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Fig. 1. Multiphase flow simulation. We contribute an efficient and robust approach to simulating two-phase flows of nearly inviscid & incompressible fluids
such as water and air interacting with complex solids. Our kinetic solver couples the incompressible Navier-Stokes equations with a conservative phase-field
equation to evolve the two fluids and their interface in time in a massively-parallel fashion. Key improvements in the lattice-Boltzmann collision operator
and in boundary handling bring accuracy and robustness, allowing us to capture all salient multiphase flow behaviors (here, water is dropped in a colander,
exhibiting complex patterns as it rushes through the perforations) while improving efficiency and reducing memory use compared to other kinetic solvers.

Real-life multiphase flows exhibit a number of complex and visually ap-
pealing behaviors, involving bubbling, wetting, splashing, and glugging.
However, most state-of-the-art simulation techniques in graphics can only
demonstrate a limited range of multiphase flow phenomena, due to their
inability to handle the real water-air density ratio and to the large amount
of numerical viscosity introduced in the flow simulation and its coupling
with the interface. Recently, kinetic-based methods have achieved success
in simulating large density ratios and high Reynolds numbers efficiently;
but their memory overhead, limited stability, and numerically-intensive
treatment of coupling with immersed solids remain enduring obstacles to
their adoption in movie productions. In this paper, we propose a new kinetic
solver to couple the incompressible Navier-Stokes equations with a conser-
vative phase-field equation which remedies these major practical hurdles.
The resulting two-phase immiscible fluid solver is shown to be efficient due
to its massively-parallel nature and GPU implementation, as well as very
versatile and reliable because of its enhanced stability to large density ratios,
high Reynolds numbers, and complex solid boundaries. We highlight the
advantages of our solver through various challenging simulation results that
capture intricate and turbulent air-water interaction, including comparisons
to previous work and real footage.
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1 INTRODUCTION

With recent advances in fluid simulation, visually-realistic digi-
tal representations of liquid motion have become commonplace
in movie productions. While the early use of single-phase simula-
tion [Foster and Fedkiw 2001; Zhu and Bridson 2005; Solenthaler
and Pajarola 2009; Wojtan et al. 2011] offered only limited realism
since the air surrounding the fluid was assumed to exert no pres-
sure, multiphase flow simulation can exhibit a far richer palette of
behaviors: the air-water and water-solid interactions often generate
bubbles, splashes, glugging, and even the intricate wetting patterns
that a fluid forms over hydrophilic or hydrophobic surfaces.

Over the last decade, the animation of immiscible multiphase
flows in graphics has successfully demonstrated complex behaviors
of bubbles [Kim et al. 2010; Boyd and Bridson 2012; Ando et al.
2015], surface tension effects [Patkar et al. 2013; Da et al. 2016] and
wetting [Zhang et al. 2012; Patkar and Chaudhuri 2013]. However,
cinematic realism of complex water-air interactions calls for large
density ratios (around 800 for the most common case of air vs. wa-
ter) and high Reynolds numbers (Re >4, 000 for turbulent flows) to
display the type of visual complexity that natural multiphase flow
phenomena have to offer. These numerical requirements have been
out of reach for state-of-the-art CG solvers, and remain a challenge
even in computational fluid dynamics (CFD) [Lycett-Brown et al.
2014; Geier et al. 2015]. Recently, Li et al. [2021] introduced a kinetic
approach which, for the first time, can simulate most of the typical
multiphase flow phenomena, and for a range of fluid viscosity and
density ratio that solvers in graphics strive to simulate in order to
visually rival reality. This new solver relies on the lattice Boltzmann
method (LBM) and uses a phase-field (PF) model to handle interfa-
cial computations. However, their low-order collision model and
boundary handling via simple bounce-back severely lack stability

ACM Trans. Graph., Vol. 41, No. 4, Article 114. Publication date: July 2022.


HTTPS://ORCID.ORG/0000-0001-8754-6679
HTTPS://ORCID.ORG/0000-0003-1515-7492
HTTPS://ORCID.ORG/0000-0003-4518-618X
HTTPS://ORCID.ORG/0000-0003-3424-6079
https://doi.org/10.1145/3528223.3530132

11422 « Li,W.etal

Fig. 2. Blowing air into a glass of water. In this simulation, air is being pushed down a straw immersed in a glass of water; a large cluster of bubbles forms
at the bottom of the straw, before rising due to buoyancy, and eventually popping when it reaches the top.

when complex or fast air-fluid interactions occur, see Fig. 8. More-
over, its large memory footprint (in particular due to the encoding
of the phase field via twenty-seven distribution functions) is a major
impediment to its use in industrial applications.

Overview. In this paper, we introduce a kinetic approach to mul-
tiphase fluid simulation particularly well suited to capture efficiently
and robustly the intricate and visually-appealing behaviors of mul-
tiphase flows. We show that our LBM-PF numerical scheme offers a
unified framework to simulate the wide gamut of multiphase flow
behaviors as demonstrated for instance in Fig. 1. It is not only much
more efficient in simulation time than many existing CG simulation
techniques, but as accurate as (and more stable than) existing CFD
approaches to multiphase flows as well, through the use of an accu-
rate collision model (based on a non-orthogonal central-moment
formulation) and a robust discretization of the Neumann boundary
conditions on solid obstacles. Finally, its reduced memory footprint
compared to previous kinetic two-phase flow solvers renders it
particularly practical for CG applications.

2 PREVIOUS WORK

Before introducing our solver, it is instructive to briefly review
existing work in multiphase fluid simulation to note the strengths
and weaknesses of previous methods.

2.1 Free surface fluids

Lagrangian discretizations of fluid based on SPH were initially fa-
vored for their efficiency [Desbrun and Gascuel 1996; Miiller et al.
2003]. The resulting visual blobbiness for low to medium particle
counts was a major drawback of this family of approaches, even if
various palliative treatments were formulated [Desbrun and Cani-
Gascuel 1998; Zhu and Bridson 2005]. Improvements in incompress-
ibility [Solenthaler and Pajarola 2009; Bender and Koschier 2016]
and in the numerical treatment of free surface and solid bound-
aries [Schechter and Bridson 2012; Koschier and Bender 2017; Band
et al. 2018] quickly followed. For viscous fluids, Particle-In-Cell [Fos-
ter and Metaxas 1996] (PIC) and Fluid-Implicit-Particle [Zhu and
Bridson 2005; Batty and Bridson 2008; Cornels et al. 2014; Azevedo
et al. 2016; Fu et al. 2017] (FLIP) techniques (or hybrid methods, such
as [Cornels et al. 2014] mixing FLIP and SPH) were also successfully
used. Nevertheless, a representation of the interface and its motion
based on the level set method proved to be an attractive alternative
to particle methods [Foster and Fedkiw 2001]. An improved control
over local volume change [Enright et al. 2002, 2005; Kim et al. 2007]
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and adaptive sampling [Losasso et al. 2004; Heo and Ko 2010] al-
lowed for detailed and realistic simulation of fluid flows, potentially
post-processed to further enhance the visual appearance of small
wrinkles on the fluid surface [Kim et al. 2013]. Other approaches
to interface tracking, based on volume-of-fluid [Mihalef et al. 2004,
2006] or explicit mesh representations [Wojtan et al. 2011; Bojsen-
Hansen and Wojtan 2013; Chentanez et al. 2015; Bojsen-Hansen and
Wojtan 2016; Da et al. 2016], have also been demonstrated; some
hybrid methods can even capture sub-grid features such as thin lig-
uid splashes, narrow air spaces, and droplets using cut-cells [Chen
et al. 2020]. This whole family of free-surface methods is, however,
limited by the fact that the air surrounding the fluid being simu-
lated is always assumed to be exerting no pressure on the interface.
Consequently, common fluid features such as bubbles cannot be
directly simulated: a small amount of air trapped within the fluid
will immediately collapse.

