
Energy-Preserving Integrators for Fluid Animation

Patrick Mullen
Caltech

Keenan Crane
Caltech

Dmitry Pavlov
Caltech

Yiying Tong
MSU

Mathieu Desbrun
Caltech

Figure 1: By developing an integration scheme that exhibits zero numerical dissipation, we can achieve more predictable control over
viscosity in fluid animation. Dissipation can then be modeled explicitly to taste, allowing for very low (left) or high (right) viscosities.

Abstract

Numerical viscosity has long been a problem in fluid animation.
Existing methods suffer from intrinsic artificial dissipation and of-
ten apply complicated computational mechanisms to combat such
effects. Consequently, dissipative behavior cannot be controlled
or modeled explicitly in a manner independent of time step size,
complicating the use of coarse previews and adaptive-time step-
ping methods. This paper proposes simple, unconditionally stable,
fully Eulerian integration schemes with no numerical viscosity that
are capable of maintaining the liveliness of fluid motion without
recourse to corrective devices. Pressure and fluxes are solved effi-
ciently and simultaneously in a time-reversible manner on simpli-
cial grids, and the energy is preserved exactly over long time scales
in the case of inviscid fluids. These integrators can be viewed as an
extension of the classical energy-preserving Harlow-Welch / Crank-
Nicolson scheme to simplicial grids.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Animation
Keywords: Eulerian fluid animation, time integration, energy preservation.

1 Introduction

Physically-based animation of fluids is often modeled using the
incompressible Navier Stokes equations. Numerically integrating
these equations presents numerous practical challenges, however,
and has been a focus of Computational Fluid Dynamics (CFD) for
the past thirty years. When visual impact matters most, more elab-
orate CFD methods are generally considered unnecessary: simple
Eulerian discretizations with explicit semi-Lagrangian or upwind
advection have been the methods of choice in computer animation
for the last few years.

A significant numerical difficulty in all CFD techniques is avoiding
numerical viscosity, which gives the illusion that a simulated fluid is
more viscous than intended. It is widely recognized that numerical
viscosity has substantial visual consequences, hence several mecha-
nisms (such as vorticity confinement and Lagrangian particles) have
been devised to help cope with the loss of fine scale details. Com-
mon to all such methods, however, is the fact that the amount of
energy lost is not purely a function of simulation duration, but also
depends on the grid size and number of time steps performed over
the course of the simulation. As a result, changing the time step size
and/or spatial sampling of a simulation can significantly change its
qualitative appearance. Such a dependence can make it difficult to
compute coarse previews, for example.

In this paper, we propose a family of fully-Eulerian schemes that
provide full control over the amount of dissipation, independent
of temporal and spatial resolution. Control over viscosity stems
from the use of a non-dissipative integration scheme for the Euler
equations on arbitrary simplicial grids. We can then add implicit
diffusion to model viscosity directly. We demonstrate the efficiency
and robustness of these schemes via numerical comparison with
current techniques.

1.1 Previous Work
Early work on fluid animation for computer graphics widely fa-
vored the use of Eulerian staggered grid discretizations [Foster and
Metaxas 1997; Fedkiw et al. 2001], where the fluid velocity compo-
nents are stored per face instead of being collocated at nodes. Semi-
Lagrangian advection techniques [Stam 1999] have been prevalent
due to their unconditional stability and ease of implementation.
Their resulting excessive energy dissipation was later mitigated by
the adoption of vorticity confinement to partially reinject lost vor-
ticity into the flow [Steinhoff and Underhill 1994; Fedkiw et al.
2001], or through higher-order advection schemes using repeated
semi-Lagrangian steps [Kim et al. 2007; Selle et al. 2008]. How-
ever, the stability of these methods is guaranteed only if spurious
extrema are eliminated by a limiter. More recently, a case was made
for explicit, third-order upwind-based advection [Molemaker et al.
2008] as a low dissipation technique at reasonable computational
cost. Subscale modeling was also proposed [Schechter and Bridson
2008] to get energy cascading in line with the empirical behavior of
statistically stationary isotropic turbulence despite numerical vis-
cosity, although at a scale much larger than intended.

Another remedy to combat dissipation is to add Lagrangian machin-
ery to the Eulerian solver. Selle et al. [2005] proposed to add vortex

mathieu
Sticky Note
Note that section 3.2 was changed (a star_2 was added in the pseudocode) to correct a typo in the original version.

particles to track vorticity and inject a tuneable confinement force
into the flow. Bridson et al. [2005] even advocated the substitu-
tion of the semi-Lagrangian advection scheme in stable fluids with
the Lagrangian fluid-implicit-particle (FLIP) scheme [Brackbill and
Ruppel 1986] that exhibits significantly less numerical dissipation
than semi-Lagrangian advection after pressure projection. While
fast, these mixed schemes require careful management of particle
distribution in order to achieve good quality and performance.

Another line of research in computer animation of fluids focused
on offering more versatile spatial discretizations to capture com-
plex geometries with low node count. Spatially adaptive discretiza-
tions such as octrees were proposed to improve resolution of highly
turbulent flows [Shi and Yu 2002; Losasso et al. 2004], albeit with
significant computational overhead and grid-aligned aliasing arti-
facts. Integration schemes for simplicial and hybrid meshes through
semi-Lagrangian backtracking were introduced, for which the com-
putational overhead brought by non-regular mesh data structures
were largely compensated for by the increased visual complexity
per element [Feldman et al. 2005; Chentanez et al. 2007]. Even if
circulation preservation can be enforced [Elcott et al. 2007], these
schemes on arbitrary grids still suffer from noticeable energy dis-
sipation, leading to an uncontrolled energy decay in the flow that
depends on both the mesh size and the time step size.

