
Interactive Animation of Cloth-like Objects
in Virtual Reality

Mark Meyer
Caltech

Gilles Debunne
iMAGIS/IMAG

Mathieu Desbrun
USC/Caltech

Alan H. Barr
Caltech

Abstract
Modeling and animation of cloth has experienced important
developments in recent years. As a consequence, complex
textile models can be used to realistically drape objects or
human characters in a fairly efficient way. However, real-
time realistic simulation remains a major challenge, even
if applications are numerous, from rapid prototyping to e-
commerce. In this paper, we present a stable, real-time al-
gorithm for animating cloth-like materials. Using a hybrid
explicit/implicit algorithm, we perform fast and stable time
integration of a physically-based model with rapid collision
detection and response, as well as wind or liquid drag effects
to enhance realism. We demonstrate our approach through
a series of examples in VR environments, proving that real-
time animation of cloth, even on low-end computers, is now
achievable.

1 Introduction

Interactive animation of non-trivial objects, with complex
behavior like cloth flapping, remains a challenge in computer
graphics and in virtual reality. Although some algorithms
exist to animate objects in real-time, they are currently re-
stricted to rigid objects [1], or specific kinds of elastic ob-
jects, without the integration of dynamics. Moreover, an-
imation in immersive environments requires that the algo-
rithm be robust against user actions, while also ensuring a
constant frame rate. This paper proposes a simple method
that leads to animation of complex behaviors for cloth-like
objects, while guaranteeing both a low computational cost
and unconditional stability - making it ideal for real-time,
interactive applications like Virtual Reality.

1.1 Background and motivation

One of the simplest physically-based models over the last
decade, and thus, one of the most likely to achieve real-
time performance, is the mass-spring system [2, 3, 4]. A de-
formable body is approximated by a set of masses linked by
springs in a fixed topology. This model can be seen as a dis-
crete approximation of a finite-element method for integrat-
ing the Lagrange partial derivative equation of motion [5]. It
is easy to implement, is highly parallelizable, and involves

Figure 1: Picture captured during a live session using our
cloth model. The skirt was wrapped and seamed in real time.

few computations; it seems a perfect candidate for virtual
reality applications. Recently, improvements to this model
have been made, such as a post-integration step to bound the
stretch of springs [6], as well as adaptive time stepping to
preserve the system’s global energy [7].

Unfortunately, all of these approaches suffer from the
same problem: to ensure stability, the time step must be in-
versely proportional to the square root of the stiffness. While
this may not be an issue for off-line computations, it prevents
much use in real-time applications (very small time steps are
required to ensure stability). Various ways to overcome this
problem have been proposed. For instance an extensive dis-
sipative force, opposite to the velocity of a mass point, pro-
vides a good way to maintain the stability of the integration.
However, this method introduces an implausibly low termi-
nal velocity, resulting in slow motions as if the medium was
made of molasses. Gravity has often been modified (low-
ered) to avoid large forces in the system, but once again, it
introduces undesirable alterations in realism.

Other approaches have been taken to animate deformable
objects of fixed topology. Elasticity and visco-elasticity have
been modeled with success [5, 8, 9, 10], but these meth-
ods suffer from the same time step handicap. Global meth-
ods, gaining efficiency by restricting the possible deforma-
tions [11, 12], are useful for interactive manipulation, but,
unfortunately, offer limited realism.

To the authors’ knowledge, only a few existing approaches

Mathieu Desbrun
http://www-grail.usc.edu/Interactive animation of cloth-like objects in virtual reality Mark Meyer, Gilles Debunne, Mathieu Desbrun, Alan H. Barr. The Journal of Visualization and Computer Animation. 12 (1), pp. 1-12, 2001.

achieve real-time computations for deformable structured
objects. The first is derived from finite element theory, and
takes advantage of linear elasticity to allow real-time defor-
mation of meshed objects [13, 14]. However, this model is
not dynamic, but rather a collection of static postures, greatly
limiting its potential applications. A second approach is the
recent development of neuro-animators [15]: after a learning
period, a large neural network can emulate a simple physical
system. This recent approach has not been proven practical
for large coupled systems such as cloth. Debunne et al. [16]
have recently introduced a technique for animating soft bod-
ies in real time. However, as the technique requires the ob-
jects to have finite volume, it is not applicable to thin objects
such as cloth. The use of implicit integration, which can sta-
bly take large time steps, has been proposed [17] in the con-
text of cloth animation. This method offers extremely low
computational times, suggesting the possibility of real-time
animation of simple objects. However, implicit integration
has the drawback of solving a large linear system at each
time step. Inspired by this approach, we recently developed
[18] an algorithm that alleviates this shortcoming.

