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Figure 1: From an input sequence (bottom) of a standing T. rex simulated via a Saint Venant-Kirchhoff deformation model, we edit the input
motion with 27 space-time constraints to make the dinosaur squat & jump while trying to catch the small plane flying around it (top).

Abstract

We present a novel method for elastic animation editing with space-
time constraints. In a sharp departure from previous approaches,
we not only optimize control forces added to a linearized dynamic
model, but also optimize material properties to better match user
constraints and provide plausible and consistent motion. Our ap-
proach achieves efficiency and scalability by performing all com-
putations in a reduced rotation-strain (RS) space constructed with
both cubature and geometric reduction, leading to two orders of
magnitude improvement over the original RS method. We demon-
strate the utility and versatility of our method in various applica-
tions, including motion editing, pose interpolation, and estimation
of material parameters from existing animation sequences.
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1 Introduction

Providing efficient control of elastic simulation has received con-
siderable attention in recent years: be it for interpolation between
poses or editing of existing animation sequences through position
constraints, one always seeks a plausible motion requiring the least
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amount of non-physical control forces to match the input poses
and/or spatial constraints in time. However, most current meth-
ods assume a fixed elastic material (with given mass, stiffness, and
damping matrices) during the optimization of control forces, which
may not be appropriate for, or compatible with, the type of position
constraints that the user imposes. Large edits may create unduly
large control forces, and thus unrealistic motion at and around the
constraints. Moreover, unavoidably large control forces may also
affect the dynamics long before or after the edit in the animation se-
quence. In this paper, we improve upon motion editing approaches
by incorporating material optimization within the formulation of a
constrained optimal control problem.

The need for efficiency and scalability in motion editing dictates
the use of reduced dynamics, while robustness to large deforma-
tion forces requires non-linear coordinates. Our approach achieves
both efficiency and robustness by expressing shape deformation in
a reduced rotation-strain space, obtained via geometric reduction
and a cubature scheme. The dynamics in this representation can
be encoded through a small number of non-linear modes and pose-
independent material parameters, which are optimized to reduce the
amount of control forces needed to match user-defined constraints.
Typical artifacts of linear reduction are thus removed, while shape
reconstruction is performed over two orders of magnitude faster
than in previous non-linear methods.

1.1 Related Work

Physically-based simulation can generate exquisitely complex an-
imation sequences, but fine-tuning the resulting motion requires a
trial-and-error process involving time-consuming parameter tweak-
ing. Early efforts in animation control mainly focused on character
animation [Gleicher 1997], rigid body simulation [Popovic et al.
2000; Twigg and James 2007], and fluid simulation [Treuille et al.
2003; Kim et al. 2006; Nielsen and Bridson 2011]. Recently, a
number of methods has been proposed to control elastic object ani-
mation as it represents a challenge in both geometry processing and
animation. While pose (or keyframe) interpolation has been shown
a useful tool [Barbič et al. 2009; Huang et al. 2011; Hildebrandt
et al. 2012], the framework of space-time constraints [Witkin and
Kass 1988; Fang and Pollard 2003; Safonova et al. 2004; Jeon and
Choi 2007; Barbič et al. 2012; Li et al. 2013] offers a more general
approach to intuitively edit an input sequence: editing is cast as a
constrained optimal control problem, in which one solves for the
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least amount of non-physical forces needed to satisfy user-defined
constraints in space and time.

Linearization and reduction of full-blown elasticity models are nec-
essary tools to enforce tractability. In particular, modal analy-
sis [Pentland and Williams 1989; Hauser et al. 2003] was proposed
to reduce the dynamics to only a few modes, computed through
eigen analysis of the (constant) mass and stiffness matrices of the
elastic object. However, such linear approximations are notoriously
inadequate for large deformation. This issue was circumvented in
the context of pose interpolation by either applying linearization
around the keyframes [Hildebrandt et al. 2012] or introducing a
Rotation-Strain (RS) space [Huang et al. 2011]; alas, these solu-
tions do not address the general case of space-time and partial po-
sitional constraints. Still, some alternatives were proposed: Barbič
et al. [2012] used [Huang et al. 2011] in a post-warping step, at
the cost of violating position constraints; linearizing the equation
of motion around the input trajectory [Barbič and Popović 2008; Li
et al. 2013] often achieves tighter position constraints, but artifacts
still appear when large motion editing is performed.