Energy preservation for inviscid fluids on unstructured grids had not
received much attention in CFD in the past due to the prevalence of
methods based on regular grids. This has changed recently with the
introduction of discrete energy-conserving schemes on 2D and 3D
unstructured grids [Perot 2000; Zhang et al. 2002; Mahesh et al.
2004]. The role of discrete differential operators for the curl and
divergence (as used in [Elcott et al. 2007]) in ensuring kinetic en-
ergy conservation was acknowledged, and numerical benefits from
non-dissipative advection were demonstrated. In particular, en-
ergy preservation guarantees that the velocity will always remain
bounded, bringing unconditional stability to the schemes. Deriva-
tions of these new schemes were obtained through discretization
of the vorticity form of the continuous Euler equations, but the fi-
nal update rules require a fairly large stencil to compute advection.
Moreover, it is not known whether these schemes can be derived
from first principles (as was successfully done for Lagrangian inte-
grators; see [Stern and Desbrun 2006] for a review).

1.2 Overview and Contributions

In this paper we present purely Eulerian integrators for fluid flow
on simplicial grids. These integrators involve very sparse equa-
tions, are unconditionally stable, and can be made time-reversible,
while exhibiting excellent long-term energy behavior in the sense
that total kinetic energy of inviscid fluids is conserved over arbitrar-
ily long durations without any parameter tuning. In the important
case of viscous fluids, our schemes capture the correct energy de-
cay, mostly independently of the time step and grid size. Efficiency
is achieved via an application of the Schur complement to quickly
solve the saddle-point problem arising from the implicit integration
step. Consequently, our implicit schemes are nearly as efficient
as other integrators for typical animation sequences, with the ben-
efit of being robust to change of time and space resolution. We
finally show that the resulting schemes share the same numerical
benefits as the Harlow-Welch scheme with a Crank-Nicolson time
discretization on regular grids (see, e.g., [Simo and Armero 1994]),
and discuss that some of these integrators are, in fact, variational.

2 Discrete Setup of Fluid Motion
Before describing our Eulerian schemes for fluid animation, we es-
tablish the equations of motion of both viscid and inviscid fluids,
and discuss the physical properties that our discrete time integra-
tors should preserve.

2.1 Equations of Motion
Consider an inviscid, incompressible, and homogeneous fluid on
domain M with velocity u and pressure p. Assuming constant unit
density (ρ = 1), the motion of such a fluid is governed by the Euler
equations which consist of a momentum equation

∂u

∂t
= −(u · ∇)u−∇p (1)

along with an incompressibility constraint
∇ · u = 0. (2)

Along with boundary conditions, these equations define the fluid
behavior and have been thoroughly studied both from a mechanics
point of view [Chorin and Marsden 1979] and from a computational
perspective [Gresho and Sani 2000].

Vorticity Formulation A particularly convenient expression in
which the Euler equations can be rewritten is a function not only
of the velocity u, but also of its vorticity ω = ∇×u:

∂u

∂t
+ ω × u = −∇P

∇ · u = 0
(3)

where now P is the Bernoulli pressure, i.e. the former pressure p
plus the kinetic energy density: P = p+ u2/2.

Handling Viscosity For a viscous fluid, the incompressible
Navier-Stokes equations are used instead. A diffusion term ν∆u is
added to the previous momentum equation as an extra body force,
where ν controls the amount of viscosity in the flow. This term
diffuses the momentum of the fluid, damping down turbulences.

2.2 Relevant Continuous Properties
Euler and Navier-Stokes flows have a number of properties that one
may want to preserve in the discrete realm to ensure a close visual
match between the discrete results and typical flows in nature.

Of particular visual significance is the fact that the Euler equations
preserve kinetic energy in time. Energy preservation is, however,
only rarely observed in practice by the fluid simulators used in com-
puter animation, visually producing overly viscous animation. Ad-
ditionally, this energy tends to seep towards small scales, a general
mechanical property called energy cascading: the kinetic energy is
thus conservatively transferred to smaller and smaller length scales
statistically, meaning that a large vortex will, over time, erode into
several smaller ones1. Faithfully reproducing this energy cascad-
ing in the discrete case is impossible due to the limited resolution
of meshes, and can only be approximated through subscale model-
ing [Schechter and Bridson 2008]—although it is quite unclear that
the type and scale of animations used in computer graphics can vi-
sually benefit from the restricted physical assumptions used in the
modeling of forward cascading. Kelvin’s circulation theorem (stat-
ing that vorticity is advected along the flow) was also pointed out
in [Elcott et al. 2007] as a crucial property to preserve to visually
capture the traditional turbulent behavior of nearly inviscid flows. A
last property of the Euler equations that has been shown important
to preserve independently of the numerical approximation is time
reversibility [Duponcheel et al. 2008]: applying the integration with
negated fluxes should exactly run the simulation backwards in time.
Notice that this symmetry in time is what was sought after in the
BFECC [Kim et al. 2007] and modified MacCormack [Selle et al.
2008] schemes: both schemes try to get the backward and forward
semi-Lagrangian to numerically agree, leading to much decreased
numerical viscosity. Finally, some applications are interested in the
preservation of the total enstrophy of the fluid. However, the ben-
efit of this to computer animation is currently less evident and our
methods do not address the preservation of this quantity.

1Note that the energy may sometimes go back up to larger scales tem-
porarily, as when two same-sign vortices merge.

Figure 2: Flow Past Sphere: Although completely inviscid flows may look unnatural (top), the absence of numerical viscosity gives animators
more predictable control over fluid appearance (bottom); here, smoke rises in a closed box containing a round obstacle.

We will thus focus on developing numerical schemes that, by push-
ing vorticity forward with the flow, will exactly achieve time re-
versibility and remove numerical energy dissipation for inviscid
flows. As we generally want to animate viscous flows, proper treat-
ment of the non-viscous part of the Navier-Stokes equations will
ensure proper energy decay even for large time steps. Note that
potential artifacts due to energy accumulating at fine scales will be
removed with an appropriate viscosity coefficient ν.

