-
celerate the (linear) CG process; in this
plot, the average time of calculating Hw
directly (shown in green) is compared to
the adjoint-based computation (shown in
blue) for a model with r = 32.

where the last term corresponds to the gradient of
the second term of Equation (11). As the matrix
∂zi+1/∂zi depends only on the input trajectory
and can thus be precomputed, these two passes de-
scribed above only involve products and sums of
small matrices and vectors, which is significantly
faster than assembling H explicitly and calculating
the matrix-vector product Hw (see Figure 2). This
adjoint method based evaluation is also more than
two orders of magnitude faster than a non-linear
approach (see Table 1), as it would involve addi-
tional computational costs to calculate the stiffness
matrices and to solve a series of linear systems.

5 Results
We implemented our approach and tested it on a
number of models.

Setup. The input of our approach is an elastic
object’s rest shape, its mass matrix M̃ , a model
for its internal forces f̃ , a time step size, and a se-
quence of vectors ũi ∈ R3N representing the dis-
placements ũi in full 3D space with respect to the
rest shape. In a preprocessing phase, we construct
the basis matrix W used for model reduction, then
project the input animation sequence into a series
of low-dimensional coordinates ui = WT M̃ũi.
Note that we compute W by applying mass-PCA
to all frames in the input sequence and the modal
derivatives at the rest shape as in [24]: the re-
duced coordinates still capture the input sequence
well, and express a rich set of deformations around
the input trajectory. In our experiments, 40 to 50
modes suffice to produce plausible results for the

20 modes 40 modes 50 modes

Figure 3: We apply the same position constraint
(red sphere) to frame 110 of an input se-
quence (in gray) with 151 frames. Snap-
shots of the resulting motion (in green)
at frame 110, 120 and 130 are shown
from top to bottom, with three different
numbers of modes. Plausible results are
typically obtained when using about 40
modes.

type of editing we tried (Figure 3).

Examples of Motion Editing. We first show the
interactive motion editing process of a dinosaur
animation generated by the physically-based inter-
polation approach of [9], as shown in Figure 4 and
the accompanying video. We edit the motion by
selecting a few nodes and dragging them to target
positions; the animation adjusts immediately and
accordingly. Because the left plant is small and
far away from the dinosaur, a relatively large edit
needs to be applied to make the dinosaur’s head
closer to the plant. However, as the linearization is
made around the input sequence, the result appears
artifact-free. To demonstrate that our approach
can work with large models, we also show the
motion editing process of a swinging rope bridge
with complex topology (see Figure 1). The in-
put animation from [24] uses 80 modes and ran-
dom impulses, but editing is done using only 40
modes. By specifying a few spatial and tempo-
ral constraints, we can significantly edit this ani-
mation, and the dynamics of the input sequence is
well preserved. As advocated in [1], we used the
L2 norm in the objective function (Equation (11))
to induce a smooth resulting motion, even when
the positional constraints are sparsely distributed
in space and time.

(a) frame 60 (b) frame 85

(c) frame 160 (d) frame 199

Figure 4: Since user-directed position control can
be (even partially) imposed in space and
time, we can intuitively modify an input
animation (gray) and make the head of
the dinosaur closer (green) to the flower
(resp., leaves) at frame 85 (resp., 199).

Performance. The performance statistics of the
examples discussed above are listed in Table 1. Ef-
ficiency is achieved thanks to the cumulative use
of dimension reduction, linearization around tra-
jectory, and the adjoint-based gradient evaluation.
During user manipulation, we use the output of
the previous motion edit as the initial value of the
optimal control problem, thus achieving interac-
tive editing since only a handful of iterations of
the Conjugate Gradient solve are needed. Even
for path control examples involving large amount
of position constraints and starting from the ini-
tial trajectory with w = 0, our system still can
still generate a plausible new animation sequence
in less than one second.

Comparisons. Figure 5 (see also the accompa-
nying video) illustrates the ability of preserving the
input behavior. After applying an edit on a sin-
gle frame in a simulated sequence, the result still
resembles the input animation as expected (upper
row). In order to compare our results to the in-
terpolation method of [9], we used several frames
from the input sequence and the edited one as key
frames for their approach; their interpolation re-
sult differs at times widely from the input (bottom
row). In this comparison, both methods use the
same reduction basis, time step, and elastic model.

