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In this paper, we introduce a discrete definition of connection on simplicial
manifolds, involving closed-form continuous expressions within simplices
and finite rotations across simplices. The finite-dimensional parameters of
this connection are optimally computed by minimizing a quadratic mea-
sure of the deviation to the (discontinuous) Levi-Civita connection induced
by the embedding of the input triangle mesh, or to any metric connection
with arbitrary cone singularities at vertices. From this discrete connection,
a covariant derivative is constructed through exact differentiation, leading
to explicit expressions for local integrals of first-order derivatives (such as
divergence, curl and the Cauchy-Riemann operator), and forL2-based ener-
gies (such as the Dirichlet energy). We finally demonstrate the utility, flexi-
bility, and accuracy of our discrete formulations for the design and analysis
of vector, n-vector, and n-direction fields.
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1. INTRODUCTION

Established by Ricci and Levi-Civita, covariant differentiation is
a central concept in differential geometry that measures the rate of
change of a (tangent) vector field over a curved surface. The covari-
ant derivative can thus quantify the smoothness of a vector field,
evaluate its local fluxes, and even identify its singularities. Conse-
quently, discretizing the notion of covariant derivative is crucial to
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digital geometry processing, with applications ranging from texture
synthesis to shape analysis, meshing, and simulation. However, ex-
isting discrete counterparts of such a differential operator acting on
simplicial manifolds can either approximate local derivatives (such
as divergence and curl) or estimate global integrals (such as the
Dirichlet energy), but not both simultaneously.

In this paper, we present a unified discretization of the covariant
derivative that offers closed-form expressions for both local and
global first-order derivatives of vertex-based tangent vector fields
on triangulations. Our approach is based on a new construction of
discrete connections that provides consistent interpolation of tan-
gent vectors within and across mesh simplices, while minimizing
the deviation to the Levi-Civita connection induced by the 3D em-
bedding of the input mesh—or more generally, to any metric con-
nection with arbitrary cone singularities at vertices. We demon-
strate the relevance of our contributions by providing new com-
putational tools to design and edit vector and n-direction fields.

1.1 Previous Work

While many graphics applications (from texture synthesis to fluid
animation) make use of discrete vector fields, we only review previ-
ous methods that have addressed the analysis and design of vector
and n-direction fields over triangulated surfaces.

Vector fields. Computational tools for vector fields on triangle
meshes are required whether the user is given a tangent vector field
to analyze or if (s)he needs to design a vector field from a sparse set
of desired constraints. For instance, discrete notions of divergence
and curl (vorticity) were formulated [Polthier and Preuß 2003; Tong
et al. 2003]; topological analysis also attracted interest, resulting in
methods in which positions of vector field singularities are iden-
tified, merged, split, or moved [Theisel 2002; Zhang et al. 2006].
Quadratic energies measuring vector field smoothness were also
introduced since their minimizers (possibly with added user con-
straints) limit the appearance of singularities [Fisher et al. 2007].

From vector fields to n-direction fields. The more general case
of n-direction fields (called unit n rotational symmetry (RoSy)
fields in [Palacios and Zhang 2007]) such as direction fields (n=2)
or cross fields (n=4) were numerically handled through energy
minimization as well, but the energies that were initially proposed
for this case were highly non-linear [Hertzmann and Zorin 2000;
Palacios and Zhang 2007; Ray et al. 2008] or involved integer vari-
ables [Ray et al. 2009; Bommes et al. 2009; Panozzo et al. 2012]. A
quadratic energy was recently introduced in [Knöppel et al. 2013]
through a discretized version of the Dirichlet energy, extending
the method of [Fisher et al. 2007] which only accounted for the
squared sum of the divergence and of the curl of vector fields over
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the surface. The extra curvature and boundary terms of this new
approach were also shown to offer additional user control. Non-
intersecting integral lines of such n-RoSy fields can then be con-
structed through [Ray and Sokolov 2014; Myles et al. 2014] for
applications such as global parameterization.

Connections. The importance of connections in geometry pro-
cessing was noted early on, even in applications unrelated to field
design. Intuitively, a connection prescribes (in a given local frame
field) how the frame at one point should be modified to produce
a “parallel” frame at a nearby point, so as to allow the compari-
son between vectors in nearby frames. For instance, [Lipman et al.
2005] used what conceptually amounted to Christoffel symbols be-
tween vertex-based tangent planes to describe the effects of parallel
transport, in an effort to introduce linear rotation-invariant coordi-
nates; however, these coefficients end up bearing little resemblance
to their continuous equivalents. Kircher and Garland [2008] pro-
posed to use a triangle-to-triangle connection in the context of free-
form deformation, but no notion of differentiation was discussed.
A formal discrete version of connections between triangles was de-
fined in [Crane et al. 2010], encoding the alignment angle for par-
allel transport from one triangle to an adjacent one, and with which
piecewise-constant unit vector and n-direction fields can be derived
for any given set of singularities. The recent work of [Knöppel
et al. 2013], instead, used a notion of parallel transport through
the blending of geodesic polar maps similar to [Zhang et al. 2006],
which determines a connection between vertices as opposed to tri-
angles. This approach results in a continuous notion of vector fields
(and n-vector fields) compared to the piecewise constant discretiza-
tion per face of [Crane et al. 2010; Wang et al. 2012; Myles and
Zorin 2013], and thus allows a formal evaluation of the Dirichlet
energy. Their choice of connection is based on the even distribu-
tion of the Gaussian curvature of the input mesh from vertices to
faces, which leads to closed-form expressions of the L2 integrals
they sought. However, the deviation (and thus, the discretization er-
ror) of their connection from the canonical Levi-Civita connection
of the mesh embedded in R3 is difficult to quantify since no closed-
form expression of the covariant derivative itself was provided. Ad-
ditionally, first-order derivative operators such as divergence or curl
cannot be evaluated in their framework—neither pointwise, nor as
local integrals. The more recent work of [de Goes et al. 2014] pro-
vided discrete covariant derivatives induced by discrete symmetric
2-tensors as a global mapping from a pair of discrete 1-forms to
another discrete 1-form, but offers no pointwise expressions either.

In conclusion, and despite the fact that vector, n-vector, and n-
direction fields over triangulated surfaces have received much at-
tention lately, there is still no existing approach offering discrete
operators capturing both local and global differential information
in a consistent manner. Moreover, the few existing approaches to
connections do not offer a discretization that can be argued to be
optimally close to the canonical connection induced by a metric.

1.2 Contributions

In this paper, we introduce a notion of discrete connection over sim-
plicial manifolds that offers closed-form expressions for first-order
derivatives and L2-based energies of (n-)vector and n-direction
fields. Using one reference frame per simplex, a discrete connec-
tion is encoded through finite rotations between incident simplices,
and continuous Whitney connection 1-forms within edges and tri-
angles. A closed-form expression of the covariant derivative is then
derived from the connection through direct differentiation, offering
pointwise or integral evaluations of first-order operators (such as di-

vergence, curl, and the Cauchy-Riemann operator) and relevant en-
ergies (such as the Dirichlet energy). We also propose the computa-
tion of an as-Levi-Civita-as-possible discrete connection through a
linear solve, defining a finite-dimensional connection that deviates
the least (in a norm defined below) from the original connection in-
duced by the embedding of the mesh in R3. Significant numerical
improvements over previous methods are obtained for analytical
vector fields when this as-Levi-Civita-as-possible discrete connec-
tion is used for discrete operators on vector fields. Our represen-
tation is extended to handle any metric connection with arbitrary
cone singularities at vertices as well. We also demonstrate the rele-
vance and practical use of our discrete connections by contributing
new numerical tools for n-vector field field editing that control the
position and orientation of both positive and negative singularities.

1.3 Outline and Notations

We first review the continuous definitions and relevant properties
of connections, covariant derivatives, and associated energies in
Sec. 2. We describe the rationale behind our construction of vertex-
based vector fields on meshes via a discrete connection in Sec. 3.
We then elaborate on the discrete definition of connection in Sec. 4,
before discussing in Sec. 5 how to compute a globally optimal dis-
crete connection in the sense that it is the closest to the Levi-Civita
connection of the surface. We further provide in Sec. 6 closed-form
expressions for basis functions of vector fields and covariant deriva-
tives based on our discrete connections, before explaining in Sec. 7
how these numerical tools can be leveraged to improve (n-)vector
and n-direction field editing on triangle meshes. We conclude with
visual results of vector field editing and numerical comparisons of
our operators in Sec. 8.

Throughout our exposition, we denote by T a triangulation of a 2-
manifold M of arbitrary topology, with vertices V ={vi}i, edges
E={eij}i,j and triangles T ={tijk}i,j,k. Each vertex vi is as-
signed a position pi in R3. Each edge further carries an arbitrary
but fixed orientation, while vertices and triangles always have coun-
terclockwise orientation by convention. Index order indicates direc-
tion, in the sense that edge eij is directed from vertex vi to vj . The
bold symbol eij will denote the vector formed by edge eij in its Eu-
clidean embedding space R3. We exploit the containment relation
of a simplicial complex by defining σ to be a face of η, and η a co-
face of σ, iff σ⊂η with σ, η∈T . We denote the angle in a triangle
tijk between jk and ji by θijk > 0. The discrete Gaussian curva-
ture of T at a vertex vi is thus expressed as κi=2π−

∑
tijk

θkij . Fi-
nally, we denote by ϕi, ϕij , and ϕijk the Whitney bases of 0-forms
on vertices vi, 1-forms on edges eij , and 2-forms on triangles tijk
respectively [Whitney 1957; Desbrun et al. 2008]. The piecewise-
linear basis function ϕi is supported over the one-ring of vi, satis-
fying ϕi(vj)=δij (where δ is the Kronecker symbol) and offering
a partition of unity (ϕi+ϕj+ϕk = 1) on triangle ijk. The other
bases are defined as ϕij =ϕidϕj−ϕjdϕi, and ϕijk=2 dϕi∧dϕj
(where d is akin to gradient and ∧ is akin to cross product).

2. CONNECTIONS ON SMOOTH MANIFOLDS

We begin our exposition by reviewing continuous geometric no-
tions that will be relevant to our contributions. While these notions
can be introduced in various ways, we focus as much as possible
on intrinsic definitions as they will be easier to discretize later on.
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2.1 Tangent Vector Fields

Consider a compact topological 2-manifold M , covered by a col-
lection (atlas) of charts that have C∞ smooth transition functions
between each overlapping pair (which always exists [Grimm and
Hughes 1995; Marathe 2010]). The notion of tangent planes and
vectors can be defined intrinsically (i.e., independent of the embed-
ding) via, for instance, the tangency among smooth curves passing
through a common point.