2.3 Discretization of Physical Quantities

To derive a computational procedure to integrate Euler and/or
Navier-Stokes equations, we must discretize both space and time,
and define a discretization of our physical quantities as well.

Spatial Discretization We use a tetrahedral mesh T (assumed to
be Delaunay and well-centered for simplicity) to discretize the spa-
tial domain M ; i.e., the domain is decomposed into a series of tets
{Ti}, i = 1..|T |. We assume that these tets are all oriented so as to
have positive volume, and their faces and edges are given arbitrary
orientations. From this primal tet mesh, we construct a Voronoi
dual V of the mesh. That is, we define a dual vertex ci as the cir-
cumcenter of tet Ti; a dual edge hij is the edge between ci and cj ,
that is dual to face fij ; a dual face se is a face of the Voronoi region
associated to (and thus orthogonal to) edge e, bounded by a loop
of dual edges hkl; and finally, a dual volume is the Voronoi cell of
a vertex of T , formed by dual faces. Note that the dual cells are
also given orientations. We will also use the intersections of the
primal and dual elements, including cij (the circumcenter of face
fij) and ce (the midpoint of edge e). We will denote by we,j the
quad-shaped intersection of cell j and the dual face se (see Fig-
ure 3). Finally, |.| will denote the Lebesgue measure (length, area,
or volume) of the elements (edges, faces, or tets).

Figure 3: Spatial Discretization: we will refer to primal and dual
mesh elements using the notation depicted in this figure.

Field Discretization As in [Feldman et al. 2003; Elcott et al.
2007], we adopt a flux based discretization of the velocity field.
This particular discrete setup is well-known, on regular grids, for
offering less aliasing than the node-based discretization, as well as
for preventing spurious modes in Poisson problems. We will de-
note by Fij the flux of the fluid through the face fij common to tet
Ti and tet Tj (note that Fji =−Fij), while the discrete Bernouilli
pressure on the dual node of tet Ti will be denoted Pi. The velocity
field will thus be represented by all the fluxes Fij , stored in a vector
F of size equal to the number of faces. Similarly, P will represent
the pressure field as a vector of all tet-based pressure values.

Discrete Operators We can discretize differential operators based
on Stokes’ theorem through two types of matrices [Elcott et al.
2007]: the adjacency matrices dk representing the connectivity be-
tween k-simplices and k+ 1-simplices (with the sign of the entries
determined by mutual orientation), and the diagonal Hodge star ma-
trices ?k with diagonal entries containing the ratios between the
corresponding dual (n−k)-element size and the primal k-element
size. Equipped with these simple matrices, the divergence of u is
directly ∇ · u ≡ d2F , i.e., the divergence per tet Ti is the sum of
the outward fluxes of Ti . Similarly, the curl of u is represented via
its surface integrals over dual faces by ∇×u ≡ dt1 ?2 F , i.e., the
curl per dual face ωe is the sum of line integrals of u along the dual
edges between adjacent tets around an edge e.

3 Discrete Energy-preserving Time integrator
In this section, we first present a time integration that preserves total
energy while respecting time-symmetry for inviscid fluids, before
describing our treatment of viscosity.

3.1 Discrete Euler equations
From the vorticity form of Euler equations given in Eq. (3), inte-
grating the continuous terms over each face fij leads to:

Ḟij +

Adv(F)ij︷ ︸︸ ︷∫
fij

(ω × u) · n dA = −(?2)−1
ij (Pj − Pi)∑

j∈N (i)

Fij = 0

where N (i) are the cells sharing a face with i. Note that the di-
agonal Hodge star (?2)ij = |hij |/|fij | was used to turn the line

integral of ∇P into a surface integral. Using Adv(F)ij as a short-
hand for the area integral over face fij we just derived, we can write
the discrete version of Eq. (3) as a function of F through:{

Ḟ + Adv(F) = − ?−1
2 dt2P

d2F = 0
(4)

In order to update the Eulerian fluxes F and construct an Euler fluid
integrator, we must therefore design a numerical approximation of
this “advection term” Adv(F).

3.2 Advection Term
To approximate this advection term, we proceed through local aver-
ages of the flux of ω×u on face fij in a Finite Volume manner. Our
procedure is conceptually simple: first we reconstruct a piecewise-
constant velocity vector Ui per tet Ti based on the known fluxes of
each of its four faces: since U is divergence-free there is a unique
vector such that the four fluxes of the tet represent the area inte-
gral of this vector along the face normals. (Note that this vector
can similarly be found through discrete Whitney basis functions to
reconstruct the vector field [Elcott et al. 2007].) For each recon-
structed vector Ui, we can evaluate the face integral that defines
Adv(F)ij : treating the vorticity vector around edge e as a constant
ωe = ωe/|se|.(e/|e|) in the region, we can integrate the flux of
ωe×Ui over the region of fij inside the convex hull of the edge
e and the circumcenter cij of the face. Summing the contributions
from the two other edges of fij will provide us directly with the area
integral. Finally, we antisymmetrize this evaluation to enforce that
our discrete approximation of ω×u also satisfies

∫
M

(ω×u)×u = 0;
we will see that this will enforce energy preservation when we in-
tegrate our equations in time. This procedure provides a low-order
approximation of the advection term Adv(F)ij on each fij . The
reader can find the exact terms involved in this summation, as well
as the explanations leading to energy preservation, in Appendix A.