2.2 Navier-Stokes-based multiphase fluids

Ad-hoc inclusions of bubbles within a fluid can be performed effi-
ciently [Kim et al. 2010; Thuerey et al. 2007; Goldade et al. 2020],
but simulating the full spectrum of behaviors that multiphase flows
exhibit has attracted increased attention over the past decade. A
number of particle-based approaches were formulated: first, adapt-
ing SPH to handle multiple immiscible fluids of different densities
using Navier-Stokes equations was introduced [Solenthaler and Pa-
jarola 2008; Ren et al. 2014; Yan et al. 2016; Yang et al. 2017], followed
by FLIP-based [Boyd and Bridson 2012] and MPM-based [Zhang
et al. 2017; Yue et al. 2015; Gao et al. 2018] formulations. Exact vol-
ume preservation and improved treatment of surface tension and
local momentum preservation near the interface were formulated
using power particles [de Goes et al. 2015; Aanjaneya et al. 2017].
However, the blobbiness of these approaches limits their accuracy
unless a huge number of particles is employed, which once again
renders the use of interface tracking appealing. Both levelset (see,
e.g., [Kim 2010] for the case of more than two immiscible fluids)
and volume-of-fluid (VOF,; see, e.g., [Cho and Ko 2013; Langlois et al.
2016]) discretizations have been used to encode the interface. Most
related methods [Boyd and Bridson 2012; Kim et al. 2007; Losasso
et al. 2006; Mihalef et al. 2006] rely on a variable density pressure
projection [Kang et al. 2000] and the ghost fluid method [Hong and
Kim 2005] to treat discontinuous jumps in fluid density and pres-
sure at the interface, but a few authors proposed the use of a diffuse
interface instead where the density is rapidly but smoothly chang-
ing [Song et al. 2005; Zheng et al. 2009]. While this interface-tracking
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Fig. 3. Flowing through pumice. Water is poured on top of a porous rock containing a multitude of cavities and tunnels, making its way slowly through
before falling into a container (left). Visualization of an intermediate frame without the pumice rock reveals the complexity of the flow (right).

family of approaches to multiphase flow simulation has been most
popular, notable alternatives emerged too: an MPM formulation was
introduced in [Su et al. 2021] to simulate viscoelastic liquids with
phase change; a Lagrangian mesh-based approach to animate multi-
phase flow of immiscible fluid using unstructured moving meshes
was also proposed for viscous fluids [Misztal et al. 2013]; and hybrid
solvers using different numerical coupling between fluid velocity,
pressure, and interface position were also explored [Saye 2016, 2017;
Yang et al. 2021]. However, rare are the methods able to handle
density ratios above 100, and none have demonstrated convincing
results for turbulent flows. Additionally, many can only exhibit a
subset of the typical multiphase flow phenomena such as bubbling,
guggling, or wetting. Finally, just as argued in the single-phase
case [Li et al. 2020], the efficiency of most of these incompressible
Navier-Stokes solvers are hampered by their pressure projection
step which does not parallelize well; moreover, capturing turbulent
flows and proper interfacial forces both prevent the use of large
time steps via stable semi-Lagrangian integration.

2.3 Kinetic multiphase fluids

While Navier-Stokes solvers are mainstream in graphics, the compu-
tational fluid dynamics (CFD) community has also explored so-called
kinetic solvers for multiphase flow simulation, based on statistical
physics where fluid dynamics is modeled through the evolution of
a large number of microscopic fluid particles, moving and colliding:
even at rest, fluid is not merely considered as a static continuum,
but is teeming with molecules moving around. In the kinetic the-
ory of statistical physics, these microscopic particles are efficiently
encoded via a mesoscopic probability distribution of fluid particles.
Formally, it employs a distribution function, f(x, v, t), that indicates
the probability for a microscopic particle to be at position x at time
t and with velocity v. Note that v denotes the possible velocity of a
microscopic fluid particle, not the usual macroscopic fluid velocity
u; for example, even for a fluid at rest (i.e., u = 0), the velocity v
of a fluid particle may be arbitrarily away from zero: local fluid
velocities just average to zero locally. The mesoscopic evolution of
f is governed by the continuous Boltzmann equation,

7]
a—{+u~Vf=Q(f—feq)+F'V,,f, 1)
where F encapsulates all forcing terms (body and surface tension

forces), while Q is the so-called collision term modeling the change

of distribution function f(x, v, t) due to particle collisions. This op-
erator effectively models the relaxation process of f(x,v,t) towards
its local equilibrium state f°9, as a fluid over time tends to become
distributed homogeneously if no external forces are applied. While
this approach, called the lattice Boltzmann model (LBM), is used as is
to simulate the motion of single-phase fluids, kinetic multiphase flow
simulation requires introducing additional parameters to LBM that
account for phase separation and interfacial tension. There exist six
main families of approaches to that effect, derived from interparticle-
potential models [Shan and Chen 1993, 1994; Chin 2002; Kang et al.
2004], multirange interaction models [Falcucci et al. 2007; Sbragaglia
et al. 2007; Chibbaro et al. 2008], color-gradient models [Gunstensen
et al. 1991; Grunau et al. 1993; Leclaire et al. 2011; Ba et al. 2016;
Saito et al. 2018], pseudo-potential models [Swift et al. 1995; Shao
etal. 2014; Niu et al. 2018], mean-field theory [He et al. 1998; Lee and
Lin 2005; McCracken and Abraham 2005; Mukherjee and Abraham
2007a,b], or free-energy models [Orlandini et al. 1995; Swift et al.
1996; Holdych et al. 1998; Inamuro et al. 2000; Kalarakis et al. 2002;
Zheng et al. 2006]. This last family is widely accepted as the current
state-of-the-art approach for multiphase flows [Nabavizadeh et al.
2018]: it substitutes boundary conditions at the interface by a partial
differential equation for the evolution of an auxiliary field called
the phase field, based on a double-well potential describing the free
energy density of the bulk of each phase. Yet, even if combining a
phase field with an LBM simulation of the fluids can handle large
density ratios or high Reynolds numbers, none of the existing CFD
methods can handle these two required characteristics concurrently
on a fixed grid resolution [Falcucci et al. 2011; Fakhari et al. 2017a].
Works in graphics usually have the same limitations (see, for in-
stance, the two-phase kinetic method of [Guo et al. 2017] which
only supports density ratios up to 20), with the notable exception
of [Li et al. 2021] which has demonstrated stability over the widest
range of density ratios and Reynold numbers thus far. However, this
most recent work cannot handle thin obstacles and relies on a full
D3Q27 lattice for the momentum and phase fields which imposes a
much higher memory consumption (121 real numbers per grid node
(Tab. 3) to store the current and previous time steps), hampering
its wide adoption in practice since high-resolution simulations are
usually sought after.
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2.4 Discussion

There appears to be a dichotomy between efficiency and memory
usage in the current state-of-the-art methods in multiphase flow
simulation: while LBM-based approaches have clearly an edge on
efficiency (owing to their massively-parallel implementation and
absence of pressure projection), they require up to ten times more
memory than the traditional macroscopic solvers focusing on the
macroscopic equations of motion. However, kinetic approaches have
proven to be very accurate; in particular, they are able to simulate
a range of turbulence and density ratios that is out of reach for
the solvers currently used in graphics. Yet, the robustness with
which one can hope to simulate complex air-water interactions
leaves a lot to be desired: classical boundary treatments in LBM,
based on bounce-back and/or the immersed boundary method, often
generate spurious pressure fluctuations or phase leakage near solid
boundaries in most challenging examples. Therefore, developing
an efficient kinetic solver for multiphase flows that can accurately
capture intricate behaviors such as wetting and guggling with a
reasonable memory footprint would offer a valuable simulation tool
likely to be adopted by the graphics industry.

3 OUR MULTIPHASE FLUID SOLVER

This section presents the core of our contributions to offer an effi-
cient and versatile incompressible multiphase flow simulator.

3.1 Overview

We begin with a brief overview of our approach, before delving into
the details of each component in the remainder of this section.

Fluid equations. The momentum and continuity equations for in-
compressible multiphase flows are often described macroscopically
as [Kendon et al. 2001; Badalassi et al. 2003; Li et al. 2012]:

12
PLy. (pu) =0, (2a)
a(pu) ot
%+V.(puu):—Vp+V~H+Fs +Fp, (Zb)
V.u:O’ (ZC)

where p and u are respectively the spatially-varying fluid density
and velocity of the two fluids, p is the hydrodynamic pressure en-
forcing the incompressibility condition (2c), IT is the viscous stress
tensor, while Fy, and Fs are body and surface tension forces.

Our approach at a glance. Given the clear benefits of kinetic
solvers discussed in Sec. 2, we adopt a lattice Boltzmann approach
for our multiphase flow solver, with a phase field model of the inter-
face location. The phase field ¢(x, t) will be used to indicate density
changes in space and time, with a steep change where the interface
between the two fluids lies. Boundary conditions at the interface
will be handled via this phase field, simplifying the simulation of
flows with complex topology changes. However, we note that re-
cent developments in computational multiphase flows have traded
memory for stability: early works using a D3Q7 discretization for
the phase field [Liang et al. 2018; Fakhari et al. 2019; Gruszczynski
et al. 2020] were often unstable for typical values of mobility, which
recently prompted Li et al. [2021] to go with a D3Q27 lattice to
palliate these issues, at the cost of a nearly four-fold increase in
memory. Instead, we propose to keep a D3Q27 lattice to capture the
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Fig. 4. Dam break with thin obstacle. A dam-break wave encounters a
solid thin shell, forming an obvious crown splash and a wake zone, followed
by a large amount of turbulence and bubbles, before subsiding.

velocity field, but return to a D3Q7 lattice for the phase field, and
increase the coupling accuracy — and thus stability — through a
higher-order collision model and improved boundary treatments.
Therefore, we perform an LBM-based integration of Egs. (2) where
the velocity and pressure fields are computed via a D3Q27-based
distribution function g (Sec. 3.2), while the phase field encoding
the density field (and thus, the interface between the two fluids)
is handled via a D3Q7-based distribution function h (Sec. 3.3). The
collision operators for both distribution functions are computed in
central moment space to offer improved accuracy, while coupling
between the two distributions is achieved via forces derived from
their respective moments.