In addition to the limitations mentioned above, we point out that
most previous work considers material parameters and eigenmodes
fixed in their optimization of control forces. This choice can
severely affects the overall dynamics of the edited sequence, partic-
ularly when significant changes to the input sequence are required.
Stiffness and damping were successfully optimized in [Huang et al.
2011], but restricted to a small number of prescribed modes and
key frame interpolation only. Recently, material optimization was
applied to fabrication and 3D printing [Bickel et al. 2009; Bickel
et al. 2010; Martin et al. 2011], but not with the goal of minimiz-
ing non-physical forces. The work of [Coros et al. 2012] also used
material optimization in order to adapt rest shapes and then control
the motion style of deformable characters, but without space-time
constraints.

1.2 Contributions and Overview

In this paper, we present a new approach to space-time motion edit-
ing of elastic objects through material optimization. Our technique
offers interactive manipulation of animation sequences that main-
tains the input dynamic behavior while ensuring physical plausibil-
ity of the edited sequence. We demonstrate that our formulation
gives the user tight control over positions with much smaller forces
compared to previous work, and no visual artifacts even for large
deformation. Our approach can also be used to recover material
properties from existing animation sequences.

At the core of our approach are three key ingredients. First, we
adopt the modal Rotation-Strain (RS) space introduced in [Huang
et al. 2011] to “diagonalize” the equation of motion and provide
robustness to large deformation. Second, we construct a novel
reduced RS space based on geometric reduction and cubature to
significantly speed up the reconstruction of 3D coordinates from
modal RS coordinates. And finally, we allow intuitive space-time
editing of elastic animation by not only minimizing the magnitude
of the control forces required to fit user-defined constraints, but also
through an optimization of the modes, frequencies, and damping to
use for the final animation—which amounts to an optimization of
the object’s material coefficients.

2 Background

We begin by reviewing two crucial components that our method
builds upon: modal analysis and rotation-strain coordinates.

2.1 Modal analysis

The linearized equation of motion for an elastic object with rest
shape ū is

M̃ü+ D̃u̇+K̃u = f̃ext(t), (1)

where u∈R3n represents the displacements from ū of all n nodes
of the discrete representation of the object,M̃,K̃,D̃∈R3n×3nare the
mass, stiffness, and damping matrices respectively, and f̃ext(t) is
the external force at time t. The shape of the elastic object in time
is reconstructed as ū+ u(t).

Modal analysis builds a reduced space for this motion equation by
making use of the solutions of the general eigenvalue problem

K̃φ = λM̃φ. (2)

By assembling the smallest r eigenvalues in a diagonal matrix
Λ = diag(λ1, ..., λr) and stacking their associated eigenvectors in
a matrix W = (φ1, ..., φr), one can rewrite Eq. (1) in this modal
subspace as a set of r equations:

z̈ +Dż + Λz = f(t), (3)

where z∈Rr stores the displacements in modal coordinates (repre-
senting the magnitudes in time of the eigenmodes), and f(t) =

WT f̃ext(t) represents the external forces in modal coordinates.
One can then convert modal coordinates back into 3D coordinates
by simply evaluating

u = Wz. (4)

Observe that Eq. (1) assumes a displacement from a fixed rest shape
ū. However, the same equation and modal analysis can be applied
more generally for any animation sequence. When editing an exist-
ing sequence ū(t), for instance, we seek an offset u(t) that makes
the final animation ū(t)+u(t) satisfy user-specified space-time con-
straints through the least amount of control forces [Barbič et al.
2012; Li et al. 2013]. In the case of keyframe interpolation, we
instead set ū as a rest shape and consider it constant in time.

2.2 Rotation-Strain coordinates

The linear reconstruction from modal coordinates to Euclidean co-
ordinates in Eq. (4) is notoriously inadequate for large deforma-
tion. While the use of modal warping [Choi and Ko 2005] par-
tially remedies this issue, the introduction of rotation-strain (RS)
coordinates [Huang et al. 2011] as an intermediary representation
was shown to be the most robust approach to reconstruct plausible
shapes (see Fig. 2 for a side-by-side comparison).

RS coordinates are formed by a pair of 3×3 matrices ye≡(yθe , y
s
e)

per element e in the set of tetrahedra T of the input model, where
yθe is an antisymmetric matrix representing angular velocity and
yse is a symmetric matrix representing the Biot strain. As detailed
in [Huang et al. 2011], the vector y of RS coordinates is constructed
as the antisymmetric and symmetric parts of the deformation gra-
dient Gu associated to the displacement u, where G is a discrete
gradient operator defined on the rest shape. We can thus concisely
express the map from u to y as a linear system y=Qu with sparse
matrix Q. Conversely, RS coordinates y are mapped back to dis-
placements u in two steps: we first transform each RS coordinate
ye into a deformation gradient g(ye) via the exponential map:

g(ye) = exp(yθe)(I + yse)− I, (5)

and then we recover the displacement u by solving a Poisson re-
construction problem:

min
u

∑
e∈T

Ve‖(Gu)e − g(ye)‖2F , (6)



where Ve is the volume of tetrahedron e at rest, and ‖ ·‖F is the
Frobenius norm. The solution of this quadratic minimization is
found via a sparse linear system of the form:

