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Kinetic-based Multiphase Flow Simulation
Wei Li, Daoming Liu, Mathieu Desbrun, Jin Huang, and Xiaopei Liu

Abstract—Multiphase flows exhibit a large realm of complex behaviors such as bubbling, glugging, wetting, and splashing which
emerge from air-water and water-solid interactions. Current fluid solvers in graphics have demonstrated remarkable success in
reproducing each of these visual effects, but none have offered a model general enough to capture all of them concurrently. In contrast,
computational fluid dynamics have developed very general approaches to multiphase flows, typically based on kinetic models. Yet, in
both communities, there is dearth of methods that can simulate density ratios and Reynolds numbers required for the type of
challenging real-life simulations that movie productions strive to digitally create, such as air-water flows. In this paper, we propose a
kinetic model of the coupling of the Navier-Stokes equations with a conservative phase-field equation, and provide a series of
numerical improvements over existing kinetic-based approaches to offer a general multiphase flow solver. The resulting algorithm is
embarrassingly parallel, conservative, far more stable than current solvers even for real-life conditions, and general enough to capture
the typical multiphase flow behaviors. Various simulation results are presented, including comparisons to both previous work and real
footage, to highlight the advantages of our new method.

Index Terms—multiphase flow, kinetic theory, phase-field lattice Boltzmann model, interface phenomena
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1 INTRODUCTION

Fluid simulation has been an important research topic in
computer graphics (CG) for decades, and by now, realistic
bodies of water or complex smoke plumes are routinely
produced in movie productions. Until about a decade ago,
the vast majority of fluid animation works focused on
single-phase simulation [1]–[5] where the air surrounding
the fluid is assumed to be exerting no pressure on the
surface of the fluid, with the unfortunate consequence
that any amount of air trapped under water collapses
instantly instead of forming bubbles. More recently, the
CG community turned its attention to multiphase flows,
in which simultaneous evolutions of interacting fluids are
computed in order to capture important visual phenomena
emerging from the air-water and water-solid interplay such
as splashing, sloshing, glugging, boiling, cavitation, or
even the complex wetting patterns that a fluid creates over
hydrophilic or hydrophobic surfaces.

Among the rich gamut of behaviors that immiscible
multiphase flows exhibit, specific effects involving
bubbles [6]–[8], surface tension flows [9], [10] or even
wetting [11], [12] have been successfully addressed in
our field. However, these approaches typically rely on
simplified models to achieve each characteristic behavior
efficiently, but none can simulate real-life examples of
multiphase flows exhibiting all these behaviors at once.
Moreover, most CG techniques are unable to numerically
capture the type of multiphase flows they strive to emulate,
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i.e., those with density ratios (800 for air vs. water for
instance, since ρair = 1.2 kg/m3 and ρwater = 1000 kg/m3) and
Reynolds numbers (Re> 4, 000 for turbulent water flows)
that are seen in natural phenomena. This limitation, while
rarely mentioned, both restricts the range of simulations that
can be handled through digital animation and negatively
impacts visual realism.

Multiphase flows have attracted even greater interest in
the computational fluid dynamics (CFD) community, see
e.g. [13]–[16]. In contrast to CG, there has been a slew of
efforts to develop unified numerical methods capable of
capturing all of the interesting behaviors at once. A large
number of works have also been dedicated to handle high
density ratios, or high Reynolds numbers, far beyond what
CG fluid solvers can handle — although none can boast of
offering a stable treatment of multiphase flows with both
large density ratio and high Reynolds number, surprisingly.

Currently, the most general and efficient solvers that
can reproduce all the typical characteristics of multiphase
flows are based on the lattice Boltzmann method (LBM),
combined with a conservative phase-field (PF) model to
handle interfacial computations [17]. This is a significant
departure from the most common approaches used in
graphics: these solvers rely on a kinetic formulation of the
flow derived from statistical mechanics using the Boltzmann
(transport) equation of a probability distribution for the
position and velocity of fluid particles. While the original
formulation of LBM using explicit time stepping with local
spatial interactions (thus, devoid of global solves) had been
recognized in graphics as highly parallelizable [18]–[21], it
quickly fell into disuse due to its substandard visual results
and its limited stability and/or accuracy with respect
to density ratios and Reynolds numbers. Yet, LBM has
experienced a series of developments in recent years [22]–
[24], especially with the development of central-moment
relaxation models and coupling with Shan-Chen, free
energy, or phase-field models [25]. As a result, modern
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Fig. 1: Efficient simulation of multiphase flows. Snapshot of a simulation of water dam breaking through solid obstacles,
where the materials of obstacles and domain boundaries are set to be hydrophilic and hydrophobic, respectively. The water
flows from left to right, passing through a set of solid pillars with different sizes and heights. During this process, several
typical phenomena associated with water happen at different stages of the simulation, such as water splashing due to
interface splitting (see the yellow box), wetting on solid surfaces (see the green and red boxes for hydrophilic wetting on
obstacles and hydrophobic wetting on domain boundaries), as well as bubbling (see the orange box), requiring a unified
model and solver for the simulation to capture all of these multi-phase phenomena simultaneously. Our kinetic method
faithfully achieves this goal, which substantially increases the visual realism for complex liquid simulations.

LBM approaches have made great strides in accuracy and
stability without sacrificing its efficiency [26], to the point
that they have been recently adopted in the automotive and
aerospace industries for CFD-aided design [27].

Overview. In this paper, we revisit the kinetic approach
to fluid simulation to provide an efficient, yet unified
fluid solver able to capture all relevant visual behaviors
of multiphase flows. We demonstrate that the main
weakness of the current state-of-the-art lattice Boltzmann
techniques coupled with a phase-field model resides in
two crucial deficiencies in the numerical treatment of the
phase field: a spurious rotational dependence of its discrete
gradient evaluation, and the use of a single-relaxation time,
both conspiring to create artificially large velocities near
interfaces and thus ruining both accuracy and stability. We
introduce a fix for each issue, and show that the resulting
LBM-PF numerical scheme offers a unified framework to
simulate most multiphase flow visual effects (Fig. 1) that is
not only as efficient as many of the existing CG simulation
techniques, but also vastly more stable and accurate than
existing CFD approaches to multiphase flows (Fig. 7).

2 BACKGROUND AND MOTIVATION

In order to motivate our approach, we first mention related
works in graphics (focusing on liquids for conciseness),
before reviewing LBM-based kinetic approaches for
handling multiphase flow phenomena in CFD.

2.1 Single-phase flows
Early CG techniques relied on free-surface flow simulation
ignoring air pressure on interfaces.

Interface tracking methods. One of the most commonly
used methods to track a fluid interface is the level-set
method [28], [1]. Its inherent volume loss led Enright

et al. [29], [30] to propose a particle level-set method
which significantly reduced the issue, while Kim et al. [31]
designed a controller-based method. Increased sampling
near the interface to improve visual details was offered by
Losasso et al. [32] through an octree structure, while Heo
and Ko [33] used sub-grid quadrature points; up-resing
and closest point turbulence as post-processing steps were
also proposed by Kim et al. [34] to further improve surface
details. An alternative tracking approach from CFD, the
volume-of-fluid (VOF) approach was also proposed to
precisely preserve fluid volume [2], [35], but reconstructing
a visually appealing interface from grid volume fractions
is notoriously difficult. In order to avoid the artifacts that
the aforementioned implicit representations may generate,
explicit representations and tracking of interfaces have been
proposed in recent years [5], [36]–[38], and a few examples
of surface-only simulation of fluids solely using an explicit
surface representation have even been demonstrated [10].