Assembly Per Edge While this integration can be performed lit-
erally as explained above, we found it more efficient to reorganize
the terms involved so as to ensure an easy implementation and an
efficient evaluation. We instead proceed as follows:

For each edge e,
• evaluate the vorticity ωe on edge e
• for every pair of consecutive faces fij and fjk around e,
• add contribution of Fjk and ωe on Adv(F)ij :

Adv(F)ij −=
|fij |
hij

ωe

|se|
Fjk

2|we,j |
3|Tj |

• add contribution of Fij and ωe on Adv(F)jk:

Adv(F)jk +=
|fjk|
hjk

ωe

|se|
Fij

2|we,j |
3|Tj |

Note that Adv represents a flux change through oriented faces, thus
Adv(F)ji = −Adv(F)ij ; also, consecutive faces must be ordered
consistently with the edge orientation and vorticity computation.
Now that we have defined the advection operator, we can proceed
to build Eqs. (4) required to evolve our fluid forward in time.

3.3 Time-Reversible Integration
Until now, we only focused on spatial integration of the Euler equa-
tions, and did not discuss which fluxes to use in the advection
operator. One could use an explicit time integration by using the
fluxes at time tn in Adv(F)ij to compute the fluxes at time tn+1.
Conversely, an implicit integration could be used instead, assuring
much better numerical stability at the price of a greater energy dis-
sipation. As argued in Section 2.2, we would rather derive a time
integration devoid of numerical viscosity to offer better control over
the fluid viscosity once diffusion is included, as well as enforcing
time-reversibility.

Therefore, we use a midpoint integration for the updates of flux in
time, resulting in the following integrator:Fn+1 =Fn−hAdv

(
Fn + Fn+1

2

)
−h ?−1

2 dt2P
n+ 1

2 ,

d2F
n+1 = 0

(5)

where h= tn+1−tn is the time step size, F refers to the vector of all
fluxes Fij , and the superscript n (resp., n + 1

2
) is used to indicate

evaluation at time tn (resp., between time tn and tn+1).

Nonlinear Solve Evolving the fluid in time thus amounts to find-
ing Fn+1 and Pn+ 1

2 such that the following residual is zero:

R(F, P) :=

 1
h

(F − Fn) + Adv
(
Fn + F

2

)
+ ?−1

2 dt2P

d2F

This update equation allows us to derive the next set of fluxes
Fn+1 as a function of the current fluxes Fn through a non-linear
solve. Notice however that this equation only involves linear
and quadratic terms in Fn+1, so a simple nonlinear solver using
Newton’s method is sufficient. We thus repeatedly solve the
following Newton steps:

J︷ ︸︸ ︷(
1
h

Id+ ∂Adv
∂F

?−1
2 dt2

d2 0

)(
δF
δP

)
= −R(Fn+1, Pn+ 1

2)

until the norm of the residual R is below an accuracy threshold.

Improving Solver Performance Directly solving the system
J(δF t, δP t)t =−R during each Newton step can be burdensome
since J is asymmetric and needs to be assembled for each step.
We take two measures to improve performance. First, we approxi-
mate the Jacobian matrix J by omitting any entries of its upper left
block not on the diagonal. In practice we have found that taking
this approach both reduces the amount of work required to setup
each Newton step and greatly increases the sparsity of the system
without significantly increasing the required number of steps for
convergence. We are then left with a typical saddle-point problem:[

A ?−1
2 dt2

d2 0

] [
δF
δP

]
= −

[
RF

RP

]
where A is the sum of Id/h and of the diagonal part of the Jaco-
bian matrix ∂Adv/∂F containing the derivatives of the advection
term with respect to fluxes. Notice in particular that, besides being
diagonal, the matrixA has only positive terms for sufficiently small
timesteps (or sufficiently small velocities); hence in practice, our
matrixA is positive definite. Saddle point problems of this form can
be efficiently solved using the Schur complement method [Benzi
et al. 2005]. We can indeed solve the linear system:

d2A
−1?−1

2 dt2 δP = −d2A−1RF +RP (6)

for the change of pressure δP , then derive the new flux change
through:

δF = A−1 (−RF − ?−1
2 dt2δP

)
.

Notice that the pressure update is solved via a Poisson equation
(as d2A−1 ?−1

2 dt2 is a symmetric Laplacian matrix for the metric
induced by ?2A), for which a preconditioned conjugate gradient is
most appropriate; thus, applying the Schur complement amounts to
solve a system similar to pressure projection to find δP , followed
by a trivial backsubstitution to get δF (as A is diagonal). Overall
the work done in each Newton step is thus identical to the work
done for a single step of the stable fluids algorithm [Stam 1999].

Figure 4: Taylor vortices on a periodic domain: for the particu-
lar initial separation distance used here, two vortices of the same
sign should split apart as in the reference solution (top left). Many
schemes fail to reproduce these results. From left to right, top to
bottom; Reference solution; Stable fluids [Stam 1999]; energy-
preserving scheme (Harlow-Welch [Harlow and Welch 1965] w/
midpoint time discretization); our simplicial energy-preserving
scheme; a MacCormack scheme [Selle et al. 2008]; FLIP [Zhu and
Bridson 2005]. All results were computed on grids of around 216

cells or triangles.

Further Improvement If the time step needed for animation is
small enough, we can further simplify the non-linear solver by only
using the dominant term Id/h in matrix A. Discarding ∂Adv/∂F
renders the matrix A constant, removing the need to rebuild the
matrix and allowing for the precomputation of preconditioners. For
reasonably sized systems (in our experience, less than 150K tets
when using Matlab) we can even LU factorize the Laplacian matrix
hd2?

−1
2 dt2 once at the beginning, and efficiently solve each Newton

step through the Schur complement method in Eq. (6) by constant-
time backsubstitution. This simplification is the method of choice
in practice when possible. However, for large time steps with re-
spect to the motion, this approach can fail to converge; we then
either revert to the previous method and add to A the diagonal of
the Jacobian of the advection term, or simply reduce our time step.

