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Fig. 1. Glugging with Rayleigh–Taylor instability: Our multiphase solver produces guggling for two colored immiscible fluids in the transparent upper
container and air in the bottom one (water:oil:air with density ratios 800 :400 :1), with a square conduit in between. The two fluids are initially arranged with
the heavier fluid (blue) on top of the lighter fluid (cyan), thus forming Rayleigh–Taylor instabilities early on, before flowing down and exhibiting splashes,
bubbles and wetting, and ending up in stable layers based on their densities.

Despite its visual appeal, the simulation of separated multiphase flows (i.e.,
streams of fluids separated by interfaces) faces numerous challenges in
accurately reproducing complex behaviors such as guggling, wetting, or
bubbling. These difficulties are especially pronounced for high Reynolds
numbers and large density variations between fluids, most likely explaining
why they have received comparatively little attention in Computer Graphics
compared to single- or two-phase flows. In this paper, we present a full
LBM solver for multifluid simulation. We derive a conservative phase field
model with which the spatial presence of each fluid or phase is encoded to
allow for the simulation of miscible, immiscible and even partially-miscible
fluids, while the temporal evolution of the phases is performed using a
D3Q7 lattice-Boltzmann discretization. The velocity field, handled through
the recent high-order moment-encoded LBM (HOME-LBM) framework to
minimize its memory footprint, is simulated via a velocity-based distribution
stored on a D3Q27 or D3Q19 discretization to offer accuracy and stability
to large density ratios even in turbulent scenarios, while coupling with
the phases through pressure, viscosity, and interfacial forces is achieved by
leveraging the diffuse encoding of interfaces. The resulting solver addresses
a number of limitations of kinetic methods in both computational fluid
dynamics and computer graphics: it offers a fast, accurate, and low-memory
fluid solver enabling efficient turbulent multiphase simulations free of the
typical oscillatory pressure behavior near boundaries. We present several
numerical benchmarks, examples and comparisons of multiphase flows to
demonstrate our solver’s visual complexity, accuracy, and realism.
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1 INTRODUCTION
Fluid simulation in graphics has been studied for decades now, as
the visual intricacy of fluid motions remains highly sought after.
While airflow simulation has reached an impressive level of realism,
real-world flows often involve multiple fluids (of various densities,
viscosities, etc.) and air. This type of “multiphase flows” presents
challenges for both Computational Fluid Dynamics (CFD) and Com-
puter Graphics (CG), since modeling the equations of motion for
mixtures of oil, gas, and water in engineering or realistically sim-
ulating bubbling and splashing for multiple fluids in visual effects
remains difficult. In particular, the rare works dedicated to mul-
tiphase flow simulation in CG all come with strong limitations:
current solvers often cannot efficiently handle fluids with large
density ratios [Losasso et al. 2006; Mihalef et al. 2007; Kim 2010;
Premžoe et al. 2003; Müller et al. 2005; Ren et al. 2014], introduce too
much numerical dissipation to handle turbulence at high Reynolds
numbers [Yan et al. 2018; Yan and Ren 2023], or only apply to two-
phase flows [Hong and Kim 2005; Ando et al. 2015; Li et al. 2021,
2022; Li and Desbrun 2023].

In this work, we introduce a multifluid flow simulation approach
offering a unified𝑛-phase treatment of a large variety of (im)miscible
multiphase fluid phenomena, i.e., bubbling, wetting, splashing, glug-
ging, and mixing. Our approach borrows from recent advances in
both phase and velocity motions in CFD and CG. In particular, we
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Fig. 2. Dam breaking over thin shell. A heavier blue liquid hits a thin obstacle first and forms an obvious crown splash, then rushes into the lighter gray
liquids, forming a large amount of turbulence and bubbles. The two fluids end up separated at the end.

offer a low-memory footprint for both the 𝑛 phases (through a sim-
ple D3Q7 LBM discretization) and the velocity field (using D3Q27
HOME-LBM, which stores only the first three velocity moments
instead of the associated 27 distribution values for each grid node
of the simulation grid). We also extend recent two-fluid solvers so
that 𝑛 fluids, encoded by 𝑛 constrained (im)miscible phases, can be
easily simulated based on their respective density and viscosity. The
resulting solver is compared to previous works and evaluated across
various scenarios in order to highlight its efficiency, its memory
consumption, as well as its realism.

2 RELATED WORK
Before delving into our contributions, we provide some context by
briefly reviewing related work on multiphase fluid simulation from
computer graphics (CG) and computational fluid dynamics (CFD).

2.1 N-phase fluid solvers in CG
CG approaches for the simulation of multiple phases (or multiple
fluids) fall roughly into three categories: grid-based, particle-based,
or hybrid methods, based on the discretization of the fluids.

Grid-based methods. Building upon Stable Fluids [Stam 1999],
Hong and Kim [2005] added jump conditions in the pressure field
around the free surface, while Nielsen andØsterby [2013] used a two-
continua Poisson equation to induce spray, marking the beginning
of Eulerian multiphase simulation in CG. The addition of volume-
of-fluid (VOF) or level-set interface discretization allowed for sharp
or smooth transitions between fluids [Bao et al. 2010; Kang et al.
2010]. Leveraging lattice Boltzmann methods (LBM) to simulate two
miscible fluids was first proposed in [Zhu et al. 2006, 2007]. Recent
two-phase kinetic solvers have dramatically improved efficiency,
stability to high Reynolds numbers, and versatility as they support
bubbling, glugging, wetting, splashing, two-way fluid-solid coupling,
and high-density ratios [Li et al. 2021, 2022; Li and Desbrun 2023].

Particle-based methods. Particle-based methods are Lagrangian by
nature, making particle/solid interaction far simpler than Eulerian
methods. In this category, Premžoe et al. [2003] first proposed the
Moving Particle Semi-implicit (MPS) method to simulate immisci-
ble flows, as it is easy to track the motion of individual particles
with its own intrinsic properties (density, viscosity, etc). Soon after,
Müller et al. [2005] contributed a Smoothed Particle Hydrodynam-
ics (SPH) method based on [Desbrun and Gascuel 1996] to handle
interactions between different fluids, including both immiscible
and miscible liquids. SPH-based multiphase solvers were further

extended to handle chemical reactions [Ren et al. 2014], partial dis-
solution [Yang et al. 2015], solid-liquid coupling [Yan et al. 2016;
Yang et al. 2017], porous materials handling [Yang et al. 2017], in-
compressibility [Ren et al. 2021; Jiang et al. 2020], and high relative
phase motions [Jiang and Lan 2021]. Most recently, Yan and Ren
[2023] proposed the use of peridynamic mixture-model theory to
handle high-density ratios between fluids, rivaling in that aspect
with LBM-based two-fluid solvers — but no turbulence or bubbles
were generated as Lagrangian approaches are typically adding large
numerical dissipation or dispersion.

Hybrid methods. Many authors proposed to combine the benefits
of particle-based and grid-based methods, offering hybrid meth-
ods such as MultiFLIP [Boyd and Bridson 2012], Material Point
Method (MPM) [Yan et al. 2018; Gao et al. 2018a,b], and the level set
method with particles/markers [Losasso et al. 2006; Mihalef et al.
2007; Kim 2010] — but often at higher computational costs. A recent
survey [Ren et al. 2018] further details this class of approaches.

2.2 N-phase fluid solvers in CFD
In CFD, the study of incompressible multiphase flows has given
rise to several prominent numerical methodologies to deal with
fluid interfaces, including the volume of fluid method [Elliott and
Luckhaus 1991], the level set method (LSM) [Osher and Sethian
1988; Sussman et al. 1994], the front tracking method [Tryggvason
et al. 2001], and the phase field method (PFM) [Anderson et al. 1998;
Ding et al. 2007]. Phase-field methods have attracted increasing
interest in recent years due to various issues with the other ap-
proaches (e.g., loss of volume for LSM, interface reconstruction for
VOF, and topology changes for front-tracking, to name a few [Wang
et al. 2019]). In particular, researchers have proposed different gov-
erning equations, such as the fourth-order Cahn–Hilliard equation
(CH) [Cahn and Hilliard 1958], the second-order Allen–Cahn equa-
tion (AC) [Allen and Cahn 1976] and the second-order conservative
phase field equation (CPF) [Chiu and Lin 2011; Fakhari et al. 2017b].
Both CH and AC rely on a 𝐻 -1- and 𝐿2-gradient flow of a func-
tional [Bao and Du 2011]. But just like the level set method, CH
and AC do not inherently conserve the total mass of the fluid(s) un-
less significant computational efforts are employed [Rubinstein and
Sternberg 1992; Brassel and Bretin 2011]. In contrast, CPF derives
its mass-conservative property for each phase through an interface
advection equation in divergence form [Chiu and Lin 2011; Sun and
Beckermann 2007].
However, phase field methods also face numerical issues in the

evolution of the interface to accurately account for the effects of
surface tension. Existing approaches include non-monolithic [Lee
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Fig. 3. Mixture unmixing. Initializing a three-phase mixture (two liquids, plus air; density ratios: 800 :80 :1) with equal volume, the homogeneous mixture
gets separated due to gravity. Small droplets are visible on the top wall of the container.

and Kim 2012; Kim and Lee 2017] vs. monolithic models [Wu and
Xu 2017; Zheng and Zheng 2019], both built upon the CH equation
for solving multiphase flows — the key distinction being whether
the phase field equations and surface tension forces are addressed
separately or not. Yet, the lack of mass preservation of CH systemat-
ically leads to numerical issues [Yue et al. 2007], and incorporating
phase field evolution with a LBM fluid solver usually adds further
stability issues [Abadi et al. 2018; Fakhari et al. 2017a].

More recently, Hu et al. [2020] proposed a generalized conserva-
tive phase field model within the LBM framework, which reformu-
lates CPF via the gradient flow of a functional to account for surface
tension for 𝑛-fluid simulation. Despite all these advancements, state-
of-the-art methods still face challenges in handling turbulence and
intricate boundary scenarios; in particular, the low accuracy of the
Boltzmann collision operator on which they rely does not lead to sta-
ble multiphase simulations for moderate to high Reynolds numbers,
and their excessive memory usage prevents large 3D simulations.

2.3 Discussion
Based on this overview of previous works, it seems clear that parti-
cles, and to a lesser extent, hybrid methods, still have a number of
challenges for multiphase fluid simulation: the lack of precise han-
dling of pressure conditions between air and the other phases/fluids
seems to prevent a unified treatment of bubble dynamics, splashing,
glugging, and wetting. On the other hand, the recent success of
Lattice Boltzmann Method (LBM) approaches in graphics, which
demonstrated notable gains in both efficiency and accuracy, have
managed to capture these types of complex behavior for single- and
two-phase flows. Moreover, the phase field method uses a diffuse
interface to integrate interfacial forces smoothly across the fluid
interfaces, adding stability compared to a sharp interface treatment.
These facts motivated our decision to adopt a fully LBM-based ap-
proach to offer accurate simulation and guarantee efficiency via a
massively parallel implementation. However, the only method com-
bining an LBM fluid solver with phase fields to handle multiphase
fluid simulation [Hu et al. 2020] has its share of limitations as we
reviewed in 2.2 — including only dealing with immiscible fluids and
only handling moderate Reynolds numbers.