Au = GTV g(y), (7)

where A=GTV G is a Laplacian-like, constant, and sparse matrix
(thus prefactorizable) obtained from the second derivatives of the
objective function, V is a diagonal matrix with the volume Ve of
each tetrahedron e repeated 9 times, and g∈R9|T | is the row con-
catenation of the deformation gradient matrices {g(ye)}. Observe
that the recovery of 3D displacements u from the RS coordinates y
via the exponential map matches their linear relationship (y=Qu)
for small deformation [Huang et al. 2011]. Moreover, Eq. (7) needs
at least one constrained node (or a regularization term) in order to
remove the kernel of A. When several nodes are constrained, one
can further simplify Eq. (7) by eliminating their corresponding rows
and columns in A, G, and V .

2.3 Modal Rotation-Strain coordinates

The work of [Huang et al. 2011] also proposed to combine modal
analysis and RS coordinates by projecting the r bases φi in W into
RS coordinates through the matrix Q. We can thus relate modal
coordinates z to RS coordinates y via

y = QWz. (8)

Note that, by sequentially applying Eqs. (8), (5) and (7), the dis-
placement vector u is now reconstructed from the RS coordinates
induced by modal coordinates z. This hybrid approach thus offers
the benefits of both modal analysis and RS coordinates: while the
former diagonalizes the equation of motion (Eq. (3)), the latter is
robust to large deformation. We refer to z in Eq. (8) as the modal
RS coordinates hereafter.
robust to large deformation. We refer to
RS coordinates hereafter.
robust to large deformation. We refer to z in Eq. (8) as the modalrobust to large deformation. We refer to
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Figure 2: Shape reconstruction from a rest shape ū (center) and
modal coordinates z using different methods. Top left: with linear
modes. Top right: with modal warping. Bottom left: with the origi-
nal RS method [Huang et al. 2011]. Bottom right: with our reduced
RS method.

3 Reduced RS method

While modal RS coordinates are robust to large deformation, they
require a global linear solve (namely, Eq. (7)) to reconstruct the 3D
coordinates of a shape. This computational cost is an impediment

to the formulation of a constrained optimal control problem that re-
lies on local evaluations of u and z. As our first contribution, we
introduce a reduced RS method to dramatically improve the per-
formance of the shape reconstruction from modal RS coordinates,
and thus make our optimal control problem easier to solve for. We
propose to approximate displacements u based on a combination of
geometric reduction and a cubature scheme as we describe next.

3.1 Geometric reduction

The core idea of geometric reduction is to project the space of
displacements u to a smaller set by exploring geometric correla-
tions in the input shapes. We thus introduce an orthogonal matrix
B ∈ R3n×h (i.e., BTB = I), and approximate u in a subspace of
dimension h (with h�3n) via

u = Bq, (9)

where q ∈ Rh represents the reduced geometric coordinates. Re-
placing Eq. (9) into Eq. (7) and multiplying both sides by BT as
suggested in [Stanton et al. 2013] yields

BTABq = BTGTV g, (10)

where A, G and V remain unchanged from Section 2.3. Using the
constant matrix P = (BTAB)−1BTGTV , the reduced geometric
coordinates are expressed as:

q = Pg =
∑
e∈T

Pege, (11)

where Pe∈Rh×9 is the submatrix in P for each tetrahedron e. Note
that this geometric reduction now allows us to quickly and locally
evaluate the 3D position of a node: picking rows 3k, (3k+1), and
(3k+2) of B and multiplying by q return the 3D coordinates uk

of the kth node. It also bears pointing out that the matrices B and
W play distinct roles in our reduced RS representation: while B is
a purely geometric transformation to accelerate computations, the
matrix W is used to diagonalize the equation of motion in RS space.

The construction of the matrix B is performed only once in a pre-
computation stage, and it can be based on any geometry processing
approach that effectively captures the input shape and its possible
deformation. In our implementation, we settled on modal deriva-
tives [Barbič and James 2005] using the leading 30 modes, uniform
density, Young’s modulus, and Poisson’s ratio. When an input se-
quence is available (e.g., for animation editing or material recov-
ery), the matrix B can be enriched through Principal Component
Analysis. The method in [von Tycowicz et al. 2013] can also be
used to speed up the initialization of B.