3.4 Other Time Integration Schemes
While this implicit, time-reversible energy preserving scheme is the
one we used in all our examples, we can easily derive other fully
Eulerian integrators with similar numerical properties.

Variational Integration Instead of a midpoint rule, we can main-
tain time reversibility by choosing a trapezoidal time update for
which the momentum equation is expressed as:
1

h
(Fn+1−Fn) +

1

2
Adv(Fn) +

1

2
Adv(Fn+1) = − ?2 dt2Pn+ 1

2 .

The implementation of this different integrator is nearly identical to
the midpoint case, and will thus not be detailed here. Unlike the pre-

vious integration scheme, this time-reversible update rule does not
conserve energy exactly. Nevertheless, the energy remains nearly
constant, basically oscillating around the initial energy. Such a be-
havior is typical of symplectic integrators, and in fact, we derived
this integrator through first principles. This lengthy derivation will
not be shown here, but we refer the reader to Appendix B for an
overview of the geometric mechanical arguments leading to this
variational time update.

Hybrid Time Integration One can also play around with the basic
approach and derive other interesting integrators. The vorticity ω
used in our derivation can in fact be evaluated at any point in time
between tn and tn+1, and the update will remain exactly energy
preserving—while still corresponding to an advection of the vortic-
ity in the velocity field. We can exploit this property to now provide
a time update that only requires a linear solve in Fn+1 and Pn+ 1

2 :
1

h
(Fn+1 − Fn) + Adv(Fn+ 1

2 ,ωn) = − ?−1
2 dt2P

n+ 1
2 ,

d2F
n+1 = 0.

For a reasonably small timestep, this approach offers a fast alterna-
tive to midpoint integration. Our experience shows that for larger
timesteps, the conditioning of the linear system goes down, and
solving this linear system may not always be faster than the full-
blown non-linear alternative. However, this offers a viable fallback
solution if the Newton solver of the nonlinear time integrator fails.

3.5 Viscosity
In practice, fluid animation in computer graphics requires a small
amount of viscosity to render the motion more realistic. We thus
need to approximate the dissipation term ν∆u to be added to the
right hand side of Eq. (1) to transform the Euler equations into the
Navier-Stokes equations. As we represent the divergence-free ve-
locity field u by its fluxes on mesh faces, we can directly apply
the discrete Laplacian operator as defined in [Elcott et al. 2007],
which, with our notations, is expressed as−d1?−1

1 dt1?2. Therefore,
we modify our integrator to include this term evaluated at the mid-
point (we will denote F̄n+ 1

2 := (Fn +Fn+1)/2), resulting in the
following momentum update rule:

Fn+1 = Fn − h
[
Adv

(
F̄n+ 1

2

)
− ?−1

2 dt2P
n+ 1

2

−νd1 ?−1
1 dt1 ?2 F̄

n+ 1
2

]
, (7)

This simple dissipation model turns out to be mostly independent
of the time step size and the spatial discretization. As we will see
in Section 4, this is particularly convenient for computer animation,
as one can easily and predictably adjust the viscosity of the fluid
simulated without having to worry that the visual results are, in
fact, dependent on the time step. Note that this also allows adaptive
time stepping strategies to be used for more efficient computations
without inducing motion artifacts.

3.6 Boundary Conditions
Basic boundary conditions can be dealt with quite simply in our Eu-
lerian framework. First, we can control the normal component of

Figure 5: Smoking Bunny: hot smoke rising in a bunny-shaped
domain, then cooling down over time.

the velocity along the boundary by specifying the desired fluxes Fij

on boundary faces. No-transfer conditions are thus implemented by
simply setting fluxes to zero, while forced fluid influx or outflux is
achieved by forcing non-zero Fij values in the solver (note that
to ensure divergence-freeness, the total flux through the boundary
should still sum to zero). We can also prescribe pressure values
on the outside of boundary faces to achieve “open” boundary con-
ditions, where the boundary flux will now be determined by the
gradient of the pressure across the boundary. Both types of bound-
ary conditions fix the same degrees of freedom for the momentum
update rule, although if only flux boundary conditions are used the
pressure is arbitrary up to a constant, in which case the pressure of
one tet may be fixed to keep the system definite.

Tangential velocity conditions may, however, seem less obvious
since we encoded the fluid velocity only by its normal component
to each face: while Harlow and Welch [1965] implement free-slip
condition by mirroring the tangential velocity component across
the wall and no-slip boundary condition by reverting the tangen-
tial component across the wall, this type of symmetrization of the
velocity is no longer simple for simplicial grids. Fortunately, we
can implement the same boundary conditions by simply acting on
the vorticity instead. For instance, free-slip condition is achieved by
setting the vorticity on boundary edges to 0 since if the half-Voronoi
face (loop of dual edges) is completed by its mirror image across
the boundary surface, copying the tangential velocity component
on this mirror image will cancel out the local vorticity integral.
Conversely, no-slip condition is achieved by setting the vorticity
on boundary edges to be set to the sum of existing dual circulations
(?2)ijFij along the half-Voronoi face: reverting the tangential ve-
locity component on the mirrored half Voronoi face simply double
the integral over the full Voronoi face, leaving only the terms in-
cluding inside fluxes in the vorticity. Partial slip can then be imple-
mented by combining these two and using only some percentage
of the vorticity around boundary edges, allowing the modeling of
varying “roughness” of boundary materials. Note the choice of the
tangential conditions does not affect the energy preservation in the
abscence of viscosity.