Lagragian particle methods. In contrast to the Eulerian
methods described above, a number of approaches
implement a Lagrangian description of a fluid through a
discretization of its volume via “particles”. A first approach,
based on smoothed particle hydrodynamics (SPH) has
been widely used for liquid simulations [39] (and even for
ferrofluids recently [40]), but it requires proper interface
reconstruction from unstructured boundary particles.
Müller et al. [41] proposed a simple smooth kernel to
reconstruct the liquid surfaces, which often looks blobby.
This issue was mostly addressed in Zhu and Bridson [3]
through normalized weight, and further improved by
Adams et al. [42] and Yu and Turk [43]. Solenthaler and
Pajarola [4] introduced an incompressible SPH method,
while Schechter and Bridson [44] improved the numerical
treatment of free surface and solid boundaries through a
ghost fluid SPH approach, followed by He et al. [45] who
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offered an improved handling of sparsely-sampled and
thin features. Macklin and Müller [46] proposed a position-
based alternative to SPH allowing large time steps suitable
for real-time applications, while other authors focused on
improving incompressibility [47] and boundary treatment
around solids [48], [49]. Another common approach to fluid
simulation for graphics is via the Particle-In-Cell (PIC)
method, which combines grid and particles for fast pressure
solves [50]. While its original formulation exhibits strong
numerical diffusion, the Fluid-Implicit-Particle (FLIP)
method was later used to mitigate this issue [3], [51]. Ando
et al. [52] further combined FLIP with adaptive particle
sampling, while Cornels et al. [53] combined FLIP with SPH;
for flows with thin obstacles and narrow gaps, Azevedo et
al [54] proposed a modified FLIP method. Additionally, Fu
et al. [55] addressed the issue of momentum conservation
through a polynomial version PIC, based on an earlier affine
version [56]. Finally, up-resing the particles coupled with a
surface-only wave simulation was proposed by Mercier et
al. [57] to increase the visual complexity of particle-based
liquid simulations.

2.2 Multiphase flow methods
Free-surface methods can produce splashes with surface
tension, but cannot produce bubbles reliably (despite
efforts in this direction, see [8]) or exhibit other multiphase
phenomena such as wetting. While ad-hoc methods were
introduced to efficiently model clusters of bubbles [?],
[58], two-phase fluid solvers are needed to obtain a good
range of convincing multiphase flow effects. Consequently,
interface tracking methods were adapted to handle
multiphase flows, either using regional level-sets [59] or
VOF methods [60], [61] to properly track different fluid
components. Similarly, SPH methods were adapted to
handle multi-fluid simulation [62]–[64], as well as FLIP
techniques [7], and even hybrid methods such as the
Material-Point Method (MPM [65]–[67]) were introduced.
A recent approach, called power particles, leveraged power
diagrams to offer a geometric alternative to multiphase SPH
and FLIP with localized control of volume and better local
momentum preservation [68], [69]. By incorporating specific
surface tension or adhesion force models for instance, each
of these multiphase flow techniques was shown to visually
capture some of the intricate phenomena of multiphase
flows such as wetting or glugging. However, rare are the
methods that can capture the whole gamut of multiphase
flows behaviors. For instance, methods appropriate to
simulate bubbling and glugging cannot handle wetting,
and vice-versa. Moreover, most of these methods become
unstable for turbulent flows or for density ratios over 10
(note that [70] supports density ratios up to 100, but cannot
handle turbulent multiphase flows), rendering them unable
to simulate the typical water-air interactions that movie
productions typically wish to produce digitally.

2.3 Kinetic methods
Initially proposed by the CFD community, kinetic models
take a very different approach to fluid simulation. Instead
of directly discretizing Navier-Stokes equations, they rely
on statistical mechanics instead, focusing on the evolution
in time of the probability density encoding the presence

of fluid volumes at a given position with a given velocity.
The lattice Boltzmann method (LBM) simulates Boltzmann
(transport) equation of this probability distribution, which
amounts to move fictitious particles through consecutive
propagation (or transport, also called streaming) and
collision (or relaxation) processes over a discrete lattice
mesh. The simplicity of the resulting algorithm, tantamount
to an automata, makes it highly parallelizable, and its
kinetic nature allows the incorporation of microscopic
interactions to offer more complex flow behaviors while
remaining conservative by construction. Defining a proper
relaxation to approximate the fluid equation well has been
the most difficult aspect of LBM: the Bhatnagar-Gross-
Krook (BGK) [13] and multiple-relaxation-time (MRT) [71]
models used in early LBM methods had relatively low
approximation order and were not very stable. Recently,
so-called “central-moment” relaxation models [72] have
been proposed to guarantee higher accuracy and stability,
but at the cost of higher computational times. In the last
decade or so, kinetic methods have been used in CG to
simulate smoke or free-surface liquid flows [73]–[79], and
recently, Guo et al. [80] proposed a two-phase kinetic
method for liquids — but here again, demonstrated density
ratios were below 20, and wetting was not considered.

Kinetic models have been extended to multiphase flow
simulation in the CFD community, with variants ranging
from color-gradient models [81]–[83], [24], pseudo-potential
models [84]–[86], free-energy models [87], [88], and phase-
field models [89], [17]. This last approach, to which we
will refer as LBM-PF since it combines phase field for the
encoding of the interface with an LBM simulation of the
fluids, has been widely accepted as the current standard
approach for multiphase flows, e.g., see [25]. Yet, while
some of these LBM-PF methods demonstrated improved
handling of large density ratios or improved stability for
high Reynolds numbers, none can handle both of these
required characteristics concurrently.

2.4 Contributions

In this paper, we propose a novel multiphase flow solver.
We adopt the kinetic-based LBM-PF formalism, designed
to run efficiently on massively parallel architectures, to
contribute a unified approach for simulating real-world
multiphase flows both efficiently and accurately. Our solver
include several contributions addressing key issues of the
current LBM-PF algorithm:

• Rotationally-symmetric stencils: We noticed that the ac-
curacy of the typical approximation of the phase-field
gradient near an interface is particularly sensitive to
the normal direction and curvature of the interface, at
times causing large numerical artifacts that affect the fine
dynamics coupling the two phases. Thus, we propose a
new rotationally-symmetric discretization, allowing for
both low- or high-order accuracy, to reduce significantly
this error and improve stability.

• Variational weighted scheme: Through the analysis of a
phase-field encoding a spherical interface, we introduce
a variational approach to derive an optimal weighted
sum of low- and high-order rotationally-symmetric ap-
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proximations of the gradient in order to remove most os-
cillations around sharp interfaces. Akin to the Weighted
Essentially Non-Oscillatory (WENO) schemes used in
level-set methods, our blending of multi-order operators
further reduces the errors in gradient evaluation, even
close to sharp transitions of the phase field.

• Variational weighted upwinding: We also introduce an up-
winding treatment of hyperbolic terms present in the
collision model, to replace the standard practice of using
the macroscopic (average) velocity and a centered ap-
proximation of the phase-field gradient which is known
to generate spurious oscillations near interfaces. This
novel evaluation significantly enhances stability for large
Reynolds numbers and large density ratios.

• Relaxation for phase field: We identify the use of a single-
relaxation-time collision model for the phase-field equa-
tion as being responsible for large numerical errors
at high Reynolds numbers. Switching to a weighted
multiple-relaxation-time (WMRT) model leads to a sig-
nificant reduction of numerical artifacts, and increases
stability when strong turbulence is present.

• Velocity-limiting adaptive viscosity: While the aforemen-
tioned numerical improvements greatly improve the sta-
bility of our LBM-PF approach, the case of a flow with
high density ratio and a high Reynolds number can still
lead to spurious oscillations near interfaces. We thus add
a final filtering of the velocity field which selectively
cuts off very large velocities through localized viscosity
addition.

These numerical contributions, along with secondary
improvements such as the use of a subgrid model based
on large-eddy turbulence and a soft-start initialization
to prevent early transient compression waves, allow us
to simulate multiphase flows exhibiting a wide range
of typical complex behaviors: Fig. 1 shows an example
where splashing, surface waves, bubbling, and wetting can
all be captured with our solver. A variety of simulation
results are demonstrated, and comparisons to both real
experiments and existing solvers are provided to highlight
the advantages of our new method compared to both CG
and CFD solvers in terms of both efficiency and accuracy.

3 MULTIPHASE FLUID MODEL

In this section, we briefly remind the reader of the
traditional macroscopic model for multiphase fluid
simulation, before reviewing its mesoscopic version based
on the Boltzmann transport equation that the LBM-PF
solve numerically and efficiently on a discrete grid. Our
contributions will build on top of these basic foundations.