DEFINITION 1 [ABRAHAM ET AL. 1988]. Let x = (x1, x2)
be a local chart mapping an open set U⊂M to R2. A smooth curve
c passing through a point p∈U is a map c : I→U for which the
interval I ⊂R contains 0, c(0) =p, and x ◦ c is C2. Two smooth
curves c1 and c2 are said to be tangent at p if and only if

(x ◦ c1)′(0)=(x ◦ c2)′(0). (1)

Note that this definition of tangency is independent of the choice of
charts. Tangent curves can thus be used as an equivalence relation
defining intrinsic vector spaces tangent to M .

DEFINITION 2 [ABRAHAM ET AL. 1988]. A tangent vector
at p ∈M is the equivalence class [c]p of curves tangent to curve
c at p. The space of tangent vectors is called the tangent space at
p, denoted as TpM . The tangent bundle is the (disjoint) union of
tangent spaces TM = ∪p∈MTpM .

When the surface M has an embedding in R3, one can further ex-
press the tangent vectors as 3D vectors orthogonal to the surface
normal, as classically explained in differential geometry of sur-
faces. Observe that the tangent space TpM at any point p∈M is
two dimensional and a tangent vector u= [c]p can be represented
in components as (u1, u2)=((x1◦c)′(0), (x2◦c)′(0)) in a chart x.
Thus, the tangent bundle TM admits the structure of a 4-manifold
with charts (x1, x2, u1, u2) induced by the atlas of M .

DEFINITION 3 [ABRAHAM ET AL. 1988]. A (tangent) vector
field u is a continuous map M → TM from a point p ∈ M to
a vector u(p) ∈ TpM . A local frame field of M on a chart is
defined as two vector fields (e1, e2) that are linearly independent
pointwise.

Global frame fields do not exist in general; otherwise one could
build a continuous vector field that is nonzero everywhere on a
genus-0 surface, thus contradicting the hairy ball theorem [Spivak
1979]. Consequently, TM does not usually have the structure of
M×R2. On a chart with a local frame field, a vector field u can be
expressed in components as

u = u1e1 + u2e2. (2)

The aforementioned chart of TM can be seen as a special case of
the component representation, with ei (often denoted as ∂/∂xi)
being the equivalence class of the curves generated by varying co-
ordinate xi while keeping the other coordinate fixed.

DEFINITION 4 [ABRAHAM ET AL. 1988]. A covector ω at p
is defined as a linear map ω : TpM → R. The space of covectors
is denoted as T ∗pM .

One can likewise define smooth fields of covectors, which are also
called (differential) 1-forms. They can be represented in local bases
(η1, η2) defined by ηi(ej)=δij given a frame field (e1, e2).

One can also augment a surface M with a metric by assigning an
inner product (symmetric positive definite bilinear mapping) 〈·, ·〉p
for every tangent space TpM—e.g., for an embedded surface, it can

Fig. 1: Smooth connection. On a smooth manifold, a connection indicates
how a tangent vector at point p is parallel transported along a path C to a
nearby point q, accounting for the change of frame between the two tangent
spaces. From a connection the notion of (covariant) derivative of vector
fields is deduced, as nearby vectors can now be compared.

be defined by the inner product of the corresponding 3D vectors in
the 3D Euclidean space.

Finally, we point out that the directional derivative of a function f
over M w.r.t. a vector u = [c]p ∈ TpM is defined as (f ◦c)′(0),
corresponding to df(u) in the language of differential forms and
to the more familiar inner product 〈∇f,u〉 when a metric is avail-
able [Abraham et al. 1988].

2.2 Covariant Derivative

In order to take derivatives of vector fields, one must account for the
fact that vectors in nearby tangent spaces are expressed in different
local frames. The concept of covariant differentiation, denoted ∇,
provides a principled way to compare nearby tangent vectors and
measure their differences. The basic geometric intuition behind the
covariant derivative of a vector field u at a point p is that ∇u en-
codes the rate of change of u around p. Projecting the derivative of
a vector field u along a vector w leads to a vector∇wu, which indi-
cates the difference between vectors u(p) at p and u(q) at a nearby
point q≡ c(ε), where c is a curve passing through p in the equiv-
alence class w, and ε∈R is small (Fig. 1). However, these vectors
live in different tangent spaces, so the component-wise differences
depend on the choice of local basis frames, and taking their dif-
ferences in a manner that is purely intrinsic (i.e., coordinate/frame
independent) requires the additional notion of connection.

DEFINITION 5 [SPIVAK 1979]. A covariant derivative (or an
affine connection) is an operator ∇ mapping a vector w ∈ TpM
and a vector field u to a vector ∇wu∈TpM , so that it is linear in
both u and w and satisfies Leibniz’s product rule, i.e., for a vector
field u and a smooth function f , one has

∇w(fu) = df(w)u + f∇wu.

Using the representation of the vector field u in a local frame field
(e1, e2), we can expand the covariant derivative through linearity
and product rule in u as:

∇wu =
∑
i=1,2

[
dui(w)ei + ui∇wei

]
,

where the second term of this derivative accounts for the alignment
of the local frame at a point to a nearby local frame along a curve
having w as its tangent vector (Fig. 1). By linearity in w, we can
rewrite ∇wei = w1∇e1ei+w2∇e2ei. Now we introduce coeffi-
cients ωkji satisfying

∇ejei = ω1
jie1 + ω2

jie2.
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In the dual basis (η1, η2) of T ∗pM , we can group these coefficients
as local 1-forms ωij ≡ ωi1jη

1 + ωi2jη
2, to encode the alignment of

nearby local frames as a local matrix-valued 1-form:

Ω(w) =

(
ω1
1(w) ω1

2(w)
ω2
1(w) ω2

2(w)

)
, ∀w ∈ TpM.

Using Ω, we can reformulate the covariant derivative as:

∇wu = (e1 e2)

(
du1(w)
du2(w)

)
+ (e1 e2) Ω(w)

(
u1

u2

)
.

Note that if one considers a different local frame field (ẽ1, ẽ2) at
q satisfying (ẽ1(q), ẽ2(q)) = (e1(q), e2(q))(I+εΩ(w)), where
q = x−1(x(p)+εw) is a point ε-away from p along w (still ex-
pressed in chart x), then the corresponding matrix-valued 1-form
satisfies Ω̃(w) = 0, and ε∇wu becomes a direct comparison of
components (ũ1, ũ2) at q and p; in other words, these frames are
aligned. It is also worth pointing out that, even though the matrix-
based 1-form Ω is dependent on the choice of frame field, ∇u is
instead a proper, globally-defined tensor field.

2.3 Metric Connections

While the definitions above are valid for arbitrary connections, we
will restrict our attention from now on to metric affine connections.

DEFINITION 6 [SPIVAK 1979]. For a smooth 2-manifold M
equipped with a metric 〈·, ·〉, a metric affine connection is a con-
nection that preserves the metric, i.e., that satisfies

d 〈u1,u2〉 (w)=〈∇wu1,u2〉+〈u1,∇wu2〉 , ∀w,u1,u2∈TM.

Note that an orthonormal frame field (e1, e2)≡(e, e⊥) is uniquely
defined through a unit vector e and its π/2-rotation e⊥ in the given
metric; we thus (by abuse of notation) refer to e as a local frame
field. With the compatibility condition that metric connections must
verify, the local 1-form Ω on an orthonormal frame simplifies to:

Ω =

(
0 −ω
ω 0

)
= ωJ,

where J is the π/2-rotation matrix

J=

(
0 −1
1 0

)
,

and ω is a local, real-valued 1-form encoding infinitesimal angular
velocity with which a local frame needs to rotate to align to nearby
frames when moving along a given vector. We will refer to ω as the
(metric) connection 1-form.

An important special case of metric connection is the Levi-Civita
connection: for a given metric defined over a 2-manifold M , this is
the unique metric connection simultaneously preserving this metric
and satisfying ωijk=ωikj in frame field (∂/∂x1, ∂/∂x2). In partic-
ular, for a surface embedded in R3, the Levi-Civita connection in-
duced by the metric inherited from the Euclidean space corresponds
to the tangential component of the traditional (3D) component-wise
derivatives of a vector field.

As metric connections will be at the core of our contributions, we
delve further into related continuous concepts that will be useful
in later sections. For definitions of other connections defined on
vector or frame bundles, we refer the reader to [Spivak 1979].

2.4 Related Concepts

We end this section with a few key geometric definitions which we
will refer to extensively in our work.

Parallel transport. The notion of connection allows a natural
definition of parallel transport: given a connection 1-form ω and its
covariant derivative∇, the parallel transport of a vector u(p) along
a curve c is defined as vectors along the curve such that∇c′(s)u=0,
where c′(s) is the tangent vector [c]c(s). Using components, one can
show that any vector that is parallel-transported along c undergoes
a series of infinitesimal rotations in the basis (e, e⊥), leading to(

u1(s)
u2(s)

)
=exp

(
−J
∫ s

0

ω(c′(α))dα

)(
u1(0)
u2(0)

)
, (3)

where the matrix exponential exp(θJ)=cosθI+sinθJ is the result-
ing rotation matrix induced by the connection ω in order to align
Tc(0)M to Tc(s)M (with I denoting the 2×2 identity matrix). As
parallel transport along an arbitrary path involves the integral of the
connection, a connection 1-form ω can be deduced from the corre-
sponding parallel transport via differentiation [Knebelman 1951].

Curvature of connection. Any parallel-transported vector along
a closed path ∂R around a simply connected region R ⊂ M ac-
cumulates a rotation angle called the holonomy of the closed path.
Given a connection 1-form ω, one can use Stokes’ theorem to ex-
press the holonomy as the integral of −dω over R, independent of
the choice of the local frames. This quantity −dω is often called
the curvature K of the connection and, in the particular case of
the Levi-Civita connection, it becomes the conventional notion of
(2-form) Gaussian curvature.