In this paper, we extend this system to include nonlinear
external forces and collisions with complex dynamic objects.
The end result is a fast and stable algorithm to animate arbi-
trarily connected mass-spring systems in complex, dynamic
environments.

1.2 Overview

We build upon our previous work and present a novel combi-
nation of implicit integration, explicit integration, and post-
step correction to efficiently simulate cloth-like objects in
real-time. We will show that the internal forces, often very
large for common materials like fabrics, have to be inte-
grated using an implicit integration. Additional external
forces, however, can be explicitly integrated without prob-
lem. We will demonstrate how to mix these two integration
techniques to obtain real-time animation.

We will first review our physical model in Section 2, and
explain why conventional integration techniques are inade-
quate for reliable use in Virtual Reality. In Section 3, we
will offer a review of a new technique originally introduced
in [18] that will allow us to animate simple deformable ob-
jects in real-time. We will extend this technique in Section 4
by adding external forces, such as collision or wind drag,
while still focusing on very low computational times to en-
sure real-time applications. Finally, we will recap the entire
algorithm in Section 5, present results in Section 6 and dis-
cuss our conclusions in Section 7.

2 Physical Model

As mentioned in the introduction, we simply cannot afford a
precisely accurate, complex physically-based model if real-
time applications are needed. We therefore choose a simple

mass-spring system, as it seems to be the most straightfor-
ward model in terms of computational complexity. For the
sake of generality, we will consider that a mass point i is
linked to all the others with (linear) springs of rest length l 0

i j
and stiffness ki j. This stiffness value is set to zero if the ac-
tual model does not contain a spring between masses i and j.
In the remainder of this paper, we will focus on 2-manifold
deformable objects like clothes, paper sheets, or membranes,
but our results are still valid for any 3D object. We will also
use the following notation:

• x is the (time varying) geometric state of the system,
consisting of all the positions xi of the mass points: x =
(x1,x2, ...,xn)T .

• v is the vector containing all of the velocities: v = ẋ.

• Fi denotes the internal forces (due to springs) acting on
a mass point i.

• Superscript indices indicate the time beginning with an
arbitrary time t0. For instance, xn

i = xi(t0 + ndt).

• We will also use the backward difference operator:
∆n+1x = xn+1 −xn.

2.1 Problems with explicit integration

To animate such a simple system, the following explicit Eu-
ler integration scheme can be used:

vn+1
i = vn

i + Fn
i

dt
m

xn+1
i = xn

i + vn+1
i dt.

Note that in the explicit Euler method, the forces at time
tn contribute to the velocities at time tn+1. Higher-order
schemes, like Runge-Kutta, are better in terms of numeri-
cal accuracy for smooth solutions. However, since we often
have to handle collisions (which gives rise to discontinuities
in the motion during animation), these schemes are not ap-
propriate.

Despite its ease of implementation and its apparent low
computational complexity, the explicit Euler scheme re-
quires an integration time step dt inversely proportional to
the square root of the stiffness (this criterion is more gener-
ally know in physics as the Courant condition [19]). Oth-
erwise, the system can diverge rapidly since assuming the
internal forces as constant over too large a time step may in-
duce a wild change in position. In practice, we effectively
notice a stable behavior of the system only for very small
time steps. This is the general problem of stiff sets of equa-
tions: stability can be achieved only at a very small time
scale with explicit schemes [20]. Therefore, the use of ex-
plicit schemes in Virtual Reality is often unrealistic in prac-
tice: computational times are commonly large, forcing the
overall animation to be between 10 and 1000 times slower
than real-time.

2.2 Introducing implicit integration

Another scheme, called implicit Euler integration, has
proven to be much more adapted to such a problem [17, 18,
21, 22]. The basic idea is to replace the forces at time t by
the forces at time t + dt:

vn+1
i = vn

i + Fn+1
i

dt
m

(1)

xn+1
i = xn

i + vn+1
i dt

This simple substitution enforces stability in a distinctive
way: now, the new positions are not blindly reached, but
they correspond to a state where the force field is coherent
with the displacement found. Using an approximation of the
force at the next time step introduces a sort of feedback to
the integration process, strongly increasing stability. We still
consider the forces to be constant within the time step, but in
theory, whatever the value of the time step, the output state
of the system will have consistent forces that will not give
rise to instabilities. To put it a different way, we can say that
an explicit scheme takes a step into the unknown knowing
only the initial conditions, while an implicit scheme tries to
land on the next position correctly.