3.7 Discussion

One can easily show that the midpoint integration we introduced is
energy preserving: indeed, F̄n+1/2 ?2 Adv(F̄n+1/2) is zero due
to the antisymmetrization of the advection term (see Appendix A).
Therefore, assuming the solver converges, this scheme preserves
energy exactly up to machine accuracy and solver tolerance—
resulting in stability as the velocity must thus remains bounded.
This midpoint integrator on unstructured grids is, in fact, an ex-
tension of Harlow and Welch’s scheme [1965] designed for regular
grids: the same reasoning (either through the finite volume deriva-
tion presented in this paper, or via a variational derivation) leads
to their skew-symmetric, conservative form of the advection when
applied to regular hexahedral cells. Notice that this advection was
used by Foster and Metaxas [1997], albeit with an explicit inte-
gration in time and an iterative pressure projection—both of which
lead to a change of energy. Instead, our approach shares most of
the well-studied numerical benefits of the original Harlow-Welch
conservative scheme [Simo and Armero 1994]. Our integrator also
involves a sparser system of equations than the most recent energy-
preserving fluid integrators on unstructured meshes [Zhang et al.
2002; Mahesh et al. 2004], as only the topological one-ring of a face
is involved in its update. While this property also means a lower or-
der accuracy, it provides fast fluid animation at low cost. Further,
the precise choice of mesh refinement or time step (which can be
non-intuitive to an animator) becomes less critical in the design of
an animation, and no extra parameters (like a number of Lagragian
particles, or a coefficient of vorticity restitution) is needed. Note
finally that simulating fluids in 2D basically follows the same pro-

cedure, with the edge/face/tet volumes replaced by vertex/edge/face
volumes, and the 2/3 coefficient in the advection replaced by 1/4.

4 Results
To validate our approach, we ran a series of tests in 2D and 3D, for
both visual and numerical evaluations. Note that we used Delau-
nay meshes for our domains, as this prevents having to deal with
negative dual edge lengths or dual surface areas. One could locally
revert to the barycentric dual as well, most likely at the price of
accuracy.

Vortices in Periodic Domain A setup commonly used in CFD
was used in 2D to evaluate the quality of the integrators presented
in this paper. A periodic 2D domain was initialized with two Taylor
vortex distributions of same sign for which pseudospectral solu-
tions (with 3/2 dealiasing) are available in the literature. As Fig-
ure 4 shows, our results match the expected qualitative behavior
(vortices separating) on any (reasonably good) triangle mesh. With
the exception of the FLIP method which, while failing to capture
the proper behavior, still results in visually pleasing results, none
of the other methods were found to provide reasonable results on
arbitrary grids.

Spiral Maze We also used a 2D example
with many boundaries forming a spiral maze,
to demonstrate how much diffusion previous
methods engender: while the initial conditions
are set up to create a vortex which should prop-
agate through the maze, all our tests of other
methods exhibit either significant dissipation,
or unexpected behavior. However, our time-reversible scheme does
advect the vortex along; no viscosity was added in this example to
emphasize energy preservation.

3D Flows Examples we tried in 3D include particles blown in a
flow past a sphere (Figure 2), and smoke in a 31K-tet bunny-shaped
domain (Figure 5; buoyancy is incorporated based on the local
density of marker particles passively advected through the flow).
These examples were chosen to offer easy comparison with previ-
ous methods. In these examples, we set our non-linear solver l∞
threshold to 10−3, and the typical range of Newton steps needed to
reach convergence was between 3 and 15. We found that in prac-
tice our method was not substantially slower than existing schemes
for velocity advection, and it is worth pointing out that rendering
or advecting a density field in the flow still largely dominates the
cost of animation. Therefore, it is well worth a little extra time on
velocity integration, especially since it can have a profound effect
on the appearance of the final animation. All of our 3D examples
took no more than an average of 40 seconds per timestep, and we
typically used 2-6 timesteps per frame. Additionally, we found that
a naive adaptive time stepping method based on the CFL condition
helps improve the computational complexity without detriment to
the dynamics. A change of time step size in previous methods does,
in contrast, significantly alter the results as it introduces a change
of viscosity in time.

Numerical Comparison of Dissipation As a stress test to esti-
mate numerical energy dissipation of typical fluid integrators used
in graphics, we computed the kinetic energy in time for the simula-
tion of an inviscid flow on a periodic domain in Figure 6. While the
decay rate varies significantly from method to method, no integra-
tor but ours is devoid of numerically-induced energy dissipation.
Notice that even with a very low Newton’s accuracy threshold of
10−1, our midpoint implicit Eulerian scheme still preserves energy
remarkably well. We also tried to adjust the parameters involved
in vorticity confinement and vortex-particle-enriched methods to
limit energy loss. However, as Figure 7 indicates, finding good
coefficients to eliminate dissipation as much as possible is very ani-
mation dependent and creates rather unpredictable energy behavior,

Figure 6: Even for completely inviscid flows, time integration
schemes used in computer animation dissipate a significant per-
centage of total energy over time. Our fully Eulerian scheme not
only preserves energy exactly, but also demonstrates excellent en-
ergy behavior even for very approximate solutions (here we use an
l∞ tolerance of 10−1 in the Newton solver).

making the parameter-tweaking process difficult and unintuitive. In
contrast, our approach requires no parameter tuning.

Robustness to Time Step We also confirmed the robustness of
our implicit integrators with respect to time step and grid sizes in the
realistic context of viscous flows. Such improved numerics makes
the design of fluid animations easier, as the viscosity parameter will
have a predictive value on the results, instead of depending heavily
on other simulation parameters (see Figure 1).

5 Conclusion
Fully Eulerian implicit integrators have been largely unexplored in
graphics. We have presented evidence that they not only offer a ro-
bust computational tool for fluid integration, but possess numerical
qualities highly desirable in animation: damping of the fluid flow is
no longer a numerical artifact, but a controllable parameter.