In the remainder of this paper, we first review the work of Hu et al.
[2020] in more detail, before presenting our contributions to extend,
generalize, and improve the accuracy, memory usage, and stability
of this state-of-the-art method to achieve our goals of efficient and
general multiphase fluid simulation.

3 BACKGROUND
We begin our exposition with a brief review of state-of-the-art
multiphase methods based on phase fields.

3.1 Phase fields for immiscible flows
When only two immiscible phases are present (typically, air and
liquid), a single scalar phase field is needed, for which a value of 0
indicates the presence of one phase while a value of 1 indicates the
presence of the other phase. The interface between the two phases
is delineated with a hyperbolic tangent steep profile from 0 to 1 over
an interfacial thickness 𝜉 , see for instance [Li et al. 2021, 2022; Li and
Desbrun 2023]. The case of 𝑛 immiscible phases or fluids (typically,
air and a variety of liquids of different densities and viscosities) is,
however, more involved. Each phase must be encoded by its own
scalar phase field: the 𝑖th phase is a scalar function 𝜙𝑖 (𝒙, 𝑡) where 𝒙
is a position within the simulation domain Ω and 𝑡 is time. Similar
to the two-phase case, the immiscible phase-field profile at rest is:

𝜙𝑖 (𝒙, 0) =
1
2 (1 − tanh(𝑑𝑖 (𝒙)/𝜉)), (1)

where 𝑑𝑖 (𝒙) is the distance from 𝒙 to the interface of the 𝑖th phase
(defined as 𝜙−1 (0.5)), implying that the phase field profile satisfies:

|∇𝜙𝑖 | =
4
𝜉
𝜙𝑖 (1 − 𝜙𝑖 ) . (2)

The set of all order parameters 𝝓 = (𝜙1, ..., 𝜙𝑖 , ..., 𝜙𝑛) then represents
𝑛-fluids iff they also satisfy:

𝑛∑︁
𝑖=1

𝜙𝑖 (𝒙, 𝑡) = 1 ∀𝒙 ∈Ω. (3)

i.e., the volume fractions of the 𝑛 phases sum to one everywhere, to
ensure they, together, fill up the whole simulation domain. This last
constraint allows us to store only (𝑛−1) phase fields for 𝑛 phases:
the remaining phase field (say, 𝜙𝑛) is trivially evaluated on the fly
as 𝜙𝑛 (𝒙, 𝑡)=1 −∑𝑛−1

𝑖=1 𝜙𝑖 (𝒙, 𝑡) .

3.2 Generalized phase-field model for immiscible fluids
However, compared to the two-phase case, the sets of constraints
described above (Eqs. (2) for 1 ≤ 𝑖 ≤ 𝑛 and Eq. (3)) form an over-
constrained system. Recent methods [Dong 2017; Wu and Xu 2017]
have thus proposed a least squares method instead. They consider
the following functional to minimize, where Eq. (2) is best enforced
under the constraint of Eq. (3):

𝑊 (𝝓,∇𝝓) =
∫
Ω

𝑛∑︁
𝑖=1

[
|∇𝜙𝑖 | −

4
𝜉
𝜙𝑖 (1 − 𝜙𝑖 )

]2
+ 𝛾

∫
Ω

( 𝑛∑︁
𝑖=1

𝜙𝑖 − 1
)
𝑑𝒙,
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Fig. 4. Dam break with three miscible/immiscible phases. Three liquids, immiscible with the air phase, are dropped in a container. When they are all
miscible with each other (top), they finally form a grey mixture; For partial miscibility (middle), a resulting half-mixed layer interface appears. If they are all
immiscible (bottom), clear interfaces between different liquids remain at the end.

where 𝛾 is a Lagrangian multiplier to enforce the constraint. Mini-
mizing𝑊 via a 𝐿2-gradient flow leads to the evolution equation:

𝜕𝜙𝑖

𝜕𝑡
= −𝜇𝑖

𝛿𝑊

𝛿𝜙𝑖
, (4)

where 𝜇𝑖 >0 is the mobility of the 𝑖th fluid. If we add an advection
of the phase fields in the fluid velocity 𝒖, we get the generalized
conservative phase field equations for immiscible fluids:

𝜕𝜙𝑖

𝜕𝑡
+ 𝒖 · ∇𝜙𝑖 = 𝜇𝑖

{
∇2𝜙𝑖 −

1
𝜉
∇·

[
4𝜙𝑖 (1 − 𝜙𝑖 )

∇𝜙𝑖
|∇𝜙𝑖 |

]}
(5)

−8𝜇𝑖 (2𝜙𝑖 − 1)
𝜉

[
|∇𝜙𝑖 | −

4
𝜉
𝜙𝑖 (1 − 𝜙𝑖 )

]
+ 𝛾,

where 𝜉 is the interfacial thickness. Each phase’s evolution equation
is therefore similar to the two-phase case from previous LBM papers
in graphics, except for the presence of the Lagrangian multiplier 𝛾
which we obtain by summing Eqs. (5) for 𝑖 from 1 to 𝑛, yielding:

𝛾 =
1
𝑛

∑︁
𝑗

𝜇𝑖

(
∇·

[ 4𝜙 𝑗 (1 − 𝜙 𝑗 )
𝜉

∇𝜙 𝑗

|∇𝜙 𝑗 |

]
+

8(2𝜙 𝑗 − 1)
𝜉

[
|∇𝜙 𝑗 | −

4
𝜉
𝜙 𝑗 (1 − 𝜙 𝑗 )

] )
.

Various authors came to the conclusion that this expression can
be simplified without loss of accuracy, and can be made to remain
valid in the general case where the number of phases can come and
go in the computational domain throughout the simulation. First,
the second term can be discarded since this approach is based on
making Eq. (2) holds in the least squares sense. Second, to enforce
what Dong [2017] andWu andXu [2017] call “reduction consistency”
(i.e., the evolution equation should be valid for any number of phases
being present at a given time), Hu et al. [2020] proposed to replace
the single 𝛾 by a 𝛾𝑖 per phase, and to replace the 1/𝑛 term by 𝜒𝑖/𝜒
where 𝜒𝑖 =1 (resp., 𝜒𝑖 =0) indicates that the 𝑖th phase is currently
present (resp., absent) in the domain of simulation, while 𝜒 =

∑
𝑖 𝜒𝑖 .

Indeed, this slightly altered version enforces that 𝜒𝑖/𝜒 will always
be 1/𝑘 when 𝑘 fluids are present. Consequently, the following phase
field equations were used:

𝜕𝜙𝑖

𝜕𝑡
+ 𝒖 · ∇𝜙𝑖 = 𝜇𝑖

{
∇2𝜙𝑖 −

1
𝜉
∇·

[
4𝜙𝑖 (1 − 𝜙𝑖 )

∇𝜙𝑖
|∇𝜙𝑖 |

]}
+ 𝛾𝑖 (6)

where 𝛾𝑖 is expressed as:

𝛾𝑖 =
𝜒𝑖

𝜉 𝜒

𝑛∑︁
𝑗=1

𝜇𝑖∇·
[
4𝜙 𝑗 (1 − 𝜙 𝑗 )

∇𝜙 𝑗

|∇𝜙 𝑗 |

]
; (7)

and as mentioned earlier, only (𝑛−1) phases are actually integrated,
as the last one is deduced directly using the constraint in Eq. (3).

3.3 Lattice Boltzmann integration of phase field model
To solve Eq. (6) efficiently, Hu et al. [2020] proposed a lattice Boltz-
mann scheme using a D3Q19 (resp., D2Q9) lattice structure in 3D
(resp., 2D). Hence, a distribution function 𝒉𝑖 = {ℎ𝑖0, ℎ

𝑖
1, . . . ℎ

𝑖
18} for

each phase 𝑖 is used, from which the phase can be recovered through
its zero-th order velocity moment: 𝜙𝑖 (x, 𝑡)=

∑
𝑘 ℎ

𝑖
𝑘
(x, 𝑡). Finally, the

time evolution of 𝒉𝑖 is achieved through a raw-moment multiple-
relaxation-times (RM-MRT) model to integrate Eq. (6) in time.

Unfortunately, this LB approach to numerically simulate the gen-
eralized conservative phase field model suffers from a number of
issues in practice. First and foremost, it requires an unreasonable
amount of memory, since the distribution function for each phase
needs 38 scalar values per node of a fine 3D regular grid. Second, it
is only capable of handling immiscible fluid components – a strong
limitation for graphics applications. Third, its low-order treatment
of the Boltzmann collision terms does not allow for turbulent be-
haviors of the fluids or large density ratios – two other important
limitations for graphics where visual complexity of water-air inter-
action for instance is often paramount. Finally, Hu et al. [2020] used
a (mostly 2D) LBM solver which cannot handle complex boundaries.

3.4 Contributions at a glance
Our work improves on the temporal evolution of phase fields and
velocity in multiphase flow simulation by removing the most restric-
tive limitations of state-of-the-art methods in CFD. We will show
that the overly-high memory requirements of [Hu et al. 2020] can
be drastically reduced by the use of a D3Q7 lattice structure for
phases and a moment-based encoding of the distribution function
representing the mesoscopic velocity. We will also derive a new
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Fig. 5. Flows through pumice. Two liquids with different densities are poured on the top of a porous rock containing a multitude of cavities and tunnels and
the heavier liquid (blue) starts flowing slowly through pumice, followed by the lighter one (cyan). The two liquids end up separated at the bottom.

conservative phase field model providing a unified solver for both
miscible and immiscible multiphase flows. To improve accuracy
(and thus, stability) in the integration of the phase field equations,
we will also leverage the two-scale approach proposed in [Li and
Desbrun 2023]. Coupled with a fast, accurate, and low-memory-
footprint fluid solver, we will demonstrate that our new 𝑛-phase
solver performs turbulent multiphase simulations efficiently, with
improved pressure behavior near solid boundaries.

4 OUR NOVEL LIGHTWEIGHT PHASE-FIELD MODEL
We now introduce our generalized conservative phase field model
for (im)miscible flows. Combined with a novel𝑛-phase variant of the
recently proposed high-order moment encoded LBM (HOME-LBM)
method, we will show that our approach to encode and integrate in
time the phase fields needed to simulate multiphase flows removes
many of the most stringent shortcomings of [Hu et al. 2020].

