Efficient Kinetic Simulation of Two-Phase Flows: Supplementary Material

WEI LI, Inria YIHUI MA, ShanghaiTech University XIAOPEI LIU, ShanghaiTech University MATHIEU DESBRUN, Inria / Ecole Polytechnique

CCS Concepts: • Computing methodologies -> Physical simulation.

Additional Key Words and Phrases: Multiphase flow, turbulent flow simulation, lattice Boltzmann method

In this supplementary material, we discuss some of the details mentioned in the original ACM SIGGRAPH '22 technical paper entitled *"Efficient Kinetic Simulation of Two-Phase Flows"*.

A VELOCITY-BASED LATTICE-BOLTZMANN EQUATIONS

After discretizing the mesoscopic velocities in Eq. (1) of the original paper, the evolution of the traditional density distribution function f_i satisfies the discrete Boltzmann equations:

$$\left(\frac{\partial}{\partial t} + \mathbf{c}_i \cdot \nabla\right) f_i = -\Omega_i (f_i - f_i^{\text{eq}}) + F_i, \qquad (a)$$

where \mathbf{c}_i denotes a D3Q27 lattice velocity (see Fig. 6 of the paper) and \mathbf{F}_i is the projection in distribution space of the forcing terms. To obtain the pressure-velocity formulation (called the "velocity-based" formulation in [Fakhari et al. 2017]), we first transform the distribution component f_i into \hat{f}_i , with

$$\hat{f}_i = \frac{f_i}{\rho} + (p^* - 1)w_i^c,$$
 (b)

where $p^* = p/\rho c^2$ is the LBM-normalized pressure and w_i^c the D3Q27 quadrature weight for link *i*. The corresponding $\hat{f_i}$'s evolution is:

$$\left(\frac{\partial}{\partial t} + \mathbf{c}_i \cdot \nabla\right) \hat{f}_i = -\Omega_i (\hat{f}_i - \hat{f}_i^{\text{eq}}) + \hat{F}_i, \qquad (c)$$

where the equilibrium distributions \hat{f}_i^{eq} and force terms are now:

$$\hat{f}_i^{\text{eq}} = \Gamma_i + (p^* - 1)w_i^c, \quad \text{and} \quad \hat{F}_i = F_i/\rho, \tag{d}$$

 Γ being a dimensionless distribution function given in Eq. (5) of the original paper. Using a trapezoidal time integrator [Coreixas 2018] yields the update rule:

$$\begin{split} \hat{f}(\mathbf{x} + \Delta x, t + \Delta t) - \hat{f}(\mathbf{x}, t) = & \frac{\Delta t}{2} \left[\hat{F}_i - \Omega_i (\hat{f} - \hat{f}_i^{\text{eq}}) \right]_{(\mathbf{x} + \Delta x, t + \Delta t)} + \\ & \frac{\Delta t}{2} \left[\hat{F}_i - \Omega_i (\hat{f}_i - \hat{f}_i^{\text{eq}}) \right]_{(\mathbf{x}, t)}, \end{split}$$

where $\delta x = c_i \delta t$. To turn this implicit update into an explicit one, we further use a change of variables from \hat{f} to *q* through:

$$g_i = \hat{f}_i - \frac{\Delta t}{2} \left[\hat{F}_i - \Omega_i (\hat{f}_i - \hat{f}_i^{\text{eq}}) \right], \qquad (e)$$

Authors' addresses: W. Li, M. Desbrun, Inria Saclay, Institut Polytechnique de Paris, 1 rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France; Y. Ma, X. Liu, Shanghaitech University, 393 Huaxia Middle Road, Shanghai 201210, China.

© 2022 Association for Computing Machinery.

This is the author's version of the work. The definitive Version of Record was published in ACM Transactions on Graphics,

Fig. 1. Von Kármán vortex street. A vorticity plot of a simulation of a single-phase flow past a round obstacle in 2D shows the typical vortex shedding, even when a velocity-based (pressure-velocity) formulation based on distribution function g instead of f is used.

which does not affect mass, momentum or total energy preservation. We then obtain the final second-order accurate and explicit update rule of g_i with $\Delta x = \Delta t = 1$ given in Eq. (3) of the original paper, where the modified equilibrium distribution component g_i^{eq} is:

$$g_i^{\text{eq}} = \hat{f}_i^{\text{eq}} - \frac{1}{2}\hat{F}_i.$$
 (f)

This different formulation of LBM can still handle single-phase fluid simulation as it is just a rewriting of the original formulation; a vorticity visualization of a typical von Kármán vortex street, where a fluid flows past a disk-shaped obstacle, is shown in Fig. 1.