3.1 Macroscopic model
In order to simplify our explanations, let us consider the
case of a two-phase flow first — we will discuss wetting
against solid objects later to extend our approach to mul-
tiphase flows (see Eq. 33). Immiscible, incompressible and
isothermal two-phase flows are well modeled by the Navier-
Stokes equations coupled with the conservative phase-field
equation [17]; they are macroscopically described through

the following set of equations:

∇ · u = 0,

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+ ρν∇2u + F,

∂φ

∂t
+∇ · (φu) = ∇ ·

[
M

(
∇φ− 4

ξ
φ(1− φ)n

)]
,

(1a)

(1b)

(1c)

(1d)

with F = ρg +

[
4ηφ(φ− 1)

(
φ− 1

2

)
− κ∇2φ

]
∇φ , (2)

and ρ(φ) = (1− φ)ρL + φρH . (3)

Eqs. (1a–c) are the typical equations governing the motion
of an incompressible fluid (encoded by its velocity u) in its
two possible phases (encoded by the density field ρ), while
Eq. (1d) is the conservative phase-field (PF) equation that
describe the (diffuse) interface motion between the two flu-
ids. The phase field φ is a spatially- and temporally-varying
scalar field with values in [0, 1] indicating the percentage
of a particular phase at a given location and time, with
the convention that φ = 1 for the high-density (ρH ) phase
(i.e., liquid) and φ = 0 for the low-density (ρL) phase (i.e.,
air). Note that the PF equation (1d) simply indicates that
the phase field is advected in the velocity field with an
additional conservative term (in divergence form) to diffuse
the field based on the mobility M (controlling the degree
of interface splitting; smaller values of M imply stronger
splitting as less diffusion is introduced), and to steer the
field towards a constant profile of width ξ of the form:

φ(x) =
1

2

[
1− tanh

(
2d(x)

ξ

)]
, (4)

where d(x) = ±|x− x0| is the signed distance of any point
x to its nearest interface point x0 defined as φ(x0) = 1/2.
(Our formulation uses a signed distance function instead of
the unsigned one in [17], as it will make our formulation
simpler later on.) From this phase field, the exact geometry
of the interface for rendering purposes can be extracted as
an isosurface of φ, with an isovalue of (or around) 0.5, with
its normal being n =∇φ/‖∇φ‖ (pointing towards the high
density phase given our convention for φ). The local fluid
density is then derived from the phase field through Eq. (3).
Finally, the force term F includes both body (gravity g) and
interface forces, where ν is the kinematic viscosity, while
η and κ are determined by the surface tension σ and the
interface width ξ as: η = 12σ/ξ and κ = 3σξ/2. Because
these six equations are highly coupled together, designing
a numerical solver to simulate this macroscopic model in
a stable and accurate manner is particularly challenging,
even more so when efficiency is paramount.

3.2 Kinetic model

A way to bypass some of the difficulties in solving the
macroscopic model described above is to adopt a kinetic
model instead: using statistical mechanics, the macroscopic
fluid equations can be rewritten as the evolution in
time of the probability density encoding the presence of
fluid volumes at a given position with a given velocity,
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Fig. 2: Velocity discretization. The symmetric lattice struc-
ture D3Q27 used in 3D, where the 27 vectors ci are used to
discretize the local velocity. Note that every grid node stores
a probability distribution gi for each corresponding ci.

and incompressibility is approximated via a weakly-
compressible flow. The resulting Boltzmann (transport)
equation of this probability distribution is then simulated
very efficiently using the lattice Boltzmann method (LBM),
which amounts to move fictitious microscopic particles
through consecutive steps of streaming and collision over
a discrete lattice. The simplicity of the resulting localized
update rules, tantamount to an automata, makes LBM
highly parallelizable. The reader is invited to consult one
of the many reviews of this approach such as, e.g., [90] for
an introduction to kinetic models and their discretization,
which have become quite standard in the computational
physics and CG literature. We discuss very briefly the
resulting equations and update rules in this section to
define relevant notations and to prepare the grounds for the
exposition of our contributions later on.

Solving fluid flow equations. After Eqs. (1a–c) are turned
into their Boltzmann transport counterparts, a discretization
of time (with time steps normalized to δt = 1) and of
space and velocity directions (typically, using the nodes
of a regular grid for positions and the symmetric D3Q27
structure in 3D for the velocity at each node as shown in
Fig. 2) leads to equations of the form, for i=0 . . . 26:

gi(x+ ci, t+ 1)− gi(x, t) = Ωg
i (ρ,u) +Gi(ρ,u, φ) , (5)

where x is a given grid node, gi is the probability distribu-
tion of particles moving with discrete velocity ci at position
x and time t (stored as a scalar at x), and Gi is a force term:

Gi = (ci − u) ·
[
ρ

3
(Γi −

w̄i

3
)∇φ+ ΓiF

]
, (6)

with F defined in Eq. (2), δρ≡ρH−ρL represents the phase
density difference, while w̄i are fixed lattice (quadrature)
weights and Γi is constructed from the BGK collision model
as both described in [17]. Note that converting this statistical
formulation back to the components of the macroscopic
formulation is also feasible: to obtain the macroscopic mo-
mentum and pressure fields for instance, one can evaluate

ρu ≡ 3
∑
i

cigi +
F

2
and (7)

p ≡
∑
i

gi +
1

6
δρ u · ∇φ . (8)

Due to the simple form of Eqs. (5), they can be handled
particularly efficiently through operator splitting, i.e., they

are rewritten as two consecutive steps (called streaming and
collision, respectively) as:

g∗i (x, t) = gi(x− ci, t),

gi(x, t+ 1) = g∗i (x, t) + Ωg
i +Gi,

where the components of the distribution g are first updated
to handle streaming (advection), from which collision and
forcing terms are added to get updated values at the next
time step. Note that the actual expression of the collision
terms Ωg

i is key to guaranteeing an accurate correspondence
with Eqs. (1a–c), so many different formulations have been
offered over the years in the LBM literature. In this paper,
we employ the recent weighted multiple-relaxation time
(WMRT) model proposed in [17] for Ωg

i , as it has been
proven to offer a good compromise between accuracy and
efficiency. Its expression is:

Ωg = −M−1SgM(g − geq) , (9)
where Ωg = [Ωg

0, ...,Ω
g
26]

T is the vector containing all colli-
sion operators at each node, M is a constant (pre-computed)
“moment projection” matrix, and Sg = [sg0, ..., s

g
26]

T is a
constant and diagonal relaxation matrix containing prede-
fined relaxation rates [17]. The equilibrium distribution geq

is modeled as:
geq = ρ

3Γ+ (p− ρ
3 )w̄ − 1

2G , (10)
with Γ, w̄ and G being the vectors containing all Γi, w̄i

and Gi for each node. Note that some of the relaxation rates
{sgi }i are related to the kinematic viscosity ν as:

sgi =
(
3ν + 1

2

)−1
, i ∈ {4, 5, 6, 7, 8} . (11)

The other relaxation rates for i > 8 are usually fixed to
1, and we adopt the same practice. The specific form
of M and more derivation details can be found in [17].
Note that the kinematic viscosity ν is used in Ωg

i , which
can easily be interpolated at every node based on φ as:
ν = [(1 − φ)ν−1

L + φν−1
H ]−1 [91], where νL and νH are the

kinematic viscosity coefficients for the two fluid phases.
Solving conservative phase-field equation. In recent LBM-PF

approaches, Eq. (1d) is also converted into a similar form:
hi(x+ ci, t+ 1)− hi(x, t) = Ωh

i (φ) , (12)
where hi is the phase-field probability distribution; the col-
lision operator Ωh

i is derived in order to faithfully simulate
Eq. (1d), which is modeled in [17] as a single-time-relaxation
process, leading to the expression:

Ωh
i = −(hi − h

eq
i )/τφ , (13)

where τφ=3M+1/2 is the phase-field relaxation rate related
to the mobility parameter M , and h

eq
i is the i-th phase-field

equilibrium distribution modeled as:

h
eq
i = φΓi +Mw̄i

[
4

ξ
φ(φ− 1)

]
(ci · n) . (14)

Eq. (12) can also be solved through operator splitting as a
streaming step followed by a collision step through:

h∗
i (x, t) = hi(x− ci, t),

hi(x, t+ 1) = h∗
i (x, t) + Ωh

i .

The phase-field function φ is then deduced directly (e.g., for
rendering purposes) at any time t for any node x by taking
the zeroth moment of hi at x, i.e.,

φ(x, t) =
∑
i

hi(x, t) . (15)
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While the resulting LBM-PF scheme is arguably the most
popular numerical approaches for a kinetic treatment
of multiphase flows, its conservative phase-field kinetic
model is only stable for either a large density ratio at low
Reynolds number, or a small density ratio at high Reynolds
number, see Fig. 7. It remains very difficult to have stable
and accurate simulations for flows with both large density
ratios and high Reynolds numbers, which are particularly
desirable in practice to produce realistic results, e.g., in
multiphase flow simulations between water and air.

4 OUR IMPROVED LBM-PF SOLVER

As pointed earlier, the LBM-PF technique still suffers
from important limitations in terms of stability and
accuracy, despite being one of the most popular and fastest
multiphase flow solvers. In this section, we introduce a
few key changes to the overall solver to improve both its
accuracy and stability for both large density ratios and
high Reynolds numbers, without noticeably affecting its
computational efficiency.