To implement this scheme, we must compute Fn+1 with-
out yet knowing the positions of the masses at time t + dt.
Fortunately, we can write a first-order approximation (which
is actually exact for springs):

Fn+1 = Fn +
∂F
∂x

∆n+1x. (2)

As the internal forces of the system Fi are already pro-
portional to the gradient of an internal energy, we note that
the matrix H = ∂F

∂x is actually the negated hessian matrix of
the system. Details on the underlying mathematics of im-
plicit integration can be found in [18]. Turning the crank
on the equations, and using the backward operator ∆ n+1x =
(vn + ∆n+1v)dt, the update rule using implicit integration is
given by the following:

∆n+1v = (I− dt2

m
H)−1 (Fn + dt Hvn)

dt
m

. (3)

Note that this is a linear system. We will later refer to the
matrix (I− dt2

m H)−1 as W for the sake of simplicity (I is the
identity matrix).

2.3 Practical differences between explicit
and implicit integation

Our previous paper described the equations resulting from
this implicit technique, and this provides an intuitive inter-
pretation of exactly what happens when implicit integration
is used instead of explicit integration [18]. Roughly speak-
ing, two main factors make implicit integration stable.

Addition of artificial viscosity

First, implicit integration “implicitly” adds a set of extra
forces to the internal forces of the system. These extra forces
turn out to be equivalent to an artificial viscosity proportional
to both stiffness and time step size, just like Rayleigh damp-
ing forces. It intuitively means that each mass point will tend
to follow the local displacement of its neighbors, avoiding
wild local instabilities. Notice that since our artificial vis-
cosity depends on both the stiffness and time step size (the
two factors responsible for instabilities), we are able to add
just the right amount of viscosity to each individual mass
point to prevent overshooting.

Filtering of the force field

Secondly, using implicit integration also amounts to a filter-
ing of the force field (multiplying by the matrix W). This can
be understood quite intuitively by a signal processing anal-
ogy: given a sampling rate of a signal, only a fixed range
of frequencies can be faithfully reproduced (Shannon’s theo-
rem). When it comes to animation, a simulation with a fixed
time step dt can only handle deformation frequencies up to
a certain limit. Past this limit, the sampling rate is not suf-
ficient and instabilities may (and most probably will) occur.
Therefore, one way to ensure stability is to filter the force
field so that no high frequencies can remain. As the ma-
trix W is based on both the stiffness and the time step, it
uses just the right amount of filtering automatically, without
any parameter tweaking by the user. We thus guarantee an
unconditionally stable animation, whatever the user may do
(because the system’s eigenvalues are negative).

2.4 Discussion

This technique, introduced only recently in Computer
Graphics, has proven to have very good performance. Baraff
and Witkin for instance used implicit integration in the con-
text of cloth animation with great success [17]. Previous
techniques using explicit integrations, however sophisticated
they may be, have to use time step sizes on the order of 10−7

seconds, while implicit integration can often handle exactly
the same animation with a time step size of typically 10−2.
Although standard implicit integration requires solving a lin-
ear system at each time step, it is usually sparse and can thus
be solved efficiently. The performance benefits of using im-
plicit integration for deformable objects, in consequence, can
be extremely significant.

3 Rapid implicit-based integration

As we have just seen in the previous section, there are defi-
nite advantages in using implicit integration in a VR context
where stable and quick results are needed. Unfortunately, a
direct implementation requires solving a linear system [17].
Even if this linear system is most commonly very sparse,

techniques such as conjugate gradient have a computational
overhead that often prevents real-time solving. We propose
in this section a variant of this implicit integration technique.
By approximating the implicit integration in an explicit way,
and then correcting the errors created, we can efficiently sim-
ulate an implicit integration with a low computational cost.
Once again, more details about this technique can be found
in [18].

3.1 Approximate implicit integration

Contrary to the 1D case, the Hessian matrix H is not con-
stant in 3D. Due to the non-zero rest lengths of springs, the
forces are not linear. Therefore, we have to solve a different
linear system at each time step of our animation, which, as
briefly mentioned above, is simply impossible in real-time
with current computers.