B EQUILIBRIUM DISTRIBUTION

From Eq. (5) of the original paper, the sixth-order Hermite expansion of Γ_i is written out as:

$$\begin{split} \Gamma_{i} &\approx w_{i}^{c} \left[1 + \frac{c_{i} \cdot u}{c^{2}} + \frac{1}{2c^{4}} \mathbf{H}^{(2)}(c_{i}) : u \otimes u \right. \\ &+ \frac{1}{2c^{6}} \left(\mathbf{H}_{ixxy}^{(3)} u_{x}^{2} u_{y} + \mathbf{H}_{ixxz}^{(3)} u_{x}^{2} u_{z} + \mathbf{H}_{ixyy}^{(3)} u_{x} u_{y}^{2} \right. \\ &+ \mathbf{H}_{ixzz}^{(3)} u_{x} u_{z}^{2} + \mathbf{H}_{iyzz}^{(3)} u_{y} u_{z}^{2} + \mathbf{H}_{iyzz}^{(3)} u_{y}^{2} u_{z} + \mathbf{H}_{ixyz}^{(3)} u_{x} u_{y} u_{z} \right) \\ &+ \frac{1}{4c^{8}} \left[\mathbf{H}_{ixxyy}^{(4)} u_{x}^{2} u_{y}^{2} + \mathbf{H}_{ixxyz}^{(4)} u_{x}^{2} u_{z}^{2} + \mathbf{H}_{iyyzz}^{(4)} u_{y}^{2} u_{z}^{2} \right. \\ &+ 2 \left(\mathbf{H}_{ixyzz}^{(4)} u_{x} u_{y} u_{z}^{2} + \mathbf{H}_{ixyyz}^{(4)} u_{x} u_{y}^{2} u_{z} + \mathbf{H}_{ixxyz}^{(4)} u_{x}^{2} u_{y} u_{z}^{2} \right] \\ &+ \frac{1}{4c^{10}} \left(\mathbf{H}_{ixxyzz}^{(5)} u_{x}^{2} u_{y} u_{z}^{2} + \mathbf{H}_{ixxyyz}^{(5)} u_{x}^{2} u_{y}^{2} u_{z}^{2} \right. \\ &+ \left. \mathbf{H}_{ixyyzz}^{(5)} u_{x} u_{y}^{2} u_{z}^{2} \right) + \frac{1}{8c^{12}} \mathbf{H}_{ixxyyz}^{(6)} u_{x}^{2} u_{y}^{2} u_{z}^{2} \right], \qquad (g) \end{split}$$

where $\mathbf{H}_{i\alpha_1...\alpha_n}^{(n)}$ is a shorthand notation of the tensor element of the *n*-order Hermite polynomial basis $\mathbf{H}^{(n)}(\mathbf{c}_i)$ corresponding to the $\alpha_1...\alpha_n$ component.

C FORCE TERM

In 3D, the sixth-order Hermite expansion of the projection to the distribution space of a force F is:

ACM Trans. Graph., Vol. 41, No. 4, Article 114. (supp. mat.) Publication date: August 2022.