Table 1. Summary of the main variables used in our method.

Symbol Physical meaning
𝜙𝑖 𝑖th phase indicator
𝒉𝑖 distribution function for 𝑖th phase field
𝜇𝑖 𝑖th phase mobility
𝒖 flow velocity
𝒈 distribution function for flow field
𝜌 flow density
𝑝 flow pressure
F𝑠 surface tension force
F𝜈 viscosity force
F𝑝 pressure force
F𝑏 body force

4.1 Unifying immiscible and miscible flows
While Hu et al. [2020] only considered immiscible fluids, we can
take a hint from the two-phase case for which the profile is |∇𝜙 | =
4
𝜉
𝜙 (1 − 𝜙), where the product of one phase (𝜙) and the other phase

(1 − 𝜙) is directly proportional to the gradient of the phase field.
The immiscible case follows the same logic, where now it is the
sum of all pairwise phase products, as explicitly stated in Eq. (2)
since 1 − 𝜙𝑖 is equal to the sum of all other phase fields due to the
constraint in Eq. (3). We can then extend these immiscible cases to
handle miscible or even partially miscible fluids as we detail next,

(a) (b) (c) (d)
Fig. 6. Lattice Structures. In LBM, mesoscopic velocities are discretized
using lattice velocities. Our velocity-based distribution 𝒈 uses a D2Q9 lattice
in 2D (a), and a D3Q19 (c) or D3Q27 (d) lattice in 3D. A D3Q7 lattice (b) is
used for our phase-field distribution 𝒉 in 3D.

which matches the recent work of He et al. [2020] in the case of
three fluids. First, define pairwise miscibility values {𝜎𝑖 𝑗 }𝑖≠𝑗 where
𝜎𝑖 𝑗 = 1 means that phases 𝑖 and 𝑗 do not mix, while 𝜎𝑖 𝑗 = 0 means
that phases 𝑖 and 𝑗 are entirely miscible. (Note that values of 𝜎𝑖 𝑗
between 0 and 1 can also be used to deal with partial miscibility.)
Then, the phase field profile can be re-expressed as:

|∇𝜙𝑖 | =
4
𝜉
𝜙𝑖

( 𝑛∑︁
𝑗=1&𝑗≠𝑖

𝜎𝑖 𝑗𝜙 𝑗

)
, (8)

to unify the case of miscible vs. immiscible fluids. We can now go
through the least-squares minimization explained in Sec. 3 for these
new profiles to find out that Eq. (6) has now changed into:

𝜕𝜙𝑖

𝜕𝑡
+ 𝒖 · ∇𝜙𝑖 = 𝜇𝑖

{
∇2𝜙𝑖 −

1
𝜉
∇·

[
4𝜙𝑖

( 𝑛∑︁
𝑗=1&𝑗≠𝑖

𝜎𝑖 𝑗𝜙 𝑗

) ∇𝜙𝑖
|∇𝜙𝑖 |

]}
+ 𝛾𝑖 (9)

for a Lagrange multiplier 𝛾𝑖 simplified down to:

𝛾𝑖 =
𝜒𝑖

𝜉 𝜒

𝑛∑︁
𝑗=1

𝜇𝑖∇·
[
4𝜙 𝑗 (

𝑛∑
𝑘=1
𝑘≠𝑗

𝜎 𝑗𝑘𝜙𝑘 )
∇𝜙 𝑗

|∇𝜙 𝑗 |

]
. (10)

4.2 Integrating phase fields with D3Q7 CM-MRT LBM
At this point, we could use the lattice Boltzmann approach from [Hu
et al. 2020] to integrate our unified model from Eq. (8) in order to
advance the phase fields in time. However, its use of a D3Q19 lattice
structure requires a huge amount of memory, and the raw-moment
MRT approximation for the Boltzmann collision terms is known
to fail Galilean invariance [d’Humières 2002] and to introduce too
much dissipation to properly handle turbulence. Instead, we draw
inspiration from Li et al. [2022] and Li and Desbrun [2023] who
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Fig. 7. Quad dam break with large density ratios. The density ratios between the three phases (blue phase, cyan phase, and air) are set to 2000:200:1 in this
example. Our solver can handle this type of density ratios and Reynolds numbers; we are not aware of other methods able to run this case.

successfully developed a new central-moment multiple-relaxation-
times (CM-MRT) model on D3Q7 lattice structure. As their recent
approach saves a lot of memory usage and improves the accuracy
of collision terms, we extend it to our case of multiple phases.
For each phase field 𝜙𝑖 of the (𝑛−1) first phases, we need to

integrate in time a seven-velocity distribution 𝒉𝑖 = {ℎ𝑖0, ..., ℎ
𝑖
6} that

is stored at each node of the regular grid discretizing the simulation
domain. The time evolution of 𝒉𝑖 for this LBM setup can then be
written as a function of the “equilibrium” distribution function 𝒉̄𝑖 :

ℎ̄𝑖𝛼 = 𝑤𝑑
𝛼𝜙𝑖

(
1 + 𝒅𝛼 · 𝒖

𝑑2
𝑠

)
, (11)

where𝑤𝑑
𝛼 (resp., 𝒅𝛼 ) for 𝛼 ∈ {0, 1, ..., 5, 6} represents the 𝛼 th lattice

weight (resp., lattice velocity) of our D3Q7 lattice at a given node
(see Fig. 6), 𝒖 is the local macroscopic velocity, and 𝑑𝑠 =

1
2 is the

speed of sound for the D3Q7 lattice structure. The update equation
in time of each distribution function reads

𝒉𝑖 (𝒙 + 𝒅, 𝑡 + 1) = 𝒉𝑖 (𝒙, 𝑡) −M−1
ℎ

SℎMℎ

(
𝒉𝑖 (𝒙, 𝑡) − 𝒉̄𝑖 (𝒙, 𝑡)

)
(12)

+M−1
ℎ
(1 − 1

2 S𝑖
ℎ
)MℎH𝑖 ,

where the matrix Mℎ is a matrix to transform the non-equilibrium
distribution 𝒉𝑖−𝒉̄𝑖 into central-moment space (M−1

ℎ
performs the

inverse transform), while the diagonal matrix Sℎ =diag(1, 1/(4𝜇𝑖 +
½), 1/(4𝜇𝑖 + ½), 1/(4𝜇𝑖 + ½), 1, 1, 1) stores the separate relaxation
times of each moment — a key element of MRT models which
reduces the instabilities that the single relaxation time of the orig-
inal BGK model for the LBM collision operator typically gener-
ates. Because we use a central-moment space instead of a raw-
moment space [Hu et al. 2020] to enforce Galilean invariance and
improve accuracy of the collision term, the rows of matrix Mℎ =

(M0
ℎ
,M1

ℎ
,M2

ℎ
,M3

ℎ
,M4

ℎ
,M5

ℎ
,M6

ℎ
)𝑇 are defined as:

M0
ℎ
= (1, 1, 1, 1, 1, 1, 1)𝑇 ,

M1
ℎ
= 𝑑𝛼,𝑥 , M2

ℎ
= 𝑑𝛼,𝑦, M3

ℎ
= 𝑑𝛼,𝑧 ,

M4
ℎ
= 𝑑

2
𝛼,𝑥 − 𝑑

2
𝛼,𝑦, M5

ℎ
= 𝑑

2
𝛼,𝑥 − 𝑑

2
𝛼,𝑧 , (13)

M6
ℎ
= 𝑑

2
𝛼,𝑥 + 𝑑

2
𝛼,𝑦 + 𝑑

2
𝛼,𝑧 .

where 𝑑𝛼,𝛿 =
(
𝒅𝛼 −𝒖

)
𝛿 for lattice index 𝛼 ∈ {0, ..., 6} and for 𝛿 ∈

{𝑥,𝑦, 𝑧} representing a vector coordinate.
Finally the source term H𝑖 (last term in Eq. (12)), once adapted

from [Chai et al. 2018], is expressed as:

H𝑖
𝛼 =

4𝜙𝑖
(∑𝑛

𝑗=1&𝑗≠𝑖
𝜎𝑖 𝑗𝜙 𝑗

)
𝜉

𝑤𝑑
𝛼 𝒅𝛼 ·

∇𝜙𝑖
|∇𝜙𝑖 |

(14)

− 𝜒𝑖

𝜉 𝜒

𝑛∑︁
𝑗=1

4𝜙 𝑗 (
𝑛∑

𝑘=1&𝑘≠𝑗
𝜎 𝑗𝑘𝜙𝑘 )𝑤𝑑

𝛼 𝒅𝛼 ·
∇𝜙 𝑗

|∇𝜙 𝑗 | .

Each 𝜙𝑖 is then updated through the zeroth order moment of its
associated distribution function 𝒉𝑖 , except for the last one which is
directly deduced to enforce the constraint from Eq. (3), i.e.,

𝜙𝑖 =

{ ∑
𝛼 ℎ

𝑖
𝛼 if 1 ≤ 𝑖 ≤ 𝑛 − 1

1 −∑𝑛−1
𝑗=1 𝜙 𝑗 if 𝑖 = 𝑛

(15)

Note that we adopt the isotropic centered difference schemes [Li et al.
2021, 2022] for the evaluation of ∇𝜙𝑖 and ∇2𝜙𝑖 : they are computed
respectively as:

∇𝜙𝑖 = 3
∑︁
𝛼

𝒅𝛼𝑤
𝑑
𝛼𝜙𝑖 (𝒙 + 𝒅𝛼 , 𝑡); (16)

∇2𝜙𝑖 = 6
∑︁
𝛼

𝑤𝑑
𝛼 [𝜙𝑖 (𝒙 + 𝒅𝛼 , 𝑡) − 𝜙𝑖 (𝒙, 𝑡)] , (17)

except for the 𝑛th phase where Eq. (15) implies:

∇𝜙𝑛 = −
𝑛−1∑︁
𝑖=1
∇𝜙𝑖 , ∇2𝜙𝑛 = −

𝑛−1∑︁
𝑖=1
∇2𝜙𝑖 . (18)

5 ADAPTING HOME-LBM FOR MULTIPHASE FLOWS
Now that we have detailed how phases are handled, we discuss
how to simulate the flow part, i.e., the evolving velocity field (which
we will encode via a distribution g) in which the phases are be-
ing advected. We will proceed in three steps: first, we will review
the macroscopic model typically used for multiphase flow; then
we will explain how the HOME-LBM approach of [Li et al. 2023]
can be modified not only to save memory, but also to accelerate
computations and bring stability by avoiding spurious oscillations
near obstacles; finally, we will provide the modified equations for
distribution reconstruction and collision terms which are at the core
of our contributions.