3.2 Velocity-based fluid evolution

LBM solvers for single-phase fluids typically use a distribution func-
tion whose zeroth-order moments is the local fluid density. How-
ever, for multiphase flow simulations, a dedicated phase field is
used to encode the spatially-varying density. Consequently, Fakhari
et al. [2017b] proposed a change of variable (which we review in
Sec. A of the supplemental material) such that the zeroth-order
moment of the modified distribution function g is now proportional
to the pressure, and for which the velocity can be deduced from the
first-order moment and the forcing terms. We adopt this so-called



“velocity-based” distribution function! ¢ in our multiphase fluid
simulation. After this change of variable, discretizing time (with
LBM-normalized time steps 6t =1), space (using the nodes of a regu-
lar grid with LBM-normalized §x =1) and velocity directions (using
discrete velocities {c; }o<i<26 at each grid node forming a D3Q27
lattice in 3D, see Fig. 6 (left)) turns Eq. (1) into the lattice-Boltzmann
equations (LBE) of the form, for i=0...26:

gi(x+cit+1) —gi(x.1) = QI (x.1) + Gi(x, 1), (3)
where g; represents the component of the distribution function in
direction c¢;, while Q? and G; account for the collision and forcing
terms respectively in this direction. The equilibrium distribution
g°4 for this velocity-based formulation is now expressed as:

G =Tiw (" = 1w - @
where p* is the LBM-normalized pressure (i.e., the dimensionless
pressure p equals pc?p* with ¢ being the D3Q27 speed of sound
equal to 1/v/3 in 3D), wj is the lattice weight for direction c;, and
the distribution function T is expressed as:

ciru (ci-w? u-u

+ — - . 5
c2 2ct 2¢2 ©)

Finally, note that all the terms on the right-hand side of Eq. (2b)

are counted as forcing terms in our multiphase context; that is, the
components G; are the projections of the total force F composed of

F=Fp+F, +Fs +Fp, 6)
where Fj, and F;, correspond, respectively, to the pressure gradient
and viscosity forces. Aside from the last term (which embodies body
forces in the fluid), these forces depend on the phase field ¢ so as to
properly handle the interfacial coupling between the two fluids; we
thus postpone discussing their expressions to Sec. 3.3.

I‘i=wl? 1+

Macroscopic variables. In order to solve Egs. (3), we proceed through
Strang splitting by applying the traditional two-step (collision-
streaming) sequence, where the evaluation of the collision operator
and forcing terms will be detailed next. The macroscopic hydrody-
namic variables can be updated locally and independently through
the moments of g and the forcing terms via:

P (xt) = Zi]gxx, D, u(xt) = Zw(x, Der+ T2D @)

While our multiphase framework so far is a mix of existing for-
mulations (each chosen for their stability and accuracy properties),
we differ significantly in our estimation of collision and forcing
terms, as we extend a high order approximation (based on a central-
moment formulation) which has only been used for single-phase
LBM [De Rosis et al. 2019; Li et al. 2020].

High-order central-moment collision model. Early LBM works used
the Bhatnagar-Gross-Krook (BGK [Bhatnagar et al. 1954]) collision
model, where the distribution function g is relaxed towards its
equilibrium with a relaxation time 7 directly proportional to the
kinematic viscosity through 7 =v/c?. In our two-phase flow con-
text, each flow has its own potentially different viscosity — but
we will see in Eq. (12) that the local viscosity can be directly in-
ferred from the value of the phase field, making this relaxation

!'This naming stems from the fact that the first-order moment (described later in Eqgs. (7))
is related to the velocity, instead of the momentum in single-phase LBM works.

Efficient Kinetic Simulation of Two-Phase Flows « 114:5

‘ : |
\

Fig. 5. Comparing collision models. Even for a simple 3D dam break with
a grid-aligned obstacle, the MRT model [Suga et al. 2015] (left; 2D cut of the
color-coded vector field magnitude shown as the water hits the obstacle)
leads to pressure overshoots that crash the simulation early; the recent W-
MRT collision model of [Li et al. 2021] leads to a stable simulation (center),
but the velocity field is quite irregular, leading to a phase field (bottom inset)
exhibiting misshapen Kelvin-Helmholtz instabilities; comparatively, our new
central-moment MRT collision model demonstrates a smoother vector field
and a well-captured Kelvin-Helmholtz instability for the phase field.

time easily evaluated at each grid node. However, the poor numeri-
cal stability and results generated by this lattice BGK approxima-
tion due to truncation errors have led in the last decade to the
proliferation of moment-based collision models: recent multiphase
flow solvers have typically been using the multiple-relaxation-time
(MRT) model [Fakhari et al. 2017a,b; Li et al. 2021], demonstrating
far improved accuracy and stability over previous treatments. In
our work, we adapt the high-order non-orthogonal central-moment
multiple-relaxation-time (CM-MRT) model [Li et al. 2020] to our
multiphase context instead to further enhance accuracy and stability.
The idea is to project the g; — g?q term first in a central moment
space via a projection matrix, then relax each moment at a different
time scale, then go back to the distribution space. We thus assemble
the current vector g = (9o, g1, .- g26) of all distribution components
at a given node and the vector g1 of all equilibrium distribution
components for this same node; to determine the equilibrium dis-
tribution g4, we take, instead of Eq. (5), the highest-order Hermite
expansion of the distribution T (provided for the reader’s conve-
nience in Eq. (g) of the supplemental material). We then evaluate
the vector QY = (Qg, Q?, QZG) containing all collision terms at
the same node through:

QI = —-M_ 'S M. (g - g°9), ®
where M. is the projection matrix to the central-moment space and
the relaxation matrix S, is a diagonal matrix for which some of
the diagonal values are related to the local kinematic viscosity v as
detailed in [De Rosis et al. 2019]. We follow the approach of [Li et al.
2020] to compute the projection to and from the central moment
space to improve computational efficiency. Note that this central
moment based approach to collision is significantly more accurate
than BGK: the dam break example from Fig. 5, for instance, cannot
be completed with the BGK model unless the density ratio is lowered
to 10. It is also better than the usual MRT treatment from [Suga
et al. 2015; Fakhari et al. 2017b; Li et al. 2021] as Fig. 5 demonstrates:
the spurious velocity artifacts present in the MRT approach are no
longer visible when non-orthogonal central moment MRT is used.

Force terms in central moment space. The highest-order Hermite
expansion (sixth order in 3D) of the forcing terms G; yields a rather
long expression [De Rosis et al. 2019]; see Eq. (h) of the supplemental
material. Fortunately, one realizes that the projections G; of the
G; terms onto the non-orthogonal central moment space greatly
simplifies as many components vanish, leaving only a few nonzero
components:
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Therefore, starting from the 3D force vector F including all four
terms (see Eq. (6)), we compute the terms G; from Eq. (9), assemble
them into a vector G, then the final distribution components G; are
found as the 27 coordinates of the vector G=M; 'G. Note that the
original weighted MRT approach of Fakhari et al. [2017b] used an
approximation to these forcing terms because they did not witness
a noticeable difference with the proper MRT projection. This is not
the case when central moments are used: the resulting increased
accuracy is significant as our results will demonstrate.