Geometric decomposition. Due to the linearity of the covariant
derivative, the operation ∇u represents a 2-tensor field on M. By
denoting the reflection matrix through

F =

(
1 0
0 −1

)
,

and omitting local bases for clarity, the matrix representation of∇u
can be rearranged into four geometrically relevant terms:

∇u =
1

2
[I∇· u + J∇× u + F∇· (Fu) + JF∇× (Fu)], (4)

where J∇× u (measuring the curl of u) is the only antisymmetric
term. Moreover, we can rewrite this decomposition as a function of
two other relevant derivatives:

∇u = ∂u + F ∂̄u,

where the holomorphic derivative ∂ ≡ 1
2

[I∇·+J∇×] contains
divergence and curl of the vector field, neither of which depends on
the choice of local frame; whereas the Cauchy-Riemann operator
(or complex conjugate derivative) ∂̄ ≡ 1

2
[I∇·(F ·) + J∇×(F ·)]

depends on the choice of frame. Due to the use of reflection, ∂̄u
behaves as a 2-vector (2-RoSy) field.

Relevant Energies. Based on the decomposition of the covariant
derivative operator in Eq. (4), we can also express the Dirichlet
energy ED of vector field as the sum of two meaningful energies:

ED(u) =
1

2

∫
M

|∇u|2dA =
1

2
(EA(u) +EH(u)) .

The antiholomorphic energy EA measures how much the vec-
tor field deviates from being harmonic, and the holomorphic en-
ergy EH measures how much the field deviates from satisfying the
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Cauchy-Riemann equations:{
EA(u) = 1

2

∫
M

[(∇· u)2 + (∇× u)2]dA,

EH(u) =
∫
M

(∂̄u)2dA.

As shown in [Knöppel et al. 2013], the difference between EH and
EA leads to a boundary term and a term related to the connection
curvature K=−dω:

EA(u)−EH(u) =

∫
∂M

u×(∇u) dA+

∫
M

K|u|2dA. (5)

While complex numbers are often used to express these energies,
we stick to basic vector calculus in our work. In the remainder of
this paper, all the operators and energies presented will be given a
discrete formulation for their evaluation on triangle meshes.

3. ROADMAP FOR DISCRETE VECTOR FIELDS
THROUGH DISCRETE CONNECTIONS

Before presenting our notion of discrete connection, we first de-
scribe the rationale upon which our formulation is based.

3.1 Of the seeming inadequacy of triangle meshes

A piecewise linear embedding of a triangulated 2-manifold in R3

defines piecewise constant normals per triangle and concentrates
Gaussian curvature solely at vertices. As a consequence, formulat-
ing a finite-dimensional space of smooth vector fields is particu-
larly difficult to achieve at vertices. However, since a pair of tri-
angles can be isometrically flattened, there is a clear way to paral-
lel transport a vector within a pair of adjacent triangles using the
Levi-Civita connection induced by the Euclidean metric. A purely
discrete notion of connection was derived from this idea in [Crane
et al. 2010], using discrete dual connection 1-forms that store ro-
tation angles along dual edges to parallel transport a vector from
one triangle to another. Discretization of divergence and curl oper-
ators were also computed based on this construction of Levi-Civita
connection [Polthier and Preuß 2000; Fisher et al. 2007]. Unfor-
tunately, these approaches do not apply to the remaining parts of
the covariant derivative such as the anti-holomorphic derivative in
Eq. (4), resulting in improper pointwise evaluations of the covari-
ant derivative and precluding the discretization of the L2-based en-
ergy integrals described in Sec. 2.4. We are therefore caught in a
dilemma: either we give up on using piecewise linear surfaces and
go for higher order surface descriptions for which smoothness is no
longer an issue, or we modify the canonical notion of connection
on a triangle mesh by artificially “spreading” the Gaussian curva-
ture around vertices so that one can create interpolated, continu-
ous vector fields that have finite covariant derivatives. We opt for
the second option in this paper, to create a convenient numerical
framework for vector field design and analysis.

3.2 Vertex-based discrete vector fields

A convenient (and common) finite-dimensional representation of
vector fields on planar triangle meshes is through linear interpola-
tion from one vector per vertex. Such vertex-based discrete vec-
tor field has recently been extended to nonflat surface meshes,
and shown useful to either define local discrete first-order deriva-
tives [Zhang et al. 2006], or to evaluate global L2 norm of deriva-
tives [Knöppel et al. 2013]—but so far not both, as they require the
explicit formulation of (necessarily non-linear) interpolating ba-
sis functions. Additionally, the associated discrete connections in

these previous approaches are not known analytically. Therefore,
no analysis (in particular, of how they deviate from the canonical
Levi-Civita connection of the mesh) has been proposed for this gen-
eral vertex-based vector field setup. Yet, the choice of connection
impacts the accuracy of differential operators and energies since it
affects the evaluation of the components of the covariant derivative.

3.3 Approach & Rationale

Our work follows the discrete setup advocated in [Zhang et al.
2006; Knöppel et al. 2013] and represents tangent vector fields on
triangulations as a vector ui per vertex vi, encoded intrinsically by
components (u1

i , u
2
i ).

In contrast to previous work, we introduce a new definition of dis-
crete connection that offers closed-form basis functions for vertex-
based interpolation, thus giving explicit evaluations of these dis-
crete vertex-based vector fields and their derivatives. In order to
transition from the continuous setting to the construction of dis-
crete connections and vector fields, we deliberately organize our
presentation in Sec.4 into three parts:

• First, we leverage the smooth structure of triangle meshes
[Grimm and Hughes 1995] to pick charts associated with each
simplex, so that the smooth notion of connection reviewed in
Sec. 2 applies to meshes verbatim. We also identify consis-
tency conditions that the associated transition functions satisfy
and that we will preserve in the discrete realm.

• Second, we define a discretization of the notion of connection
satisfying the same consistency conditions to allow for paral-
lel transport along arbitrary paths on the triangle mesh. The
resulting finite-dimensional space of finite connections is pa-
rameterized by a set of geometric parameters, and one can find
within this space the (finite) connection closest to the original
(Dirac-like) Levi-Civita connection.

• Last, we detail how a discrete connection can then be used
to derive basis functions for the interpolation of per-vertex
vectors to arbitrary points on the mesh—which then leads to
closed-form expressions for both local derivatives and smooth-
ness energies of discrete vector fields.

Our contribution can thus be interpreted as such: while piecewise
linear interpolation of components does not generate continuous
vector fields on nonflat meshes [Zhang et al. 2006], one can for-
mally define a discrete notion of connection, while maintaining the
properties of the smooth structure of a manifold triangle mesh. We
can then evaluate (and thus minimize if needed) the resulting de-
viation from the underlying Levi-Civita connection, while guaran-
teeing that the first derivatives and smoothness energies of discrete
vector fields remain finite.

4. CONNECTIONS ON SIMPLICIAL MANIFOLDS

We now tackle the construction of a discrete connection on simpli-
cial manifolds.

4.1 Smooth connections on simplicial charts

To motivate our discrete notion of a connection, we first describe a
representation of a smooth connection over the triangulation T of a
piecewise linearly embedded 2-manifold M .

Simplicial charts. We exploit the smooth structure of a discrete
2-manifold mesh by first constructing one chart for each simplex
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in the triangle mesh [Grimm and Hughes 1995]. Each chart is an
open superset of the closure of the simplex, and the overlaps of the
charts are defined by the adjacency relationships of the mesh. The
resulting collection of charts is thus a subset of the unique maximal
atlas of the manifold. We also select a metric on M that is smooth
in the smooth structure of M . Note that the choice of charts and
metric will not influence our construction of connection, since they
are only used to identify and formulate the properties that we will
make sure still hold in the discrete definition of connection.

Simplicial frames and connections. Given our charts and met-
ric, we can now assign a local frame (eσ(p), e⊥σ(p)) for the tangent
space TpM of each point p in a simplex σ defined on the smooth
structure. For the point p located at vertex vi, the frame is arbitrar-
ily chosen from the unit vectors in TpM ; for instance, we can select
the equivalence class containing one of the emanating edges. For a
point p on an oriented edge eij , a straightforward choice is the unit
tangent vector defined by the equivalence class of the edge itself.
For a point p in triangle tijk, it can be the unit vector defined by the
equivalence class of the counterclockwise oriented isocurves of the
linear basis function ϕi. Each frame field can then be extended to
the rest of the associated chart (which is a superset of the simplex),
but the properties for parallel transport that we will formulate will
only depend on the frame field within each simplex. Notice that this
construction leads to nonconstant simplicial frame fields in charts,
depending on which isocurves are selected per triangle (see Fig. 2).
With these simplicial frame fields, one can represent a smooth con-
nection 1-form by its expression ωσ in the frame field associated
with each individual simplex σ.

Simplicial transition functions. A discrete connection should
allow parallel transport along an arbitrary path. Consequently, in
addition to a connection 1-form within each simplex, we also need
transition functions along the border of simplices. They consist of
one function ρσ1→σ2 for every pair of simplices σ1 and σ2 such
that σ1∩ σ2 is not empty. More concretely, for a point p∈σ1∩ σ2,
the function ρσ1→σ2(p) is equal to the angle that eσ1(p) needs to
be rotated by in the (continuous) tangent space TpM to align with
eσ2(p). Transition functions thus provide angles that compensate
for the mismatch of frame fields, which are entirely determined by
the choice of simplicial frames.

Fig. 2: One-ring chart. The one-ring of vertex i (top) has straight isocurves
of ϕi (red) and ϕk (blue); in a chart x (chosen from the smooth atlas), these
isocurves induce frame fields etilj and etijk resp. (bottom, only shown at
vi); the frame field in tijk (resp., tilj ) is aligned to ϕk (resp., ϕi).

Parallel transport along a path that consists of k segments Pi in a
sequence of k simplices σi (i=1,..., k, where σi is either a face or
coface of σi+1) can then be computed as a rotation θ of the com-
ponents of a vector represented in the frame field of σ1 to obtain a
vector in the frame field of σk, with

θ = −

(
k∑
i=1

∫
Pi

ωσi +

k−1∑
i=1

ρσi→σi+1

)
,

where the second term accounts for the changes of simplicial frame
fields at points in σi∩σi+1. While the transition angles ρσ1→σ2 are
entirely determined by the choice of simplicial frames, indepen-
dently of the connection ω being represented, they can be seen as
part of the rotations involved in performing parallel transport: they
are, in a way, “impulse rotations” encountered during parallel trans-
port due to chart crossings. We thus include these rotations as part
of the data required for defining parallel transport over a simplicial
mesh, as described in the following definition.