To overcome this difficulty, we linearize the force field by
temporarily assuming a zero rest length for all springs. By
doing so, we obtain a constant Hessian matrix, as well as a
constant matrix W . Therefore, we compute W once as a pre-
process to our animation and alleviate the need to solve a
linear system at each step. For the reader’s convenience, we
reproduce here the coefficients of the matrix H, which can
be found in [18]:

{
Hi j = ki j if i �= j
Hii = −∑ j �=i ki j

(4)

Integrating the motion at each time step then amounts to
a simple matrix-vector multiplication, just as in explicit in-
tegration. This results in a very efficient way to perform an
implicit integration [18]. However, the approximation we
made about the rest length of the springs will inevitably in-
duce more or less significant errors in the integration. The
next section presents a way to compensate for these errors,
guaranteeing a physically correct result anyway.

3.2 Correction of momentum

As we know that our approximate implicit integration cre-
ates inaccuracies, we need to double-check basic physical
properties to ensure a plausible result. Linear and angular
momenta, for instance, must always be zero during a time in-
tegration of internal forces. Preserving these invariants will
then enable us to correct the previous approximation.

Linear momentum is actually preserved with our tech-
nique, even though the implicit integration is only approxi-
mated. Angular momentum, however, is not. Unfortunately,
any loss of angular momentum is easily noticeable during an
animation. In practice, the stiffer the springs, the bigger the
loss of momentum, which is not surprising since we made a
deliberate approximation that introduces angular errors [18].
We therefore need to compensate for this loss.

An easy solution is to compute the exact amount of an-
gular momentum added to the system, and then balance this

excess or loss by giving a “little push” to the masses. Once
again using a linear approximation, we add a correction vec-
tor to each mass position such that:

• the sum of all these corrections is zero, leaving the lin-
ear momentum unaffected,

• the induced angular rotation it creates balances the an-
gular velocity error.

These correction vectors are very simple to compute [18],
and are computationally inexpensive in an animation algo-
rithm. The overall torque error is easily taken care of this
way.

Once the angular momentum has been re-adjusted, the
animation obtained using the above scheme is satisfactory
for moderate stiffness. However, as local torques have been
overlooked, this simplified scheme performs badly for high
stiffness without a post-correction process: even if the ani-
mation remains stable, we obtain wrinkled meshes. We thus
have to add a final correction, which is the subject discussed
in the next section.

3.3 Post-step modification

3.3.1 Motivation

Springs are certainly not a perfect physical model for real
deformable objects. Roughly speaking, their elongation is
proportional to the force applied (linear elasticity), which
may result in implausibly large deformations. The common
force/deformation curve for a material is nonlinear, so we
must modify the behavior of our mass-spring system to ac-
count for this. One way to achieve this is to add a post-
correction phase after a time step. This will also perform the
final correction discussed above.

This post-correction can then be considered as a constraint
enforcement: all the mass points are first advanced normally,
then we modify their positions to enforce a desired con-
straint. Various approaches have been proposed to iterate
small displacements until constraints are met [23, 24, 25].

3.3.2 Implementation

In our context, we use an adequate and straightforward post-
step modification of mass points to eliminate large stretch as
defined in [6] and in [18]. The underlying idea is simple:
each time a spring is over-stretched, we bring the two ex-
treme mass points together along their axis while preserving
the position of the center of gravity of these two masses. If
one of the two mass points is constrained at a given position,
we simply move the other one to ensure a reasonable elon-
gation. By doing this for each spring and iterating, the re-
sulting position both satisfies the external constraints (if the
mass-spring system is grabbed for instance) and simulates a
nonlinear behavior as springs are shrunk if there is unwanted
stretch. This method is an inverse kinematics process that

Figure 2: Different hanging postures of a piece of fabric an-
imated using our rapid implicit-based integration technique.
Note the absence of overly stretched springs. This leads to
a natural looking behavior for our cloth. The different pos-
tures were obtained from a single simulation by shaking the
cloth and sliding it over obstacles before allowing it to come
to rest.

does not involve forces; stability is not an issue. Since it is
similar to a Jacobi iteration, the convergence properties may
not be ensured; however, in our case where accurate conver-
gence is not needed, this does not cause visual problems. In
practice we can stop this process whenever the next frame is
needed.

This simple procedure provides the final part of our model:
we now have a way to simply deal with constraints due for
instance to collision or user interaction. And as this mod-
ification process keeps the mass-spring system from being
over-stretched, it enhances the realism of the overall anima-
tion. Figure 2 shows several hanging postures obtained using
the above algorithm. As mentioned, implausible stretching
does not appear, and the postures are natural.