3.3 Phase field evolution

In order to simulate a mixture of two immiscible, incompressible
fluids with respective density pgy and py and respective viscosity vgy
and vy, (where the subscripts H and L are used to differentiate the
high-density fluid from the low-density fluid in our exposition), the
diffuse phase field model [Kendon et al. 2001; Badalassi et al. 2003]
proposes to introduce a time-varying phase function ¢ (x, t) € [0, 1]
as an order parameter to identify the regions occupied by the two
fluids through:

1 inside high-density fluid, (10)

with a smooth, thin transition layer of thickness & between the
two fluids. A sharp location of the interface may thus be defined
as the surface where the phase field takes the value %, but the
purposely-continuous transition of the phase field allows to substi-
tute boundary conditions at the interface by a partial differential
equation for the evolution of the phase function to reproduce the
correct interfacial dynamics. The density field p is then defined in
space and time as:

0 inside low-density fluid,

$(x,t) = {

p(x.t) = pr + (pH = pL)P (%, 1). (11)
The viscosity v is similarly expressed in space and time as:
1 1 1 1
== [— - ). (12)
v(x) v VH VL

Equation of motion. A phase field model is usually constructed
based on a free energy for the system, often involving a Ginzburg-
Landau double-well potential describing the free energy density of
the bulk of each phase and an interfacial Dirichlet energy. A conser-
vative form of such an interface evolution was proposed in [Geier
et al. 2015], resulting in a modified Allen-Cahn equation written as:

By gu = M7 Fpa-pm)]. a3
where n = V¢ /|V¢| represents the unit vector field aligned with
the gradient of the phase function (thus orthogonal to the isovalue
surfaces of the phase field), while the mobility parameter M controls
the degree of interface splitting, i.e., small M implies greater ease
for the interface to split due to a smaller influence of the interfacial
Dirichlet energy. This equation is in divergence form, with the first
divergence term making the phase field advected by the macroscopic

fluid velocity u, while the right-hand side term is the sum of a
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Lattice velocities c; Lattice velocities d;
Fig. 6. Lattice structures. Velocity and pressure fields are computed via
a D3Q27-based distribution function g (left, see Sec. 3.2), while the phase
field indicating the density field (and thus, the interface between two fluids)
is encoded via a D3Q7-based distribution function h (right, see Sec. 3.3)

diffusive flux density MV¢ and a separation flux density that favors
a predefined interface profile in 3D [Geier et al. 2015] of the form:

dy(x
$(x1) = % [l—tanh(z ¢§( ))] . (14)

where d (x) = £[x — X| is the signed distance of any point x to its
orthogonal projection X on the interface with ¢(x) =1/2, while &
controls the interfacial thickness.

LBM discretization. In order to integrate Eq. (13) in time, we also
base our approach on statistical physics to simplify the coupling
between phase and fluid motion, but we use a D3Q7 lattice to dra-
matically reduce memory consumption compared to [Li et al. 2021].
Therefore, while we employ the same regular grid for the spatial
discretization as for the fluid simulation, a set of only 7 lattice veloc-
ities in 3D (dy, ..., d¢, see Fig. 6) are used, with associated quadrature
weights {wf’ }i and a speed of sound d=1/2. A distribution function
h is then used to find the phase field as its zeroth-order moment, i.e.,
we can evaluate the phase field at any node and any time through:

i=6
pxt) = Y hi(x D). (15)
i=0

Solving the phase-field equation. The phase field equation (13) can
then be solved using the distribution function h whose components
satisfy the lattice Boltzmann equations [Gruszczynski et al. 2020]:

hi(x+di,t+1) —hi(xt) = th(x, t) + Hi(x, t), (16)
where the only force H acting on the phase field corresponds to
the conservative term in the right-hand side of the phase equa-
tion [Wang et al. 2016], counteracting the diffusion of the phase-field
and driving it to reach the predefined hyperbolic-tangent interface
profile (Eq. (14)) in the equilibrium state. i.e.,:

244(1-¢) V9
H=d 7 Vol (17)
The phase gradient V¢ is evaluated using the second-order weighted
estimate from [Li et al. 2021], i.e., we use:

v¢:§vm¢+%vm¢ (18)
using the two rotationally-symmetric gradient approximations:
VIUg(x) = 3 3wicip(x + i),
Vitg(x) = Y, 3Wl~cci 4¢(X+c,—);¢(x+20i).
This phase-field force is projected in distribution space via:
Hi(x,t) = wid; - H(x,t)/d®. (19)



Collision operator. While the forcing terms of Eq. (16) do not
need any particular treatment due to their limited amplitude, a high
accuracy for the collision term Ql}.’ is key to the stability of the phase
field given the purposely-chosen low-order lattice. We thus employ a
high-order (non-orthogonal) central-moment MRT model as we did
for the fluid velocity. Concretely, the collision terms are evaluated
as the component of a vector Qh = (Qh, Q{’, Qé’) through

Q" = -M;'s;My(h; — b9, (20)

where the projection matrix My is described in Sec. E of the sup-
plemental material, the diagonal relaxation matrix Sy is set as
diag(1,1/(4M + %), 1/(4M + %), 1/(4M + %), 3/2,3/2,3/2), while the
phase-field equilibrium distribution functions are expressed as:
W= ¢TI~ H;/2, (21)
based on trapezoidal integration as described in Sec. A of the supple-

% ) The first four relaxation

times in Sy are physically imposed by the interface mobility; the two
highest-order relaxation rates were chosen experimentally to maxi-
mize accuracy and stability. Other choices, like a regression-based
selection [Li et al. 2020], could be used as well.

mental material, where Fl.h = wfl (1 +

Coupling forces. Finally, the fluid simulation from Sec. 3.2 requires
an evaluation of forces allowing the proper coupling of the two
phases, which we can now describe based on the phase field. For the
surface tension force F;, we follow [Fakhari et al. 2017a] in using:

FS = )(¢ Vgﬁ, (22)
where the gradient is computed as in Eq. 18, while we use the
definition of the chemical potential y, proposed in [Jacqmin 1999]:

Xp = 4Bp($ —1)(§ — 3) — kY7, (23)
where the second-order Laplacian of the phase is approximated as:
VZp(x) =6 ) wi(p(x + ;) — p(x). (24)
i

For the pressure force F), we use the expression:

Fp = —p" Vp, (25)
while the viscosity force F, is expressed as:

F, = v[Vu+ (Vu)T]Vp, (26)

where v is the spatially-varying kinematic viscosity from Eq. (12)
while the gradient of density is easily rewritten as a rescaled gradient
of ¢ using Eq. (11). Note that these two last coupling forces, proposed
by [Zu and He 2013], use terms like p* and u, thus depend on the
zeroth and first moments of the other distribution functions g;.

3.4 Stable boundary treatment

While the description given thus far simulates a multiphase fluid
flow very reliably over a large range of Reynolds numbers and
density ratios, the treatment of obstacles is notorious for being
particularly difficult to handle robustly: a poor treatment of the
interaction between obstacles, fluid, and phase field can ruin sta-
bility, preventing the simulation of anything but trivial examples
with grid-aligned boundaries. We present a series of measures that
we have adopted, both for numerical stability and for efficiency of
implementation, to ensure fool-proof stability and parallel efficiency
while maintaining accuracy at an acceptable level for visual realism,
both for thick and thin obstacles.

Efficient Kinetic Simulation of Two-Phase Flows « 114:7

x] // x] //

P~ pidi

.\ci
‘\
N | Xk gi- Xk
( ( 2

Fig. 7. Boundary treatment. A grid node x is a cut-cell node if at least
one ray cast from it along a link intersects an obstacle boundary (left). The
bounce-back from an obstacle used the equilibrium distribution function
based on the fixed obstacle (right).

3.4.1 Detecting and setting up cut-cells. Because we need to alter the
updates of distribution functions near obstacles, we preprocess the
simulation scene by first identifying cut cells, i.e., cells of the regular
grid (used to discretize space) that straddle the boundary of at least
one of the embedded obstacles. Contrary to [Lyu et al. 2021] that
proceeds with samples spread over boundaries, we find the lattice
links which cross a boundary directly through ray intersections
with the triangle mesh(es) defining the obstacle boundaries in a
preprocessing phase (see Fig. 7, left). Note that ray intersections
allow us to deal with both thin shell obstacles and thick obstacles
seamlessly. Any cell containing one of these straddling links is then
tagged as a “cut cell”. A dedicated data structure is then assembled
for each cut-cell node (i.e., each node belonging to one or more
cut cells), so that we can efficiently process all such nodes adjacent
to boundaries to reduce warp divergence due to branching for a
massively-parallel implementation on GPU. For each cut-cell node
Xy, we store the indices of its boundary-crossing links (among the
26 links, which also include the 6 links used for the phase field, see
Fig. 6), as well as the closest projection py of this grid node onto the
embedded boundary (computed by finding the closest triangle first
through a GPU-based K-d tree, then finding the closest point of x; in
that triangle). Our boundary handling can then be efficiently applied
for all cull-cell nodes based on these precomputed elements. Note
that our treatment can handle even very fine geometric features
(see Fig. 3), while sample-based approaches such as [Lyu et al. 2021]
would require an inordinate sample density to avoid leakage issues.