DEFINITION 7. A smooth simplicial connection is the de-
scription of a smooth metric connection in a given set of simplicial
frames, as a continuous connection ωσ for each σ∈T and transi-
tion angle functions ρσ1→σ2 for each incident pair σ1, σ2 ∈ T .

Unfortunately the simplicial frames expressed in smooth charts do
not, in general, lead to transition functions that can be described
with a finite set of parameters; similarly, the smooth connection
cannot be expected to have an expression with only a finite number
of parameters for ωσ . However, we can identify specific properties
and consistency conditions of these transition functions and con-
nections that we will enforce later on in Sec.4.2 to ensure that our
discrete notion of parallel transport is analogous to the smooth case.

PROPOSITION 1. Given any collection of simplicial charts
chosen from the smooth atlas of M , the transition angle functions
ρσ1→σ2 satisfy the following properties:

ρσ1→σ2(p) = −ρσ2→σ1(p) ∀p ∈ σ1 ∩ σ2;

ρvi→eij + ρeij→tijk (pi) = ρvi→tijk ;

ρvi→eji = π + ρvi→eij + 2πnij ,

where nij is an integer per edge determined by the choice of sim-
plicial frames. Moreover, any simplicial connection satisfies:

ρvi→eij +

∫
eij

ωeij + ρeij→vj = ρvi→tijk +

∫
eij

ωtijk + ρtijk→vj .

PROOF. During parallel transport, evaluation of the transition
functions happens at the intersection of incident simplices, e.g.,
ρv→e is evaluated at vertex v whereas ρe→f is evaluated at any point
along edge e. The first property imposes that transitioning from σ1

to σ2 and back does not introduce any rotation. The second and
fourth properties follow immediately from the alignment to an ar-
bitrary frame on a chart covering the one-ring of vi; such a chart
exists since the manifold is compact. Moreover, these two prop-
erties will ensure that the resulting (smooth) simplicial connection
does not have non-zero curvature on zero-area regions at vertices or
around an edge, thus guaranteeing the covariant derivative to be fi-
nite everywhere. For the third equality, note that half edges eij and
eji are opposite in direction, so the values of ρvi→eij and ρvi→eji
must differ by π modulo 2π. We can also evaluate ρvi→tijk in two
separate ways that must coincide:

ρvi→eij + ρeij→tijk (pi) = ρvi→tijk = ρvi→eki
+ ρeki→tijk (pi).
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Fig. 3: Curvature and Parameters. Left: Curvature is accumulated along a
closed path around the interior of a triangle (Kijk) or a closed path around
a section of a half-edge (Kij,k(p,q)). Right: A discrete connection ρ with
finite curvature (Kij,k = 0) is encoded through only vertex-to-triangle,
vertex-to-edge, and vertex-to-vertex rotation angles.

Consequently, if we denote by ∠(·, ·) the angle between two col-
located tangent vectors (the metric used to evaluate the angle does
not matter as this angle also appears in the other way of calculating
ρvi→tijk ), we have

ρvi→eki
= ρvi→eij + π + ∠(eij(pi), eik(pi))− 2πlik,

where lik=0 if the frame in the triangle tijk is aligned to isocurves
of ϕj , and lik = 1 otherwise (e.g., in Fig. 2, lik = 1 and lji = 0),
as we may assume, without loss of generality, that we use angles
between 0 and 2π for transition angles of type ρeij→tijk . Thus, lik
only depends on the choice of the vertex (i, j, or k) when determin-
ing the simplicial frame of tijk. Similarly, we may assume that we
use angles between 0 and 2π for transition angles of type ρvi→eij .
(Note that other transition angles, of type ρvi→eji or ρeji→tijk for
instance, do not have this restriction.) Thus,

ρvi→eik = ρvi→eij + ∠(eij(pi), eik(pi))− 2πmik, (6)

where mik = 1 in the only triangle tijk where ρvi→eik<ρvi→eij ,
and mik=0 otherwise. Again, mik does not depend on any actual
angle, but only on the counterclockwise order of eji, ei, and eki.
We conclude that, if we define nik≡mik − lik, one must have the
consistency conditions:

ρvi→eki
= π + ρvi→eik + 2πnik.

4.2 Discrete simplicial connection

As presented above, a smooth simplicial connection is a descrip-
tion of a smooth connection in a smooth metric represented using
the simplicial chart structure. To discretize this notion of simplicial
connection (i.e., to form a simplicial connection with only a finite
number of parameters), we need to formulate finite dimensional
representations for both the connection 1-form within each simplex
and the transition angles between simplices satisfying Prop. 1. As
we cover next, this can be achieved by first restricting the type of 1-
form representation ωσ to be a discrete Whitney form within each
simplex σ, and then approximating the transition angle functions
by linear functions, while maintaining the consistency conditions
found in Prop. 1.

Whitney-based connections within simplices. Given simpli-
cial frames, we can choose basis functions to approximate ωσ with
a finite number of parameters within each simplex σ. A convenient
finite-dimensional representation of a connection 1-form within a
simplex is to use discrete 1-forms [Desbrun et al. 2008] stored
as oriented edge values interpolated via Whitney bases [Whitney

Fig. 4: Discrete simplicial connection. (left) A continuous connection
within simplices is encoded through edge rotation εij and half-edge rota-
tion τij,k interpolated over edges and faces respectively via Whitney basis
functions. (right) Each vertex vi is given a transition rotation angle ρvi→eij
to edge eij and ρvi→tijk to triangle tijk .

1957]. Specifically, for an oriented edge eij , we define

ωeij = εijϕij = εij [ϕidϕj − ϕjdϕi]
(ϕi+ϕj=1)

= εijdϕj ,

where εij is the total rotation angle to parallel transport along the
entire edge eij . Similarly, in triangle tijk, we use

ωtijk = τij,kϕij + τjk,iϕjk + τki,jϕki,

where τij,k denote the accumulated angle to parallel transport in-
side triangle tijk along its half-edge eij (see Fig. 4(left)). Note that,
due to ϕij =−ϕji, we have εij = −εji and τji,k = −τij,k; how-
ever, τij,k is not necessarily equal to τij,l for the opposite triangle.

Linear transition functions. Still using the given simplicial
frames, we project transition functions to a finite-dimensional rep-
resentation by restricting them to linear functions within their re-
spective simplices based on the linear basis functionsϕi. In order to
ensure consistency and finite covariant derivatives, we force these
transition angles to verify Prop.1. In particular, we make use of the
fourth property in Prop.1 to impose a validity condition between
transition angles ρσ1→σ2 and integrated connection coefficients εij
and τij,k:

ρvi→eij +εij+ρeij→vj = ρvi→tijk +τij,k+ρtijk→vj . (7)

With a finite-dimensional approximation of simplicial connections
and transition functions, we can now formally construct (and thus,
define) a discrete connection on simplicial meshes, given a set of
simplicial frames.

DEFINITION 8. A discrete simplicial connection is a set of
transition angles ρσ1→σ2 and a set of Whitney-based connections ε
per edge and τ per triangle, such that the four properties in Prop. 1
are satisfied, and the transition functions from edges to triangles
are linear in the hat functions ϕi.

Reduced connection parameters. We now analyze the proper-
ties in Prop.1 in more details, and show that the above definition of
discrete simplicial connection can be constructed from a reduced
set of parameters. To this end, we introduce a new parameter, ρij ,
which indicates the rotation angle accumulated during a parallel
transport from vi to vj along edge eij .

PROPOSITION 2. A discrete simplicial connection can be fully
determined by the following reduced set of parameters in a given
set of simplicial frames:

• 3|F | vertex-to-triangle transition rotations ρvi→tijk ,
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• 2|E| vertex-to-edge transition rotations ρvi→eij ,

• and |E| vertex-to-vertex rotations ρij .

For clarity, we denote by ρ the collection of these parameters, i.e.,
ρ=({ρij}, {ρvi→eij}, {ρvi→tijk}) (see Fig. 3(right)).

PROOF. We begin by noting that the transition ρσ1→σ2 for the
case σ2 ⊂ σ1 can be calculated as −ρσ2→σ1 if we only construct
the angles from a simplex to a coface, automatically satisfying the
first property of Prop.1. Next, we leverage the fact that Eq. (7) (or,
equivalently, the fourth property in Prop.1) equates the angle in-
curred during the transport along a single edge, to deduce how the
connection discrete 1-form coefficients depend on the variables ρij :

εij = −ρvi→eij + ρij + ρvj→eij ,

τij,k = −ρvi→tijk + ρij + ρvj→tijk . (8)

Because of the second equation in Prop.1 and of the linearity re-
quirement, we also observe that the rotation angle ρeij→tijk at a
point p ∈ eij between the edge eij and an incident triangle tijk
can be expressed as:

ρeij→tijk (p) = ϕi(p) (ρvi→tijk− ρvi→eij ) (9)

+ ϕj(p) (ρvj→tijk− ρvj→eij ).

At last, using the third property in Prop.1, one can show that
ρij +ρji + 2π(nij +nji+1) = 0, where nij is a constant inte-
ger determined by the choice of simplicial frames. Thus we only
need one ρij per edge to define a discrete simplicial connection
entirely.

Discrete curvature. Equipped with reduced parameters, the cur-
vature of a discrete simplicial connection in a triangle’s interior
becomes solely determined by ρij via the expression:

−Kijk = ρij + ρjk + ρki.

We have thus locally spread the Gaussian curvature of the origi-
nal mesh to make our notion of simplicial connections both finite-
dimensional and finite—unlike the canonical connection of the tri-
angle mesh. This is the price to pay to have continuity of the re-
sulting notion of discrete vector fields as we detail next. We will
see later on in Sec. 5.3 that the deviation generated by our dis-
cretization with respect to the original Levi-Civita connection can
be easily quantified—and thus, minimized if needed.

4.3 Discrete vector fields

So far we have presented a finite-dimensional definition of con-
nection on simplicial meshes. However, simplicial frame fields and
related tangent vectors are expressed pointwise via charts within
simplices. In this section, we propose a definition of a finite-
dimensional representation for vector fields that is compatible to
the notion of discrete simplicial connection. As we will show, this
construction leads to analytical basis functions for interpolation of
frame and vector fields to arbitrary points on a triangulation, where
the charts are parameterized through barycentric coordinates.