3.2 Cubature

Geometric reduction significantly speeds up the Poisson reconstruc-
tion needed to convert RS coordinates y to 3D coordinates u. How-
ever, the evaluation of the RS coordinates for all the tetrahedron
elements is still required. We propose to further reduce computa-
tions through a cubature scheme in RS space. Given a set Tcub of
cubature sample tetrahedra (with |Tcub|�|T |) and their associated
cubature weights {ωe}e∈Tcub , we approximate q via:

q ≈
∑

e∈Tcub

ωePege � ωcP cgc, (12)

where ωc, P c, gc are matrices assembled from {ωe, Pe, ge}e∈Tcub ,
respectively. With this cubature approximation, only the RS coor-
dinates yc of the tetrahedra in the cubature set Tcub are required:

yc = (QW )cz, (13)



where (QW )c is formed by rows of QW in Eq. (8) associated to
the elements in Tcub. This approach is, in practice, more than three
hundred times faster than solving u through the global linear system
in Eq. (7), with little to no visual impact as illustrated in Fig. 2.

We precompute the cubature elements and their weights based on a
training data of the form {(zs, us)}s=1..Nt . Following the method
in [An et al. 2008], we use a greedy approach to select cubature
samples and optimize weights via a non-negative least squares min-
imization of the fitting error:

Nt∑
s=1

∥∥∥∥ 1

‖us‖
(us −B ωcP cg((QW )czs))

∥∥∥∥2

. (14)

Notice that this minimization can be further simplified by em-
ploying the geometric reduction presented in Section 3.1. To this
end, we approximate us≈Bqs by setting qs as the minimizer of
‖Bqs−us‖2, which leads to qs =BTus since BTB = I , so that
Eq. (14) reduces to:

Nt∑
s=1

∥∥∥∥ 1

‖qs‖
(qs − ωcP cg((QW )czs))

∥∥∥∥2

. (15)
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Figure 3: Diagram illustrating different approaches for the recon-
struction of 3D coordinates. The expression after each colon indi-
cates the dimension of its associated element listed before the colon.

3.3 Summary

We summarize in Fig. 3 all the components involved in our reduced
RS method that transforms modal RS coordinates to Euclidean co-
ordinates. Matrices and equations (along with their dimensions)
used to map between RS, deformation gradient, and Euclidean co-
ordinates are labeled for clarity. While the original RS method re-

quires solving a large sparse system (red arrow) to go from defor-
mation gradients to Euclidean space, we bypass this step via geo-
metric reduction using only matrix multiplications of size h (green
arrows). Our cubature scheme further accelerates this procedure by
only evaluating RS coordinates and deformation gradients on |Tcub|
cubature tetrahedra (blue arrows). All computations in our reduced
RS method are thus performed in low dimensional spaces (of di-
mensions r, |Tcub|, and h), except for the final reconstruction that
requires a multiplication by B to convert to 3D coordinates.

4 Material optimization

Equipped with our reduced RS space, we now introduce our ap-
proach to motion editing though optimal control of both modal RS
coordinates and material properties.

4.1 Rationale

Finding the “most physical motion” satisfying a series of space-
time constraints can be abstracted into an optimal control formu-
lation, where one looks for the modal RS coordinates z that mini-
mizes the amount of external forces needed to match user-defined
position constraints. This assumes an a-priori stiffness matrix K̃
and a mass matrix M̃, which define the elastic object’s behavior.
However, pre-assigned material properties may degrade the result-
ing motion when the user imposes large deformation that are in-
compatible with this choice of material parameters. Instead, we
propose to optimize not only the modal RS coordinates z, but also
the modal bases W , frequencies Λ, and damping D used for the
animation sequence. Assuming that Λ = diag(λ1, · · · , λr) and
D = diag(d1, · · · , dr) are both diagonal matrices, we formulate
our optimal control problem as follows:

arg min
z,Λ,D,W

Ef (z,Λ, D) + γEc(W, z)

subject to λk, dk ≥ 0 ∀k ∈ [1, r],
(16)

where Ef measures the amount of external forces required to gen-
erate the motion, and Ec measures how closely the user-specified
space-time constraints should be met in R3, i.e.,

Ef (z,Λ, D) =
1

2

N−1∑
i=2

‖z̈i +Dżi + Λzi‖22, (17a)

Ec(W, z) =
1

2

∑
(i,j)∈C

‖uij(W, zi)− ûij‖22. (17b)

In these energies, finite differences in time are used to express
z̈i = zi+1−2zi+zi−1 and żi = zi+1−zi, N is the total number
of frames, and ûij denotes the specified target displacements (with
respect to the input sequence ū) for node j at time i, while C de-
notes the set of user-defined constraints (i, j). The parameter γ can
be used to offer loose or strong enforcement of constraints; we typ-
ically used γ = 10−6 for motion editing via position constraints,
and γ = 1.0 for key pose interpolation and material parameter re-
covery. Note that enforcing positive coefficients {λk} and {dk} is
necessary to ensure proper physical behavior, as the λk’s represent
squared natural frequencies, while the damping factors dk’s should
never introduce energy to the system.