4.1 Importance of phase-field gradient and advection
One of the first issues that we found about the LBM-PF
approach is its discretization of the phase gradient (∇φ
in the kinetic model presented in the previous section),
which too often results in a dramatic loss of stability
or accuracy near the interface: using the traditional
central difference scheme for approximating the gradient
results in approximation errors heavily dependent on the
actual direction of the gradient (with respect to the grid-
aligned directions of its operator stencil) and of the local
curvature of the interface. This lack of rotational-invariance
introduces spurious oscillations near the interface and often
generates, in turn, high velocities leading to blow-ups or
visual artifacts. While level-set based numerical methods
use least-oscillatory finite difference schemes ((W)ENO
schemes [92], [93]) that have been designed to remove these
numerical issues, such schemes cannot be used in LBM
formulations for a number of reasons. First, the D3Q27
discretization (Fig. 2) or any of its variants clashes with
the fundamentally coordinate-per-coordinate treatment
of (W)ENO schemes. Second, rotational symmetry of the
stencil used to approximate gradients has been found
important to the overall stability and accuracy of the
discrete phase field treatment as it handles local directions
of the interface normal much more uniformly [94] — and
again, the very nature of (W)ENO schemes clearly fail
to be isotropic. Yet, designing LBM-specific discretization
schemes for the gradient operator to improve accuracy and
stability remains largely unattended.

A second related issue that our tests have identified as a
significant obstacle to stability is the numerical issues that
the phase field creates for flows with large density ratios
or high Reynolds numbers. Not only the advection of the
phase field in strong velocity fields is often introducing
artifacts as discussed above, but the truncation errors
in the evaluation of the equilibrium distribution h

eq
i to

approximate Eq. (1d) and the use of a single relaxation
rate also lead to spurious oscillations near interfaces. These
spurious oscillations lead to even stronger variations in the

Fig. 3: Local sphere interface model. Our analysis of the
discretization error uses a family of phase fields (shown in
2D here) representing spherical interfaces, parameterized by
the radius R and the center of the sphere it encodes. By
considering all possible configurations (from small droplets
(left) to smooth surfaces (right)), an overall accuracy E is
deduced via Eq. (19) for a given operator discretization.

velocity, which end up creating a positive feedback loop
that often leads to blowups.

In this section, we describe a variational, geometric
approach to deriving gradient approximations and
computing phase-field advection to drastically reduce these
numerical shortcomings, and present further numerical
changes to the collision models to render the LBM-PF
technique much more robust.

4.2 Improving gradient estimates
In order to design symmetric stencils for which discretiza-
tion errors of the gradient operator are small and as invari-
ant as possible of the interface position, orientation and cur-
vature, we follow a variational approach which optimizes
stencil weights such that the gradient is well approximated
for any local spherical approximation of the interface.

4.2.1 Local sphere interface model
Deriving error-minimizing discretizations requires defining
first an error functional measuring the discretization er-
ror compared to an analytical ground-truth. Because we
want the discretization error of our gradient operator to
be as invariant as possible to the proximity, orientation,
and curvature of the interface, we restrict our analysis to
spherical approximations of the interface shape. We thus
consider only phase fields whose ½-isosurface encodes a
sphere of arbitrary center x0 and arbitrary radius R. Since
time integration of the phase field is designed to maintain
its profile to be of the form of Eq. (4), we can parameterize
all local spherical phase fields as:

φ(x;x0, R) =
1

2

[
1− tanh

(‖x− x0‖ −R

ξ/2

)]
, (16)

as it covers all positions and orientations of a spherical
interface seen from x= 0. The gradient of such a template
phase field at x=0 is analytically expressed as:

∇φ(0;x0, R) =
x0

ξ‖x0‖
sech2

(‖x0‖−R

ξ/2

)
. (17)

See Fig. 3 for a 2D illustration of the resulting diffuse
interface, where the high-density side of the interface is
colored in blue. If we denote by ∇dφ the discretization of



7

Fig. 4: Variational symmetric discretization. (a) Polar angle
discretization error Eθ of the gradient operator for a cen-
tered difference evaluation (red), vs. the low-order symmet-
ric variant [94] of Eq. (20) (green) and our optimal ∇d

1/3 from
Eq. (22) (blue); (b) Error distribution E(α) when varying the
weight α, showing a clear global minimum.

∇φ by a discrete stencil on the phase field grid values, the
	2 approximation error can now be defined as:

e(x0, R) =
∥∥∥∇dφ(0;x0, R)−∇φ(0;x0, R)

∥∥∥
2

2
. (18)

To account for all local spherical approximations, we further
take the integral of this error for a whole range of x0 and R,
and define the total error functional E as:

E=

∫∫∫∫

(x0,R)∈D

e(x0, R)
exp(− 1

2 (
R
ξ )

2)
√
2πξ

dx0dR , (19)

where we weighted the error with a centered Gaussian func-
tion of standard deviation ξ to emphasize errors for small
droplets (small radius R) since they are more likely to create
large errors and induce instability in our computations. We
limit the integration to a domain D by using only radii
from 0 to Rmax ≡ 20 and for x0 within a ball of radius R;
the resulting error is then easy to evaluate through Gauss
quadrature for any given choice of discrete operator ∇d

in order to provide a quantitative estimate of its accuracy
within the family of phase fields we consider.

4.2.2 Variational symmetric discretizations
Recall that we seek a discrete gradient operator whose
accuracy depends minimally on the position, orientation
and curvature of the interface. A particular form of the
discretization suggested in [94] and [17] is to evaluate the
gradient by taking the zeroth moment of the directional
derivatives along the 27 directions (for D3Q27) of the veloc-
ity to properly leverage all the directions instead of sticking
to the usual centered difference in each coordinate. With this
recommended approach, the discrete gradient is thus of the
following second-order accurate form:

∇dφ =
∑
i

w̄iciφ(x+ ci), (20)

where w̄i are the quadrature weights already used in Eqs. 6
and 14, and due to symmetry of the directions, the terms
in φ(x) of the directional derivatives all cancel out. Since
we have defined a parameterized family of phase fields
above, we can compare how much better this form behaves
compared to a regular centered difference typically used in
finite-difference methods. Fig. 4 shows a comparison of the
two discretizations, where we show the numerical error Eθ

as a function of the spherical coordinate θ of the center x0;
i.e., we compute the integral mentioned in Eq. (19) over
a restricted domain Dθ corresponding to the intersection
of D with the set of all centers x0 of spherical coordinate
θ, and E=

∫
2πEθdθ. Using the rotationally-symmetric dis-

cretization of Eq. (20) (green curve), the error variation is
already significantly reduced compared to that from the
second order centered difference (red curve) — and the total
error E is thus over an order of magnitude improved.

High-order approximations. However, the error magnitude
is still of the same (second) order, which is not accurate
enough to capture subtle interfacial effects in a stable
manner: we need higher order symmetric discretizations.
Fortunately, we can easily increase the order of the gradi-
ent approximation while keeping the same 27 directions by
simply using values of the phase field further away in
these directions; that is, we simply use a a second-order
approximation of the directional derivative along each ci.
Due to the cancellation of both the second-order terms and
of φ(x) along symmetric directions, we obtain a third-order
gradient approximation, denoted ∇d,3, of the form:

∇d,3φ =
∑
i

w̄ici
4φ(x+ ci)− φ(x+ 2ci)

2
. (21)

Weighted approximations. Note that higher-order approxi-
mations are, however, not desirable everywhere: near rapid
changes of φ (i.e., close to the interface), higher-order sten-
cils can in fact hurt accuracy as they generate spurious os-
cillations (Gibbs phenomenon). Instead, one would ideally
want an accurate operator in smooth regions of φ, while
switching to a low-order stencil near fast value changes.
Following the idea behind the weighted variant of ENO [93],
we achieve this goal by linearly combining Eqs. (20-21):

∇d
αφ = (1− α)∇dφ+ α∇d,3φ, (22)

where the parameter α is in [0, 1]. In order to obtain an
optimal value for α without having to estimate the local
behavior of φ, we assume it constant and employ the previ-
ously developed variational approach by replacing ∇dφ in
Eq. (19) with ∇d

αφ from Eq. (22), and minimize the total error
from Eq. (19) w.r.t. α. Fortunately, the graph of the error as
a function of α is remarkably simple and convex, with a
clear minimum for α≈ 1/3 as shown in Fig. 4(b). We thus
use ∇d

1/3 to safely and accurately estimate the gradient of the
phase field anywhere in the domain. Fig. 4(a) demonstrates
that our new weighted discretization (blue curve) leads
to significantly higher accuracy (an order of magnitude
improvement in this case), while maintaining the orientation
bias to a minimum as evidenced by the small oscillation
amplitude of the error curve. Note finally that higher-order
weighted gradient operators could be similarly derived,
but we found this second- to third-order accurate version
to be sufficient to vastly improve stability and accuracy
without adding undue computational complexity as we will
demonstrate in Section 6.