Vertex-based vector fields. Similar to the work of [Zhang et al.
2006; Knöppel et al. 2013], we propose to encode discrete vector
fields using only vertices: given a frame per vertex vi, a discrete
vector ui at vi is represented by coordinates u1

i and u2
i . In contrast

to previous work, we now have a well-defined notion of parallel
transport within any simplex of the triangulation determined by our
discrete simplicial connection ρ. This allows us to parallel transport
vertex-based vectors to any point inside edges and triangles.

Construction of analytical basis functions. Given a discrete
connection ρ, we define a basis function Ψi per vertex vi. Its ex-
pression Ψi|t within each incident triangle t is constructed by first
using the rotation −ρvi→t to convert the vector ui stored in the
local frame evi of vi to its coordinates in et (the local frame of
the incident triangle t) at the same point; we then parallel transport
the resulting vector expressed in the frame et along a straight path
from vi to an arbitrary point p in t under the connection 1-form ωt,
which defines a local frame field

Φi

∣∣∣
t
(p) = (et, e

⊥
t ) exp

[
−J
(
ρvi→t +

∫
vi→p

ωt

)]
.

With these local frame fields, we make use of the scalar basis func-
tions ϕi at p to blend the parallel transported vectors from each
corner of the triangle. Since our connection ωt is linear within each
triangle, the resulting basis function for a vertex vi is easily ex-
pressed in closed form as:

Ψi

∣∣∣
tijk

(p)=ϕi(p)Φi

∣∣∣
tijk

(p)

=ϕi(p)(etijk , e
⊥
tijk

)

exp
[
−J(ρvi→tijk +τij,kϕj(p)+τik,jϕk(p))

]
.

The interpolated vector field u at a point p can then be evaluated
anywhere on the mesh via

u(p) =
∑
i

Ψi(p)

(
u1
i

u2
i

)
.

Note that this interpolation is visually quite similar to a linear in-
terpolation for a discrete as-Levi-Civita-as-possible connection, but
can be dramatically different for
other connections. For example,
the inset shows a vector (in green)
locally interpolated by a basis Ψi

over a non-flat one-ring for two
choices of connection: an as-Levi-
Civita-as-possible connection (top) vs. the same connection for
which one of the vertex-to-face angles has been doubled (bottom).

4.4 Discussion

As we will demonstrate in Sec. 6, one can easily compute the differ-
ential operators and energies associated with our finite-dimensional
space of vector fields. However, most geometry processing tools as-
sume the Levi-Civita connection induced by the Euclidean embed-
ding, which cannot be encoded by a discrete simplicial connection:
as we discussed earlier, the connection is zero within each simplex,
and only the edge-to-triangle transition angle ρ̄eij→tijk is well de-
fined and constant along each edge eij as:

∀p ∈ eij , ρ̄eij→tijk (p)=∠(eeij , etijk ), (10)

where the angle is measured in the Euclidean induced metric. Our
construction, instead, purposely offers a connection that defines a
continuous covariant derivative on simplicial meshes. Therefore,
we describe next how to define a discrete connection as close as
possible to the original Levi-Civita connection of the mesh, while
keeping the associated notion of covariant derivative finite.

5. COMPUTING DISCRETE CONNECTIONS

The parameters of our formulation of connections over triangulated
manifolds need to be determined to create an instance of discrete
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connection. We first provide local choices of parameters that were
implicit in previous work, before introducing a global optimization
procedure that mimics the work of [Crane et al. 2010] but within
our (vertex-based) connection setup, in the sense that it makes the
discrete simplicial connection as close as possible to the canonical
Levi-Civita connection of the input surface.

5.1 Connection derived from geodesic polar maps

One initial choice for evaluating ρ is based on the geodesic polar
map. We first evaluate ρv→e from rescaled tip angles, then derive
ρij solely from ρv→e, and finally propose a set of ρv→t to provide
a complete assignment for ρ. The evaluation of ρij is consistent
with both [Zhang et al. 2006] and [Knöppel et al. 2013]. However,
Zhang et al. [2006] construct a connection via parallel transports
along geodesic lines from vertices, rendering the covariant deriva-
tives there infinite since ρv→t is different for the same pair of v
and t depending on which geodesic line the nearby point is on. In-
stead, [Knöppel et al. 2013] does not provide a set of ρv→t, and thus
does not have closed-form formulae to evaluate covariant deriva-
tives pointwise.

The geodesic polar map proportionally rescales tip angles around
each vertex such that they sum to 2π, inducing a flattening of the
immediate surroundings of each vertex vi through a scaling factor

si = 2π/
∑
tijk

θkij ≡ 2π/(2π − κi), (11)

where κi is the commonly used discrete Gaussian curvature inte-
gral for vi. These parameterization charts are not necessarily charts
in the atlas of smooth charts, as the transition functions between
overlapping geodesic polar maps of two adjacent vertices are not
smooth in general. However, they suggest a way to evaluate the
transition angles ρv→e. Without loss of generality, one of the edge
direction can be chosen as the frame at vertex vi; using Eq. (6),
we can then evaluate ρvi→eik = ρvi→eij + ∠(eij , eik) where
∠(eij , eik) = si∠(eij , eik) = siθkij is the angle in the intrinsic
tangent plane spanned by geodesic lines through the vertex under
the geodesic polar map. The vertex-to-vertex coefficient ρij of the
discrete connection is then set to be:

ρij = ρvi→eij − ρvj→eij ,

which is equivalent to setting εij = 0. The triangle curvature Kijk

of the connection finally becomes:

Kijk = (si−1)θkij + (sj−1)θijk + (sk−1)θjki.

This is precisely the choice that the authors of [Knöppel et al. 2013]
made—except that their restriction on the range of the Gaussian
curvature is unnecessary with our integers nij determined by the
choice on simplicial frames.

This choice of vertex-to-vertex rotation angles does not, however,
fully determine a discrete connection—although it is enough to
evaluate the Dirichlet energy of a vector field as we will see in
Sec. 6. Indeed, transition angles from vertices to triangles ρv→t are
crucial for the local evaluation of the first-order derivatives diver-
gence, curl and ∂̄. An intuitive choice for these vertex-to-triangle
rotations is to use the vertex-to-edge transition rotations, the vertex-
to-vertex coefficients and the well-defined angles (measured in the
actual Euclidean metric) from the edge frame to the triangle frame:

ρvi→tijk = ρvi→eij + ρ̄eij→tijk ,

where the Levi-Civita connection ρ̄eij→tijk of Eq. (10) is used.

However, this choice is biased since it only considers the transi-
tion rotations of eij and not of its neighboring edges. To be con-
sistent with the geodesic polar map, the rotation from the vertex
frame basis evi to any direction between eij and eik should be di-
rectly computed based on the scaling factor si, and should result in
a rotation angle inbetween ρvi→eij and ρvi→eik . One of the many
different ways to enforce this property is thus to pick an arbitrary
interior point cijk (such as the incenter or the barycenter) of each
triangle tijk, to define ρvi→cijk =(ρvi→eij +ρvi→eik +2πnik)/2,
and then define the vertex-to-triangle transition rotations as

ρvi→tijk = ρvi→cijk + ∠(cijk − pi, etijk ), (12)

where, again, the angles ∠ are measured in the actual Euclidean
metric of the input mesh.

5.2 Locally optimal connection 1-form

The choice of geodesic polar map may, however, result in large con-
nection values ωt (as deduced from ρ through Eq. (8)), indicating
a significant mismatch between the local original Levi-Civita con-
nection (which is 0 inside a triangle) and its discrete counterpart.
A simple improvement can be achieved by choosing the vertex-to-
triangle rotations ρv→t that minimize the L2 norm of this deviation
within each triangle while keeping the vertex-to-vertex coefficients
ρij unchanged. As the L2 norm of ωt per triangle is a quadratic
function of its edge values τij,k, τjk,i, and τki,j using the mass
matrix of Whitney 1-form bases, the local optimal values are found
in closed form to be simply τij,k=−Kijk/3, which leads to∫
tijk

ωtijk∧?ωtijk =
1

36
(cot(θijk)+cot(θjki)+cot(θkij))K

2
ijk.

There are, however, multiple choices of vertex-to-triangle rotations
that achieve this locally minimal connection. For instance, we could
pick one arbitrary transition angle ρvi→tijk per triangle tijk, then
find ρvj→tijk and ρvk→tijk so that, for q ∈ {j, k},

ρvq→tijk = ρvi→tijk + ρqi + τiq. (13)

One can, instead, compute the three triplets of vertex-to-triangle
transition angles induced by fixing each one of the corner transition
angles individually using Eq. (13), and average their values to avoid
bias. This averaged choice leads to better accuracy in singularity
direction control (see Sec. 7), and has proven to be, in all our tests,
the local definition of connection that generates the least amount of
numerical errors (see Table I).

5.3 As-Levi-Civita-as-possible connection 1-form

Deriving a discrete connection through a geodesic polar map as
in [Knöppel et al. 2013] leads to reasonable connection 1-forms ρij
and ρv→e on primal edges, and local optimizations of ρv→t further
minimize the resulting triangle-based connection 1-form. We can,
however, directly compute a globally optimal discrete connection
by computing the parameters ρij , ρv→e and ρv→t that minimize
of the deviation between the resulting connection ρ and the actual
canonical Levi-Civita connection ρ̄e→t (Eq. (10)) of the piecewise
flat mesh. In order to define a meaningful notion of optimal connec-
tion, we propose the following two area-integrated measurements
of deviation:

DT (ρ) =
∑
t

∫
t

ωt ∧ ?ωt,

DE(ρ) =
∑

e,t | e⊂t

we,t

∫
e

(ρe→t(p)− ρ̄e→t)2dl,
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where ρe→t(p) is the linearly-varying transition angle function
given in Eq. (9), and weij ,tijk = tan θjki is the inverse of the
cotan weight for the Hodge star of 1-forms within the triangle (for
tip angles greater than or equal to π/2, we can use a fixed large
value for we,t instead without substantial impact on the resulting
coefficients, since the effect of the cotan weights on the global re-
sult is minor as noticed in [Crane et al. 2010] for the dual ver-
sion). DT measures the deviation from the flat connection within
triangles, whileDE measures the difference between the true Levi-
Civita connection measured by the angles ∠ on the input mesh and
the transition angles induced by the reduced parameters of ρ. Min-
imizing the quadratic total deviation DT +DE is thus simple: the
optimization procedure amounts to solving a linear system in ρ af-
ter we fix its kernel of size |V | by setting to zero one of the vertex-
to-face transition angles ρvi→tijk per vertex vi (these |V | gauge
values do not affect the result, as they amount to a rotation angle of
the arbitrary frame direction evi ). Both energies are expressed as
quadratic functions of ρ; note that the integrated deviationDE does
not depend on ρij since the contributions from ωt and ωe cancel out
along each edge.