3.4.2  Hybrid bounce-equilibrium streaming near boundaries. Inte-
grating in time Eqgs. (3) and (16) for the distribution functions g
and h involves a streaming stage, which needs to account for the
“reflection” of the fluid or phase particles against boundaries. A
prominent approach to handling the streaming of distribution func-
tions near boundaries is to use the bounce-back method [Ladd 1994],
which performs a direction reversal of streaming on crossing links:
the distribution value g; (resp. h;) along the lattice direction c; is
transferred to the distribution value g;- (resp. h;-) for the direction
¢;- = —c; at the same node — with also a momentum transfer for
moving boundary, which we do not consider here. This low-order
approach is perfectly adequate for the phase field, as we only use
the zeroth-order moment of h. However, for g, this bounce-back
process is well-known to create spurious pressure fluctuations for
large fluid velocity. These pressure artifacts trigger numerical insta-
bility, preventing simulations that involve complex boundaries or
turbulent multiphase flows; see Fig. 8(a) for instance, where high-
frequency artifacts in the velocity field of a dam-break simulation

ACM Trans. Graph., Vol. 41, No. 4, Article 114. Publication date: July 2022.



114:8 « Li,W.etal

Bounce-back

Hybrid bounceback

(T
g ,‘j
Fig. 8. Hybrid bounce-back. On the example from Fig. 5, handling obsta-
cles via bounce-back generates oscillations (see red boxes) as the vector field
magnitude demonstrates on these two frames (top); Using hybrid bounce-
back in cut-cells removes this issue while preserving details of the flow.

can be seen extending up to the domain boundary. Higher-order ac-
curacy has been proposed through interpolated bounce-backs [Kao
and Yang 2008; Yin and Zhang 2012], but they involve a larger set of
nodes near solid boundaries, which makes it more difficult to handle
narrow boundary gaps. In our visual computing context, we stay
with a first-order approximation so that we can keep our boundary
handling treatment limited to cut cells for efficiency purposes, but
we hybridize it with the use of the equilibrium distribution of the
obstacle to significantly reduce pressure overshoots.

Our approach can be understood as a modified version of the
boundary treatment proposed in the single-phase flow simulation
method of [Filippova and Hénel 1998]. In this work, the authors
noted that the incoming distribution function coming from the
boundary towards a fluid node along a boundary-crossing link can
be partially approximated by the equilibrium distribution function
of a point at the intersection of the link and the boundary, see
Fig. 7(right). This approximation, also first-order accurate, is far
less subject to numerical fluctuations and thus to instability as they
directly rely on the relaxed state for which truncation errors have
very little impact. In our context of fluid simulation with static ob-
stacles, we can use a Neumann-pressure and zero-velocity boundary
condition imposed on the obstacle to evaluate local values of £°4.
Because our tests show improved stability with this approach com-
pared to the original bounce-back streaming when the pressure near
a boundary is small, we blend both approximations based on the
amount of local pressure to promote stability while maintaining
accuracy: it amounts to adapting the relaxation rate to reliably pre-
vent overshoots. In practice, this means that we use the following
streaming step for all cut-cell nodes:

gi(t+1,xx) = (1 - ) gi- (£, %x) + fifq|u=0,P»<=p*(xk) . (@7

where the blending coefficient is set to a = 3||pg, || to safely sup-
presses pressure fluctuations near obstacles, see Fig. 8. Note that one
can also use an equilibrium distribution based on p* =0 to further
dampen any spurious pressure artifact due to violent splashes on
walls or obstacles, but now at the cost of decreased accuracy.

3.4.3 Phase gradient near boundary and wetting control. Besides its
obvious relevance to the phase field motion as discussed in Sec. 3.3,
approximating the gradient V¢ of the phase field is required in
several force terms such as the surface, pressure, and viscosity forces,
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Fig. 9. Wetting boundary condition for phase field. For a cut-cell node
Xk, a “ghost” phase field value for the grid node x; on the other side of
the nearby obstacle boundary is found by enforcing the normal directional
derivative imposed by the wetting boundary condition.

respectively, Fs, Fj, and F,. When evaluation is needed away from
boundaries (and thus, not on cut-cell nodes), we use the weighted
rotationally-symmetric evaluation proposed in [Li et al. 2021] as
described in Eq. (18). However, the presence of obstacles nearby
renders this approximation inappropriate, and thus, unstable in
practice: it uses values of the phase field on the other side of the
boundary, failing to account for the presence of the obstacle and for
the implied Neumann condition. Using sided finite differences would
not be able to impose the proper boundary conditions either. We
thus reverse to the simple centered finite difference approximation of
the gradient where extrapolated (ghost) values of the phase field ¢
are used for the nodes on the other side of a boundary. Fig. 9 shows
a 2D example where to calculate V¢ on the fluid node x;, we need to
deduce a ghost value of ¢ on the node x; (which is on the other side
of the boundary) so as to enforce boundary conditions. While one
usually imposes zero Neumann boundary condition on the phase
field of the form n- V¢ =0 where n is the unit vector normal pointing
outwards from the boundary, capturing the degree of wetting (the
ability of a liquid to maintain contact with a solid surface, resulting
from the balance between adhesive and cohesive intermolecular
forces) requires to impose an arbitrary contact angle. A contact angle
of less than 90° between a liquid and a boundary implies that the
fluid will tend to spread over a large area (hydrophilic behavior),
whereas a greater contact angle indicates that the fluid will try to
minimize contact with the boundary, forming instead compact liquid
droplets (hydrophobic behavior). To impose a specified contact angle
0 at a solid boundary, the following wetting condition [Fakhari and
Bolster 2017] has been formulated, stating that one should enforce
at every point p on the boundary:

n(p) - Vé(p) = ©¢(p) (1 - ¢(p)) for © = —v2f/x cos 6.

Given a desired contact angle 6, we can now find the “ghost” value
gi;(xl) that imposes this condition at point p;, see Fig. 9. Indeed, from
the closest point p; of x; (precomputed as explained in Sec. 3.4.1),
we first find the intersection point q; on the line x;x,; in 2D, and we
deduce its phase field from ¢ (x;) and ¢(x,,) through barycentric
coordinates — the same numerical approach is used in 3D. We then
use the normal derivative imposed by the wetting condition to
directly extrapolate the ghost value we seek, leading to:

by = 258 (14 00 - J(14e0)? ~ 1a09(a) - Lg(an. @9

where o and f are shown in Fig. 9. When 6 =90 (neutral wetting,
i.e., zero Neumann condition), one uses simply: ¢(x;) =¢(q;).




Fig. 10. Spherical interface in shear flow. We test our D3Q7 LBM-based
integration of the phase field by passively advecting a spherical interface in
a prescribed velocity field, see Eq. (29); snapshots obtained at t = 0, ¢ = T /4,
t=T/2,t=3T/4,and t = T, from left to right.

3.4.4 Controlling norms. Another safety measure to enforce sta-
bility concerns the norms of the gradient of ¢ and of forces. In the
previous paragraph, we described how the phase gradient is com-
puted so as to account for the boundary presence and the extended
Neumann condition for wetting. To further combat possible numer-
ical inaccuracies, we leverage the property that the profile of the
phase field should remain close to the form of Eq. 14. Thus, given
the macroscopic phase field value ¢ at a cut-cell node, we know that
its ideal gradient norm should thus be [V¢*|=4¢(1—¢) /. If we find
out that the actual vector value of V¢ has a norm larger than this
ideal norm by 60%, we simply rescale the gradient vector. In practice,
our tests show that this rescaling is triggered only in less than 5%
of the cut-cell nodes on average — but this normalization often pre-
vents blow-ups. A last modification we perform is that if one of the
force magnitudes is more than 60 times larger than gravity and that
the density of the light fluid is very low, we threshold forces where
the phase ¢ is below 0.1. In this specific case (which happens for
strong splashes like in Fig. 4), instead of using the adaptive temporal
method proposed in [Li et al. 2020], we can reduce the magnitude
of the pressure, viscosity, and surface tension forces by 40% without
affecting the motion: thresholding large “impulse” forces does not
affect the visual behavior significantly since it affects only the light
fluid; this last safety measure improves stability without having to
reduce time steps.