4 Adding external forces

While the model from Section 3 behaves realistically when
internal forces and gravity are taken into account, it does not
yet interact with complex environments through additional
external forces like wind or through collisions with complex
objects. In this section, we extend the possibilities of the
previous algorithm by adding new features that will improve
the visual motion complexity in a virtual environment.

4.1 Drag force for wind or fluid flow

The addition of nonlinear external forces, such as wind [26],
would greatly enhance the realism of the simulation, espe-
cially for fabrics. To incorporate these nonlinear forces into
the standard form of implicit integration, we need to compute
the hessian matrix of the forces at every time step, a very ex-
pensive operation. These nonlinear forces are external, so we
cannot use our simple implicit-based algorithm either, since
there is no obvious invariant to preserve. However, since the
external forces are usually much smaller than the internal
forces of the object, we propose to explicitly integrate these
external forces. As we will demonstrate in the result section,
most external forces can be handled explicitly with standard
Euler integration without any instability problems.

We use a nonlinear wind formulation in accordance with
fluid laws in physics. Each mass point having approximately
the same small surface area1, we assign a drag force due to
wind to a mass point i such as:

Fdrag

i = Kdrag ||vwind
i || (ni ·vwind

i)ni. (5)

In this equation, K drag is a user specified coefficient, vwind
i

is the velocity of the wind (or any other fluid) at the posi-
tion of mass point i, and ni is the normal to the simulated
surface at this same point. Since all the distances between
mass point i and its neighbors stay approximately constant,
the normal vector can be easily approximated by the follow-
ing equation [22]:

ni =
∑j neighbors of i(xi −x j)

‖∑j neighbors of i(xi −x j)‖

If the former sum turns out to be zero, then n i can simply be
measured as a normalized cross product of the edges between
mass i and any two neighboring masses j and k: n i = ((x j −
xi)× (xk −xi))/||((x j −xi)× (xk −xi))||.

A more physically accurate equation for the effect of the
wind would require vwind to be a relative velocity, the differ-
ence between the wind velocity and the mass point velocity.
After many tests, however, we noticed that using only the
wind velocity (instead of the relative velocity) results in real-
istic effects and doesn’t significantly alter the visual results.
Additionally, using the relative velocity can create problems
of stability as now, this speed can be arbitrarily large depend-
ing on how fast the user waves the object. To ensure stability
whatever happens, we decided to used the simplified, yet sat-
isfactory wind velocity alone.

4.2 Collision detection and response

Interactions with objects in a virtual scene is an important
effect for a deformable object. Fortunately, we can handle

1Once again, we restrict our explanations to fabric-like material. Real
3D objects would be considered as exposed to wind only for mass points on
the surface of the object, internal mass points would not be affected.

object interactions as if they were special point-to-point con-
straints (see Section 3.3). Nevertheless, it is a costly process
to constantly check whether or not a mass point is outside of
all the obstacles in the scene. Almost as costly is the pro-
cess of forcing the mass point back onto the surface of the
obstacle it has penetrated.

In this section, we propose to accelerate both collision de-
tection and collision response to be able to deal with mul-
tiple, complex, dynamic objects in our virtual environment.
This results in a rapid collision detection and response sys-
tem, which completes our model.

4.2.1 Collision detection

Collision detection has been well researched in Computer
Graphics, both in the form of collision detection itself as well
as in ray tracing. Many acceleration techniques take advan-
tage of temporal and spatial coherence or hierarchies. This
can create inconsistencies in the update rate as certain con-
figurations will require much more computation than others.
In interactive applications, inconsistent update rates and no-
ticeable drops in performance are unacceptable. Therefore,
the update rate should be both as fast and as consistent as
possible.

We developed a simple, efficient voxel-based collision de-
tection algorithm similar to McNeely et al. [27]. This algo-
rithm provides us with fast, consistent update rates requiring
little computation, but, as a side effect, requires a fair amount
of memory.

As a preprocess, we enclose each object by a bounding
box in object space. We then discretize this box into voxels
whose size satisfies a user-defined accuracy for collisions.
The voxels are then classified as inside, outside, or surface
voxels according to whether they are totally inside the object,
totally outside the object or have the surface passing through
them.