4.2 Material bases sampling

An obvious hurdle in the above formulation is that it now requires
an optimization with respect to a dense 3n×r matrix W , which
is very costly. We reduce complexity by, instead, picking W to be
an arbitrary (but small) subspace of modes: while the traditional



W for modal analysis is composed of the first r eigenvectors of
Eq. (2) (corresponding to the smallest eigenvalues λk), we choose
W to be a r-dimensional subspace formed by a linear combination
of a larger set of R > r modes. More concretely, we precompute a
matrixŴwhose columns are the firstR eigenvectors of the general-
ized eigenvalue problem in Eq. (2) (corresponding to theR smallest
eigenvalues λk), and restrict W to be of the form:

W =ŴS, (18)

where the “sampling” matrix S of size R× r adds new degrees
of freedom in our solver. This parameterization of W renders the
optimal control problem much more tractable, while still only dis-
carding the modes corresponding to the highest frequencies of the
original elastic model. The stiffness and damping matrices (respec-
tively, Λ andD) are still assumed to be diagonal, with their diagonal
elements now being unknowns to be optimized.

4.3 Material bases optimization

Given our choice of material bases, our optimization problem is
finally formulated as a function of z, Λ, D, and S through

arg min
z,Λ,D,S

Ef (z,Λ, D) + γEc(ŴS, z) + µEs(S)

subject to λk, dk ≥ 0 ∀k ∈ [1, r],

(19)

where the regularization term

Es(S) = ‖diag(STS)− 1r×1‖22, (20)

is used to eliminate the trivial solution z → 0, ‖S‖2 → +∞. We
set µ = 10−8 in all our experiments, but results are similar for a
large range of regularization parameters as demonstrated in Fig. 4.
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Figure 4: From left to right: the results of the flower exam-
ple with modal RS coordinates zk(t) (k = 1...7) and µ =
10−10, 10−8, 10−6, respectively, are visually indistinguishable as
the low frequencies remain very similar across changes of µ span-
ning several orders of magnitude.

5 Optimal control solver

We now delve into the algorithmic details to solve for our con-
strained optimal control formulation in Eq. (19).

5.1 Approach

We adopt an iterative scheme to efficiently compute an optimal mo-
tion. We optimize the variables one by one, keeping the others fixed
to leverage the quadratic nature of most terms in Eq. (19):

• Fix Λ = Λ(n), D = D(n), S = S(n), optimize z(n+1);
• Fix z = z(n+1), S = S(n), optimize Λ(n+1), D(n+1);
• Fix z = z(n+1),Λ = Λ(n+1), D = D(n+1), optimize S(n+1).

5.2 Initialization

We initialize modal RS coordinates with z(0) = 0, the material
basis matrix with S(0) = (Ir×r, 0)T (corresponding to the usual
choice of W using the r smallest eigenvalues), and a damping ma-
trix D(0) =0. To provide a reasonable initial value for the stiffness
matrix Λ(0), we exploit the property that the natural frequency of a
motion is linearly proportional to

√
λ for low damping motion. We

thus uniformly scale the eigenvalues from the general eigenprob-
lem to fix time scale such that the first non-zero eigenvalue is at
(2π/L)2, where L is the user-defined period (in number of frames)
of the most significant mode present in the motion. In order to favor
smoother deformation, we also recommend to scale each column of
the modal basis matrixŴ by the inverse square root of each of their
associated eigenvalue λ from Eq. (2). Other adjustments of Ŵ could
also be used based on user-specific requirements.

5.3 Optimization of z

We use a Quasi-Newton method to optimize z based on an approx-
imated Hessian evaluated as

Hz = Hf,z + γJTz Jz, (21)

where

Hf,z =
∂2Ef
∂2z

and Jz =
∂uC

∂z
. (22)

with uC as the vector containing all node displacements uij(ŴS, z)
in Eq.(17b) related to the user-defined constraints—see Appendix A
for closed-form expressions of Jz . Note that the computational cost
involved in evaluating Jz depends on the number of constrained
nodes, but Hf,z does not. We used CHOLMOD [Chen et al. 2008]
to solve for these Newton’s steps in our implementation.

5.4 Optimization of Λ, D

Since we keep z and S fixed, Ef (Λ, D) is a quadratic function of
stiffness Λ and damping D. We thus update stiffness coefficients
λk (resp., damping coefficients dk) by directly solving a diagonal
r×r linear system involving the modal RS coordinates z (resp., their
time derivatives ż). If some of the resulting stiffness or damping
values become negative, we simply set them to zero to enforce the
conditions λk ≥ 0 and dk ≥ 0.