4.2.3 Hyperbolic weighted discretizations
While Eq. (22) can be applied anywhere a phase-field gradi-
ent estimate is needed, one term requires special attention:
the advection of the phase field, which is a typical numerical
issue in hyperbolic problems and requires its own hybrid
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expression for enhanced accuracy and stability. While the
phase field advection term is often performed using the
macroscopic velocity u through u · ∇φ in the pressure
evaluation (8), using the first moment of gi at a node in
combination with a centered stencil for the gradient of φ is
known to lead to the traditional Gibbs phenomenon near the
interface compared to flux-based upwind approximations,
in particular when the density ratio is large. Therefore, we
avoid the macroscopic velocity altogether and propose eval-
uating the hyperbolic part of our collision model directly
at the level of the probability distribution (i.e., at what is
sometimes called the mesoscopic scale) through upwinding
to gain on both accuracy and stability.

Mesoscopic pressure terms. If we substitute the definition
of the macroscopic velocity Eq. (7) into the pressure equa-
tion (8), we obtain

p =
∑
i

gi︸ ︷︷ ︸
p(1)

+
δρ

2ρ

∑
i

ci ·∇φ gi︸ ︷︷ ︸
p(2)

+
δρ

12ρ
Fsb · ∇φ︸ ︷︷ ︸
p(3)

, (23)

where we separated the components of the pressure to
discuss their treatment individually. The first term involves
no differential and can be evaluated straightforwardly. Sim-
ilarly, the p(3) component involving the forcing term F can
be evaluated using the gradient estimate from Eq. (22). It
is the second component, involving both the probability
distribution gi and the velocity direction ci, which requires
a finer treatment: indeed, the term gi ci ·∇φ can be far from
symmetric depending on the values gi (whose first moment
encodes the phase field φ). So we must now include terms
that used to cancel out in the previous gradient discretiza-
tion, and we should also use upwinding to provide a better
numerical treatment of this advective term.

Upwinding. Using the same derivation as before with
now restoring the term in φ(x) as it may no longer cancel
out (depending on the values of gi) , we can get a low-order
upwind expression for p(2) (that we call p(2),a) of the form:

p(2),a =
∑
i

gi
(
φ(x)− φ(x− ci)

)
, (24)

where the use of φ(x−ci) instead of φ(x+ci) reflects the
typical approach to upwinding. As in the previous case,
we can also derive a higher-order approximation by simply
using a larger stencil of values of φ while still keeping the
same 27 directions only, leading to a second approximation
we denote p(2),b written as:

p(2),b =
∑
i

gi
(
3φ(x)− 4φ(x− ci) + φ(x− 2ci)

)
. (25)

As we have discussed in Section 4.2.2, higher order schemes
tend to be oscillatory around the interface, creating instabil-
ity at large density ratio and/or with high Reynolds num-
ber. We thus combine low-order and high-order templates
again, similar to Eq. (22), with a constant parameter β, which
gives us the following new form for p(2) as:

p
(2)
β = (1− β) p(2),a + β p(2),b . (26)

To determine β, we employ the same numerical procedure
described in Section 4.2.2 to minimize a similar error func-
tional based on our local sphere interface model, integrated
over different interface distributions; the only difference is

that we now sum all the errors of ci·∇φ vs. the closed-form
ground truth, instead of just ∇φ. We found this time that
the optimal parameter value is β≈2/3, with an error curve
very similar to the one depicted in Fig. 4(b). One could use
even higher order stencils to further improve accuracy, but
this discretization offers the best balance between locality
and accuracy. The final numerical “upwind” approximation
pu of the pressure p is then assembled as:

pu = p(1) + p
(2)
2/3 + p(3), (27)

using p(2)2/3 defined via the expression of p(2)β for β = 2/3.

4.2.4 Adaptive estimation of pressure
While the mesoscopic approach to the hyperbolic part in
the pressure evaluation provides much improved accuracy
and stability on or close to the interface, it is not quite
appropriate when dealing with boundary conditions that
are typically enforced macroscopically: we cannot really
take into account constraints on the macroscopic velocity
u as we directly manipulate the probability distributions.
It is better, instead, to rely on a simpler approximation ps
where the pressure is directly evaluated using a symmetric
approximation of the gradient of φ as:

ps =
∑
i

gi +
δρ

6
u · ∇d1/3φ. (28)

As a simple toggle between the approximants provided in
Eq. (28) near boundaries and in Eq. (26) near interfaces
can create adverse effects, we prefer to blend these two
numerical schemes based on the magnitude of ∇d1/3φ, since
a large magnitude of the phase field indicates proximity of
an interface. Our final expression for the pressure is thus:

p = max

(
1−
‖∇d1/3φ‖√

3/5
, 0

)
ps + min

(‖∇d1/3φ‖√
3/5

, 1

)
pu , (29)

where the normalization term
√

3/5 is the maximum gra-
dient norm of ‖∇dφ‖ from the analytical profile of φ in
Eq. (4), and we threshold any exceeding value due to
numerical inaccuracy. This simple blend now offers a sta-
ble and accurate approach for both smooth regions where
macroscopic boundary conditions may be imposed on and
near interfaces.

4.3 Improving collision models
A large amount of works in lattice Boltzmann meth-
ods have been dedicated to developing good collision
models. While initial methods use the lattice Bhatna-
gar–Gross–Krook model (a single-relaxation-time collision
model), recent developments have popularized the use of
multiple-relaxation-time (MRT) collision models as they
offer finer control over the probability distributions. The
use of a mesoscopic treatment for the phase-field equation
(Eq. 1d) is relatively recent, and the current state-of-the-
art LBM-PF approach [17] advocates a single relaxation
time for the phase field as reviewed in Eq. (13) due to its
simplicity. Surprisingly, our tests showed that keeping such
a simplistic model for the collision term is actually harmful
numerically even when our improved gradient estimates are
used, as it contributes to the current stability restrictions of
LBM-PF. Additionally, very turbulent flows are not handled
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well for a given grid size as gradient estimates may become
inaccurate due to a poorly-resolved vector field, so the use of
an artificial viscosity in the relaxation process to account for
subgrid flow contributions and to limit velocity magnitudes
can dramatically help increase stability while capturing
even finer turbulence details. We detail our changes to the
collision models of both the mesoscopic simulation of the
velocity field (through gi) and of the phase field (through
hi) in this section.

4.3.1 WMRT model for phase-field collision
One of the main reasons for the instability of the single-
relaxation-time model of Ωh

i is that it lumps all the relax-
ation modes together, instead of having control over which
modes to target. As motivated by the weighted multiple-
relaxation-time (WMRT) model which is only applied to Ωg

i

in [17], we adopt a WMRT treatment for the phase field as
well: we also project hi and heq

i onto orthogonal moment
spaces by the same precomputed matrix M used in Eq. (9),
before scaling these moments through a constant, diagonal
matrix Sh, and reconverting the result to the collision vector
Ωh through:

Ωh = −M−1ShM(h− heq) , (30)

where Ωh, h and heq are vectors containing Ωi, hi and h
eq
i at

each grid node for i = 0..26. Like in Sg , the first relaxation
rate sh0 of Sh is set to zero since we do not want to affect the
first moment of hi (which is the phase field, see Eq. (15)); the
next three relaxation rates in Sh are related to the mobility
M used in Eq. (13) through:

shi =

(
3M +

1

2

)−1

∀i ∈ {1, 2, 3}. (31)

Other higher-order relaxation rates for i>3 are all set to 1.5
to exert a minute amount of damping on these high-order
modes in order to reduce the high-frequency oscillations
due to dispersion error. Using this simple WMRT model
for collision (which, given our choice of relaxation rates,
amounts to a two-relaxation-time model) removes most of
the issues described earlier; most notably, the truncation
errors in the evaluation of the equilibrium distribution are
no longer creating visible artifacts.