At runtime, the objects and the cloth can be moved around
in real time. To check whether a mass point has collided
with an object, we transform the mass point into the object’s
space and determine which voxel it is in. If the voxel is an
outside voxel, no collision has occurred. On the other hand,
if the voxel is an inside or surface voxel, we must respond to
the collision as described in the next section.

4.2.2 Collision response

Once a collision has been detected we must respond to en-
sure a non-penetrating result. In addition to storing a type
(inside/outside/surface) in each voxel, we also store the clos-
est point, CP, to the surface from the center of this voxel,
VC (see Figure 3(a)), along with the normal N to the object
at CP. In order to reduce the storage required for each voxel,
the vector N can be approximated by

N ≈ (−1)δ (CP−VC)/||CP−VC||

Surface

VC

CP

N

Voxel

N

VC

CP
iold x

new xi

(a) (b)

Figure 3: (a) For each voxel, we store the closest surface
point CP from the center of the voxel VC, along with the
normal N at CP. (b) For a mass point inside this voxel, the
closest point will be found as the projection onto the tangent
plane of the surface at CP.

(which is exact for any continuous surface), where δ is 1 if
VC is outside the object and 0 otherwise. The calculation of
the closest point and normal is done as a preprocess, similar
to the typing of each voxel.

Once the closest point from each voxel is known, we still
must define how to project a mass point x i that has pene-
trated back onto the surface. An initial attempt, consisting in
directly moving the mass point to CP, resulted in a jittered
motion, because as the point CP may be the closest point to
VP, it is most likely not the closest point to xi itself. Instead,
we chose to approximate the surface by its tangent plane,
in essence, a linearized representation of the surface inside
each voxel. Given the normal N and the closest point CP,
we project the mass point from its current position x i to the
tangent plane by the following operation:

new xi = old xi +(N · (CP−xi))N. (6)

Figure 3(b) shows the result of such an operation. Note
also that we first test the sign of the above dot product: if
this dot product is negative, the mass point is actually out of
the object, and no projection is required. This tangent plane
projection algorithm avoids any of the visual jittering of the
closest point projection algorithm.

One may notice that our collision response algorithm may
allow the mass points to penetrate the object within a surface
voxel. We overcome this limitation by offsetting the surface
outwards by a small amount, creating what we call an ε shell.
This shell serves to both alleviate problems of surface pene-
tration as well as to ease rendering, as we no longer need to
deal with coplanar cloth and surface polygons.

As a final addition to our collision response algorithm, we
add an approximation of friction to enhance realism. Each
time a mass point is put back onto the surface of an object,
we attenuate the tangential component of the velocity to sim-
ulate friction on the surface. We also significantly attenuate
the normal component (multiplying by a coefficient of resti-
tution) to mimic a loss of energy due to the impact. These
additions create visually realistic cloth effects, completing
our collision response algorithm.

4.2.3 Discussion

Our collision detection and response system has several in-
teresting features that warrant further discussion. First, since
we discretize each object separately, we are able to have
multiple, dynamic objects in the scene. This individual dis-
cretization also allows for a separate discretization rate for
each object; complex shapes may require a large number of
voxels while simpler objects need fewer voxels. This tech-
nique does have some drawbacks, however. As the num-
ber of objects grows, so does the number of collisions that
must be tested. We can reduce this increase by grouping like
moving objects into a single, compound object before dis-
cretization. We then only need to test for intersection with
this compound object, as opposed to each individual object.
This compound object technique also allows us to group all
static objects in the scene into a single scene object, thereby
alleviating multiple collision tests. Also, these static objects
do not require the transformation into object space yielding
even greater efficiency. Since these voxel representations can
be memory intensive, we can also use a limited depth octree
[27] to reduce the memory burden.

Currently, we make no provision to ensure that the cloth
does not pass through small, pointy objects (tunneling). Nev-
ertheless, in our context of clothing virtual humans, this has
not been a problem as the objects’ shapes and the frame to
frame coherence of the mass positions guarantee that no tun-
neling occurs. Also, the above algorithm does not explicitly
handle cloth to cloth interactions. However, existing tech-
niques such as [28] and [29] can be integrated into our
system. These techniques then handle the cloth to cloth in-
teractions while the above algorithm handles cloth to object
interactions.

Although more accurate collision algorithms exist, the re-
quirement of real time user interaction in a complex, dy-
namic environment usually prohibits their use. Our algo-
rithm offers a fast, consistent update rate for scenes involv-
ing multiple, complex, dynamic objects. As the algorithm is
both easy to implement and computationally efficient, it has
immediate application in interactive simulation and virtual
reality.