Future Work Methods such as FLIP used in [Zhu and Bridson
2005] effectively eliminate numerical diffusion (before pressure
projection) but not numerical energy dissipation, as demonstrated
in Section 4. In contrast, our fully-Eulerian approach is devoid of
numerical energy dissipation, but does not eliminate diffusion: vor-
ticity diffusion is unavoidable in a purely Eulerian context, since
discretization onto a fixed grid acts as a low-pass filter of the veloc-
ity field. Particle-based methods do not have this problem since La-
grangian particles carry information instead of diffusing it around.

Figure 7: For carefully chosen parameter values, some existing
schemes can roughly preserve initial energy; even then, energy be-
havior is highly unpredictable. We show the energy curves resulting
from several nearby parameter values for each scheme above.

However, the nature of fluid flows makes the Eulerian approach
particularly convenient, as no seeding or redistribution of particles
is needed even for vastly turbulent flows. It may be worthwhile
to develop Eulerian schemes with lower diffusion, while maintain-
ing their energy preserving characteristics. Another interesting re-
search direction is the design of better subscale modeling models;
however, adding noise in the flows may well be more practical for
graphics application than subscale modeling. Non-linear schemes
can also be fairly well approximated through less computationally
intensive explicit integrators [Simo and Armero 1994], although
most likely at the cost of more stringent condition on time step size.
Finally, the type of conservative integrators we discussed in this
paper may be very appropriate for coarse-to-fine design of fluid
animation, possibly offering an Eulerian extension to Lagrangian
tracking methods [Bergou et al. 2007].

Acknowledgments. The authors wish to thank our collabora-
tors Eva Kanso and Jerrold E. Marsden, as well as Kevin Bea-
son for his renderer Pane. This research was partially funded
by the NSF (CCF-0811373/0811313, DMS-0453145, and CMMI-
0757106/0757123), the DOE (DE-FG02-04ER25657), and Pixar.

References
BENZI, M., GOLUB, G. H., AND LIESEN, J. 2005. Numerical

solution of saddle point problems. Acta Numerica 14, 1–137.

BERGOU, M., MATHUR, S., WARDETZKY, M., AND GRINSPUN,
E. 2007. TRACKS: toward directable thin shells. ACM Trans.
on Graphics 26, 3, art. 50.

BRACKBILL, J., AND RUPPEL, H. 1986. FLIP: a method for
adaptively zoned, particle-in-cell calculations of fluid flows in
two dimensions. Journal of Computational Physics 65, 314–343.

CHENTANEZ, N., FELDMAN, B. E., LABELLE, F., O’BRIEN,
J. F., AND SHEWCHUK, J. 2007. Liquid simulation on lattice-
based tetrahedral meshes. In Symposium on Computer Anima-
tion, 219–228.

CHORIN, A., AND MARSDEN, J. 1979. A Mathematical Introduc-
tion to Fluid Mechanics, 3rd edition ed. Springer-Verlag.

DUPONCHEEL, M., ORLANDI, P., AND WINCKELMANS, G.
2008. Time-reversibility of the Euler equations as a bench-
mark for energy conserving schemes. Journal of Computational
Physics 227, 19, 8736–8752.

ELCOTT, S., TONG, Y., KANSO, E., SCHRÖDER, P., AND DES-
BRUN, M. 2007. Stable, circulation-preserving, simplicial flu-
ids. ACM Transactions on Graphics 26, 1 (Jan.), art. 4.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual simu-
lation of smoke. In Proceedings of ACM SIGGRAPH, 15–22.

FELDMAN, B. E., O’BRIEN, J. F., AND ARIKAN, O. 2003. An-
imating suspended particle explosions. ACM Transactions on
Graphics 22, 3 (July), 708–715.

FELDMAN, B. E., O’BRIEN, J. F., AND KLINGNER, B. M. 2005.
Animating gases with hybrid meshes. ACM Transactions on
Graphics 24, 3, 904–909.

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of a
hot, turbulent gas. In Proceedings of SIGGRAPH, 181–188.

GRESHO, P. M., AND SANI, R. L. 2000. Incompressible Flow
and the Finite Element Method. J. Wiley & Sons.

HARLOW, F. H., AND WELCH, J. E. 1965. Numerical calculation
of time-dependent viscous incompressible flow of fluid with free
surface. Physics of Fluids 8, 12 (Dec.), 2182–2189.

KIM, B., LIU, Y., LLAMAS, I., AND ROSSIGNAC, J. 2007.
Advections with significantly reduced dissipation and diffusion.
IEEE Trans. on Visualiz.and Comp. Graphics 13(1), 135–144.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating wa-
ter and smoke with an octree data structure. ACM Transactions
on Graphics 23, 3 (Aug.), 457–462.

MAHESH, K., CONSTANTINESCU, G., AND MOIN, P. 2004. A
numerical method for large-eddy simulation in complex geome-
tries. J. Comput. Phys. 197, 1, 215–240.

MOLEMAKER, J., COHEN, J. M., PATEL, S., AND YONG NOH, J.
2008. Low viscosity flow simulations for animation. In Sympo-
sium on Computer Animation, 9–18.

PAVLOV, D. 2009. Structure-preserving Discretizations of Incom-
pressible Fluids. PhD dissertation in Mathematics, California
Institute of Technology.

PEROT, B. 2000. Conservation properties of unstructured staggered
mesh schemes. J. Comput. Phys. 159, 1, 58–89.

SCHECHTER, H., AND BRIDSON, R. 2008. Evolving sub-grid
turbulence for smoke animation. In Symposium on Computer
Animation, 1–8.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex
particle method for smoke, water and explosions. ACM Trans-
actions on Graphics 24, 3 (Aug.), 910–914.

SELLE, A., FEDKIW, R., KIM, B., LIU, Y., AND ROSSIGNAC, J.
2008. An unconditionally stable MacCormack method. J. Sci.
Comp. 35, 350–371.