3.5 Discussion

Now that we have reviewed the details of our approach, we can
discuss its most salient differences with the recent work of [Li et al.
2021]. First, our LBM formulation is different: we use a velocity-
based lattice Boltzmann formulation instead of their moment-based
formulation. This has already important consequences: since den-
sity is discontinuous in multiphase flows, the moment pu is much
more prone to face instability at the interface [Kumar et al. 2019];
moreover, the forces Fp and F,, are evaluated calculated directly
instead of being included implicitly in the distribution function,
making the coupling between flow and interface more explicit. Ad-
ditionally, the higher-order collision model we use for both g and h
brings numerical accuracy whose induced stability allows for more
turbulent multiphase simulation, with density ratios of up to 1000
for a thinner phase interface than in [Li et al. 2021]. Another key
difference is our treatment of boundaries which can handle complex
obstacles that are either thick or thin, without suffering from possi-
ble leakages due to our proper one-sided approach to bounce-back.
Memory requirements are also drastically reduced by our use of
D3Q7 lattice for the phase field vs. the original D3Q27 lattice —
we will also note in the implementation details listed in Sec. 4.2
that we employ the “swap” strategy from [Latt 2007a], bringing a
memory usage reduction to around 60%. Moreover, we will leverage
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Fig. 11. Blowing air into a viscous liquid. Using the same setup as Fig. 2
but with a forty times lower Reynolds number and using a single burst of
air, the air forms larger and rounder bubbles as expected.

the recent GPU parallel optimizations of [Chen et al. 2021], which
will result in a typical four-fold speedup for resolutions around
400 % 200 x 200. Finally, all the safety measures listed in Sec. 3.4
to improve stability allow for larger effective time steps (typically,
50% larger), thus far improved efficacy; note that a reduced physical
time step would remove the need for these numerical measures, but
for computer graphics applications, efficiency (even at the cost of
minor inaccuracy) is paramount.

4 RESULTS AND LIMITATIONS

We now cover the numerical experiments we conducted with our
solver, to illustrate its accuracy, efficiency, and robustness via bench-
mark tests, complex scenarios, and comparisons with existing solvers
or real-life fluid motions.

4.1 Benchmark tests

We begin our tests with three classical benchmark examples.

Advection of phase field in prescribed velocity field. In order to test
our kinetic phase field solver alone, we perform a passive advection
of spherical shape in a prescribed vector field forming a typical shear
flow as proposed in various previous works [Geier et al. 2015; Liang
et al. 2018; Zu and He 2013]. The phase field (with M =0.0035) is
initialized on a regular grid of size 100x100x100 so that the interface
forms a sphere of radius R = 20 centered at x¢ = (30, 30, 50). The
predefined vector field is defined on a grid node (i, j, k) through:

cos[ 5207] (sin[%n] - sin[%n]) cos (%)

u = 0.02] cos[ £ x] (sin["l’osoon] - sin[%n])cos (%) 1. (29)

COS[%%J (sin[%n] —sin| il’osoon]) cos (%)

We visualize the phase field evolution by extracting its isovalue %
in Fig. 10 Note that the sphere is supposed to be most deformed at
t=T/2, before returning to its initial position after a period T. The
L, relative error ¢ with respect to the initial value of the phase field
after a full period, defined as

. \/ziw(xi,n—db(xi,onz
2 $%(xi, 0)
is listed in Tab. 1 along with other D3Q7-based [Fakhari et al. 2019]
and D3Q19-based [De Rosis and Enan 2021] methods to evaluate its
accuracy. We see that we improve upon the existing D3Q7 phase
field by 33%, and reach an error equivalent to the 27-link lattice —
but with the reduced memory size of the 7-link lattice.

, (30)

Droplet oscillation. Fig. 12 shows a three-dimensional elliptical
droplet (density ratio 1000) which, due to the surface tension of
the interface, oscillates around its spherical equilibrium shape. The
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Fig. 12. Droplet oscillation. Under the effect of surface tension, the shape
of a droplet simulated with our LBM-based phase field oscillates (left to
right) around its circular equilibrium shape, eventually coming to rest.

Table 1. Relative error of our D3Q7 LBM for the experiment of Fig. 10,
compared to [Fakhari et al. 2019] and [De Rosis and Enan 2021].

Model £

D3Q7 [Fakhari et al. 2019] 0.0754,
D3Q19 [De Rosis and Enan 2021] 0.0490
D3Q7 (Ours) 0.0500

fluids inside and outside the droplet are slightly viscid, so the droplet
eventually converges to a sphere.

Three-dimensional Rayleigh Taylor instability. We also tested our
solver on the classical Rayleigh-Taylor instability, where a heavy
fluid is placed on top of a lighter fluid. The interface between the
immiscible fluids should deform and exhibit Kelvin-Helmholtz in-
stabilities as the heavier fluid moves down and the lighter material
is displaced upwards. We simulated this canonical case on a grid of
size 64X 256X 64, and for an interface width set to £=5. In order to
compare our results to existing published examples, we initialize
the two immiscible fluids as follows:

1, ify> 128+ 3.2[cos (277.'&) + cos (Zné)],

$(x) = { (31)

0, otherwise,

and set the various dimensionless governing parameters as follows:
Atwood number At = 0.5, capillarity number Ca =960 and Péclet
number Pe=256. The downwards vertical gravity g is set to have
a magnitude |g|= Ug /64 for a reference velocity Uy =0.04, and the
gravitational force is defined as Fg=(p — p)g. Finally, the viscosity
of both fluids is set to v=64+/64|g|/Re. We run this experiment for
three different Reynolds numbers (Re = 256, 3,000, and 30,000) as
shown in Fig. 13, where the vertical walls are set to have periodic
boundary conditions. As time goes on, the heavy and light fluids
intertwine, forming mushroom-shaped downward spikes as the
heavy fluid grows into the light fluid, and bubbles as the light fluid
grows into the heavy fluid. Using time scale T =+/64/|g|, a first roll-
up of the heavy fluid occurs around ¢ =2T at the four edges of the
fluid field box. This roll-up interface becomes stronger in time. While
there are no analytical solutions with which to compare, our results
are consistent with published data for Re=256 [He et al. 1999]: the
accuracy of our results, measured by the vertical positions of the
lowest point of the downward spike at different times, is shown
in Tab. 2 and compared to previous works [De Rosis and Coreixas
2020; Lee and Kim 2013]. Note that with larger Reynolds numbers,
we observe more vortical features near the four sides of the box as
expected; but we were unable to compare our spike heights on these
more inviscid cases despite results recently published in [De Rosis
and Enan 2021] as we realized that their code is missing a division
by p for the gravitational acceleration, rendering their heights in
this turbulent case inconsistent.
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Table 2. Three-dimensional Rayleigh-Taylor instability: vertical posi-
tions of the interface spike normalized by the domain width at representative
times compared to two other multiphase flow LBM solvers.

t/T Ours [De Rosis and Coreixas 2020] [Lee and Kim 2013]

0.0 1.875 1.897 1.904
0.5 1.843 1.897 1.869
1.0 1.757 1.753 1.776
1.5 1.617 1.592 1.618
2.0 1421 1.381 1.396

4.2 Implementation details

While the overall structure of our solver is relatively simple (see
the pseudocode in Alg. 1), a number of important implementation
points deserve further discussions.

Memory usage. Compared to recent LBM-based works in com-
puter graphics, we reduce memory usage significantly. First, we
employ the “swap” approach proposed in [Latt 2007b] and extend it
to our GPU implementation. The basic idea is that the neighboring
data copy in the streaming step is replaced by a swap operation with
another existing variable, where no temporary memory is needed —
thus reducing the amount of memory used for the distribution func-
tions g and h by a factor two. Moreover, using a D3Q7 lattice further
reduces memory compared to the approach of [Li et al. 2021]. In the
end, we save 73 variables per grid node in 3D compared to this latest
work, for a total memory usage reduction of around 60%, see Tab. 3.
Furthermore, we use a cut-cell buffer array to store precomputed
closet points and intersection link flags as described in Sec. 3.4.1.
When dealing with a cut-cell node, we access the necessary values
from this cut-cell buffer array directly through an index array that
saves the cut-cell node index in the cut-cell buffer array. Hence,
memory consumption is limited to a size proportional to the area of
the obstacle boundaries, which remain small in all of our examples.

GPU-based implementation. Our multiphase flow solver uses only
local computations, and can thus be easily implemented in a massively-
parallel fashion on a GPU. We adopt the structure-of-arrays (SoA)
memory layout to improve cache utilization — and thus improve
performance — as recommended for single-phase flow simulation
in [Chen et al. 2021]. Moreover, we also employ the LU decomposi-
tion of M ! to speed up projections in and out of central-moment
space as proposed in [Lyu et al. 2021]. For g®? in Eq. (4), we use an
analytical expression that we derived directly in central-moment
space (see Sec. F of the supplemental material) which saves further
collision computations. Finally, prefetching distribution functions
gi from global to GPU shared memory significantly speeds up per-
formance as threads can repeatedly access data much faster.

Efficiency. While [Li et al. 2021] proposed a parallel implementa-
tion of their approach, we leverage all code accelerations mentioned
in [Chen et al. 2021] which drastically improved efficiency. Due to
our improved stability, our new approach also supports 25% larger

Table 3. Memory usage. Number of 32-bit floats per grid node in 3D.