4.3.2 Resolving sub-grid-scale flow details
As mentioned before, turbulent flow simulations may suffer
from undersampling of the velocity field in a fixed grid
resolution. Various subgrid models have been proposed
to palliate numerical errors over coarse grids. We propose
to employ the wall-adapted large-eddy (WALE) turbulence
model [95] to predict an eddy viscosity ν′ at each grid node,
which is then added to the global kinematic viscosity ν to
form the total spatial-varying viscosity ν + ν′. This total
viscosity is then used in Eq. (31) in lieu of ν, thus modifying
the collision term for gi. This simple change, already pro-
posed in single-phase simulations but never in multiphase
simulations to our knowledge, adds relatively large eddy
viscosity in highly turbulent regions to dampen the typical
velocity dispersion errors witnessed in these under-resolved
regions, while capturing slightly improved details in less
turbulent regions. Note also that this change on the handling
of the probability distribution gi does impact the accuracy

Fig. 5: Velocity-limiting adaptive viscosity I. In this turbu-
lent two-phase example (liquid in blue), regions where our
velocity-limiting adaptive viscosity is turned on to prevent
potential blowups are highlighted in red, demonstrating its
spatial sparsity and proving that its impact on the overall
flow structure is typically negligible.

Fig. 6: Velocity-limiting adaptive viscosity II. Variations
in time of the spatial average value our velocity-limiting
adaptive viscosity (red) and of its variance (blue) for the 2D
simulation in Fig. 5, confirming its temporal sparsity.

and stability of our phase field treatment, since phase-field
advection becomes less prone to numerical errors as well.

4.3.3 Velocity-limiting adaptive viscosity
Even though the above fixes can further reduce simulation
error effectively and enhance stability, if the density ratio
is large enough for high Reynolds number (for example, a
density ratio of 500 with a Reynolds number around 104),
local error of ∇φ near interfaces can quickly accelerate the
local velocity to the point of exceeding the stability range
of the LBM time updates. To maintain stability, we further
propose to incorporate another dissipation acting, this time,
as the equivalent of a slope limiter in typical high-resolution
schemes to cutoff spurious high velocities near interfaces
without affecting the overall flow. Such a filtering of the
velocity is achieved by further adding an artificial viscosity
ν′′ to ν in Eq. 11, with this limiting viscosity defined as:

ν′′ = ω
|S|(max{0, |u| − λ})2

d+ ε
, (32)

where λ is a threshold in the range [0.1, 0.15] defining what
is considered as high velocity to make sure only very high
velocity regions are dampened; ω controls the amount of
artificial viscosity, which we fixed to 1000; |S| is the norm
of the strain rate computed as S = (∇u+∇uT )/2; d is
the distance of a node to its nearest interface, which we
deduce from the phase-field profile given in Eq. (4); and
ε is set to 10−12 to avoid divisions by zero. The physical
meaning behind such a limiting process is thus simple:
high velocities with large strain rates near interfaces are
quickly suppressed to effectively stabilize the simulation.
Fig. 5 illustrates on a simple 2D dam break example the
regions where such a filtering is applied, while Fig. 6 plots
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Algorithm 1 Pseudo-code of our kinetic solver.

1: Initialize density ρ and velocity u and φ ;
2: Initialize gi and hi with their equilibrium states through

Eq. (10) and Eq. (14), respectively;
3: while iteration ≤ max iteration do
4: Perform streaming steps for gi and hi via Eq. (5) and

Eq. (12), respectively;
5: Apply non-slip boundary conditions for gi and hi

using standard bounce-back rule;
6: Compute φ using Eq. (15) and obtain ρ by Eq. (3),

where solid wetting boundary condition Eq. (33) is
applied for contact angles based on Eq. (34);

7: Compute F via Eq. (2) w/ ∇φ evaluated thru Eq. (22);
8: Compute u using Eq. (7);
9: Compute pressure p through Eq. (29) where ps and pu

are calculated by Eq. (28) and Eq. (27), respectively;
10: Perform colliding steps of fluid flow and phase-field

equations via Eq. (9) and Eq. (30), respectively.
11: end while

the variations in time of the mean artificial viscosity ν′′ and
its variance, reinforcing that the impact on the overall flow
is very limited, and accuracy can be preserved while making
the system stable by acting just when and where it is needed
to prevent blowups.

4.4 Discussion

In this section, we proposed several modifications of the
basic computational framework of [17] to improve both
stability and accuracy of the LBM-PF technique. As a
summary, we give pseudocode in Alg. 1 of our new kinetic
multiphase flow simulation. In particular, we substantially
improved the way ∇φ is approximated (for both force
evaluation and advection), and enhanced the two collision
processes. While the former brings significant accuracy
improvements, both of these contributions partake in
guaranteeing much more stable simulations for turbulent
flows with large density ratios: while we postpone
describing our results until Section 6, Fig. 7 (plotting the
density ratios and Rayleigh numbers for which the 2D
simulation shown in Fig. 5 does not blow up) clearly shows
that our solver significantly outperforms [17] for multiphase
flows in terms of stability.

5 IMPLEMENTATION DETAILS

We now discuss specific aspects of our implementation,
both to ease reproducibility and comment on a few choices
we made in the process of implementing our approach.

Setup. Aside from the differences we described in
Section 4, our approach uses the typical LBM-PF setup
of [17]. In particular, our solver employs normalized units,
where the grid spacing δx and the time step size δt are both
assumed to be unit; as a consequence, the linear advection
in the Boltzmann equation (with constant lattice velocities
ci) corresponds to a unit CFL number as well, independent
of the Reynolds number. Similarly, the highest phase density
is always set to ρH = 1, so we set ρL = ρH/γ, where γ
represents the density ratio of the multiphase flow we wish

Ours:Fail
[17]:Fail

Ours:OK!
[17]:Fail

Ours:OK!
[17]:OK!

Fig. 7: Stability range. For the 2D animation of Fig. 5, we
tried both our solver and the original one from [17] for a
variety of density ratios γ= ρH/ρL and Reynolds numbers
Re. The green region shows the stability range for their
solver (i.e., simulations that did not end up blowing up),
while the purple region is for our solver. The red region
represents values that systematically result in blowups for
both methods. Our solver has a stability range over 5
times larger than the original LBM-PF it started from, with
essentially the same computational complexity.

Fig. 8: Dam-break improvements. We show the effect of
the various contributions to [17] that we propose in this
paper on a 2D dam break example for a density ratio of
800: (a) result from [17]; (b) result when proper gradient
discretizations are used; (c) result when new relaxation is
used. (d) result when combining both improvements. The
same frame of the simulation is shown in each case.

to simulate. Our implementation always uses an interface
thickness ξ of 5, but this value can be adapted to the actual
grid resolution used for simulation. All other parameters
are properly scaled accordingly to ensure that the LBM-PF
results correspond to the correct physical parameters. For
instance, gravity is typically set to g=10−5, corresponding
to a normal gravity on earth (but other values can of
course be used to simulate weaker or stronger gravity),
while surface tension for water corresponds to σ = 10−6,
but again, other values can be used to simulate different
Weber numbers. We also used a mobility M set to 0.2 in all
examples, but a mobility (propensity to splash) in a range
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Figures Resolution Time/Frame νH νL δt (×10-5s)

Fig. 1 800×400×400 3.5 min. 0.002 0.02 12.5
Fig. 15 (a) 640×360×640 2.7 min. 0.04 0.8 8.3
Fig. 15 (b) 640×360×640 2.7 min. 0.01 0.8 8.3
Fig. 15 (c) 640×360×640 3.0 min. 0.01 0.8 8.3
Fig. 15 (d) 640×360×640 3.0 min. 0.002 0.8 8.3
Fig. 15 (e) 640×360×640 3.0 min. 0.0006 0.8 8.3
Fig. 9 (a,b) 800×400×400 3.5 min. 0.001 0.1 12.5
Fig. 9 (c,d) 640×360×640 3.0 min. 0.003 0.5 12.5
Fig. 10 (a,b) 700×140×700 3.0 min. 0.002 0.08 12.5
Fig. 10 (c,d) 800×400×400 3.5 min. 0.005 0.5 12.5
Fig. 11 (a,b) 300×300×300 50 sec. 0.01 0.1 10.3
Fig. 11 (c) 300×300×300 50 sec. 0.01 0.1 10.3
Fig. 12 (a,b) 400×600×400 3.25 min. 0.001 0.01 3.3
Fig. 13 (a,b,c) 400×600×400 3.25 min. 0.002 0.05 2.2
Fig. 14 (a,b) 860×200×860 5.5 min. 0.005 0.0005 12.5
Fig. 16 (c) 300×600×300 2.5 min. 0.002 0.02 10.3

TABLE 1: Statistics. We provide parameters and timings
of our results; νH and νL are liquid and air viscosities,
which depend on the Reynolds number of their associated
simulation; δt indicates the time step size in physical unit
(second), and δx (grid size) in physical unit is 0.01 meters;
the surface tension σ is always set to 10−6 except for Fig.
11(a,b) (where σ= 0.03) & Fig. 11(c) (where σ= 0.03/0.0005)
for illustration purposes. We used 80 frames per second for
all animations sequences, except for the glugging example
(Fig. 13, 200fps for better visualization) and the surface
tension examples (Fig. 11, 30fps due to motion simplicity).

of [0.1, 0.2] also results in stable simulations. Viscosities for
different phases (νL and νH ) are fixed depending on the
Reynolds number, characteristic velocity and domain size.
Table 1 shows the parameters (and resolutions) used for all
the simulations shown in this paper.