5.1 Macroscopic model and its mesoscopic discretization
The momentum and continuity equations for incompressible multi-
phase flows are often described macroscopically as:

𝜕𝜌/𝜕𝑡 + ∇ · (𝜌𝒖) = 0,
𝜕(𝜌𝒖)/𝜕𝑡 + ∇· (𝜌 𝒖⊗𝒖) = −∇𝑝 + ∇·Π + F𝑠 + F𝑏 ,

∇ · 𝒖 = 0,

(19a)
(19b)
(19c)

where 𝜌 and 𝒖 are respectively the spatially-varying fluid density
and velocity of the fluids, 𝑝 is the hydrodynamic pressure enforcing
the incompressibility condition in Eq. (19c), and Π is the viscous
stress tensor, while F𝑏 and F𝑠 are body and surface tension forces.
Note that in our multiphase case, the density 𝜌 is written in terms
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Fig. 8. Mixture splashing. A mixture is dropped in a container, forming splashes, turbulence, and bubbles, before becoming separated in layers.

of the densities 𝜌𝑖 and phase fields 𝜙𝑖 of all fluids as:

𝜌 (𝒙) =
𝑛−1∑︁
𝑖=1

𝜌𝑖𝜙𝑖 (𝒙) + 𝜌𝑛
(
1−

𝑛−1∑︁
𝑖=1

𝜙𝑖 (𝒙)
)
, (20)

where the last term uses the phase field 𝜙𝑛 as defined in Eq. (15);
consequently, its gradient is: ∇𝜌 (𝒙)=∑𝑛−1

𝑖=1 (𝜌𝑖 − 𝜌𝑛)∇𝜙𝑖 (𝒙).

Alternative formulation. Another formulation of the momentum
equation (19b) is worth noting: we can turn all the terms containing
the density 𝜌 explicitly as either new variables or external forces
through the chain rule [Fakhari et al. 2017b], leading to

𝜕𝒖

𝜕𝑡
+∇·

(
𝒖⊗𝒖+𝑝∗𝑐2

𝑠 𝑰 − [𝜈 (∇𝒖+∇𝒖𝑇 )]
)
=

1
𝜌
(F𝑝 +F𝜈 +F𝑠 +F𝑏 ) (21)

where three new terms involve 𝜌 implicitly: 𝑝∗ = 𝑝/(𝜌𝑐2
𝑠 ) is the

“normalized” pressure, F𝑝 is a pressure force, and F𝜈 is a viscosity
force, with

F𝑝 = −𝑝∗ ∇𝜌, (22)

F𝜈 = [𝜈 (∇𝒖 + ∇𝒖𝑇 )]∇𝜌, (23)
the multi-fluid kinematic viscosity 𝜈 being written as a function of
each phase viscosity 𝜈𝑖 as: 𝜈 =

( 1
𝜈𝑛
+∑𝑛−1

𝑖 ( 1
𝜈𝑖
− 1

𝜈𝑛
)
)−1. The value

of this “velocity-based” formulation in Eq. (21) is explained next.

Velocity-based distribution function. Most early LBM works in
graphics and CFD were based on a lattice-Boltzmann discretiza-
tion of Eq. (19) using a distribution function 𝒇 , whose zeroth-order
velocity moment being the mass density 𝜌 — considered constant
since they were targeting single-phase fluid simulation. For the case
of spatially-varying 𝜌 with high-density ratios between phases, it
was noticed that mixing 𝒖 with 𝜌 in the momentum equation was
bringing numerical instability due to the rapid changes in density
and thus in momentum, so discretizing Eq. (21) instead was pro-
posed [Fakhari et al. 2017b]: this allows for the velocity update
and phase-field update to be mostly decoupled, except for the force
terms based on the phase fields which influence the motion of the
fluids and for the motion of the flow that carries the phase fields
along. This is precisely what was proposed recently in graphics [Li
et al. 2022; Li and Desbrun 2023], using a different distribution
function labeled 𝒈 here to differentiate from the distribution 𝒇 of
traditional LBM methods: their “velocity-based” LBM discretization
for incompressible two-phase flows ended up being formulated as:

𝑔𝑖 (𝒙 + c𝑖 , 𝑡 + 1) = 𝑔𝑖 (𝒙, 𝑡) + Ω𝑔

𝑖
(𝒙, 𝑡) +𝐺𝑖 (𝒙, 𝑡), (24)

where 𝑐𝑖 is a lattice velocity (see Fig. 6) and Ω
𝑔

𝑖
and 𝐺𝑖 are the

influences on the distribution 𝒈 from the collision operator and the

external forces respectively. Macroscopic variables used in Eq. (21)
can be recovered from the first three moments of distribution 𝒈:

𝑝∗ =
𝑞−1∑︁
𝑖=0

𝑔𝑖 , 𝒖 =

𝑞−1∑︁
𝑖=0

𝒄𝑖𝑔𝑖 +
1
2 F, 𝑆𝛼𝛽 =

𝑞−1∑︁
𝑖=0
(𝒄2
𝑖 −

1
3𝛿𝛼𝛽 ) 𝑔𝑖 , (25)

where 𝛿 is the Kronecker delta function and F is the sum of external
forces, while 𝑆𝛼𝛽 denotes the component of tensor 𝑺 defined as

𝑺 = Π − 1
3𝑝
∗ = 𝒖⊗𝒖 − 𝜈 (∇𝒖 + ∇𝒖𝑇 ). (26)

5.2 Adapting HOME-LBM for multiphase simulation
In the context of monophase fluid simulation, Li et al. [2023] recently
proposed a very compact storage of distribution functions𝒇 through
only their first three velocity moments 𝜌 , 𝜌𝒖, and 𝜌𝑺 at each grid
node instead of the discretization of 𝒇 in 27 directions {𝑓𝑖 }𝑖=0..26 —
saving nearly two third of the memory footprint. This HOME-LBM
approach offers a high-order reconstruction of the distribution from
its three moments to filter out non-physical oscillations in turbu-
lent flow and near complex boundaries, as well as a moment-based
collision model. Our use of a different type of “velocity-based” LBM
discretization (based on Eq. (21) instead of Eq. (19b)) requires im-
portant alterations to their approach to adapt it to our multiphase
context, but it will improve boundary pressure accuracy, accelerate
performance, and reduce memory use for our solver. In the remain-
der of this section, we will assume a D3Q27 lattice discretization
in 3D as typically recommended for turbulent flows to ensure nu-
merical accuracy; we will also provide all necessary expressions for
D3Q19-based distribution functions to further reduce computations
with only minor accuracy loss for 𝑛-phase flow simulation.

5.2.1 Modifying distribution reconstruction from moments. Distri-
bution functions 𝒇 (𝒗, 𝒙, 𝑡) in LBM are typically encoded (before
discretization) through truncated Hermite series expansions of the
mesoscopic velocity 𝑣 [Shan et al. 2006]. In 3D, the mesoscopic
velocity is discretized through D3Q27 lattice velocities {𝒄𝑖 }𝑖=1..27
(see Fig. 6), the continuous function 𝒇 (𝒗, 𝒙, 𝑡) is thus turned into
27-value vectors 𝒇 (𝒙, 𝑡)= {𝑓𝑖 }𝑖=0..26 per node 𝒙 of a regular grid and
per discrete time 𝑡 , through 𝑓𝑖 (𝒙, 𝑡) = 𝑤𝑖 𝑓 (𝒄𝑖 , 𝒙, 𝑡)/𝜔 (𝒄𝑖 ), where𝑤𝑖

are Gauss–Hermite quadrature weights for the D3Q27 lattice while
𝜔 (𝒗) ∝ exp(−∥𝒗∥2/2) is a normalized weighting function (see, for
instance, [Li et al. 2020] for detailed derivations). For our 𝑛-phase
case, the change of main variables proposed in [Fakhari et al. 2017b]
leads to a new distribution function 𝑔 discretized as 𝒈= {𝑔𝑖 }𝑖=0..26
on a regular grid and at discrete times, now defined as

𝑔𝑖 (𝒙, 𝑡) = 𝑤𝑖 𝑔(𝒄𝑖 , 𝒙, 𝑡)/𝜔 (𝒄𝑖 ) =
𝑓𝑖 (𝒙, 𝑡)
𝜌 (𝒙, 𝑡) +𝑤𝑖 (𝑝∗ (𝒙, 𝑡) − 1) . (27)

Recall that in HOME-LBM, the encoding of the discrete distribution
function 𝒇 was done through only its first three velocity moments,
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i.e., 𝜌, 𝜌𝒖, and 𝜌𝑺 [Li et al. 2023]. From Eq. (27), we can instead
encode the distribution 𝒈 by storing its first three moments 𝑝∗
(scalar), 𝒖 (vector), and 𝑺 (symmetric tensor) defined in Eq. (25) —
thus reducing the 27 components 𝑔𝑖 into 10 values.
Given the three moments stored in our HOME-LBM for multi-

phase flows, we follow [Li et al. 2023] and derive through Mathe-
matica a new third-order Hermite-based “filtered” reconstruction
of the distribution components 𝑔𝑖 from the velocity moments 𝑝∗, 𝒖,
and 𝑺 . The resulting expression is:

𝑔𝑖 =𝑤𝑖

[
𝑝∗ + 𝒄𝑖 · 𝒖

𝑐2
𝑠

+ 𝑯 [2] (𝒄𝑖 ) : 𝑺
2𝑐4

𝑠

(28)

+ 1
2𝑐6

𝑠

(
𝐻
[3]
𝑥𝑥𝑦 (𝒄𝑖 ) (𝑆𝑥𝑥𝑢𝑦 + 2𝑆𝑥𝑦𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑢𝑦)

+ 𝐻 [3]𝑥𝑦𝑦 (𝒄𝑖 ) (𝑆𝑦𝑦𝑢𝑥 + 2𝑆𝑥𝑦𝑢𝑦 − 2𝑢𝑥𝑢𝑦𝑢𝑦)

+ 𝐻 [3]𝑥𝑥𝑧 (𝒄𝑖 ) (𝑆𝑥𝑥𝑢𝑧 + 2𝑆𝑥𝑧𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑢𝑧)

+ 𝐻 [3]𝑥𝑧𝑧 (𝒄𝑖 ) (𝑆𝑧𝑧𝑢𝑥 + 2𝑆𝑥𝑧𝑢𝑧 − 2𝑢𝑥𝑢𝑧𝑢𝑧)

+ 𝐻 [3]𝑦𝑧𝑧 (𝒄𝑖 ) (𝑆𝑧𝑧𝑢𝑦 + 2𝑆𝑦𝑧𝑢𝑧 − 2𝑢𝑦𝑢𝑧𝑢𝑧)

+ 𝐻 [3]𝑦𝑦𝑧 (𝒄𝑖 ) (𝑆𝑦𝑦𝑢𝑧 + 2𝑆𝑦𝑧𝑢𝑧 − 2𝑢𝑦𝑢𝑦𝑢𝑧)
+ 𝐻 [3]𝑥𝑦𝑧 (𝒄𝑖 ) (𝑆𝑥𝑧𝑢𝑦 + 𝑆𝑦𝑧𝑢𝑥 + 𝑆𝑥𝑦𝑢𝑧 − 2𝑢𝑥𝑢𝑦𝑢𝑧)

) ]
.

where 𝑯 are the Hermite tensors given in App. A. We also provide
the reconstruction expression for D3Q19 in App. D, as it reduces
both memory requirements and computational cost for the recon-
struction, without a noticeable loss in accuracy or stability.