5.5 Optimization of S

Given that the Hessian of Ec with respect to S is dense, we choose
a Hessian-free optimization for this step, using the implementation
of [Bochkanov] of the L-BFGS method [Byrd et al. 1995]. We
find that this approach performs systematically better than New-
ton’s method. In all our experiments, we start with the current
sampling matrix S(n), from which a maximum of 50 iterations is
sufficient to get satisfactory results.

6 Results

We demonstrate next how one can use our approach to handle a
variety of applications related to motion editing.

6.1 Space-time constrained animation editing

A first application of our method is to edit an existing animation
sequence by allowing the user to interactively select position con-
straints in order to change the motion. From the input sequence
given as positions ū(t) of nodes in time, one could find an optimal



offset u(t) to the input sequence that satisfies user-specified con-
straints as in [Barbič et al. 2012; Li et al. 2013] with least control
force, and reconstruct the shape through ū(t)+u(t). However, such
a linearized scheme leads to significant artifacts if large offsets are
needed, and even the use of post-warping [Barbič et al. 2012] to
mitigate these effects often incurs violation of position constraints.
Instead, RS coordinates offer dramatic improvement to the editing
process even for constraints involving large offsets. We first con-
vert the initial sequence ū into its RS vector ȳ containing the RS
coordinates ȳe of each cubature tetrahedron e ∈ Tcub of the model
through the sequence. We then optimize our optimal control formu-
lation in Eq. (19) in reduced RS space, set the final RS coordinates
to ye = ȳe+(Q(ŴS))ez, and finally reconstruct the displacement
u as described in Section 3.

Fig. 5 shows a comparison of our methods versus [Barbič et al.
2012]. We use as input a steady animation in which each frame is
the rest shape of a flower, with properly scaled uniform material
parameters. The resulting sequence is constrained to have one of its
nodes following a prescribed trajectory, and to match the rest pose
at the beginning and the end of the sequence. As expected, our
resulting animation (even without material optimization) displays a
circular motion that matches the imposed spatial constraints (right
column). For constraints that are quite near to the rest shape (top
row), the method of [Barbič et al. 2012] with 200 modes is able to
provide low distortion shapes through post-warping. Instead, our
method with 30 modes matches even extreme constraints (bottom
row) and induces a plausible and smooth motion.

[Barbič et al. 2012] Ours

Figure 5: Animation editing for the animation sequence of a flower.
The spatially-constrained node is in red (at the top of the flower),
while the other markers indicate user-prescribed space-time con-
straints applied to this node. The rest position of the flower is
shown, as well as its shape at the time corresponding to the spa-
tial constraint associated with the circled light-blue marker. Top
row: 5 constraints (uniformly distributed from frame 20 to 100) are
applied to a 200-frame sequence. Bottom row: 20 constraints are
applied from frame 30 to 125 in a 380-frame sequence.

For an input animation containing more complex motions, [Li
et al. 2013] improves upon [Barbič et al. 2012] by linearizing the
equation of motion around the input sequence. However, large
amounts of distortion are visible if significant editing is performed,
as in Fig. 6. In this example, we use an input sequence generated via

[Li et al. 2013] Ours

Figure 6: Comparison of our method to [Li et al. 2013]. A simu-
lation sequence (in green) is edited by constraining the node in red
to the blue marker. Our results preserve the shape better.

a full simulation of a flower using a Saint Venant-Kirchhoff model
with external forces and uniform material assignment. We do not
apply the material optimization in this result to demonstrate the ad-
vantage of solely using our reduced RS method. For this example,
our method took 0.017s, while the approach of [Li et al. 2013] (us-
ing 30 modes too) took 0.19s to solve.
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We provide an additional
comparison in Fig. 7 for the
flower model to highlight
the importance of our mate-
rial optimization approach.
If material parameters in-
duced from modal analysis
are used, the control forces
required to match the constraints are large (red curve in the inset).
As a consequence, the flower abruptly changes behavior before and
after the period of time containing position constraints. Material
optimization is able to significantly reduce the magnitude of con-
trol forces (blue curve in the inset), and makes the flower keep its
circular motion for a while before restoring the rest shape, which is
expected due to angular momentum.

Finally, we present two complex examples of animation editing (see
resulting animations in the supplemental video). In Fig. 1, a T.
rex model is simulated by lifting its feet up and down to create a
base sequence. This sequence motion is then altered via 27 space-
time constraints in order to make the dinosaur jump trying to catch
a plane circling around it. In Fig. 14, we produce a skateboard
animation for the dinosaur by applying both partial and keyframe
space-time constraints.