Soft-start initialization. Before starting a simulation, we
need to initialize the distribution functions gi and hi.
We use gi = g

eq
i (Eq. 10) with an initial density field ρ

and velocity field u, and hi = h
eq
i (Eq. 14) with an initial

placement of the interface φ with the ideal profile. Since geq
i

requires a usually unknown pressure p, it is often initialized
as p= 3ρ (based on an ideal gas equation of state), and as
time proceeds, p will quickly converge to the correct field
within a few time steps. However, this approach generates
an artificial transient compression wave, similar to what is
seen in many compressible SPH methods. Such a “hard-
start” is a critical issue when large forces (e.g., large surface
tension or body forces) are used, as it can quickly generate
very large velocities and numerical instabilities. Therefore,
we prefer a “soft-start” by simply turning off all forces and
making all boundary conditions open for the computational
domain: compression waves will then be quickly dampened
out, and we re-activate all forces and boundary conditions
after just a dozen of time steps. This simple procedure has
been verified by our experiments to be a very effective
initialization to support stable simulations.

Boundary treatment. It is also important that different
boundary conditions are properly set for different simula-
tion scenarios. For domain boundaries and for inlets and
outlets, we apply the standard treatment of [96]. For object
boundaries, the traditional bounce-back treatment of [97] is
applied to both hi and gi to ensure no-slip condition. Note
that the evaluation of ∇φ should also be properly treated
at the solid boundary, especially to capture the wetting
phenomena where different contact angles of liquids may

form at equilibrium on solid surfaces. Following [98], the
wetting condition is modeled using:

nw · ∇φ(xw) = Θφw (1− φw) , (33)

where nw is the surface normal at a point xw of the solid
boundary, which may not be located at the fluid grid; φw is
the phase-field value at the solid surface; and Θ is related to
the equilibrium contact angle θ through:

Θ = −
√

2η/κ cos θ. (34)

This wetting boundary condition is then enforced using the
discretization method proposed in [17].

Viscosity selection for different phases. In all our examples,
we always set νH and νL to be the viscosities corresponding
to water and air. In the general case, viscosities for different
phases (νH and νL) should be determined based on the
desired Reynolds number. However, in practice, the grid
resolution may not be sufficient to resolve the thin boundary
layer that typically forms between two phases. This may
create visual artifacts; for instance, small droplets may be
more strongly influenced by the surrounding turbulent
air flow than they should. In order to overcome such a
problem, it is common practice to increase the viscosity
ratio between different phases.

Hardware setup and timings. Since our multiphase fluid
solver is embarrassingly parallel, we implemented it with
CUDA on a multi-GPU system where four NVIDIA P40
GPUs are installed, each with 22 GB of memory. Capturing
the fine details of multiphase flows typically requires
regular grids of resolution above 400 × 400 × 400, thus
requiring over 32GB of GPU memory — note that lower
resolution can be used if necessary, but the treatment of the
coupling between the two phases through the interface will
only be predictive for high-enough resolutions. Depending
on the Reynolds number, one (visual) frame of animation is
generated after 50 to 200 time steps, which correspond to
around 1.8 mins of computations for 100 times steps (or 3.5
mins at 800×400×400). Note that the 2D simulations we
show in this paper were performed using the D2Q9 lattice
structure, and typically require around 6 seconds per frame
of animation on the same hardware. Compared to existing
CFD tools for multiphase flows like Gerris [99], our 3D
results are significantly faster; for instance, our glugging
example is achieved almost 10,000 times faster when
Gerris is run on a 20-core CPU. Compared to other CG
approaches (which can only reproduce specific multiphase
flow behaviors), we are also very competitive: based on
the timings given in [7], our glugging example is around 3
orders of magnitude faster per frame —but this acceleration
is likely to be less large due to hardware improvements
over the last six years; note, however, that their use of a
(global) Poisson solver will not make their approach scale
as well as ours for larger grids. Even compared to adaptive
methods that use particles only near interfaces to speed up
computations such as in [8], we are only 30% slower, see
Section 6.2 for a finer analysis of this case.

Rendering. Finally, our results were rendered with
Mitsuba [100], taking around 20 minutes per frame on a
Linux server with a 2.6GHz 28-core CPU.
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Fig. 9: Splashing. Simulations of water splashing in different scenarios; note that splashing not only depends on parameter
M , but also on the degree of turbulence around the interface. Wetting on obstacle and walls also appears in both cases.

Fig. 10: Wetting. Simulations exhibiting strong wetting phenomena. (a) & (b): liquid flows over a thin-plate porous solid
with hydrophilic (θ= 40) and hydrophobic (θ= 160) wetting, respectively; (c) & (d): wetting on volumetric porous solid
with the same hydrophilic and hydrophobic wetting properties as in (a) & (b).

6 RESULTS AND DISCUSSIONS

In this section, we describe some of our results in order to
demonstrate the variety of visual effects that our unified
solver can generate, and also provide comparisons to
existing multiphase flow solvers.

6.1 Multiphase flow behaviors

In order to demonstrate the range of complex behaviors
that our multiphase solver can tackle, our results cover a
variety of different scenarios. Since many multiphase flow
phenomena can be captured simultaneously by our unified
solver, one particular example may exhibit more than just
the targeted visual behavior.

Splashing. An important (and very recognizable)
phenomenon in liquid flows is splashing. Fig. 9 shows two
examples produced by our solver. Different liquids may
have different splashing behavior, which is easily controlled
by the parameter M in our solver. (All our results were
generated with M = 0.2.) Note that splashing also occurs
due to the existence of vortices near interfaces, creating an
imbalanced pressure on the interface and forming splashes
of irregular shapes.

Wetting. When liquids hit solid surfaces, they naturally
wet them, which can form very complex patterns. The
degrees of wetting, as specified by the contact angle, is
seldom considered by most liquid simulators in graphics;
yet it is omnipresent in examples as mundane as pouring
water out of a pitcher. Our solver can specify a variety
of wetting conditions by setting different contact angles.

Fig. 11: Surface tension. Examples with different param-
eters for surface tension and wetting. Top: large surface
tension (σ=0.03) with hydrophilic wetting (θ=40); middle:
same large surface tension with now hydrophobic wetting
(θ = 160); bottom: transition from the same large surface
tension with hydrophobic wetting (θ=40) to a small surface
tension (σ=0.0005) with hydrophilic wetting (θ=160).

Moreover, we tried a scenario where wetting dominates the
behavior of the liquid flow near solid surfaces (like in thin
fabric or on solid porous materials) in Fig. 10(a–d), and our
solver faithfully captured such a case. Note also that since
liquids may often get in contact with domain boundaries,
wetting is observable in many of our examples on domain
walls — but it can easily be removed if desired by changing
the boundary condition for ∇φ such that discrete samples
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Fig. 12: Bubbling. Bubble generation, where two bottom
air inlets are given sufficient pressure to push air into the
liquid to form complex bubbles. Due to air pressure, the
bubbles initially form mushroom-like shapes, see (a). Then,
they gradually become unstable and start splitting, see (b).

of φ outside the domain are all zero.

Surface tension. In addition to splashing and wetting,
liquids may also exhibit a diversity of surface tension
induced phenomena. Liquids with large surface tension
(thus creating forces that dominates the flow behavior)
have already been demonstrated by many previous works,
see for instance [101], [10]; we can reproduce similar cases
in our framework, but we differ from these previous works
in that different wetting conditions can also be set in these
flows when they come in contact with solids, see Fig. 11.
Note that this example shows that, as expected, large
surface tension with hydrophobic wetting can make the
liquid bounce up; and we can even change the surface
tension and wetting conditions dynamically during the
simulation (e.g., to simulate the addition of a detergent).