5.2.2 HOME collision model. Once the three moments have been
converted back into a full set of distribution functions as described
above, we could now proceed as typically done in a LBM method:
integrating Eq. (24), the evolution equation of 𝒈, through Strang
splitting via streaming, followed by collision evaluation, and finally
external force injection, before saving the new three moments for all
grid nodes after integration. However, Li et al. [2023] proposed in-
stead to convert the resulting streamed distribution back to its three
first moments right after streaming using Eqs. (25); they then showed
how to explicitly add high-order collision terms and external forces
directly to these threemoments to complete one integration timestep.
We follow exactly their HOME-based approach, adapted to our new
distribution 𝒈. That is, we first perform the regular streaming pro-
cess; the new three moments are then evaluated through Eqs. (25)
and we denote them temporarily 𝑝∗′ , 𝒖′ , and 𝑺 ′ as they represent the
moments before their final alteration by collision and external forces.
Then, we perform the sixth-order Hermite expansion of the equi-
librium central-moments and external forces recommended in [Li
et al. 2023] and compute the update of the three first moments due
to the effect of the (multiple-relaxation rate) collision and forces in
closed form. Using Mathematica [Wolfram Research Inc. 2023], and
for 𝜏 =3𝜈 + 0.5, we found that the closed-form updates read:

𝑝∗ (𝒙, 𝑡 + 1) = 𝑝∗
′
; (29)

𝑢𝛼 (𝒙, 𝑡 + 1) = 𝑢
′
𝛼 + 1

2𝜌 ′ 𝐹𝛼 ; (30)

𝑆𝑥𝑦 (𝒙, 𝑡+ 1) = (1 − 1
𝜏 )𝑆

′
𝑥𝑦 + 1

𝜏𝑢
′
𝑥𝑢
′
𝑦 + 2𝜏−1

2𝜏𝜌 ′ (𝐹𝑥𝑢
′
𝑦 + 𝐹𝑦𝑢

′
𝑥 ) ; (31)

Fig. 9. Dam breaking over bunny. Two different liquids in a dam break
come splashing onto a bunny-shape obstacle. Small droplets are seen on
the bunny due to a hydrophobic wetting boundary condition.

𝑆𝑥𝑥 (𝒙, 𝑡 + 1) = 𝜏−1
3𝜏 (2𝑆

′
𝑥𝑥 − 𝑆

′
𝑦𝑦 − 𝑆

′
𝑧𝑧)

+ 1
3

(
𝑢
′
𝑥

2 + 𝑢
′
𝑦

2 + 𝑢
′
𝑧

2) + 1
3𝜏

(
2𝑢
′
𝑥

2 − 𝑢
′
𝑦

2 − 𝑢
′
𝑧

2)
+ 1

𝜌
′ 𝐹𝑥𝑢

′
𝑥 + 𝜏−1

3𝜏𝜌 ′ (2𝐹𝑥𝑢
′
𝑥 − 𝐹𝑦𝑢

′
𝑦 − 𝐹𝑧𝑢

′
𝑧) ;

𝑆𝑦𝑦 (𝒙, 𝑡 + 1) = 𝜏−1
3𝜏 (2𝑆

′
𝑦𝑦 − 𝑆

′
𝑥𝑥 − 𝑆

′
𝑧𝑧)

+ 1
3

(
𝑢
′
𝑥

2 + 𝑢
′
𝑦

2 + 𝑢
′
𝑧

2) + 1
3𝜏

(
2𝑢
′
𝑦

2 − 𝑢
′
𝑥

2 − 𝑢
′
𝑧

2)
+ 1

𝜌
′ 𝐹𝑦𝑢

′
𝑦 + 𝜏−1

3𝜏𝜌 ′ (2𝐹𝑦𝑢
′
𝑦 − 𝐹𝑥𝑢

′
𝑥 − 𝐹𝑧𝑢

′
𝑧) ;

𝑆𝑧𝑧 (𝒙, 𝑡 + 1) = 𝜏−1
3𝜏 (2𝑆

′
𝑧𝑧 − 𝑆

′
𝑥𝑥 − 𝑆

′
𝑦𝑦)

+ 1
3

(
𝑢
′
𝑥

2 + 𝑢
′
𝑦

2 + 𝑢
′
𝑧

2) + 1
3𝜏

(
2𝑢
′
𝑧

2 − 𝑢
′
𝑥

2 − 𝑢
′
𝑦

2)
+ 1

𝜌
′ 𝐹𝑧𝑢

′
𝑧 + 𝜏−1

3𝜏𝜌 ′ (2𝐹𝑧𝑢
′
𝑧 − 𝐹𝑥𝑢

′
𝑥 − 𝐹𝑦𝑢

′
𝑦) .

Note that these expressions do not change if a D3Q19 discretiza-
tion is used instead. With these new update equations given above,
we avoid a large amount of computations since we do not need
to perform the expensive conversion from distribution space to
moment space needed in current state-of-the-art collision models
(i.e., the equivalent of Eq. (12) but now for a much larger D3Q19 or
D3Q27 discretization), without losing accuracy.

5.3 Surface tension
While three of the four forces present in Eq. (21) are simple to
evaluate (concretely, F𝑝 is computed via Eq. (22), F𝜈 via Eq. (23),
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and F𝑏 depends on forces imposed on the fluid), the surface tension
force F𝑠 needs care in our multiphase flow context. We base our
evaluation on the work of He et al. [2020] who proposed a unified
total free energy F for the case of ternary fluids. We simply extend
their formulation for the 𝑛-phase case through:

F (𝝓,∇𝝓) =
∫
Ω

3𝜉
4

𝑛∑︁
𝑖=1

𝛽𝑖 |∇𝜙𝑖 |2+
12
𝜉

𝑛∑︁
𝑖=1

𝛽𝑖𝜙
2
𝑖

(∑︁
𝑗≠𝑖

𝜎𝑖 𝑗𝜙 𝑗

)2
𝑑𝒙, (32)

where 𝛽𝑖 is the capillary coefficient for phase 𝑖 . Using the virtual
work method [Hu et al. 2020], we have

𝛿F = F(𝝓 + 𝛿𝝓,∇𝝓 + ∇𝛿𝝓) − F(𝝓,∇𝝓) = −
∫
Ω

F𝑠𝛿𝒙 𝑑𝒙, (33)

where 𝛿𝒙 is a virtual displacement. As a result, the surface tension
force can be written as:

F𝑠 =
𝑛∑︁
𝑖=1

{
𝛽𝑖∇𝜙𝑖

[ 24
𝜉
𝜙𝑖

(∑︁
𝑗≠𝑖

𝜎𝑖 𝑗𝜙 𝑗

)2
− 3𝜉

2 ∇
2𝜙𝑖

]
+ 24

𝜉
𝛽𝑖𝜙

2
𝑖

(∑︁
𝑗≠𝑖

𝜎𝑖 𝑗𝜙 𝑗

) (∑︁
𝑗≠𝑖

𝜎𝑖 𝑗∇𝜙 𝑗

)}
.

(34)

Note that for immiscible fluids, surface tension simplifies down to:

F𝑠 =
𝑛∑︁
𝑖=1

𝛽𝑖∇𝜙𝑖
{ 24
𝜉
𝜙𝑖 (1 − 𝜙𝑖 ) (1 − 2𝜙𝑖 ) −

3𝜉
2 ∇

2𝜙𝑖
}
. (35)

5.4 In/outlet and one-way coupling boundary conditions
To simulate inlet boundary conditions, we simply set the initial
velocity moments of the flow based on the desired pressure 𝑝0 and
velocity 𝒖0 of the fluid, and set the second-order moment as

𝑺0
𝛼𝛽

= 𝒖0
𝛼𝒖

0
𝛽
− 1

3𝛿𝛼𝛽 , (36)

where 𝛿 is the Kronecker delta function. To set the phase values 𝜙0
𝑖

for the 𝑖th phase, we initialize the distribution function h as

ℎ̄
𝑖,0
𝛼 = 𝑤𝑑

𝛼𝜙
0
𝑖

(
1 + d𝛼 · 𝒖0

𝑑2
𝑠

)
(37)

𝒙𝑝 𝒙𝑠

𝒏𝑤𝑎𝑙𝑙

based on Eq. (11). For outlet boundary conditions,
we apply Neumann boundary conditions if the flux
through an outlet wall (see inset) is going outwards,
or simply set the velocity to zero, i.e.,

𝒖𝑥 (𝒙𝑠 , 𝑡) = ∇𝒖 (𝒙𝑝 , 𝑡) · 𝒏𝑤𝑎𝑙𝑙 > 0 ? 𝒖𝑥 (𝒙𝑝 , 𝑡) : 0,
𝒖𝑦 (𝒙𝑠 , 𝑡) = 0, (38)

from which the second-order moment is again approximated as
in Eq. (36). For the phase field equation, we implement an outlet
boundary condition for the distribution function h on the wall based
on [Lou et al. 2013], written as:

𝒉(𝒙𝑠 , 𝑡) = 𝒉(𝒙𝑝 , 𝑡) . (39)

6 PUTTING IT ALL TOGETHER
We can now complete the description of our HOME-LBM based
simulation of multiphase flows by discussing how the solvers for
respectively the phases and the flow are coupled.
We have reviewed in Sec. 4 how to deal with the LBM-based 𝑛

phase fields, indicating where the 𝑛 fluids are located in the domain.
Note that the only other field they require to be integrated in time
is the macroscopic velocity field in which they are advected. Con-
versely, we have discussed in Sec. 5 how to use a lightweight and

Fig. 10. Time integration.A timestep from 𝑡 to 𝑡+1 of our solver is achieved
through (1) first, advancing the moments M𝑡 in time to 𝑡 + 1 accounting
for the forces induced by the 𝑛 phase fields 𝜙𝑡

𝑖
known at time 𝑡 (top); then

(2) the phase fields are updated in two substeps (bottom), first advected by
the macroscopic velocity 𝒖𝑡 , then by the average velocity 𝒖𝑡+

1
2 . Hexagonal

labels indicate dependencies between flow and phase-field equations.

efficient flow integration to compute a multiphase version of HOME-
LBM using a velocity-based distribution to handle the velocity field
through LBM. This time, forces based on the phase densities (hence,
on all the phases) are needed to properly integrate the velocity field.
We thus have all we need to couple the simulation of the 𝑛 phases
{𝜙𝑖 }𝑛 and the flow simulator to integrate multifluid flows in time.
However, we added a few other components to this basic sim-

ulation framework. First, to improve the accuracy and stability of
the phase field equations, we follow the recommendation in [Li and
Desbrun 2023] by employing a eight-times finer resolution for the
phase fields compared to the grid for distribution 𝒈 (i.e., each spatial
dimension uses a twice finer discretization). This changes slightly
the time integration scheme since the phase fields now need two
substeps, see Fig. 10. Moreover, while Li and Desbrun [2023] had
the two grids staggered with respect to each other to filter spurious
oscillations of the velocity field, we found that the filtering brought
by the use of a HOME-LBM solver (based only on the first three
moments) is enough, and no staggering is required. So we kept the
two grids aligned as this reduces the need for grid interpolation,
hence accelerating the final solver.