6.2 Keyframe interpolation

Interpolation between poses of a mesh can also be achieved effi-
ciently with our method. While one could simply constrain all
vertices of the mesh at their keyframe positions to achieve such
a special case of space-time constraints, this would incur a non-
negligible computational cost. One could instead only constrain
cubature sample tetrahedra to achieve pose interpolation at much
reduced cost. We propose an even faster approach by directly trans-
forming, via Ŵ , the key poses {ūi} into their modal RS coordinates
{z̄i}: given a keyframe ūi, we first evaluate the RS coordinates
ȳc
i of all the cubature tetrahedra, then compute z̄i = ((QŴ )c)†ȳc

i

where (·)† denotes the pseudo-inverse operator. Our optimal con-
trol approach can now use a RS version ERS

c of the penalty energy



frame 125 frame 155 frame 175

Figure 7: Path control through position constraints, with (top) and
without (bottom) material optimization. The constrained node is in
red, frame 125 has a constraint indicated by the circled blue dot,
while the other two frames are free of constraints.

in Eq. (17b) to reduce complexity, with

ERS
c (S, z) =

1

2

∑
i

‖Szi − z̄i‖22. (23)

This interpolation in RS space is similar to [Huang et al. 2011],
with the important difference that bases are now optimized via S.

We demonstrate the efficiency of this method in Fig. 8 for a bird
mesh. By setting three poses as constraints (at the 10th, 20th and
30th frames) and fixing the first two and last two frames to be the
bird’s rest shape (to enforce zero velocity at each end of the se-
quence), a smooth interpolation through these keyframes is created.
Notice that our material optimization results in a symmetric flap-
ping of the wings as expected. In contrast, no material optimization
leads to spurious, asymmetric artifacts due to the fact that the volu-
metric embedding mesh is not exactly symmetric.

(a) (b) (c)

Figure 8: (a) Key poses are selected at frames 10 and 30 (same
purple pose) and 20 (green pose). (b) Our approach with mate-
rial optimization results in the expected flapping of the wings. (c)
Instead, the same method without material optimization develops
asymmetric behavior.

6.3 Recovering material parameters

For a given sequence of shape deformation, our material optimiza-
tion method is also able to recover approximated elastic material pa-
rameters. We demonstrate this material parameter estimation in two
sequences generated by the simulation of Saint Venant-Kirchhoff
models with non-uniform material (Fig. 9). For the beam model,
we fix one of its ends and apply external forces at the first 30 frames
to make it vibrate up and down. For the dinosaur example, we fix
the feet and start the simulations with a deformed shape, zero initial
velocity, and no external forces. Note that our material parameter
recovery can also be applied to captured data.

Young’s modulus density Young’s modulus

Figure 9: Pseudocolors indicating non-uniform material parame-
ters used in our experiments. The Poisson’s ratio is constant for
both models (ν =0.45), and the density of the beam model is uni-
form (ρ=100kg/m3).

In both examples, we use the first N =150 frames (out of 300) in
our material optimization. We first perform modal RS analysis as
in Section 2.3 to map the input sequence {ū(i)}i=1..N into initial
modal RS coordinates {z̄k(i)} for mode k at frame i with a generic
material of constant Young’s modulusE=1N/m2, Poisson’s ratio
ν=0.45, and mass ρ = 1kg/m3. We then use frequency analy-
sis to initialize our material optimization: we convert the sequence
of modal RS coordinates z̄k(i) for each mode k into its frequency
spectrum z̃k(p) via FFT, where p is the frequency index, evaluate
the significance of mode k by computing the energy of its spectrum

ηk =
N∑

p=1

z̃k(p)
2,

and then compute the most significant natural frequency from the
maximum of the spectrum

ξk = 2π
(
argmaxp{z̃k(p)} − 1

)
/N .

We select the most significant dynamic mode in the input sequence
m=argmaxk{ηk}, and finally scale the eigenvalues of the initial
matrix Λ to enforce λm=ξ2m before using them as the initial value
Λ(0) of our material optimization.

To evaluate the results of our material parameter recovery, we use
the 150th frame of the input sequence as initial condition, and sim-
ulate the animation with our reduced RS method and compare it
with the rest of the input simulation. As shown in Fig. 10, using the
material properties recovered from our method, the simulation re-
sult matches the remainder of the initial sequence better than using
the initial matrices Λ = Λ(0), D = D(0), S = S(0).

Figure 10: Our material optimization can extrapolate the dynamics
of an input sequence: from a 300-frame physically-based simula-
tion, the last frame (left) of the sequence is well approximated (cen-
ter) if material optimization is performed using only the first half of
the original sequence and the resulting material bases in reduced
RS space are used to simulate the second half of the animation.
Without material optimization, the non-uniformity of Young’s mod-
ulus in this model leads to erroneous dynamics as evidenced by the
last frame of an extrapolated sequence (right).