5.4 Trivial connections

We just described how our definition of a discrete connection can be
made as close as possible to the Levi-Civita connection ρ̄ through
a linear solve. In fact, we can also create a connection as close
as possible to any metric connection with arbitrary cone singular-
ities at vertices, similar to the trivial connections of [Crane et al.
2010]: in our context, trivial connections are created by using an-
gles ρ̃eij→tijk = ρ̄eij→tijk +αij,k, where αij,k is an adjustment
angle, and the cone singularity at vi has a connection curvature

Ki=
∑
tijk

(ρvi→eij + ρ̃eij→tijk−ρ̃eki→tijk − ρvi→eki
).

If the adjustment angles have been picked such that Ki = 0 for
all vertices that are not one of the selected singularities, and if we
replace ρ̄e→t in the deviation DE by ρ̃e→t, our optimization will
find the closest discrete simplicial connection to this trivial con-
nection, thus extending the method of [Crane et al. 2010] to our
primal setup. As we will demonstrate in Sec. 8, our optimization
of the discrete connection improves the accuracy of all further nu-
merical evaluations. More importantly, we can now formulate in
closed-form pointwise or locally integrated derivatives and their
L2 norms as explained next.

6. CONNECTION-BASED OPERATORS

Equipped with a discrete simplicial connection ρ (Sec. 4.2) and an
interpolation basis function Ψi per vertex vi (Sec. 4.3), we now
derive an exact expression for any first-order differential operator
or energy of a vertex-based vector field.

6.1 Discrete covariant derivative

We start by computing the gradient of our non-linear basis function
Ψi. Dropping the basis (et, e

⊥
t ) for clarity, the covariant derivative

(a) coarse bunny mesh (b) vector field

(c) associated direction field (d) associated cross field

Fig. 5: From vector field to n-vector fields. A discrete vector field, even
on a coarse mesh, can be directly converted into an n-vector or n-direction
field by scaling the connection angles. Here, a bunny mesh (a) and a vector
field with a source and a saddle on one side (b) is converted into a 2-RoSy
(direction) field (c) and a 4-RoSy (cross) field (d).

of our basis functions within triangle tijk is formally derived via:

∇Ψi = ∇(ϕiΦi) = Φi ⊗ dϕi + ϕi∇Φi

= Φi ⊗ dϕi + JΨi ⊗ (ωt − τij,kdϕj − τik,jdϕk)

= Φi ⊗ dϕi + JΨi⊗
(ωt + τij,k(ϕjk − ϕij) + τik,j(ϕki − ϕjk))

= Φi ⊗ dϕi −KijkJΨi ⊗ ϕjk.

6.2 Discrete energies

The discretization of the smoothness energies ED , EA, and EH
introduced in Sec. 2.4 requires the pairing of our basis functions
Ψ and their gradients ∇Ψ. This leads to a mass matrix M and a
stiffness matrix K with entries of the form:

Mij =

∫
T

Ψi ·Ψj , Kij =

∫
T
∇Ψi :∇Ψj .

Note that, while the basis functions Ψi depend on the choice of
vertex-to-triangle transition rotations ρv→t, one can algebraically
show that the integrant in Mij (resp., Kij) does not depend on
vertex-to-triangle transition rotations; e.g.:

Ψi(p) ·Ψj(p) = ϕi(p)ϕj(p) exp[J(Kijkϕk(p) + ρij)].

Consequently, our discrete energies reduce to expressions similiar
to the result of [Knöppel et al. 2013], except that we use an opti-
mized connection ρ instead of the vertex-to-vertex coefficients de-
rived from the geodesic polar map (Sec. 5.1). The rotations ρv→t
are, however, crucial for the evaluation of pointwise or integrated
first-order derivatives, as we discuss next.
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6.3 Discrete first-order derivatives

To derive the integrals of first-order operators per triangle tijk, it
is convenient to choose a barycentric-coordinate parametrization
(x(p), y(p))=(ϕj(p), ϕk(p)) in tijk, for which the metric is

g =

(
eij · eij eij · eik
eij · eik eik · eik

)
.

The components of ∇Ψi can now be evaluated given any constant
frame field (e1, e2) within the triangle. For instance, if one picks
e1 = 1

g11

∂
∂x
, one gets inside triangle tijk:

∇e1Ψi = Φidϕi(e1)−KijkϕiJΦi(ϕjdϕk − ϕkdϕj)(e1)

=
1

g11

(
dx(

∂

∂x
)−KijkxJ(−yd(x+ y))(

∂

∂x
)

)
Φi

=
1

g11
(I +KijkxyJ)Φi.

The four operators involved in Eq. (4) are then assembled via

div Ψi = e1 · ∇e1Ψi + e2 · ∇e2Ψi,

curl Ψi = e1 · ∇e2Ψi − e2 · ∇e1Ψi,

div Ψi = e1 · ∇e1Ψi − e2 · ∇e2Ψi,

curl Ψi = e1 · ∇e2Ψi + e2 · ∇e1Ψi.

Note that, as expected, a rotation by θ in the triangle’s local frame
produces no change in div or curl , but it results in a rotation
exp(J2θ) of the Cauchy-Riemann operator ∂̄=1/2(div,curl). If
on the other hand, the connection from a vertex v to an incident
triangle t is changed by an angle θ, it results in a redistribution
of the four terms (div new, curl new)T = exp(Jθ)(div , curl)T and
∂̄new = exp(Jθ)∂̄, but their combined L2-norms (EA and EH ) re-
main unchanged.
Triangle-based Integrals. The discrete versions of these oper-
ators are defined as their continuous integrals over triangles as it
provides numerically robust local averages:

divt Ψi=

∫
t

divΨi, curlt Ψi=

∫
t

curlΨi, ∂̄tΨi=

∫
t

∂̄Ψi.

The integration can be done in closed form since it essentially in-
volves terms such as x exp(Jx). For numerical evaluation, Cheby-
shev expansion is recommended [Knöppel et al. 2013] to handle
the expressions when the connection curvature is either small or
large. However, with our optimized connection, it is safe to assume
that the curvature is small enough to use a simpler Taylor expan-
sion, with essentially the same accuracy. While the integral of our
discrete connections on local half-edge cycles (Fig. 3) is zero by
design, the total integral of the discrete operators we just formed
does not necessarily vanish as it should: the triangle integral of di-
vergence reduces to the boundary integral formed by half-edges
considered as part of the triangle, which therefore do not account
for the edge integrals. Thus, Stokes’ theorem for divergence and
curl will not hold when we sum triangle integrals. In fact, this dis-
crepancy between integral along the boundary of triangles vs edges
is only one of the two sources of inaccuracy: the other source is
the deviation of the connection 1-form ω from the (trivial) Levi-
Civita connection within each triangle. It bears noticing that our
optimization target function in Sec. 5.3 is precisely a measure of
these two discrepancies. Thus, our optimized discrete connections

(a) vector field with saddle (b) direction field from (a)

(c) π4 -rotation of saddle in (a) (d) direction field from (c)

Fig. 6: Orientation control for negative index singularities. From a vec-
tor field (a) on a sphere with a saddle point with index −1 (resp., its corre-
sponding 2-RoSy field (b) forming a trisector of index −1/2), the user can
directly control the orientation (c) of the saddle (resp., the orientation of the
trisector (d)) without affecting its position on the surface.

lead to higher quality first-order derivative operators than those in-
duced by the geodesic polar map. The final expressions of our dis-
crete operators are analytically found through symbolic integration,
see App. A.3.

Edge-based Integrals. If a precise enforcement of Stokes’ the-
orem is required, the per-triangle integral evaluation of first-order
derivatives can be defined via boundary integrals instead: using our
edge-based connection ωe, we can define another set of discrete
operators, defined on each triangle as

divt Ψi=

∫
∂t

Ψi × dl, curlt Ψi=

∫
∂t

Ψi · dl,

where the basis function Ψ is expressed along the edge as:

Ψi|eij (p) = ϕi(p) exp[−J(εijϕj(p) + ρvi→e)].

The Cauchy-Riemann operator is defined in a similar fashion via:

∂̄tΨi=
1

2

∫
∂t

((FΨi)× dl, (FΨi) · dl)T ,

where the reflection F is done w.r.t. the frame et in triangle t. The
closed-form expressions of these discrete operators are given in
App. A.2. Both triangle-based and edge-based discrete approaches
to evaluating local integrals of first-order derivatives exhibit similar
numerical accuracy, as we will discuss in Sec. 8.

7. VECTOR AND N -DIRECTION FIELD DESIGN

The operators and energies we have defined based on our discrete
connection are well suited to the design of visually-smooth vector
fields on triangle meshes through basic linear algebra, as one has
control over the behavior of their singularities (both position and
orientation) as well as their alignment. In this section, we present
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two different approaches to vector field design that build upon and
extend previous work through the use of our discrete connections
and covariant derivatives. Note that creating a smooth n-vector or
n-direction field is also a trivial matter: the exact same vector field
design procedure can be used first in a connection where all angles
have been multiplied by n, and the resulting vector field is con-
verted to an n-vector field by dividing the angle the vector field
makes with each vertex reference direction evi by n (see Fig. 5).
We can then normalize the resulting n-vector field to make it an
n-direction field as proposed in [Knöppel et al. 2013].

It should be noted here, as it will become important in the course
of this section, that for an n-vector field u with n≥ 2, the notions
of divergence and curl become dependent on the choice of frame:
they now represent the components of an (n−1)-vector field ∂u
as we demonstrate in App. A. Conversely, the reflected divergence
and reflected curl represent an (n+1)-vector field ∂̄u.