Our approach also provides precise position

(a) frame 30 (b) frame 65 (c) frame 135

(d) frame 30 (e) frame 99 (f) frame 135

Figure 5: Our method (top row, in green) stays
closer to the input behavior (in yellow)
than the physically based interpolation
method of [9] (bottom row, in green).

control, which is especially useful to modify an
animation sequence to follow a prescribed path, as
shown in Figure 6(a, b). In this example, we sam-
ple points from the path of the tank toy every 20
frames, and vertically raise these points as posi-
tion constraints to control the head of the dinosaur.
In the result animation, the head of the dinosaur
follows the movement of the tank steadily and ac-
curately. The method [1] proposed by Barbič and
colleagues can be used for the same purpose. For
efficiency, their method linearizes the equations of
motion around the rest shape. Consequently, no-
ticeable artifacts appear when the result shape con-
tains large deformations: a small edit can lead to
typical linearization distortions if the edited shapes
happens to be far from the rest shape (Figure 6 (c)).
In order to reduce the artifacts introduced by the
linearization, they adopt a post-warping that will
no longer enforce the user-specified constraints.
As a result, the positions of the manipulated nodes
in the final animation may not matched the user’s
constraints, making the results unpredictable and
thus hard to edit (Figure 6 (d)). A realtime edit-
ing process for this comparison is shown in our
accompanying video.

6 Conclusion
We have proposed a novel method to interac-
tively edit an input animation of deformable ob-
jects through dimension reduction, linearization
around input trajectory, and the adjoint method.
Unlike previous methods, we can achieve simulta-
neously high efficiency, close preservation of input
dynamics, physical plausibility, and flexible po-
sition control. Our test results and comparisons

model #verts #nodes #elems #modes n forward pass backward pass total
linear nonlinear linear nonlinear (linear)

plant 2464 3737 10582 40 200 0.0019 0.2041 0.0016 0.2641 0.0229
bridge 17874 5629 15466 40 181 0.0016 0.1741 0.0014 0.2493 0.0309
dino 28098 1493 5249 50 200 0.0030 0.3893 0.0025 0.6278 0.0323
dino (path) 28098 1493 5249 50 400 0.0061 0.7879 0.0053 1.2613 0.4670

Table 1: Performance measured on a desktop PC with Intel Core i7-930, 8-core, 2.80 GHz, 4GB memory.
All timings are given in seconds. From left to right: number of triangle mesh vertices, tetrahedral
mesh nodes, elements, modes, and total frames of the animation, time for each forward pass
and backward pass in the adjoint method, and the total cost to solve our space-time optimization
problem.

(a) input (b) our result

(c) [1] unwarped (d) [1] warped

Figure 6: Our motion editing can make a dinosaur
animation sequence closely track the tra-
jectory (shown in green) of a tank toy.
Images (a), (b), (c), and (d) are snap-
shots at frame 230 of, respectively, the
input animation, our result, and the re-
sult of [1] without and with warping.

show that our simple method leads to intuitive mo-
tion editing that outperforms previous techniques.

Our choice of linearization around the input tra-
jectory produce plausible results for small to mod-
erately large edits, meeting most of the needs re-
quired to refine existing animations. However,
large-enough edits will indubitably lead to visually
noticeable artifacts, and can even introduce self-
collisions (see Figure 7). Note also that stability
issues may appear, in particular, if the tangent stiff-
ness matrices of the input sequence are not positive
definite: negative eigenvalues should be remedied
using , e.g., [31] or [32]. As future work, it may be
interesting to adopt the configuration-invariant lin-
earization scheme [10] or the adaptive dimension

Figure 7: Limitations: Large edits may introduce
self-collisions (e.g., for the plant) or no-
ticeable artifacts (e.g., for the bridge).

reduction [26] instead to make our approach even
more robust to large edits. In addition, our method
has the same limitation as most of the existing elas-
tic control techniques in that the associated equa-
tions of motion should be explicitly provided along
with the input animation sequence. Here again, it
may be interesting to use learning methods directly
from the input sequence.

Acknowledgements. The authors would like to thank
the reviewers for their valuable comments. This research
was partially supported by NSFC (No. 61210007), National
High Technology Research and Development (863) Program
of China (No.2012AA011503). MD was partially supported by
NSF grant CCF-1011944.

References
[1] Jernej Barbič, Funshing Sin, and Eitan Grinspun. Inter-

active editing of deformable simulations. ACM Transac-
tions on Graphics, 31(4), 2012.

[2] Michael Gleicher. Motion editing with spacetime con-
straints. In Symposium on Interactive 3D graphics, pages
139–149, 1997.

[3] Jovan Popovic, Steven Seitz, Michael Erdmann, Zoran
Popovic, and Andrew Witkin. Interactive manipulation
of rigid body simulations. In Proceedings of ACM SIG-
GRAPH, pages 209 – 218, 2000.

[4] Christopher D. Twigg and Doug L. James. Many-worlds
browsing for control of multibody dynamics. ACM Trans-
actions on Graphics, 26(3), 2007.

[5] Adrien Treuille, Antoine McNamara, Zoran Popović, and
Jos Stam. Keyframe control of smoke simulations. In
Proceedings of ACM SIGGRAPH, pages 716–723, 2003.

[6] Yootai Kim, Raghu Machiraju, and David Thompson.
Path-based control of smoke simulations. In Symposium
on Computer Animation, pages 33–42, 2006.