5 Animation algorithm

We sum up the whole process in the following pseudo-code
in Fig. 4.

6 Results

All of the algorithms described in this paper have been im-
plemented and tested in a virtual environment, using our ver-
sion of the Responsive Workbench [30]. All the examples
that we describe below work in real-time, at 50 Hz (dt=0.02)
in a stereo display environment. We used a single-processor
Infinite Reality Onyx 2. Interactive frame rates can also

Precompute W = (In − dt2

m H)−1

At each time step dt
//Reset the barycenter
xG = 0
//Compute internal forces Fi
//due to springs and artificial viscosity.
For each mass point i

Fi = 0
xG+ = xi
For each mass point j such as (i, j) linked by a spring

Fi+ = ki j (||xi −x j||− li j
0)

x j−xi
||x j−xi ||

Fi+ = ki j dt (v j −vi)
//Final value of barycenter
xG/ = n
δT = 0
// Integrate the approximation (predictor, see [18])
For each mass point i

F f iltered
i = ∑ j F jWi j

δT + = F f iltered
i ∧xi

vn+1
i = vn

i +
[
F f iltered

i +g
]

dt
m

xnew
i = xi +vn+1

i dt
// Post correction of angular momentum (corrector, see [18])
For each mass point i

Rcorrec
i = (xG −xi)∧δT

xnew
i + = Rcorrec

i
dt2

m
// Add external secondary forces such as wind
For each mass point i

xnew
i + = Fdrag

i
dt2

m
// Now, use the inverse kinematics (see section 3.3)
nbIter = 0
do

Post-step inverse dynamics (as in [6] for instance)
While doing so, detect collision. (see Section 4.2.1)
If collision, bring back onto the surface. (Equation 6)
nbIter = nbIter +1

until (error < ε) or (nbIter > nbIterMax) or (time is up!)
// Update real velocity and position
vn+1

i = (xn+1
i −xn

i)/dt
xi = xnew

i

Figure 4: Pseudo-code of our algorithm.

be achieved on Pentium based PCs (PII 333MHz) driving
monocular displays. Additionally, significant improvements
can be achieved if parts of the algorithm are parallelized.

This set of examples demonstrates the feasi-
bility and the stability of our method. A video,
demonstrating real-time sessions in a VR environ-
ment using our cloth technique can be found at
http://www.cs.caltech.edu/∼mmeyer/Research/Cloth. Por-
tions of the video are also available in the IEEE Virtual
Reality 2000 video proceeding [31]. We now describe some
of the examples shown on this video.

The naked scarf

The first animation shows the basic algorithm. The user ma-
nipulates a sort of scarf, with rudimentary obstacles (namely,
a sphere and a box). Even in this simplistic environment, the
motion we obtained is realistic. The scarf can be thrown
away, put on an obstacle, dragged along the floor, etc. We
note again that this demo is fast and is unconditionally stable,
regardless of how the user may try to break the algorithm.

Addition of wind

To the previous example, we now add wind. At first, the
wind has a constant velocity. This velocity can be tuned,
but for obvious stability reasons, cannot go over a maximum
magnitude. We also introduce gusts of wind to improve the
realism. If the scarf gets behind an obstacle, it doesn’t flap
anymore as the obstacle makes a barrier against the wind.
Even with our simple drag force, we obtain realistic wind
flapping.

Complex obstacles

To prove the efficiency of our collision detection and re-
sponse system, we also show that the scarf can interact with
complex and numerous objects, like a mannequin head or a
set of furniture (see Figures 5 and 6(a)). Thanks to our
voxel-based algorithm, we can still perform all the computa-
tions of this demo at 50Hz.

Figure 5: Picture captured during live sessions in a VR envi-
ronment: A silk scarf is moved around in a scene with com-
plex obstacles in real-time.

Interaction with a river

Using exactly the same algorithm, we make a compelling
example where the scarf, when put into the flowing water,
gets dragged along with the current (see Figure 6(c)). The
flowing water is made out of an animated texture, translated
at a constant speed. This can provide a perfect base for a
fishing game.

Variations: Ellipsoid Man and the flag pole

Finally, we present other interesting effects, such as the ef-
fect of the wind on the cape of a (rather simplistic) superhero
(see Figure 6(b)). Now, we control the direction of the wind
in real-time with a stylus (a 3D mouse with 6DOF). We also
present the animation of a flag pole (see Figure 6(d)), with a
gusting wind interactively controlled by the user.