7.1 Variational approach

The overall procedure of our first approach to design a vector field
is based on a quadratic minimization driven by user-specified con-
straints, extending the approach of [Fisher et al. 2007]. From a
globally-optimized discrete connection, we define a penalty energy
P for a vector field u as:

P (u) = 1
2

∫
T

(divu−d)2+(curlu−c)2+(∂̄u−s)2+w(u−u0)2,

where d prescribes sources/sinks, c controls vortices, s controls the
antiholomorphic derivative of the field (and thus, the desired saddle
points), u0 is a guidance vector field, and w is a weight used for lo-
cal or global alignment constraints. The integration of this quadratic
energy can be done on a per-triangle basis, which reduces to a
Poisson-like linear systemAU = b for a matrixA = −2∆ω+wI,
where ∆ω can be seen as the discrete version of the connection
Laplacian (which handles boundary conditions naturally, unlike the
deRham Laplacian used in [Fisher et al. 2007]). This matrix A has
the exact same structure as the one in [Knöppel et al. 2013], ex-
cept that we use our optimized ρij instead of vertex-to-vertex rota-
tions induced by the geodesic polar map. The right hand side term
b relies on the discrete divergence, curl and Cauchy-Riemann op-
erators, which use our optimized vertex-to-triangles coefficients as
well—this term is an extension of the work of [Liu et al. 2013] for
non-flat domains. While we will not explore this possibility here,
note that the user can also start from a chosen trivial connection (see
Sec. 5.3) instead of the Levi-Civita connection for an even greater
flexibility in editing.

Controlling singularity orientation. Using our penalty energy
P , we can control the orientation of positive index singularities,
including vortices, sources/sinks, and combinations thereof. This
was already possible in the divergence- and curl-based approach
of [Fisher et al. 2007]. With our Cauchy-Riemann operator, we
can also control negative index singularities (i.e., saddle points, see
Fig. 6) and their direction, which was impossible in previous work.

Positively indexed singularities can be constructed by assigning
pairs of non-zero values (dijk, cijk) on selected triangles (and zero
for all others) representing the local divergence and curl that the
user desires. Note that the ratio c/d controls the direction of sin-
gularities for n-vector fields: while the shape of an index-1 singu-
larity in a vector field is invariant under rotation, changing a pair
(dijk, cijk) to exp(Jθ)(dijk, cijk) when editing an index-1/n sin-
gularity in an n-vector field results in a rotation of θ/(n−1) of the
singularity (see Fig. 7).

(a) Vector field with a source... (b) ... forms a “wedge” 2-RoSy

(c) Adding a vortex to (a)... (d) ... rotates the wedge by π
3

Fig. 7: Orientation control of positive index singularities. By setting a
divergence/curl pair (1, 0) on a triangle, a source (singularity of index 1)
is formed in the vector field (resp., a wedge singularity of index 1/2 on
the associated 2-RoSy field). Changing this pair to (cos(π3 ), sin(

π
3 )), a

vortex (c) is added to the source (creating log-spiraling streamlines) while
the corresponding orientation field (d) has its wedge rotated by π/3.

(a) Original vector field (b) With a user-specified stroke

Fig. 8: Design by stroke. (a) From an n-vector or n-direction field with
arbitrary singularities, (b) the user can draw a stroke (blue) in order to easily
influence the direction of the field. The result is updated interactively by
solving the linear system resulting from the variational approach of Sec. 7.1.

In order to control saddle points, one can assign prescribed val-
ues sijk of the antiholomorphic derivative of the vector field at
selected triangles. The ratio between the two components of sijk
in a triangle then indicates the angle that the symmetry axis of the
saddle point makes with the simplicial frame field etijk . In this
case, ∂̄u is, itself, a 2-vector field, so rotating the saddle point by
θ/2 amounts to using exp(Jθ)sijk. For −1/n-singularities in n-
direction fields, we will get θ/(n+1) rotations instead. Fig. 6 shows
an example where a saddle point is rotated by π/3 by changing the
components of sijk on the triangle tijk containing the saddle.
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Constraining alignment. Vector or n-direction fields can also
be modified via alignment constraints, either via an input direction
field or via user-drawn strokes. If we are given a target n-vector
or n-direction field represented by u0, we balance the smoothness
(and singularity control if needed) and the alignment term via a
user-specified weight w as indicated in the last term of energy P .
For more local editing, the user can draw strokes on the mesh as
an intuitive way to provide control over the design. We can essen-
tially follow the approach of [Fisher et al. 2007] to create a locally
supported vector field u0, and enforce it via the same penalty term
used above; see an example in Fig. 8.

7.2 Eigen design

While our variational approach to editing is fast and simple, it suf-
fers from two shortcomings: first, one needs to start from an exist-
ing vector field to begin the editing process; second, spurious sin-
gularities can appear as more constraints are input by the user. Both
these issues can be addressed using a different approach to vector
field editing, where a vector field is provided such that it is the
“smoothest” field satisfying the constraints prescribed by the user.
Indeed, the authors of [Knöppel et al. 2013] noticed that the vector
field with the lowest Dirichlet energy for a fixed L2 norm can be
found through a generalized eigenvalue problem (i.e., a Helmholtz
equation) Au = λBu, which makes use of both the connection
Laplacian matrix A (computing the Dirichlet energy ED) and the
mass matrix B (computing the L2 norm, see Sec. 6.2). We can
adopt this idea, but now using our discrete optimized connection—
resulting in improved eigen vector fields with singularities appear-
ing at more salient locations (see Fig. 9).

However, our discrete operators for first-order derivatives offer a
much more general extension of this design approach. Indeed, we
can now modify the connection Laplacian matrix to add a quadratic
penalty on the vector field components along user-specified strokes
directly in the eigenvalue problem. This approach can be vastly
preferable to the alignment constraint of [Fisher et al. 2007], es-
pecially near singularities where forcing the magnitude of vectors
may lead to artifacts. We propose to alter the generalized eigenvalue
problem by changing A to represent the quadratic form for∫

M

|∇u|2dA+ w

∫
c

|∇ċ(u− (u · ċ)ċ)|2ds,

where c(.) is the user stroke with arclength parameterization s, and
changing B to represent∫

M

|u|2dA+ w

∫
c

|u · ċ|2ds.

With these modified matrices, we force the alignment to the stroke
without restricting the magnitude (through the additional second
term in A), and avoid the magnitude of the vectors along the stroke
to be penalized (through the additional term in B)—see Fig. 10.
The user can then adjust the weight w to choose how closely the
resulting vector field should follow the stroke.

Similarly, the mass matrix can be modified to control both singu-
larity placement and orientation using the terms we presented in
Sec. 7.1. Solving the resulting generalized eigenvalue problem pro-
vides the “smoothest” vector field that satisfies user constraints,
where smoothest is defined with respect to the notion of connec-
tion used to derive the covariant derivative. If the user also changes
the discrete connection to be trivial with prescribed singularities
as described in Sec. 5.3, the vector field will be smoothest for this

connection as demonstrated in Fig. 11. From this eigen design, vari-
ational editing (Sec. 7.1) can be performed if the user wishes to
further edit the vector field. The added flexibility that the assign-
ment of strokes and singularities offers significantly increases the
applicability of this eigen approach to the design of direction fields.

8. RESULTS

We present numerical tests of the accuracy of our operators derived
from our discrete connection as well as a few vector field design
results using our two approaches.

8.1 Accuracy of discrete operators

We evaluate the accuracy of the discrete approximations of div,
curl , and ∂̄ per triangle. To allow for proper error evaluation, we
use a set of triangle meshes interpolating a sphere at various levels
of discretization, and use a smooth vector field (namely, a low-order
vector spherical harmonic) with a known expression so that we can
evaluate its exact divergence and curl everywhere. We then com-
pute the L2 and L∞ errors between our discrete divergence (resp.,
curl) evaluation and the real integral value per triangle. The results
shown in Table I demonstrate that our optimization of the connec-
tion impacts the accuracy of first-order operators quite significantly
compared to a geodesic polar map based connection. The area-

(a) [Knöppel et al. 2013]’s... (b) ... vs. our result

(c) [Knöppel et al. 2013]’s... (d) ... vs. our result

(e) [Knöppel et al. 2013]’s... (f) ... vs. our result

Fig. 9: Comparisons. While the method of [Knöppel et al. 2013] finds sim-
ilar singularities, our approach leads to “straighter” vector fields (see neck
of bunny (a) & (b); nose of lion (e) & (f)), and the positions of our singu-
larities are found closer to corners (see insets of fandisk, (c) & (d)). Yellow
and blue markers indicate the presence of singularities in the vector fields.
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(a) Smoothest vector field for
the Levi-Civita connection, no
constraints added.

(b) Smoothest vector field for
the Levi-Civita connection that
matches a user-specified stroke.

(c) Smoothest vector field for
the Levi-Civita connection, no
constraints added.

(d) Smoothest vector field for
the Levi-Civita connection that
matches a user-specified stroke.

Fig. 10: Eigen design. While an unconstrained generalized eigenvalue
problem (a & c) will result in the smoothest vector field (i.e., with the low-
est Dirichlet energy for a fixed L2 norm) for the as-Levi-Civita-as-possible
connection, we can also find the smoothest vector field that matches user-
specified strokes (b & d), offering a very intuitive design tool.

based vs. edge-based evaluations of the local first-order derivatives
presented in Sec. 6.3 are, however, minimally different. We found
that the Stokes approach (based on ωe) often leads to a better ac-
curacy especially on fine meshes; yet, the area-based operators are
slightly more robust to noise as they rely on area vs. edge inte-
grals. We used the same setup to evaluate the accuracy of our vec-
tor field energies based on our triangle-based first-order derivatives,
and once again the optimized connection shows superior numerical
accuracy—except on very coarse meshes.

Our Dirichlet energy results are also systematically better than the
L2 evaluation provided by [Knöppel et al. 2013], even when our
optimal vertex-to-vertex connection angles ρij are used to improve
their results. The difference of the antiholomorphic and holomor-
phic energies for direction fields is also a good measure of accuracy,
as we know that it should evaluate to the Euler characteristic of the
mesh times 2π, and the edge-based evaluations using our optimized
connections exhibit, once again, significantly improved accuracy as
shown in Table II. Our operators are thus well suited to vector field
analysis on manifold simplicial complexes.