$$\begin{split} G_{i} &= \frac{F}{\rho} \cdot \nabla_{c_{i}} f_{i} \\ &= w_{i}^{c} (\frac{F \cdot c_{i}}{c^{2}} + \frac{1}{2c^{4}} [\mathbf{H}_{ixx}^{(2)}(2u_{x}F_{x}) + \mathbf{H}_{iyy}^{(2)}(2u_{y}F_{y}) + \mathbf{H}_{izz}^{(2)}(2u_{z}F_{z}) \\ &+ 2\mathbf{H}_{ixy}^{(2)}(u_{x}f_{y} + u_{y}F_{x}) + 2\mathbf{H}_{ixz}^{(2)}(u_{x}F_{z} + u_{z}F_{x}) \\ &+ 2\mathbf{H}_{iyz}^{(2)}(u_{y}f_{z} + u_{z}F_{y})] + \frac{1}{2c^{6}} [\mathbf{H}_{ixxy}^{(3)}(2u_{x}u_{y}F_{x} + u_{x}^{2}F_{y}) \\ &+ \mathbf{H}_{ixxz}^{(3)}(2u_{x}u_{z}F_{x} + u_{x}^{2}F_{z}) + \mathbf{H}_{iyyz}^{(3)}(2u_{y}u_{z}F_{z} + u_{z}^{2}F_{y}) \\ &+ \mathbf{H}_{ixyz}^{(3)}(2u_{y}u_{z}F_{z} + u_{z}^{2}F_{x}) + \mathbf{H}_{iyzz}^{(3)}(2u_{y}u_{z}F_{z} + u_{z}^{2}F_{y}) \\ &+ \mathbf{H}_{iyyz}^{(3)}(2u_{y}u_{z}F_{y} + u_{y}^{2}F_{z}) + 2\mathbf{H}_{ixyz}^{(3)}(u_{x}u_{y}F_{z} + u_{x}F_{y}u_{z} + F_{x}u_{y}u_{z})] \\ &+ \frac{1}{4c^{8}} [\mathbf{H}_{ixxyy}^{(4)}(2u_{x}^{2}u_{y}F_{y} + 2u_{x}u_{y}^{2}F_{x}) + \mathbf{H}_{ixxzz}^{(4)}(2u_{x}^{2}u_{z}F_{z} + 2u_{y}u_{z}^{2}F_{y}) \\ &+ \mathbf{H}_{iyyzz}^{(2}F_{x}) + \mathbf{H}_{iyyzz}^{(4)}(2u_{y}^{2}u_{z}F_{z} + 2u_{y}u_{z}^{2}F_{y}) + 2\mathbf{H}_{ixyyz}^{(4)}(2u_{x}^{2}u_{z}F_{z} + 2u_{y}u_{z}^{2}F_{z}) \\ &+ u_{x}F_{y}u_{z}^{2} + F_{x}u_{y}u_{z}^{2}) + 2\mathbf{H}_{ixyyz}^{(4)}(2u_{x}u_{y}u_{z}F_{y} + u_{x}F_{y}u_{z} + F_{x}u_{y}^{2}u_{z}) \\ &+ 2\mathbf{H}_{ixxyz}^{(4)}(2u_{x}u_{y}u_{z}F_{x} + u_{y}u_{x}^{2}F_{z} + u_{x}^{2}u_{z}F_{y})] \\ &+ \frac{1}{4c^{10}} [\mathbf{H}_{ixxyyz}^{(5)}(2u_{x}u_{y}u_{z}F_{x} + u_{y}u_{x}^{2}F_{z} + u_{x}^{2}u_{z}F_{y})] \\ &+ \mathbf{H}_{ixxyzz}^{(5)}(2u_{x}u_{y}u_{z}^{2}F_{x} + 2u_{x}^{2}u_{y}u_{z}F_{y} + 2u_{x}^{2}u_{y}^{2}F_{z})] \\ &+ \mathbf{H}_{ixyyzz}^{(5)}(u_{y}^{2}u_{z}^{2}F_{x} + 2u_{x}u_{y}u_{z}^{2}F_{y} + 2u_{x}^{2}u_{y}^{2}u_{z}F_{z})] \\ &+ \mathbf{H}_{ixyyzz}^{(6)}(\mathbf{H}_{ixxyyzz}^{2}(2u_{x}u_{y}u_{z}^{2}F_{x} + 2u_{x}^{2}u_{y}u_{z}F_{z})] \\ &+ \mathbf{H}_{ixyyzz}^{(6)}(u_{y}^{2}u_{z}^{2}F_{x} + 2u_{x}u_{y}u_{z}^{2}F_{y} + 2u_{x}^{2}u_{y}^{2}u_{z}F_{z})] \\ &+ \mathbf{H}_{ixyyzz}^{(6)}(\mathbf{H}_{ixxyyzz}^{2}(2u_{x}u_{y}u_{z}^{2}F_{x} + 2u_{x}^{2}u_{y}^{2}u_{z}F_{z})] \\ &+ \mathbf{H}_{ixyyzz}^{(6)}(\mathbf{H}_{ixxyyzz}^{2}(2u_{x}u_{y}u_{z}^{2}F_{x} + 2u_{x}^{2}u_{y}^{2}u_{z}F_{z})] \\ &+ \mathbf{H$$

Fortunately, one can evaluate this expression far more efficiently through its expression in central moment space, see Sec. 3.2 in the original paper.