Second, we also incorporate wetting (i.e, the way fluids cling to or
separate from obstacles) using the same treatment as in two-phase
wetting [Li et al. 2022], for all the phases individually — i.e., the
boundary conditions to induce hydrophobic or hydrophilic wetting
near solid boundaries are set phase by phase, ignoring the fact that
phases are globally bound by Eq. (3). While this may be inaccurate,
we could not find modeling papers discussing how to properly deal
with wetting for multiple phases/fluids. As we will show in Sec. 7,
this does not appear to affect the visual validity of our results.
Finally, coupling with complex solids is handled through cut

cells, exactly as proposed in [Li and Desbrun 2023], and so do wall
boundary conditions. However, we no longer need their “hybrid”
bounce-back approach, which was designed to filter the pressure
near solids: our use of HOME-LBM removes this issue, and we
use the original (simpler) bounce-back approach which results in
non-oscillatory pressure behavior near boundaries in our tests. To
demonstrate our solver’s stability in the presence of large density
ratios, we ran a two-phase simulation (a dam break with a thin plate
obstacle) for a density ratio of 2000 using different flow models. As
Fig. 18 shows, when a solid boundary bounce-back treatment and
phase solver are used, the momentum-based LBM model [Fakhari

ACM Trans. Graph., Vol. 43, No. 4, Article 55. Publication date: July 2024.



55:10 • Wei Li, Kui Wu, and Mathieu Desbrun

Fig. 11. Water poured into oil.With density ratios of water:oil:air set to 800:720:1, a ball of water drops into an oil tank, creating an emulsion.

et al. 2017a] will crash quickly before even hitting the obstacle, while
a velocity-based LBM model [Fakhari et al. 2017b] fails when the
heavy fluid encounters the obstacle. Only our solver can simulate
this case in a stable manner.

7 RESULTS
We now provide ample evidence of the advantages of the result-
ing multiphase fluid integrator, for which we give pseudocode in
Alg. 1. We cover a number of simulation experiments with our fluid
solver, including benchmark evaluations, comparisons with existing
methods, and several application scenarios. All results were run on
a workstation equipped with an AMD Ryzen 9 7900X3D 12-core
processor and an Nvidia GeForce RTX 4090 card with 24GB of GPU
memory. Our framework was implemented in C++ and CUDA. De-
tailed statistics, including timings profiled with Nvidia Nsight, are
presented in Tab. 3. Note that our handling of one-way coupling
relies entirely on [Li and Desbrun 2023], which was developed for
two-phase simulations.

GPU-based implementation. We implemented our approach on
GPU using a structure-of-arrays (SOA) data structure [Chen et al.
2022]. To accelerate time integration, we maintain two buffers with
10 variables per grid node (representing the first velocity moments
of distribution 𝒈), totaling 20 variables for velocity updates. We also
use SOA for each of the (𝑛−1) distributions 𝒉𝑖 , and we prefetch
phase values (from global to GPU shared memory) to further speed
up performance for, e.g., the evaluation of phase gradients.

Lightweight distribution reconstruction. For the 3D distribution
reconstruction of 𝑔𝑖 in Eq. (28), we can also use a lightweight D3Q19
lattice structure that ignores the cube diagonals (see Fig. 6), and
for which the distribution reconstruction is given in App. D: by
removing the diagonal lattice components, our solver does not lose
obvious accuracy because the effect of the collision on the moments
stays the same, but the reduction in GPU memory access and in the
size of the closed-form evaluation results in higher performance.
We thus use this simpler 𝑔𝑖 reconstruction for all experiments in
this paper.

Memory reduction. Compared to recent work in 𝑛-phase simula-
tion [Hu et al. 2020], our framework significantly reduces memory
consumption, especially when the phase count 𝑛 is large. This im-
provement can be attributed to several factors. First, our framework
employs (two times) 10 moment values for velocity discretization,
instead of the (two times) 27 distribution function values used in the

ALGORITHM 1: Pseudocode of our kinetic multifluid solver.
𝑡 ← 0;
Initialize 𝜙 , as well as the velocity moments 𝑝 , 𝒖,and 𝑺;
Init∇𝜙() ⊲ Eq. (16) and (18)
InitForces() ⊲ Eq. (22),(23) and (34)
Initialize distribution 𝒉 ⊲ Eq. (11)
while 𝑡 < 𝑇 do

In/OutletBoundaryTreatmentForFlow() ⊲ Sec. 5.4

HOME-LBM-FlowSolver() ⊲ Sec. 5.2

𝑘 ← 0;
while 𝑘 < 2 do

PerformPhaseCollision() ⊲ Eq. (12)
In/OutletBoundaryTreatmentForPhase() ⊲ Sec. 5.4

PerformPhaseStream() ⊲ Eq. (12)
UpdatePhaseField() ⊲ Eq. (15)
WettingBoundaryConditionForPhase() ⊲ Sec. 6

Compute∇𝜙() ⊲ Eq. (16) and (18)
𝑘 ← 𝑘 + 1;

end
CalculateForces() ⊲ Eq. (22),(23) and (34)
𝑡 ← 𝑡 + 1;

end

conventional LBM framework. Secondly, our high-order collision
model for phases enables the use of a D3Q7 lattice structure for
(𝑛−1) phase equations without compromising accuracy and robust-
ness, while Hu et al. [2020] relied on a D3Q19 lattice, incurring an
almost three-fold higher memory cost. Additionally, the decoupling
of resolution between flow and phase fields allows us to use a lower
resolution for the velocity integration, resulting in substantial mem-
ory savings. As shown in Tab. 2, our solver only uses (12𝑛 − 8.5)
values per grid node to simulate a 3D 𝑛-phase flow, while their
method requires (43𝑛 + 20) variables. For example, in Fig. 4 with
𝑛=4, our solver offers an approximately 80% reduction in memory
size compared to the earlier work of Hu et al. [2020].

Table 2. Memory reduction: Number of floats per grid node required in
3D for a 𝑛-phase simulation, compared to [Hu et al. 2020]. Uneven numbers
account for flow grid nodes being 8 times fewer than phase grid nodes; here
M = {𝑝∗, 𝒖, 𝑺 }, and 𝒏 is the phase normal stored for efficiency.

Method M (𝜌, 𝒖, 𝑝∗) cut-cell flag 𝒈 F 𝒉 𝜙 & Δ𝜙 𝒏 total
Our method 2.5 — 0.5 0.5 — — 7(n-1) 2(n-1) 3(n-1) 12n-8.5

[Hu et al. 2020] 0 5 0.5 0.5 54 3 38(n-1) 2(n-1) 3(n-1) 43n+20
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7.1 Benchmark evaluations
We first perform two classical 2D benchmark tests to verify the
correctness of our method.

Spinodal decomposition. Spinodal decomposition occurs when a
homogeneous multifluid system undergoes a sudden cooling below
its critical temperature, leading to concentration fluctuations. This
process, extensively explored in multiphase simulations, separates
the system into distinct spatial regions, each rich in one fluid and
poor in others. Our test follows the setup of [Abadi et al. 2018],
using three fluids with density ratios 𝜌3 : 𝜌2 : 𝜌1 = 1000 : 100 : 1 in
a 𝐿0×𝐿0 simulation domain (for 𝐿0 =200) with periodic boundary
conditions. Viscosity and mobility for all fluids are 𝜈 =0.5 and 𝜇=0.8,
and the interface width 𝜉 is set to 4. The initial conditions are:

𝜙1 (𝒙, 0) = 𝜙1 + 0.01 ∗ rand(),
𝜙2 (𝒙, 0) = 𝜙2 + 0.01 ∗ rand(),
𝜙3 (𝒙, 0) = 1 − 𝜙1 (𝒙, 0) − 𝜙2 (𝒙, 0),
𝒖 (𝒙, 0) = 0,

where 𝜙1 and 𝜙2 represent the initial mean concentrations of 𝜙1 and
𝜙2, respectively, while calls to the function 𝑟𝑎𝑛𝑑 () generate uniform
random numbers within the range [−1, 1]. We test the temporal
evolution of the three-fluid system with three different sets of mean
concentrations: (𝜙1, 𝜙2) = ( 25 ,

2
5 ), (𝜙1, 𝜙2) = ( 13 ,

1
3 ), and (𝜙1, 𝜙2) =

( 14 ,
1
4 ). Fig. 12 demonstrates that our method effectively separates

an immiscible fluid mixture into islands of separate components as
expected. Notably, the total mass𝑀𝑡 =

∫
Ω 𝜌 (𝒙, 𝑡)𝑑𝑉 remains constant

throughout the simulation, underscoring the accuracy of our solver.

(𝜙
1,
𝜙

2)
=
(1 4,

1 4
)

(𝜙
1,
𝜙

2)
=
(1 3,

1 3
)

(𝜙
1,
𝜙

2)
=
(2 5,

2 5
)

Fig. 12. Spinodal decomposition evolution: Each row shows the tem-
poral evolution of a three-fluid system over time, for different initial fluid
distributions as indicated on the left.