8.2 Vector and n-direction field on meshes

We experimented with our variational-based editing approach
based on the quadratic energy P . As expected, this simple numer-
ical method (requiring only a linear solve for each new constraint

(a) Smoothest vector field for
the Levi-Civita connection,
with no constraints added

(b) Smoothest vector field (for
the Levi-Civita connection) that
matches a user-specified stroke

(c) Smoothest vector field for
a trivial connection (with pre-
scribed singularities) with no
added constraints

(d) Smoothest vector field (for
the same trivial connection
of (c)) that matches a user-
specified stroke

Fig. 11: Eigen design with trivial connections. While unconstrained gen-
eralized eigenvalue problems can be used to find the smoothest vector fields
for the as-Levi-Civita-as-possible connection with or without stroke con-
straints (a & b), the user can also prescribe a trivial connection (c) with
given singularities (both positive and negative, placed on the singularities
of (a) here); stroke constraints can also be added (d).

added by the user) offers control not only over positive singulari-
ties, but also over saddle points in the vector field and their principal
axes. For instance, a saddle point happening on the side of a mesh
(see Fig. 6) can be rotated by any angle without changing its po-
sition. The same control applies to n-direction fields without any
code modification (see Fig. 5).

Finally, we tried our eigen approach to vector field design. First, we
found that our notion of smoothest vector field for the Levi-Civita
connection is quite close to the results of [Knöppel et al. 2013],
although visual comparisons show from marginal to moderate im-
provements depending on the complexity of the model (see Fig. 9).
Where our method really differs is in our ability to handle user con-
straints in the exact same framework as demonstrated in Fig. 10, as
well as arbitrary connections as shown in Fig. 11.

8.3 Timings

Our vector field design shares the exact same timings as the works
it extends [Fisher et al. 2007; Knöppel et al. 2013]. For instance, a
typical mesh of 50K triangles requires around 5s for matrix fac-
torization, around 0.5s when the variational approach of Sec. 7.1
is used (incremental updates of the design takes considerably less),
and around 1s when eigen design of Sec. 7.2 is used instead. How-
ever, our approach requires the computation of the as-Levi-Civita-
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L2 error for div polar map local optimal global optimal
sphere 0.2447 0.2239 0.1809
sphere Loop 1 0.1586 0.1054 0.0361
sphere Loop 2 0.2742 0.1297 0.0084
sphere Loop 3 0.7746 0.2749 0.0020

L2 error for curl polar map local optimal global optimal
sphere 0.2453 0.2251 0.1823
sphere Loop 1 0.1563 0.1039 0.0361
sphere Loop 2 0.2760 0.1300 0.0083
sphere Loop 3 0.7765 0.2752 0.0020

L∞ error for div polar map local optimal global optimal
sphere 0.5752 0.3690 0.2978
sphere Loop 1 1.0984 0.5613 0.1280
sphere Loop 2 1.6928 0.9602 0.0602
sphere Loop 3 3.6589 3.2195 0.0240

L∞ error for curl polar map local optimal global optimal
sphere 0.4898 0.5130 0.3294
sphere Loop 1 0.8183 0.5225 0.1321
sphere Loop 2 2.0324 1.0027 0.0604
sphere Loop 3 3.9119 2.0779 0.0240

L2 error for ED polar map local optimal global optimal
sphere 2.1906 2.2470 2.4016
sphere Loop 1 0.2306 0.3613 0.6258
sphere Loop 2 0.8679 0.3259 0.1581
sphere Loop 3 3.0080 1.0464 0.0396

[Knöppel et al. 2013] [Knöppel et al. 2013] w/ optimal ρij
2.4161 2.4153
0.6300 0.6298
0.1592 0.1591
0.0399 0.0398

Table I. : Approximation errors. Using meshes of increasing resolutions that all interpolate a sphere, we evaluate the L2 and L∞ errors for
the divergence (top and middle left) and curl (top and middle right), and Dirichlet energy operators (bottom) evaluated per triangle using our
edge-based approach (via Stokes). The sphere mesh has only 162 vertices, and we refine its connectivity via Loop subdivisions, leading to
meshes of 642, 2562, and 10242 vertices. We averaged the errors incurred for 100 random vector fields that are linear combinations of the
first 40 vector spherical harmonics, normalized to have unit L2 norm. The optimal (as-Levi-Civita-as-possible) connection systematically
produces the smallest error except for extremely coarse resolutions. We also improve on the L2 norm produced by [Knöppel et al. 2013],
even when our (locally optimal) vertex-to-vertex angles ρij are used in their formulae.

as-possible connection as a processing step, adding 1.5s to solve
the linear system described in Sec. 5.3.

9. CONCLUSION

We have proposed the construction of a discrete notion of connec-
tion and its covariant derivative by exploiting the simplicial nature
of triangulated 2-manifolds and picking the lowest-order finite el-
ement basis functions we could (to simplify the resulting expres-
sions and make vector field design as efficient as possible) such
that derivatives and their L2 norms are well defined and finite. The
resulting discrete covariant derivative is linear and metric preserv-
ing by definition, although it fails to exactly satisfy Leibniz’s rule
as most Whitney-based discrete operators. Our notion of discrete
connection was shown to be numerical superior to previous ap-
proaches, and applications to vector and direction field design were
demonstrated.

In the future, we believe that various applications in geometry pro-
cessing (such as integral lines) and even simulation would benefit
from a smoother approximation. Higher-order connections that still
fit our framework could be derived from subdivision-based Whit-
ney forms defined in [Wang et al. 2006] or from other higher-order
Whitney forms—as long as their integrals can be either evaluated
in closed form or through quadrature.
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APPENDIX

A. EXPLICIT EVALUATION OF OPERATORS

In this appendix, we describe how one encodes our discrete opera-
tors for a vector field u as matrices acting on the vector components
(u1
i , u

2
i ) at each vertex vi. We adopt the following shorthand nota-

tion for clarity: ρ≡ρvi→eij , ε≡εij , and θ≡∠(eeij , etijk ).

A.1 Divergence/curl for n-vector fields

When all the local frames in the neighborhood rotate by −α, the
representative vector field v of an n-vector field can be expressed
in the new frame as v′ = exp(Jnα)v. The covariant derivative
with respect to an arbitrary vector field w ∇wv = (∇v)w also
changes expression as an n-vector field, yielding:

exp(Jnα)(∇v)w = (∇v′)w′ = (∇v′) exp(Jα)w.

Applying Eq. (4) and noting that F exp(Jα) = exp(−Jα)F,

∇v′ = exp(Jnα)(∇v) exp(−Jα)

=
1

2
exp(Jnα)(∂v + F ∂̄v) exp(−Jα)

=
1

2
exp(J(n− 1)α)∂v +

1

2
exp(J(n+ 1)α)F ∂̄v.

Thus ∂v transforms as an (n−1)-vector field, while ∂̄v transforms
as an (n+1)-vector field.

A.2 Edge-based operators

Our discrete operators are each represented as a |F |×2|V | matrix,
assembled based on the contribution of the vector components at
each vertex vi to the integral value of the operator on each adjacent
triangle tijk. Through integration by parts, we find∫

eij

Ψidl = |eij |
∫ 1

0

(1− x) exp(−J(εx+ ρ))dx

=
|eij |
ε2

exp(−Jρ)[I − Jε− exp(−Jε)].

We can now evaluate the four discrete operators through the fol-
lowing function:

I(ρ, ε) =
|eij |
ε2|tijk|

[cos(ρ)− cos(ρ+ ε)− sin(ρ)ε].

If we denote by op
um
i
tijk

the contribution of the m-th component of
ui to the integral of operator op in tijk, we have (recall that for
an n-vector field, divergence and curl operators produce an (n−1)-
vector field, while the reflected ones produce an (n+1)-vector field,
see App. A):

curl
u1
i
tijk

= I(nρ+ (n− 1)θ, nε),

curl
u2
i
tijk

= I(nρ+ (n− 1)θ|+ π/2, nε),

div
u1
i
tijk

= I(nρ+ π/2 + (n− 1)θ, nε),

div
u2
i
tijk

= I(nρ+ π/2 + (n− 1)θ, nε),

curl
u1
i
tijk

= I(nρ+ (n+ 1)θ, nε),

curl
u2
i
tijk

= I(nρ+ (n+ 1)θ + π/2, nε),

div
u1
i
tijk

= I(nρ+ (n+ 1)θ + π/2, nε),

div
u2
i
tijk

= I(nρ+ (n+ 1)θ + π, nε).
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∫
T K (mean/std) polar map local optimal global optimal [Knöppel et al. 2013]

sphere 3.9730/0.923e−3 3.9756/0.623e−3 3.9756/0.619e−3 3.9756/0.620e−3

sphere Loop 1 3.9878/0.341e−3 3.9897/0.102e−3 3.9898/0.103e−3 3.9898/0.103e−3

sphere Loop 2 3.9948/0.455e−3 3.9970/0.057e−3 3.9970/0.057e−3 3.9970/0.057e−3

bunny 3.8857/0.850e−2 3.9082/0.706e−2 3.9192/0.741e−2 3.9193/0.742e−2

bunny Loop 3.9610/1.199e−2 3.9860/0.696e−2 3.9880/0.725e−2 3.9875/0.725e−2

torus 0.0234/0.913e−2 0.0216 /0.371e−2 0.0207/0.381e−2 0.0207/0.381e−2

torus Loop -0.0025/0.328e−2 -0.0022/0.059e−2 -0.0013/0.065e−2 -0.0016/0.065e−2

global optimal w/ Stokes
4.0000/0.000e−3

4.0000/0.000e−3

4.0000/0.000e−3

3.9995/0.000e−3

4.0003/0.000e−3

-0.0003/0.000e−3

0.0000/0.000e−3

Table II. : Approximations of Euler characteristic. For a pointwise unit vector field u, the difference of antiholomorphic and holomorphic
energies isEA(u)−EH(u) =

∫
T K (Eq. (5)). Using random linear combinations of the 30 lowest vector spherical harmonics, we evaluate the

difference of our discrete energies EA and EH for 100 vector fields (with unit norm at each vertex), divided by π; we indicate both the mean
and the standard deviation of these 100 integrations. On various meshes (of genus 0 and 2), our edge-based evaluations exhibit significantly
lower errors than all other area-based estimations, including results from [Knöppel et al. 2013].

A.3 Triangle-based operators

We evaluated the per-triangle integral expressions of our operators
through symbolic integration. Note that it leads to expressions with
τij,k, τjk,i, and τki,j appearing in the denominator. As these values
can be close to zero, Chebyshev [Knöppel et al. 2013] or Taylor ex-
pansion is typically necessary to provide robustness in evaluation.
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