D D3Q7 LATTICE

The set of lattice velocities $\{\mathbf{d}_0, \mathbf{d}_1, ..., \mathbf{d}_6\}$ at a grid node in the D3Q27 model is defined as (see Fig. 6(right) of the original paper):

$$\mathbf{d}_0 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \, \mathbf{d}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \, \mathbf{d}_2 = \begin{bmatrix} -1\\0\\0 \end{bmatrix}, \, \mathbf{d}_3 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \, \mathbf{d}_4 = \begin{bmatrix} 0\\-1\\0 \end{bmatrix}, \, \mathbf{d}_5 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \, \mathbf{d}_6 = \begin{bmatrix} 0\\0\\-1 \end{bmatrix}.$$

The associated weights are:

$$w_0^d = \frac{1}{4}, w_1^d = w_2^d = w_3^d = w_4^d = w_5^d = w_6^d = \frac{1}{8}$$

with a LBM speed of sound d = 1/2.

E CENTRAL MOMENT PROJECTION MATRIX

The projection matrix onto central moment space is expressed as:

$$\begin{split} |M_{0}\rangle &= \left| (1, 1, 1, 1, 1, 1) \right\rangle, \quad |M_{1}\rangle &= \left| \overline{d}_{xi} \right\rangle, \\ |M_{2}\rangle &= \left| \overline{d}_{yi} \right\rangle, \quad |M_{3}\rangle &= \left| \overline{d}_{zi} \right\rangle, \\ |M_{4}\rangle &= \left| \overline{d}_{xi}^{2} - \overline{d}_{yi}^{2} \right\rangle, \quad |M_{5}\rangle &= \left| \overline{d}_{xi}^{2} - \overline{d}_{zi}^{2} \right\rangle, \\ |M_{6}\rangle &= \left| \overline{d}_{xi}^{2} + \overline{d}_{yi}^{2} + \overline{d}_{zi}^{2} \right\rangle, \end{split}$$
(i)

where we use the convention $\overline{\mathbf{d}}_{.} = \mathbf{d}_{.} - \mathbf{u} = (\overline{d}_{x.}, \overline{d}_{y.}, \overline{d}_{z.}).$

ACM Trans. Graph., Vol. 41, No. 4, Article 114 (supp. mat.) Publication date: August 2022.

F HIGH-ORDER EQUILIBRIUM DISTRIBUTION g^{eq}

The expressions of \hat{f}^{eq} directly in central-moment space are:

$$\begin{split} &f_0^{eq} = p^*, \\ &f_1^{eq} = -\mathbf{u}_x(p^*-1), \quad f_2^{eq} = -\mathbf{u}_y(p^*-1), \quad f_3^{eq} = -\mathbf{u}_z(p^*-1), \\ &f_4^{eq} = \mathbf{u}_x\mathbf{u}_y(p^*-1), \quad f_5^{eq} = \mathbf{u}_x\mathbf{u}_z(p^*-1), \quad f_6^{eq} = \mathbf{u}_y\mathbf{u}_z(p^*-1), \\ &f_7^{eq} = (\mathbf{u}_x\mathbf{u}_x - \mathbf{u}_y\mathbf{u}_y)(p^*-1), \quad f_8^{eq} = (\mathbf{u}_x\mathbf{u}_x - \mathbf{u}_z\mathbf{u}_z)(p^*-1), \\ &f_9^{eq} = p^* + \mathbf{u}_x\mathbf{u}_xp^* + \mathbf{u}_y\mathbf{u}_yp^* + \mathbf{u}_z\mathbf{u}_zp^* - \mathbf{u}_x\mathbf{u}_x - \mathbf{u}_y\mathbf{u}_y - \mathbf{u}_z\mathbf{u}_z, \\ &f_{10}^{eq} = -\frac{1}{3}\mathbf{u}_x(p^*-1)(3\mathbf{u}_x\mathbf{u}_x + 3\mathbf{u}_z\mathbf{u}_z + 2), \\ &f_{12}^{eq} = -\frac{1}{3}\mathbf{u}_z(p^*-1)(3\mathbf{u}_x\mathbf{u}_x + 3\mathbf{u}_y\mathbf{u}_y + 2), \\ &f_{12}^{eq} = -\frac{1}{3}\mathbf{u}_z(p^*-1), \quad f_{16}^{eq} = -\mathbf{u}_x(\mathbf{u}_x\mathbf{u}_x - \mathbf{u}_z\mathbf{u}_z)(p^*-1), \\ &f_{15}^{eq} = -\mathbf{u}_x(\mathbf{u}_y\mathbf{u}_y - \mathbf{u}_z\mathbf{u}_z)(p^*-1), \quad f_{16}^{eq} = -\mathbf{u}_x\mathbf{u}_y\mathbf{u}_z(p^*-1) \\ &f_{17}^{eq} = \frac{1}{3}p^* + \frac{2}{3}\mathbf{u}_x\mathbf{u}_xp^* + \frac{2}{3}\mathbf{u}_y\mathbf{u}_yp^* + \frac{2}{3}\mathbf{u}_z\mathbf{u}_zp^* - \frac{2}{3}\mathbf{u}_x\mathbf{u}_x \quad (j) \\ &-\frac{2}{3}\mathbf{u}_y\mathbf{u}_y - \frac{2}{3}\mathbf{u}_z\mathbf{u}_z - \mathbf{u}_x\mathbf{u}_x\mathbf{u}_z\mathbf{u}_zp^* + \mathbf{u}_y\mathbf{u}_z\mathbf{u}_zp^*, \\ &f_{18}^{eq} = \frac{1}{9}p^* + \frac{2}{3}\mathbf{u}_x\mathbf{u}_xp^* + \frac{2}{3}\mathbf{u}_z\mathbf{u}_zp^* + \mathbf{u}_y\mathbf{u}_z\mathbf{u}_zp^*, \\ &f_{18}^{eq} = \frac{1}{9}p^* + \frac{2}{3}\mathbf{u}_x\mathbf{u}_y\mathbf{u}_yp^* + \mathbf{u}_x\mathbf{u}_x\mathbf{u}_z\mathbf{u}_zp^* - \mathbf{u}_y\mathbf{u}_y\mathbf{u}_z\mathbf{u}_zp^*, \\ &f_{19}^{eq} = \frac{1}{3}(\mathbf{u}_y\mathbf{u}_y - \mathbf{u}_z\mathbf{u}_z)(3\mathbf{u}_x\mathbf{u}_x + 1)(p^* - 1) \\ &f_{29}^{eq} = \frac{1}{3}(\mathbf{u}_y\mathbf{u}_y - \mathbf{u}_z\mathbf{u}_z)(3\mathbf{u}_z\mathbf{u}_z + 1)(p^* - 1) \\ &f_{29}^{eq} = -\frac{1}{9}\mathbf{u}_x(3\mathbf{u}_x\mathbf{u}_x + 1)(3\mathbf{u}_z\mathbf{u}_z + 1)(p^* - 1) \\ &f_{26}^{eq} = -\frac{1}{9}\mathbf{u}_z(3\mathbf{u}_x\mathbf{u}_x + 1)(3\mathbf{u}_y\mathbf{u}_y) + 1(p^* - 1) \\ &f_{26}^{eq} = -\frac{1}{9}\mathbf{u}_z(3\mathbf{u}_x\mathbf{u}_x + 1)(3\mathbf{u}_y\mathbf{u}_y\mathbf{u}_z\mathbf{u}_zp^* - \frac{1}{9}\mathbf{u}_x\mathbf{u}_x \\ &-\frac{1}{9}\mathbf{u}_y(\mathbf{u}_z\mathbf{u}_z - \frac{1}{3}\mathbf{u}_x\mathbf{u}_x\mathbf{u}_y\mathbf{u}_yp^* + \frac{1}{9}\mathbf{u}_z\mathbf{u}_zp^* - \frac{1}{9}\mathbf{u}_x\mathbf{u}_x \\ &-\frac{1}{3}\mathbf{u}_y\mathbf{u}_y\mathbf{u}_z\mathbf{u}_z\mathbf{u}_z^* + \frac{1}{9}\mathbf{u}_y\mathbf{u}_y\mathbf{u}_z\mathbf{u}_z\mathbf{u}_z^* \\ &+\frac{1}{3}\mathbf{u}_y\mathbf{u}_y\mathbf{u}_z\mathbf{u}_z\mathbf{u}_z^* + \frac{1}{9}\mathbf{u}_z\mathbf{u}_z\mathbf{u}_z^* + \frac{1}{3}\mathbf{u}_z\mathbf{u}_z\mathbf{u}_zp^* \\ &+\frac{1}{3}\mathbf{u}_z\mathbf{u}_z\mathbf{u}_z^* + \frac{1}{3}\mathbf{u}_z\mathbf{u}_z\mathbf{u}_z\mathbf{u}_z^* \\ &+$$

REFERENCES

Christophe G. Coreixas. 2018. High-order extension of the recursive regularized lattice Boltzmann method. Ph. D. Dissertation. Institut National Polytechnique de Toulouse. Abbas Fakhari, Travis Mitchell, Christopher Leonardi, and Diogo Bolster. 2017. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios. Physical Review E 96, 5 (2017), 053301.