Raleigh-Taylor instability. The Raleigh-Taylor (RT) instability is
the instability occurring at an interface between two fluids of differ-
ent densities when the heavier fluid is pushing down on the lighter
fluid [Cook et al. 2004; Abadi et al. 2018]. In our experiment, we
employ three immiscible fluids with density ratios 𝜌3 :𝜌2 :𝜌1=3 :2 :1,
confined within a domain of size 𝐿0×4𝐿0 (where 𝐿0=256). The heav-
iest fluid is on top, sharing a sinusoidal-shaped interface with the
lighter fluid, and similarly between the lighter and lightest fluids.
The phases are initialized as:
𝜙1 (𝒙, 0) = 0.5 + 0.5 tanh(2 ∗ (𝑦 − 8 ∗ 𝐿0/3 + ℎ(𝑥)/𝑊 ),
𝜙2 (𝒙, 0) = 0.5 + 0.5 tanh(2 ∗ (𝑦 − 4 ∗ 𝐿0/3 + ℎ(𝑥)/𝑊 ) − 𝜙1 (𝒙, 0),
𝜙3 (𝒙, 0) = 1 − 𝜙1 (𝒙, 0) − 𝜙2 (𝒙, 0),

where ℎ(𝑥) =0.1𝐿0 sin(2𝜋/𝐿0) represents the sinusoidal interface,
𝜉 = 5 is the width of the interfaces, and the Reynolds number
is 𝑅𝑒 = 𝜌1𝐿0𝑈0/𝜈1 = 1000. A dimensionless time 𝑡∗ is defined as
𝑡∗=𝑡/

√︁
𝐿0/𝑔𝐴𝑡 , where 𝐴𝑡 = (𝜌1 − 𝜌3)/(𝜌1 + 𝜌3) and 𝑔 = 2 × 10−5

denotes the downward gravitational acceleration. The characteristic
velocity is𝑈0=

√︁
𝑔𝐿0. The simulation employs periodic boundaries

on the left and right, while the upper and lower boundaries are
handled using a half-way bounce-back scheme. Fig. 13 illustrates
the temporal evolution of these three fluids, showing obvious sim-
ilarities with the figure in [Abadi et al. 2018]. Initially, the heavy
fluid goes down, creating a spike, while the light fluid ascends, form-
ing a bubble. During the initial stages, viscous forces strengthen
as the convective velocity between different fluids intensifies. This
heightened viscosity increases resistance on both sides of the convex
interface surrounded by the other fluids. Consequently, the move-
ment of the interface on both sides decelerates compared to the
middle part of the convex interface. This gradual slow-down results
in the formation of a hook shape opposite to the direction of motion.
As the interfaces continue to deform, the three-phase fluid system
becomes unstable and undergoes mixing. After a while, the simula-
tion experiences stratification again, forming a new three-layered
structure with the lighter fluid on top.

Fig. 13. Raleigh-Taylor evolution: From left to right, temporal evolution
of a three-fluid RT instability (with side periodic condition).

To offer a quantitative comparison, we also calculate the average
heights 𝑌 𝑖 of the interface of the 𝑖th fluid defined as:

𝑌 𝑖 =

∑
Ω 𝑦𝜙 (𝒙, 𝑡)∑
Ω 𝜙 (𝒙, 𝑡) for 𝑖 = 1, 2, 3
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Image from [Abadi et al. 2018] Ours
Fig. 14. Rayleigh-Taylor statistics: Time evolution of the barycenter
heights of each fluid, with red and blue denoting the heaviest and lightest
fluid respectively.

Fig. 14 shows the averages {𝑌 𝑖 } in time, which are consistent with
the results shown in [Abadi et al. 2018].

7.2 Comparisons with existing works
We also provide comparisons with recent CG results: the LBM-based
framework of Li et al. [2022] and the multiphase Navier-Stokes work
of Yan and Ren [2023].

Comparison with [Li et al. 2022]. Our solver satisfies reduction
consistency so that it can trivially simulate two-phase flows. A first
test is thus simulated using our moment-based multiphase fluid
solver alongside a distribution-based Lattice Boltzmann Method
solver [Li et al. 2022], both with the same fluid and phase resolution.
Leveraging our moment-based representation, the hybrid bounce-
back treatment used in the distribution-based LBM solver can be
eliminated, resulting in more reasonable bubbles without excessive
pressure filtering, see Fig. 15,. More importantly, the distribution-
based LBM solver requires 48 floats per node, while ours only needs
32 floats per node, for which 10 moment variables in the moment
buffer can be reused to store temporal variables such as force, density,
and Δ𝜙 . This allows us to save 16 values per grid node in 3D, reduc-
ing the total memory usage by approximately 33%. Consequently,
this reduced memory access allows for a significant speedup, as
our solver ends up being approximately 2.35 times faster than the
method proposed in [Li et al. 2022] at a resolution of 720× 360× 324.

Comparison with [Yan and Ren 2023]. To compare with [Yan and
Ren 2023], we run a three-phase dam break with density ratios
1500 : 30 : 1 to match one of their examples, using a 280×140×
140 flow grid and 560×280×280 phase grid as shown in Fig. 16.
Similar to [Yan and Ren 2023], our solver maintains the property of
phase-mass conservation. However, [Yan and Ren 2023] does not
support the actual simulation of the air phase, and their simulation
of the two other phases with 73K particles does not exhibit much
detail. Comparatively, our true three-phase approach demonstrates
very detailed splashing, bubbles, and wetting — obviously, at a
computational cost around 50 times higher on this example.

7.3 Simulation results
Finally, we go over the various examples we ran with our solver
to illustrate further the generality, efficiency, and realism of our
𝑛-phase solver.

Dam breaks. We conducted dam break tests with three phases
(two fluids and air) for density ratios 800 :80 :1. In Fig. 2, a thin plate

Images from [Li et al. 2022] Ours
Fig. 15. Comparison with [Li et al. 2022]: For the same scene setup, our
method (right) achieves 2.35 times speedup at a resolution of 720×360×324,
and does not show spurious ringing artifacts near solid boundaries.

with a 30-degree incline creates a pronounced crown splash as the
water encounters the obstacle. The heavier phases sweep away the
lighter phases, resulting in the formation of bubbles and splashes
when the phases come in contact. Additionally, wetting patterns
emerge as different density phases spatter onto the four transparent
walls of the container. In this immiscible example, distinct layers
of the different phases become clearly visible when the simulation
reaches a steady state. Another dam break with, this time, a bunny-
shaped obstacle, is shown in Fig. 9 to demonstrate our solver’s
capability in handling complex boundaries.

Images from [Yan and Ren 2023] Ours
Fig. 16. Comparison with [Yan and Ren 2023]: For a similar dam break
setting, ourmethod considers air a third phase, which rises tomore splashing,
the formation of bubbles, and wetting.
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Table 3. Statistics. All examples run on a Nvidia 4090 GPU, with timings indicated for 60-fps sequences.

Resolutions – Flow/Phase(s) Viscosity ratio Density ratio Sec./frame
Fig. 1 & Fig. 17 162 ×270 ×162/324 ×540 ×324 0.00036 : 0.001 : 0.006 800 : 400 : 1 28.8
Fig. 2 480 ×240 ×216/960 ×480 ×432 0.00072 : 0.0024 : 0.006 800 : 40 : 1 143.7
Fig. 3 280 ×280 ×140/560 ×560 ×280 0.00084 : 0.0012 : 0.007 800 : 80 : 1 51.7
Fig. 4 400 ×200 ×180/800 ×400 ×360 0.0006 : 0.002 : 0.002 : 0.005 800 : 80 : 16 : 1 186.7
Fig. 5 120 ×240 ×120/240 ×480 ×240 0.00048 : 0.0012 : 0.0036 800 : 40 : 1 51.3
Fig. 7 336 ×168 ×336/672 ×336 ×672 0.0004 : 0.001 : 0.006 2000 : 200 : 1 105.5
Fig. 8 440 ×220 ×198/880 ×440 ×396 0.00066 : 0.00088 : 0.0055 800 : 80 : 1 111.2
Fig. 9 480 ×240 ×216/960 ×480 ×432 0.0006 : 0.0012 : 0.0024 800 : 40 : 1 164.4
Fig. 11 286 ×440 ×176/572 ×880 ×352 0.00044 : 0.0011 : 0.0011 800 : 720 : 1 140.2
Fig. 15 Ours 720 ×360 ×324/720 ×360 ×324 0.0009 : 0.072 800 : 1 18.8
Fig. 15 [Li et al. 2022] 720 ×360 ×324/720 ×360 ×324 0.0009 : 0.072 800 : 1 44.1
Fig. 16 Ours 280 ×140 ×140/560 ×280 ×280 0.00084 : 0.0012 : 0.0112 1500 : 30 : 1 13.4
Fig. 19 Top 144 ×240 ×144/288 ×480 ×288 0.00032 : 0.0008 : 0.008 1000 : 500 : 1 32.3
Fig. 19 Bottom 144 ×240 ×144/288 ×480 ×288 0.00768 : 0.0192 : 0.008 1000 : 500 : 1 32.3
Fig. 20 384 ×144 ×384/768 ×288 ×768 0.00064 : 0.00064 : 0.00096 1000 : 250 : 1 135.6
Fig. 21 440 ×209 ×198/880 ×418 ×396 0.00088 : 0.0022 : 0.0011 1000 : 700 : 1 108.6
Fig. 22 320 ×160 ×160/640 ×320 ×320 0.012 : 0.012 : 0.012 : 0.032 1000 : 100 : 25 : 1 32.5

Glugging. Our solver is capable of simulating a three-phase glug-
ging effect, a phenomenon rarely showcased in previous works. The
density ratios of the two fluids and the air are set as 800 : 400 : 1.
We present two setups featuring different initial positions of the
heaviest phase. In Fig. 1, the dense fluid (blue) is placed on top of the
light fluid (green), in the upper part of an hourglass container. As the
simulation begins, a Rayleigh–Taylor instability appears, followed
by intricate bubbling, guggling, and wetting. Fig. 17 shows another
setup where the dense fluid is positioned below the light fluid. The
unified nature of our solver targeting a spectrum of multiphase
phenomena can exhibit a wide range of bubble sizes deep within
the liquid depending on the initial conditions. In both cases, at the
end of the simulations, distinct layers of the two different fluids are
clearly visible, and the respective volume occupancy of each fluid is
conserved.

Unmixing a mixture. In Fig. 3, an immiscible mixture of three
phases (more precisely two fluids and air) is initialized with equal
phase values at each fluid node (amounting to a preliminary vigorous
shake of the container), and evolves by eventually separating into
different layered parts due to the different density ratios set to
800 :80 :1. The animation reveals natural settling of the fluids under
gravity, capturing multiple bubbles. Due to wetting and surface
tension effects, some small drops are even left on the top wall of the
container. The equal division at the beginning state ensures that our
solver generates an exact equal phase separation at the end of the
animation. To showcase more complex splashing, we also conducted
a test involving a mixture of gray droplets onto the floor, resulting
in splashing and bubble generation before the fluids separate into
red and blue phases, as seen in Fig. 8.

Porous media. To test robustness, we simulate fluids interacting
with highly complex obstacles. Fig. 5 illustrates two immiscible fluids
(plus air) traversing a porous rock with density ratios 800 : 80 : 1.
Initially, the dense blue fluid displaces the lighter green fluid, after
which the blue liquid navigates through the irregular holes and
tunnels first, with the green liquid following closely behind. During
this process, bubbles form, and liquid filaments and drops emerge
at the bottom of the rock as water exits. In Fig. 19, two different
immiscible liquids (plus air) fall down an S-shaped container, making
their way through two separating plates with hydrophobic wetting
boundary conditions. Here, the density ratios are set to 1000 :500 :1.