Method (p,u,p) cut-cell flag g h ¢ F n total
Our method 5 1 1 27 7 133 48
[Lietal 2021] 5 - 1 5454133 121
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Fig. 13. Three-dimensional Rayleigh-Taylor instability: Evolution of the interface between a heavy fluid on top and a light fluid at the bottom for various
Reynold numbers, (a) Re = 256, (b) Re = 3,000, and (c) Re = 30, 000. Each example is shown at times at t = T, t = 2T, and ¢ = 3T.

time steps, meaning that our solver can use fewer iteration num-
bers for the same simulation sequence. As a consequence of all the
differences we summarized in Sec. 3.5, we show in Fig. 14 that our
approach is faster: based on a basic 3D dam break with obstacle
from Fig. 8 and using the same GPU card, we improve upon their
recent solver by almost a factor seven for low resolutions, and nearly
four-fold for resolutions above 400X 200X 200.

4.3 Simulation results

All the examples of multiphase flows in the paper were run on a
workstation equipped with a 16-core Intel(R) Xeon(R) Silver CPU,
128 GB of memory, and a NVIDIA RTX A6000 GPU. We used V-
Ray [Chaos 2022] to render Figs. 1, 3, 22, and 17, while the other
results were generated using our own renderer. We now discuss
our results for various liquid simulations with complex, thin and/or
thick static solids in order to illustrate the various properties of
our solver. All of our simulation sequences involve a transparent
container, and water splashes reaching these transparent walls thus
form droplets that slide and merge, creating wetting patterns — the
only exception being Fig. 17 where we set open boundary conditions
for the phase field on the box to allow the water drops to fly off
the domain in order not to obstruct the view. Note also that we use
the Smagorinsky turbulence model to resolve flow details due to
the limited grid resolution we use: an eddy viscosity v’ is evaluated

Time (s)
1.6

I [Lietal. 2021] | Ours

200x100x100 300x150x 150 400%200x200 500x250%250 600x300x300
Resolution

Fig. 14. Computational times on dam break. Compared to the recent
work of [Li et al. 2021] (in blue), our solver (in orange) performs systemati-
cally faster — here, for the average iteration time of the dam break in Fig. 8.

according to [Geller et al. 2013] at each fluid node and added to the
fluid viscosity v.

ALGORITHM 1: Pseudocode of our kinetic two-phase flow solver.

CutCellsPreprocessing(); > Secs. 3.4 and 4.2

t «— 0;

while t < T do
PerformCollisionForFlow(); > Sec. 3.2
PerformCollisionForPhase(); > Sec. 3.3
StreamingInRegular&CutCells(); > Secs. 3.2 & 3.4.2
ComputeLow-OrderMoments(); > Sec.3.2
CalculateForces(); > Secs. 3.2 & 3.4.3
UpdateMacroscopicVariablesWithForces(); > Egs. (7)
te—1t+1;

end

Dam breaks. Testing the fall of a column of water and the sub-
sequent breaking wave is a common test used in single- and mul-
tiphase flow solvers alike. We tested a simple 3D dam break with
a rectangular box obstacle in Fig 5, showing that a low-order colli-
sion model like MRT creates spurious velocity artifacts (visualized
via a 2D cut showing color-coded velocity magnitude), while the
weighted MRT model used in [Li et al. 2021] leads to slightly noisy
velocity field and does not capture very fine instability around the
interface; our improved treatment using the central-moment space
to compute the collision operator removes all these numerical is-
sues. The same example is used again in Fig. 8 to demonstrate that
the usual bounce-back approach to deal with streaming near ob-
stacle boundaries can create severe artifacts, again in the form of
oscillatory patterns which can make the simulation crash rather
easily. Instead, our hybrid bounce-back prevents such artifacts. For
this example, we also note that our new solver can support higher
Reynolds numbers (by more than a factor six) and larger density
ratios (by 25%) compared to [Li et al. 2021]. We also tested a dam
break where a thin plate with a 30-degree incline is placed along
the path; it exhibits a strong crown splash as the water hits the
obstacle, see Fig. 4. This sort of thin crown water sheet cannot be
captured by solvers with small to moderate numerical viscosity or
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Table 4. Profiling. Timings of each key LBM step for [Li et al. 2021] and our algorithm. Collision refers to the computation of the collision operator for
velocity and phase field, Streaming refers to the streaming update, Moments refers to the computation of the low-order moments, Forces represents the time

needed to evaluate the various forces, and Updates refers to the macroscopic variables updates using forces.

Grid [Li et al. 2021] Our solver
resolution Collision | Streaming | Moments| Forces || Collision | Streaming | Moments| Forces | Updates
200X100X100 || 9.53ms 16.25ms | 0.59ms | 12.44ms 3.23ms 1.81ms 0.37ms | 4.65ms | 0.63ms
300X150X150 || 42.7ms | 74.23ms | 2.58ms | 55.99ms || 14.58ms | 7.57ms 1.71ms | 21.68ms | 2.75ms
400X200x200 || 86.12ms | 142.78ms | 5.14ms |109.21ms || 30.44ms léms 3.44ms | 43.03ms | 5.6ms
500X250x250 (| 192.24ms | 324.99ms | 12.21ms | 237.86ms || 68.68ms | 37.03ms | 8.44ms | 96.42ms |13.13ms
600x300%300 |[281.71ms | 492.71ms | 18.56ms |376.28ms || 108.41ms | 58.13ms | 11.99ms | 147.35ms | 22.92ms

Fig. 15. Dam break with thick obstacle. A dam-break wave splashes into
a car-shaped obstacle, forming an obvious crown splash and bubbles before
subsiding. Wetting patterns on the car are also visible.

without a very accurate treatment of the collision operator. Bubbles
and splashing foam form when the water reaches the right wall,
while wetting patterns are also appearing as water spills onto the
four transparent walls of the container. Note that our boundary
treatment allows for such thin obstacles without instability issues,
and does not suffer from the leakage problems that are typical of
the immersed boundary method used in common LBM solvers. A
different type of 3D dam break, this time with a thicker obstacle
in the shape of a car, is demonstrated in Fig. 15. Clear wetting is
visible on the car surface after the initial splash, while bubbles are
also present as the flow subsides. Finally, we provide a last dam
break example where we imitate the setup proposed in [Chen et al.
2020], where a dam break is set up to force the water to go through
a fixed comb-like structure with narrow slits: we show in Fig. 16
that the liquid flows through the slits realistically, not only on the
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Fig. 16. Comparison with [Chen et al. 2020]. While current single-
phase flow solvers have demonstrated the ability to capture liquids flowing
through narrow slits (left), our approach can not only simulate similar sce-
narios, but exhibits also bubbles and wetting.

way down but also after the wave reflects back and forth in the
container. We also demonstrate in Fig. 21 that the grid resolution
for this simulation has obvious effects on how small the details of a
flow can be captured; however, the overall motion is well captured
even with five times fewer degrees of freedom. Chen et al. [2020]
reported a computational time per frame of 90s. using a NVIDIA
GeForce GTX 1080Ti; a slightly higher resolution takes 18s. for our
solver on the same card, and only 7.5s. on our current machine.

Multiphase flows with complex obstacles. We also tested our solver
robustness by simulating very complex obstacles as well. Fig. 3
shows a flow through a pumice-like porous rock, which is a very
challenging scenario to simulate due to the large number of cut-cells.
The water goes through all the irregular holes and tunnels, at times
forming bubbles, while water filaments and drops appear at the
bottom of the rock as the water exits. We also show an example of
water going through a colander in Fig. 1: water is dropped suddenly
inside the colander, and goes through the little interstices at high
speed, creating a crown-like structure; some of the water hits the
inside and regroups before going through the same interstices in a
second wave. We also demonstrate robustness to complex objects
in Fig. 18, where a water column comes crashing down on a loosely
woven basket. Here again, the complexity of the shape and topology
of the basket made out of thin structures is a great stress test for
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Fig. 17. Air-driven flow. Starting from a still pool of water, four horizontal strong jets (positioned near the top of the water surface) blow air, eventually
driving the water up and forming a tornado-like behavior with significant splashing and spraying. For this example, we use an open boundary condition for
the phase field (thus water droplets can fly off the domain) to avoid the visual obstruction that droplets on the walls would create.

Table 5. Statistics for our results (FPS = 60).