Bubbling. In many multi-phase flows, the generation
of bubbles inside turbulent liquids is an important visual
phenomena. Our solver can easily capture complex bubbles
that are automatically triggered by the motion of the liquid.
As a special example, we inject air from two inlets at the
bottom of a water container, see Fig. 12. The air pressure will
first form large bubbles, which will then rise and split into
smaller ones. (This is different from typical bubble-rising
simulations where bubbles are manually put in front of the
inlets.) Due to air pressure, the initial bubbles at the inlets
can form mushroom-like shapes that are further stretched in
time, see Fig. 12(a). Then, they gradually become unstable
and start automatically splitting, see Fig. 12(b). Again, all
the behaviors witnessed in this example emerge from the
simulation, and are not hand-directed in any way.

Glugging effect. A common multi-phase phenomenon
where bubbles are automatically generated is glugging
(also called gurgling), which has also been demonstrated
on its own in previous works [8], [7]. Our solver can
efficiently produce such a phenomenon, see Fig. 13 for
instance. However, due to the unified nature of our solver
targeting a whole spectrum of multiphase phenomena, our
simulated glugging can exhibit a wide range of bubble sizes
deep inside the liquid (see Fig. 13(a–b)), as well as wetting
near solid boundaries (see Fig. 13(c)), which becomes very
obvious near the end of the animation, but is completely
ignored in existing simulators in graphics. We will

Fig. 13: Glugging. As water is flowing down from an
upper container, (a) large bubbles first appear inside the top
container, along with several small bubbles; (b) as the liquid
accumulates below, many small bubbles are observed; (c)
near the end of the process, wetting is obvious along the
container walls.

Fig. 14: Air-driven flows. Our approach can also simulate
the motion of water purely driven by high air speed. Strong
splashing and surface waves are generated by a high-speed
flow of air over the liquid, along with bubbles and wetting.

demonstrate how our results are close to real experiments
in the next section, which is a unique advantage of our
method over existing solvers.

Air-driven liquid flow. An even more powerful aspect
of our solver is its ability to simulate liquid flows which
are purely driven by fast blowing air, see examples in
Fig. 14. Air-driven liquid flow is another typical example of
multiphase flows where air and liquid tightly interact with
each other, and possibly in a very turbulent manner. This
definitely requires high stability of the solver to support
strong turbulence for both air and liquid with a high density
ratio. To the best of our knowledge, this work is the first to
be able to simulate air-driven water flows.

6.2 Comparisons

With CFD method. As we argued earlier, Fakhari et al. [17] is
currently the state-of-the-art approach within existing LBM-
PF techniques, and our contributions are enhancing, at times
drastically, their results. Fig. 15 compares the simulation
results of [17] and ours, without and with artificial velocity-
limiting diffusion. For fair comparison, we set the density
ratio to 500 as done in [17], and pick the largest Reynolds
number that their method can handle. For this choice of
parameters, both results are visually similar as the same
crown of droplets appear, see Figs. 15(c) & (e). However, our
approach can handle much higher Reynolds numbers due to
the stability that our changes have brought, see Figs. 15(b) &
(d). In fact, to visualize how large a region of stability we can
achieve, we took the animation example of Fig. 5 and tried it
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Fig. 15: Stability for density ratio of 500. For an example involving a ball of liquid falling into a pool of liquid (for an
air-liquid density ratio of 500 as used in [17]), we show (a) the simulation obtained with their original method for the largest
possible Reynolds number, here Remax = 400, before their solver blows up; if we add just our velocity-limiting adaptive
viscosity to their approach, their modified solver can now handle (b) Remax = 1000. In contrast, our solver without using
any velocity-limiting adaptive viscosity (c) can already match the results (b) of [17] for Re=1000, and can go all the way to
Remax=5000 (d); with the adaptive viscosity added, we remain stable until Remax=16000 (e). As a rough estimate based on
the actual values of Re, this means that [17] could only simulate a small drop of water in a glass, while we can simulate all
the way to having a ton of water being dropped in a pond (hence the surface waves) without having numerical blowups.

with both our solver and the one from [17] on a whole range
of Reynolds numbers (up to 105) and density ratios (up to
1000). Fig. 7 indicates the regions where each solver were
able to run the animation without blowups. As is evident
on the final plot, we cover a range area over 5 times larger
than the solver we started from. Fig. 8 also offers insight
on how the various improvements we formulated over [17]
impact the result for a simple dam break in 2D.

With CG and real-life flows. To further validate our solver
ability to produce realistic liquid flows, we compare in
Fig. 16 our simulation result of the glugging effect with the
stream function solver of [8], which can also automatically
capture bubbles in liquid flows, and to a video-captured
real experiment similar to our simulation setup. Note
that it is difficult to match the real experiment exactly in
simulation, in particular, because of the inexact shape of the
opening; moreover, the approach in [8] does not offer any
control over the density ratio, but claims that it is relevant
for water-air, so we use their results as is; consequently,
we only compare the most critical macroscopic phenomena
(presence of bubbles, their sizes and typical motions, etc).
Fig. 16(a) is the one of the snapshots captured from the
real-life experiment, while Fig. 16(b) is the corresponding
result from the stream function solver with a background
grid of size 128 × 256 × 128, while around liquid-air
interfaces, each grid cell contains 12 to 14 particles. Since
particles are involved in their computations, it creates a
higher resolution near interfaces. Thus, in order to match
the number of degrees of freedom used to discretize the
flow and its interface, our simulation in Fig. 16 (c) uses
a resolution of 300×600×300, since we do not currently
support adaptive resolution. It is clear from the figure,
and even more obvious from the video sequences, that the
stream function solver misses bubbles inside the liquid
near the bottom container, whereas our solver can faithfully
retain these deep bubbles. The bubble shapes formed
during the sequence are also more realistic than with the
stream function solver as compared to the real experiment.
In addition, wetting can be observed especially at the end
of the simulation, just like in the real experiment, whereas
such phenomena cannot be reproduced in the stream
function solver (or in many other existing multiphase
flow simulators in graphics). Finally, we note that the

Fig. 16: Real vs. simulated glugging. (a) a real experiment
exhibiting glugging is qualitatively reproduced with (b) the
stream function solver [8] and (c) our solver. While the
stream function solver do not match the right density of
bubbles in the bottom container, our method captures the
glugging phenomenon (wetting included) quite closely.

computational time required by their method (with their
code run on our 28-core machine) is nearly 30% faster than
our simulation times (once normalized by the number of
degrees of freedom used in the simulation), proving that
the parallel nature of our LBM-PF makes it competitive in
terms of overall efficiency.

7 CONCLUSION

In this paper, we argued that with proper numerical
treatments of gradient estimates and improved collision
terms, a kinetic solver can offer an effective and unified
computational framework for complex liquid simulations
with which many multiphase flow phenomena can be
concurrently captured. The resulting solver is as efficient
as most ad-hoc CG fluid solvers designed to exhibit only
a subset of typical multiphase behavior—but much more
general and flexible. Perhaps more strikingly, our solver
is also significantly more stable and sometimes also more
accurate than existing CFD simulators, for which kinetic
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approaches are the current industry standard in multiphase
flows. We show through various flow simulations that
typical multiphase behaviors such as glugging and wetting
can be simulated faithfully and efficiently, even for
real-life density ratios (800 for air-water) and Reynolds
numbers (over 400 for interesting turbulent flows). While
macroscopic solvers have dominated computer animation
over the past two decades, they have generated exquisite
simulations of often very viscous fluids (from dough, to
honey, to slightly syrupy fluids), our paper challenges our
community by proposing a computational alternative that
is in nearly all aspects superior to current methods when it
comes to barely-viscous real-life liquids.

Limitations. Our method still suffers from a number
of limitations which will require future work. Although
many liquid phenomena can be captured with our method
more faithfully than existing solvers, its memory usage is
up to two to three times larger than competing solvers;
this limitation mostly stems from our absence of adaptive
sampling, forcing the use of fine grids. Adaptive grids, able
to capture finer sampling of the interface geometry more
economically, are likely to address this issue, but a proper
treatment of the mesoscopic simulations over these new
data structures needs to be devised. We also did not address
the case of coupling with deformable solids, which would
bring a whole slew of interesting applications such as blood
flow simulation. More in-depth investigation on how to
efficiently and accurately simulate the Boltzmann transport
equation may also uncovered a series of further improve-
ments, possibly with unexpected applicability beyond the
multiphase flow realm.
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