Immiscible/Miscible multiphase flows. We further simulate a three-
fluid dam break, where the three fluids are immiscible with air, for
density ratios 800 :80 :16 :1. Fig. 4 demonstrates three different mis-
cibility coefficients between the three fluids. The first row illustrates
a scenario where the three fluids are miscible with each other, and
as time progresses, they indeed merge into a single fluid. The second
row depicts a case where the three phases are partially miscible, and
a blurred interface between the fluids becomes visible. The last row
presents a scenario where the three phases are immiscible, forming
clear interface layers at the end of the simulation.

Water into oil. Fig. 11 shows a ball of water dropping into an oil
container whose density ratio is set 800 : 720 : 1, close to real-life
ratios, creating a water-in-oil emulsion.

Various boundary conditions. To showcase different boundary
conditions, we also provide inlet and outlet flow scenario and a one-
way coupling simulation: in Fig. 20, a fan (with a constant rotation
speed at the beginning before gradually shutting down) creates
vorticity in the air phase and drives the motion of the other two
flows; in Fig. 21, an inlet continuously blows air onto a two-fluid
mixture, creating splashes and mixing.

Surface tension effects. In Fig. 22, we test surface tension effects
by showing how a cube-shaped drop evolves into a spherical shape
faster or slower depending on the density of the fluid: the lightest
fluid (blue) converges to the final state more quickly than the others.

Large density ratios. Finally, to demonstrate our solver’s ability
to handle very large density ratios, we ran a dam break with two
different fluids and air, for density ratios 2000 :200 :1, see Fig. 7.

8 CONCLUSION
In this paper, we have presented a new kinetic solver to simulate
multifluid flows, where each of the fluids or gas can have its own
density, miscibility, viscosity, and capillarity. Besides producing far
more complex fluid animations, the massively parallel nature of
our solver results in extremely efficient computations compared to
previous works for comparable visual complexity. We designed this
general fluid simulator by contributing a number of elements in the
usual time integration pipeline of LBM methods:
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Fig. 17. Three-phase glugging. As two liquids of different densities are flowing down an hour-glass like container, the heavier flow (blue) hits the ground
first and forms bubbles going across the second fluid inside the top container. Splashes and bubbles are also observed in the lower container. Near the end,
wetting is seen along the container’s walls, and the liquids form two different layers again.

(a)
(b)

(c)

Fig. 18. Ablation study. For a 3D simulation scenario similar to Fig. 15 and
visualized as a cut-slice in the phase field, using a momentum-based LBM
distribution [Fakhari et al. 2017a] for the flow crashes early on because of
the large density ratio (2000) (a), while a velocity-based distribution [Fakhari
et al. 2017b] only fails when the bounce-back treatment of the fluid hitting
the obstacle kicks in (b); only our velocity-based approach encoded via three
moments maintains stability throughout the simulation (c).

•We adapted the D3Q27(or D3Q19) HOME-LBM method of Li et al.
[2023] to our case of multiphase flows by providing new closed-
form third-order-accurate expressions of both the filtered recon-
struction of a “velocity-based” distribution from its three first ve-
locity moments (Eq. (28)) and the effects of a central-moment MRT
collision model on these three velocity moments (Eq. (29), (30)
and (31)). These expressions not only reduce memory require-
ments (the main Achilles heel of kinetic solvers) by two-thirds
but also greatly accelerate the kinetic integration of the velocity
field by avoiding the costly projections between distributions and
central moments that are used in state-of-the-art collision models.
• Our phase-field D3Q7 representation of the spatial occupancy of
the fluids and gas is advanced in time by a conservative time up-
date equation given in Eq. (12) which we extended from the CPF
method [Fakhari et al. 2017b] through a constrained minimiza-
tion to account for the preservation of respective fluid volumes,
offering phase reduction consistency as well.
• The kinetic solver for the velocity field can thus pass the current
velocity to advect phases, while the phase solver returns interfa-
cial forces based on phases and densities to affect the evolution
of the velocity field.

These contributions result in an efficient and stable multiphase inte-
grator, which can handle high Reynolds numbers and large density
ratios. Given our adjustable fluid characteristics like miscibility and

wetting boundary conditions, we were able to show a variety of
complex simulations to demonstrate the generality and efficiency
of our work in generic simulation cases.

Limitations and future work. While we use a finer phase grid
than the velocity grid to improve the phases’ ability to perform a
more accurate evolution and to accommodate both thick and thin
obstacles, our diffuse interface model can still lose small details at
scales smaller than the grid, which would require an adaptive grid
approach to fully resolve. We leave this as future work, although
the approach of Lyu et al. [2023], once adapted to our multiphase
context, might be a good way to introduce adaptivity. An obvious
next step would be to use HOME-LBM for the phases as well, to
avoid having to compute the collision operator on the distributions.
However, our current use of D3Q7 lattice is not particularly memory
or time consuming, so we may not gain much by storing the first
two velocity-moments instead — although in-place streaming and
collision-related computations are the bottleneck in our multifluid
solver. Moreover, our current solver has not been tested for two-
way coupling: while the approach of Li and Desbrun [2023] can
be applied to our solver to achieve this, we have not been able to
test it thoroughly enough, and chances are that modifications will
be required to offer the same expected stability; we thus provided
mostly scenes with fixed boundaries in this paper and only one-way
examples. Finally, the current phase field model does not support
phase changes. Introducing a pseudopotential model to deal with
liquid–vapor phase change [Fei et al. 2020] into our multiphase
simulator could bring a whole slew of interesting applications, such
as the distillation of a mixture.
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A HERMITE POLYNOMIALS
The explicit second-order Hermite tensor values we need are:

𝐻
[2]
𝛼,𝛽
(𝒄𝑖 ) = 𝑐𝑖,𝛼𝑐𝑖,𝛽 − 1

3𝛿𝛼𝛽 ,

while the third-order Hermite tensor values are:

𝐻
[3]
𝛼,𝛽,𝛾
(𝒄𝑖 ) = 𝑐𝑖,𝛼𝑐𝑖,𝛽𝑐𝑖,𝛾 − 1

3

(
𝑐𝑖,𝛼𝛿𝛽𝛾 + 𝑐𝑖,𝛽𝛿𝛼𝛾 + 𝑐𝑖,𝛾𝛿𝛼𝛽

)
.

B 2D MOMENT-BASED RECONSTRUCTION
The 2D reconstruction of a distribution from its three velocity mo-
ments 𝑝∗, 𝒖, and 𝑺 is also provided, in order to complement the 3D
expression from Eq. (28):

𝑔𝑖 =𝑤𝑖

[
𝑝∗ + 𝒄𝑖 · 𝒖

𝑐2
𝑠

+ 𝑯 [2] (𝒄𝑖 ) : S
2𝑐4

𝑠

(40)

+ 1
2𝑐6

𝑠

(
𝐻
[3]
𝑥𝑥𝑦 (𝒄𝑖 ) (𝑆𝑥𝑥𝑢𝑦 + 2𝑆𝑥𝑦𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑢𝑦)

+ 𝐻 [3]𝑥𝑦𝑦 (𝒄𝑖 ) (𝑆𝑦𝑦𝑢𝑥 + 2𝑆𝑥𝑦𝑢𝑦 − 2𝑢𝑥𝑢𝑦𝑢𝑦)
) ]
.

C 2D CENTRAL-MOMENT-BASED COLLISION
In 2D, the moment-based collision’s update equations become:

𝑝∗ (𝒙, 𝑡 + 1) = 𝑝∗
′
;

𝑢𝛼 (𝒙, 𝑡 + 1) = 𝑢∗𝛼 + 1
2𝜌 ′ 𝐹𝛼 ;
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𝜏 )𝑆
∗
𝑥𝑦 + 1

𝜏𝑢
∗
𝑥𝑢
∗
𝑦 + 2𝜏−1

2𝜏𝜌 ′ (𝐹𝑥𝑢
∗
𝑦 + 𝐹𝑦𝑢∗𝑥 ) ;

𝑆𝑥𝑥 (𝒙, 𝑡 + 1) = 𝜏−1
2𝜏 (𝑆

∗
𝑥𝑥 − 𝑆∗𝑦𝑦) + 𝜏+1

2𝜏 𝑢∗𝑥
2

+ 𝜏−1
2𝜏 𝑢∗𝑦

2 + 1
𝜌 ′ 𝐹𝑥𝑢

∗
𝑥 + 𝜏−1

2𝜏𝜌 ′ (𝐹𝑥𝑢
∗
𝑥 − 𝐹𝑦𝑢∗𝑦) ;

𝑆𝑦𝑦 (𝒙, 𝑡 + 1) = 𝜏−1
2𝜏 (𝑆

∗
𝑦𝑦 − 𝑆∗𝑥𝑥 ) + 𝜏+1

2𝜏 𝑢∗𝑦
2

+ 𝜏−1
2𝜏 𝑢∗𝑥

2 + 1
𝜌 ′ 𝐹𝑦𝑢

𝑡
𝑦 + 𝜏−1

2𝜏𝜌 ′ (𝐹𝑦𝑢
∗
𝑦 − 𝐹𝑥𝑢∗𝑥 ) .

D D3Q19 MOMENT-BASED RECONSTRUCTION
The moment-based distribution function reconstruction for the
D3Q19 lattice structure (Fig. 6) ignores the cube diagonals in Eq. (28),
and becomes:

𝑔𝑖 =𝑤𝑖

[
𝑝∗ + 𝒄𝑖 · 𝒖

𝑐2
𝑠
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+ 𝐻 [3]𝑥𝑥𝑧 (𝒄𝑖 ) (𝑆𝑥𝑥𝑢𝑧 + 2𝑆𝑥𝑧𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑢𝑧)

+ 𝐻 [3]𝑥𝑧𝑧 (𝒄𝑖 ) (𝑆𝑧𝑧𝑢𝑥 + 2𝑆𝑥𝑧𝑢𝑧 − 2𝑢𝑥𝑢𝑧𝑢𝑧)

+ 𝐻 [3]𝑦𝑧𝑧 (𝒄𝑖 ) (𝑆𝑧𝑧𝑢𝑦 + 2𝑆𝑦𝑧𝑢𝑧 − 2𝑢𝑦𝑢𝑧𝑢𝑧)

+ 𝐻 [3]𝑦𝑦𝑧 (𝒄𝑖 ) (𝑆𝑦𝑦𝑢𝑧 + 2𝑆𝑦𝑧𝑢𝑧 − 2𝑢𝑦𝑢𝑦𝑢𝑧)
) ]
.

The moment-collision for 𝐷3𝑄19 lattice structure stays the same as
Eqs. (29), (30) and (31).
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