SHI, L., AND YU, Y. 2002. Visual smoke simulation with adaptive
octree refinement. Computer Graphics and Imaging.

SIMO, J., AND ARMERO, F. 1994. Unconditional stability and
long-term behavior of transient algorithms for the incompress-
ible Navier-Stokes and Euler equations. Computer Methods in
Applied Mechanics and Engineering 111, 1-2, 111–154.

STAM, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH,
121–128.

STEINHOFF, J., AND UNDERHILL, D. 1994. Modification of the
euler equations for Vorticity Confinement. Physics of Fluids 6, 8
(Aug.), 2738–2744.

STERN, A., AND DESBRUN, M. 2006. Discrete geometric me-
chanics for variational time integrators. In ACM SIGGRAPH
Course Notes, 75–80.

ZHANG, X., SCHMIDT, D., AND PEROT, B. 2002. Accuracy
and conservation properties of a 3d unstructured staggered mesh
scheme for fluid dynamics. J. Comput. Phys. 175, 2, 764–791.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid. In
Proceedings of ACM SIGGRAPH, 965–972.

A Finite Volume Discretization of Advection Term
We briefly provide a derivation of the advection term in this section.
With first-order accuracy, we rewrite the area integral involved as:∫

fij

(ω×u) · n dA ' −
∫
fij

∇×(u · (x−cij)ω) · n dA

= −
∫
∂fij

(u·(x−cij))ω · dl.

Consequently, Adv(F)ij can be approximated by summing, over
the edges of face fij , the product of ω dotted with an edge e and u
dotted with he,ij = cij−ce (midpoint quadrature). Thus, using the

vorticity ωe approximated on face se dual to edge e, the contribu-
tion from flux Fjk to Ḟij is

ωe|e|
|se|

(u · he,ij) =
ωe|e|

|se| sin(α)

(
Fjk

|fjk|
− cos(α)

Fij

|fij |

)
|he,ij |,

where α is the dihedral angle of tet Tj at edge e: indeed, u pro-
jected onto the direction of he,ij is determined by the projection of
u onto the plane orthogonal to e, i.e., by its projections Fij/|fij |
and Fjk/|fjk| on two non-colinear directions within that plane.
We then convert the above expression to ?2Adv(F) by multiply-
ing through |hij,j |/|fij |:

ωe

|se|

(
Fjk

4|fij,e||hij,j |
3|Tj ||e|

− Fij
2|fij,e||hij,j |
|fij |2 cotα

)
,

where fij,e is the triangle formed by e and the circumcenter cij of
the face, and hij,j is the partial dual edge in cell j.

Notice that in the continuous limit, one should have
∫
(ω×u)×u=0

for arbitrary ω and u. We enforce this property at the discrete level
by further ensuring that its discrete equivalent, F?2Adv(F, ω) = 0,
is automatically satisfied. It is easy to see that if the discrete version
of
∫

(ω×u)×u = 0 is to hold for all ω and u, we must antisym-
metrize the contribution from Fij to ?2Adv(F)jk and from Fjk to
?2Adv(F)ij . Thus, the contribution of ωe and Fjk to ?2Adv(F)ij
is rectified to

2
ωe

|se|
Fjk
|fij,e||hij,j |+ |fik,e||hik,j |

3|Tj ||e|
=

ωe

|se|
Fjk

2|we,j |
3|Tj |

,

where we,j is the quad-shaped partial dual face of e in cell j.

This discretization of the advection term now enforces energy
preservation. Indeed, if we denote F̄n+ 1

2 := (Fn + Fn+1)/2 as
before, our antisymmetrization of the finite-volume approximation
of the change of flux directly yields:

F̄n+ 1
2 ?2 Adv(F̄n+ 1

2) = 0.

Multiplying the time update in Eq. (5) by F̄n+ 1
2 proves that this

condition enforces that the energy at time tn+1 is equal to the en-
ergy at time tn.

B Discrete Geometric Mechanical Derivation
Our trapezoidal-based numerical integrator (Section 3.4) can also
be derived from first principles. We only sketch the derivation
here—a full derivation can be found in [Pavlov 2009]. While time
integrators for fluids are often derived by approximating equations
of motion, we instead discretize the configuration space of incom-
pressible fluids and then derive the equations of motion through
the principle of stationary action. Our approach uses an Eulerian
representation of discrete, volume-preserving diffeomorphisms that
encodes the displacement of a fluid from its initial configuration
using matrices whose rows and columns sum to one. From this
particular discretization of the configuration space, which forms
a finite-dimensional Lie group, one can derive a discrete equiva-
lent to the Eulerian velocity through its Lie algebra, i.e., through
matrices whose rows and columns sum to zero. After imposing
non-holonomic constraints on the velocity field to ensure physical
transfer only between neighboring cells during each time update,
we apply Lagrange-d’Alembert principle (a variant of Hamilton’s
principle for non-holonomic systems) to obtain the discrete equa-
tions of motion for our fluid representation. The update rule ob-
tained this way (using a simple finite-volume advection operator to
define kinematic advection) corresponds to what we detail in Sec-
tion 3.4. The resulting Eulerian variational Lie-group integrator is
structure-preserving, and as such, has numerous numerical prop-
erties, from momentum preservation (through a discrete Noether
theorem) to good long-term energy behavior.

	Introduction
	Previous Work
	Overview and Contributions

	Discrete Setup of Fluid Motion
	Equations of Motion
	Relevant Continuous Properties
	Discretization of Physical Quantities

	Discrete Energy-preserving Time integrator
	Discrete Euler equations
	Advection Term
	Time-Reversible Integration
	Other Time Integration Schemes
	Viscosity
	Boundary Conditions
	Discussion

	Results
	Conclusion
	Finite Volume Discretization of Advection Term
	Discrete Geometric Mechanical Derivation