Figure Resolution ~ Min./frame Ve v pH/PL
1 600x500x600 2.3 0.0015 0.04 1000
2 400x800x400 5.3 0.0020 0.03 800
3 300x600x300 1.1 0.0015 0.06 1000
4 800x400x400 1.3 0.0010 0.08 1000
11 300%x600%300 2.32 0.060 0.09 800
12 300%300x300 0.42 0.0080 0.01 1000
15 880x440x400 1.6 0.0010 0.08 1000
17 650%x500X650 1.5 0.0019 0.03 1000
18 800x400x400 1.3 0.0010 0.08 1000
19 [Lietal. 2021]  600x300x300 1.84 0.0015 0.015 800
19 [Lietal. 2021]  800x400%x400 5.83 0.0020 0.02 800
19 ours (middle)  600x300%x300 0.47 0.0015 0.015 800
19 ours (middle)  800x400%x400 1.36 0.0020 0.02 800
19 ours (bottom) ~ 800x400x400 1.36 0.0080 0.02 800
19 ours (bottom)  800x400x400 1.36 0.0005 0.02 800
21 low-res 306%x306%153 0.15 0.0003 0.01 1000
21 hi-res 512X512x256 1.05 0.0002 0.03 1000
22 800x320x400 3.6 0.0005 0.02 1000
23 750x420x400 3.0 0.0008 0.02 1000

boundary handling, and our solver is able to handle the simulation
both robustly and efficiently.

Turbulent air-driven flows. Finally, we show a few examples of
flows entirely driven by air motion, another stress test for any
multiphase flow solver. Fig. 2 shows air being blown through a straw
immersed in a water container. We impose a sine-wave speed on the
inlet at the top of the straw; bubbles form below the straw as the air
makes its way down the straw, then go up before bursting on top
of the liquid surface. Fig. 17 shows, instead, a still pool over which
four very strong air jets blow horizontally, lifting water up in the
air, and generating a very turbulent motion. Note that this case uses
open boundaries for the phase field, so that droplets that fly off are
simply disappearing instead of crashing onto the transparent walls:
this allows for a much more obvious visualization, unobstructed by
a multitude of wetting patterns.

4.4 Comparisons

Finally, we provide a few comparisons, both with previous work and
with real video-recorded flows. Fig. 16 was inspired by an example
found in [Chen et al. 2020], where water is flowing through narrow
slits. Not only we are able to handle this challenging scenario at a
similar resolution, but we provide a full two-phase simulation in-
stead of their single-phase result: the presence of bubbles and more
realistic behavior of the flow ensues. We also compared our solver to

the recent multiphase solver of [Li et al. 2021] in Fig. 5 as discussed
earlier: while oscillations can be easily triggered when strong inter-
action with boundaries occur in their results, our approach has no
such behavior — even for Reynolds numbers six times higher than

Fig. 18. Basket case. A basket, made out of complex, thin-walled structures
(see top inset), is being immersed in water; as a water column comes crashing
down on it, complex interactions between the flow and the object occur.
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Fig. 19. Comparison with [Li et al. 2021]. For a dam break flow against
several pillars, (top) the approach of [Li et al. 2021] at 600300 %300 (left) and
800400400 (right) exhibits clear differences between the two resolutions
due to excessive numerical viscosity. (middle) Our method, instead, shows
better agreement and finer details. (bottom) Moreover, our approach can
handle a far wider range of viscosity, from four times more (left) to four
times less viscosity (right) which [Li et al. 2021] cannot simulate.

what they can support — and yet, as discussed in Sec. 4.2, our solver
requires less memory and less time. Fig. 19 also demonstrates that
the increased accuracy of our higher-order collision model leads
to simulations much less sensitive to grid resolution, and allows
for much less viscous fluids. We note additionally that the complex
obstacles like Fig. 3 or thin shells like Figs. 1, 4, and 18 would not be
possible to handle with their solver either: their boundary treatment
prevents the use of thin shells, and obstacles have to be voxelized.
As a last example, we show in Fig. 20 that a real colander exhibits a
very similar behavior to what we showed in Fig. 1: while the shape
of the strainer is a bit different (in particular, its curvature at the
bottom) and it is placed on top of a glass, one can see a number of
qualitative similarities, for instance, the same two-crown splashing
behavior as the water falls through the interstices.

Fig. 20. Real colander. A real experiment of a water balloon being popped
over a colander standing on a glass exhibits very similar features to what
can be seen in Fig. 1 despite a different shape for the strainer: a two-crown
splash appears as the water rushes through the interstices.

4.5 Limitations and future work

While our work overcomes a number of numerical hurdles in the
simulation of binary fluids and allows for the simulation of every-
day’s phenomena where two fluids commingle, it is not without
limitations. First, we remain limited in the highest Reynold number
we can handle: extremely turbulent fluids would require higher
accuracy to be captured precisely; thankfully, this limitation is not
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quite stringent for graphics as it is less relevant to our typical ap-
plications. Second, the ratio of fluid density is also limited — but
here again, the fact that we can, at last, capture typical intricate
air-water interactions is largely sufficient in most cases. Third, like
other purely Eulerian methods, phase fields on very coarse grids can
lead to disappearing droplets. Our conservative treatment limits this
issue quite drastically, but rapid motions can still generate numerical
diffusion resulting in a spurious shift of the fluid/air interface; a mix
of phase field and particles (a la particle-levelset) could prevent this
issue at the cost of constant reseeding of particles near the interface,
offering a robust solution for coarse grids. Fourth, applying adaptive
mesh refinement in 3D would also allow for a better capture of
boundary layers than our current use of a fixed regular grid; an
approach based on multiple grid resolutions as described in [Li et al.
2019] or [Fakhari et al. 2017a] could lead to much finer details, at
the cost of memory and computational time increase. Fifth, it could
be useful to extend our approach to many fluids instead of just two,
as was done for Navier-Stokes solvers with an implicit encoding of
the interface [Kim et al. 2010]; the recent work of Hu et al. [2020]
could help in this regard. Sixth, our smeared interface is not able
to properly handle bubble foam; mixing our work with an ad-hoc
representation of foam [Kim et al. 2007; Busaryev et al. 2012] would
be an interesting improvement. Finally, we only demonstrated the
motion of binary fluids interacting with complex, but static obsta-
cles. Offering stable one-way and two-way dynamic coupling in this
multiphase flow context would open the door to many additional
simulation scenarios. Note that it is, in fact, relatively easy to handle
dynamic immersed solids: one needs to update the list of cut cells
and cut-cell nodes at each time step, and could use the kernel-based
penalty force (a la immersed boundary method) and dimension
scaling proposed in [Li et al. 2020] to couple fluids and solids. This
obviously incurs additional overhead, but allows us to seamlessly
extend our work for non-trivial cases as shown in Figs. 22 and 23,
where we show propellers inducing bubbles and waves, as well as a
rotating tire splashing water. However, the typical “leakage” issue of
the immersed boundary method renders this approach limited and

Fig. 21. Low vs. high-resolution. For the dam break through narrow slits
from Fig. 16, using a 306 X306 153 grid resolution (top) cannot capture as
fine bubbles and droplets as a 512X 512X 256 resolution (bottom), but the
overall motion is still well approximated as evidenced by these two frames.



Fig. 22. Propellers While a two-blade propeller rotating between air and
water generates small bubbles and minor perturbation of the free surface
(top), offsetting the axis of rotation (center) or changing the blade shape
(bottom) clearly increase both the underwater and free surface effects.

Fig. 23. Rotating wheel. A smooth, spinning wheel barely touching the
surface of a water body generates splashing.

brittle. Moreover, the cases we show do not use high velocities: such
a simple one-way coupling treatment is nowhere near as stable as
what we proposed in this paper for static obstacles: our contributions
to ensure robustness for static obstacles do not suffice in the case of
fast-evolving solid objects. We leave a proper extension of one- or
two-way coupling for future work, as the same level of stability for
full coupling in LBM-based multiphase flow simulation would offer
an exciting framework for more advanced simulation scenarios.

5 CONCLUSION

While computer animation has generated exquisite simulations of
viscous fluids (from dough to syrupy fluids) using the (macroscopic)
Navier-Stokes equations, simulating nearly inviscid incompressible
fluids such as water remains a major challenge. Moreover, captur-
ing the fine interaction between water and air that we encounter
in our daily lives requires a solver that can handle large density
ratios, adding more numerical difficulty. In this paper, we proposed
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a kinetic solver that offers an effective and unified computational
framework to capture most of the salient multiphase flow behaviors
seen in everyday life. Through a higher-order collision operator and
a number of contributions to handle boundary conditions robustly,
our two-phase immiscible fluid solver can simulate real-life density
ratios (800 for air-water) and Reynolds numbers (Re > 4000 for in-
teresting turbulent flows) both faithfully and efficiently, for complex
obstacles — be they thin or thick. Its statistical mechanics nature
allows for a massively-parallel implementation on GPU, ensuring
an efficiency superior to existing methods, while reducing the mem-
ory usage compared to other kinetic solvers. For future work, we
plan on removing the limitations listed in Sec. 4.5. Improving the
resolution of the phase field through the use of adaptive grids is a
particularly interesting research direction. Finally, addressing the
case of coupling fluids with deformable solids would bring a whole
slew of interesting applications such as blood flow simulation.
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