[7] Michael B. Nielsen and Robert Bridson. Guide shapes
for high resolution naturalistic liquid simulation. ACM
Transactions on Graphics, 30(4), 2011.

[8] Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Ei-
tan Grinspun. Tracks: toward directable thin shells. ACM
Transactions on Graphics, 26(3), 2007.

[9] Jernej Barbič, Marco da Silva, and Jovan Popović. De-
formable object animation using reduced optimal control.
ACM Transactions on Graphics, 28(3), 2009.

[10] Jin Huang, Yiying Tong, Kun Zhou, Hujun Bao, and
Mathieu Desbrun. Interactive shape interpolation through
controllable dynamic deformation. IEEE Transactions
on Visualization and Computer Graphics, 17:983–992,
2011.

[11] Klaus Hildebrandt, Christian Schulz, Christoph von Ty-
cowicz, and Konrad Polthier. Interactive spacetime con-
trol of deformable objects. ACM Transactions on Graph-
ics, 31(4), 2012.

[12] Ryo Kondo, Takashi Kanai, and Ken-ichi Anjyo. Di-
rectable animation of elastic objects. In Symposium on
Computer Animation, pages 127–134, 2005.

[13] Andrew Witkin and Michael Kass. Spacetime constraints.
In Proceedings of ACM SIGGRAPH, pages 159–168,
1988.

[14] Anthony C. Fang and Nancy S. Pollard. Efficient synthe-
sis of physically valid human motion. ACM Transactions
on Graphics, 22(3):417–426, 2003.

[15] Alla Safonova, Jessica K. Hodgins, and Nancy S. Pollard.
Synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. In Proceedings of
ACM SIGGRAPH, pages 514–521, 2004.

[16] Hongjun Jeon and Min-Hyung Choi. Interactive mo-
tion control of deformable objects using localized opti-
mal control. In Proceedings of ICRA, pages 2582–2587,
2007.

[17] Olaf Etzmuss, Michael Keckeisen, and Wolfgang
Strasser. A fast finite element solution for cloth mod-
elling. In Proceedings of the Pacific Graphics, pages 244
– 251, 2003.

[18] Matthias Müller and Markus Gross. Interactive virtual
materials. In Proceedings of Graphics Interface, pages
239–246, 2004.

[19] Matthias Müller, Julie Dorsey, Leonard McMillan,
Robert Jagnow, and Barbara Cutler. Stable real-time
deformations. In Symposium on Computer Animation,
pages 49–54, 2002.

[20] Min Gyu Choi and Hyeong-Seok Ko. Modal warping:
Real-time simulation of large rotational deformation and
manipulation. IEEE Transactions Vis. Computer Graph-
ics, 11(1):91–101, 2005.

[21] Jernej Barbič and Jovan Popović. Real-time control of
physically based simulations using gentle forces. ACM
Transactions Graphics, 27(5):163:1–163:10, 2008.

[22] Alex Pentland and John Williams. Good vibrations:
modal dynamics for graphics and animation. Proceed-
ings of ACM SIGGRAPH, 23(3):207–214, 1989.

[23] Kris K. Hauser, Chen Shen, and James F. OBrien. Inter-
active deformation using modal analysis with constraints.
In Proceedings of Graphics Interface, volume 3, pages
16–17, 2003.

[24] Jernej Barbič and Doug L. James. Real-time sub-
space integration for St. Venant-Kirchhoff deformable
models. ACM Transactions on Graphics (SIGGRAPH),
24(3):982–990, 2005.

[25] Min Gyu Choi and Hyeong-Seok Ko. Modal warping:
Real-time simulation of large rotational deformation and
manipulation. IEEE Transactions on Visualization and
Computer Graphics, 11(1):91–101, 2005.

[26] Theodore Kim and Doug L. James. Skipping steps in
deformable simulation with online model reduction. In
Proceedings of ACM SIGGRAPH Asia, 2009.

[27] Jacques Louis Lions. Optimal control of systems gov-
erned by partial differential equations. 1971.

[28] Antoine McNamara, Adrien Treuille, Zoran Popović, and
Jos Stam. Fluid control using the adjoint method. ACM
Transactions on Graphics, 23(3):449–456, 2004.

[29] Chris Wojtan, Peter J. Mucha, and Greg Turk. Keyframe
control of complex particle systems using the adjoint
method. In Symposium on Computer Animation, pages
15–23, 2006.

[30] David Baraff and Andrew Witkin. Large steps in cloth
simulation. In Proceedings of ACM SIGGRAPH, pages
43–54, 1998.

[31] Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and
Ronald Fedkiw. Robust quasistatic finite elements and
flesh simulation. In Symposium on Computer Animation,
pages 181–190, 2005.

[32] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark
Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios
Sifakis. Efficient elasticity for character skinning with
contact and collisions. ACM Transactions on Graphics,
30(4):37:1–37:12, 2011.