For the beam model with non-uniform material properties, the
modal RS coordinates show rapid changes of frequency and damp-
ing if no material optimization is performed, since the control forces
steer the object towards matching the constraints in space and time
(Fig. 11). Simply optimizing Λ and D is unsatisfactory as well,
especially when a small number of the modes are used (top row
in Fig. 12). However, material optimization dramatically improves
the results, demonstrating that the added degrees of freedom offered
by S are successfully leveraged by our solver.
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Figure 11: Without material optimization (left), the behavior of the
beam shown in Fig. 12 using reduced coordinates zk(t) (k=1...7
in this plot) changes drastically as soon as we remove all con-
straints (frame 150 and beyond). Results with material optimiza-
tion (right) produce frequency and damping quite similar to the real
simulation.

Figure 12: From left to right: material parameter recovery by opti-
mizing only (z), or (z,Λ, D), or the complete set (z, S,Λ, D). The
top row uses only 2 modes, while the bottom row uses 10 modes.
The green bar represents the ground truth shape.

Finally, Fig. 13 provides another insight on how crucial our op-
timization of S to select bases from Ŵ is to minimizing control
forces and improving position constraint enforcement. Note that if
a larger number of modes is allowed, the benefit of our sampling
matrix S becomes less pronounced, because modes may now be-
come redundant as they can represent similar stiffness and damping
coefficients (Fig. 11).

6.4 Performance

We demonstrate the efficiency of our approach by providing the
convergence plots of our optimization for the flower and dinosaur
examples in Fig. 15. In these plots, we count as one inner iteration
each step of Newton’s method (for z), each solve of a quadratic
optimization for Λ and D, and each iteration of L-BFGS for S. An
outer iteration is the sequence of inner iterations corresponding to
one round of optimization for z, Λ, D and S. The total energy in
our optimization converges quickly and reliably in both examples
as we perform our iterative method described in Section 5. These
two examples are representative of all the examples we tried.

Performance statistics for editing with material optimization can
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Figure 13: Optimizing the material in the bar experiment in Fig. 12
dramatically reduces the energies measuring the strength of control
forces (Ef , in red) and the error in position constraints (Ec, in
blue). Values are scaled as indicated by the graph legend to improve
plot legibility. With the optimization of S, the error in constraint
enforcement drops by three orders of magnitudes when using only
two modes.

also be found in Table 1. The most costly part of our method comes
from optimizing z and S, and it heavily depends on the number
of constraints. In the current CPU implementation, we can solve
the optimization in a matter of seconds, even for relatively com-
plex constraints. When we perform interactive editing, we use the
current configuration as initial values for the next round of opti-
mization, achieving approximately 5 frames per second.

7 Conclusion

In this paper, we introduced a new approach for material optimiza-
tion that leads to reliable animation editing with space-time con-
straints. We also presented a novel method to reconstruct 3D shapes
from RS coordinates based on geometric reduction and cubature,
which improves performance compared to previous work by over
two orders of magnitude. We demonstrated the robustness of our
tools in various applications, such as pose interpolation, animation
editing, and material parameter recovery.

The main limitation of our approach comes from the non-linear na-
ture of its formulation. While our material optimization improves
considerably the range of possible editing compared to previous
methods, it may lead to local minima, especially when constraints
are significantly different from the initial motion. Similar to [Barbič
et al. 2012], our implementation does not support collision detec-
tion and response. As future work, we are currently investigat-
ing extensions to our material optimization scheme for the case of
elasto-plasticity, in which damping and stiffness change throughout
the sequence. Further improvements to our numerical solver and
our material recovery are also of interest. Finally, it would be in-
teresting to use our resulting optimized material bases to recover
actual local material parameters (Poisson’s ratio, Young’s modulus,
and density) of real objects based on 3D reconstructed sequences.
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A Closed-form expression for Jacobian Jz

Suppose uji ∈ R3 is the displacement of the constrained node j at
frame i, and let Bj indicate the submatrix in B associated to j.

Based on the equations in Section 3, we can evalute uji as:

uji =BjwcP cgc(yci )

=
∑
e∈Tcub

(
BjwcP c

)
e
gce((QW )czi) .

The entry for the Jacobian matrix Jz corresponding to the derivative
of uji with respect to zi is then computed as:

∂uji
∂zi

=
∑
e∈Tcub

(
BjwcP c

)
e

(
∂gce(y

c
i )

∂ye

)
(QW )c,

where ∂ge/∂ye involves the derivative of the exponetial map in
Eq. (5), computed as proposed in [Grassia 1998].