Creating a Cloth Skirt

As a final example, we developed an interactive clothing de-
sign system in the vein of [32]. Our system supports cutting
and seaming allowing complex garmets to be created from
simple panels. In addition, we handle complex constraints,
collision, and irregular discretizations. Using this system,
users are able to interactively clothe characters and test the
fit in a variety of situations.

In one instance (see Figure 1), the user interactively out-
fitted a female character with a skirt. The user first wrapped
the skirt material around the virtual character by interactively
modifying and constraining 3 points. An elastic waistband
was then simulated by interactively reducing the rest lengths
of the waist springs. To determine how this skirt would react
to different situations, a wind force was simulated. From this
simulation, it was easy to see that the open slit in the skirt al-
lowed the skirt to drift upwards in the wind. A seam was
deemed necessary and interactively created by the user (by
selecting corresponding seam points with the mouse). In-
specting the new skirt design in the wind, the user found a
much more pleasing result.

7 Conclusion

In this paper, we have explored the current possibilities of
real-time animation of cloth and other simple deformable ob-
jects. With our implicit-based integration scheme for stiff
internal forces, mixed with a conventional explicit scheme
for additional external forces, we obtain interesting results
in VR environments. Stability (and therefore, robustness) is
achieved whatever the user decides to do with the simulated
object(s). Collision detection and response is handled by a
simple algorithm gauranteeing fast, consistent update rates
for complex, dynamic environments. Multiple constraints
are also handled and drag forces due to surrounding fluids
are taken into account, resulting in a rich class of behaviors
with a guaranteed frame rate.

As a conclusion, it seems that both hardware and algo-
rithms are mature enough to animate nontrivial phenomena
in real-time, guided by user interactions. Several avenues
can now be explored, like interactive clothing design systems
and virtual surgery simulators, and the constant improve-
ment of hardware efficiency will only make things easier.

8 Acknowledgments

This work has been supported by the National Science Foun-
dation (ASC-89-20219), as part of the STC for Computer
Graphics and Scientific Vizualization, and by the Integrated
Media Systems Center, a National Science Foundation Engi-
neering Research Center, Cooperative Agreement No. EEC-
9529152.

(a) (b)

(c) (d)

Figure 6: (a) Complex obstacles— an office. (b) A caped crusader. (c) Interaction with a river. (d) A flag, flapping.

References

[1] Bernd Froehlich, Henrik Tramberend, Andrew Beers,
Maneesh Agrawala, and David Baraff. Physically-
based manipulation on the responsive workbench. In
IEEE VR 2000, March 2000.

[2] Gavin Miller. The motion dynamics of snakes and
worms. Computer Graphics, 22(4):169–177, August
1988. Proceedings of SIGGRAPH’88 (Atlanta, Geor-
gia).

[3] A. Luciani, S. Jimenez, J-L. Florens, C. Cadoz, and
O. Raoult. Computational physics: a modeler simula-
tor for animated physical objects. In Eurographics’91,
Vienna, Austria, September 1991.

[4] John E. Chadwick, David R. Haumann, and Richard E.
Parent. Layered construction for deformable animated
characters. Computer Graphics, 23(3):243–252, July
1989.

[5] Demetri Terzopoulos, John Platt, and Kurt Fleisher.
Heating and melting deformable models (from goop to
glop). In Graphics Interface’89, pages 219–226, Lon-
don, Ontario, June 1989.

[6] Xavier Provot. Deformation constraints in a mass-
spring model to describe rigid cloth behavior. In
Graphics Interface, pages 147–154, June 1995.

[7] Ammar Joukhadar. Adaptive time step for fast con-
verging dynamic simulation system. In Proc. of the

IEEE-RSJ Int. Conf. on Intelligent Robots and Systems,
volume 2, pages 418–424, November 1996.

[8] B. Eberhardt, A. Weber, and W. Strasser. A fast, flexi-
ble, particle-system model for cloth draping. In Com-
puter Graphics in Textiles and Apparel, pages 52–59.
IEEE Computer Graphics and Applications, September
1996.

[9] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt
Fleischer. Elastically deformable models. Computer
Graphics, 21(4):205–214, July 1987. Proceedings of
SIGGRAPH’87 (Anaheim, California).

[10] Demetri Terzopoulos and Andrew Witkin. Physically
based model with rigid and deformable components.
IEEE Computer Graphics and Applications, pages 41–
51, December 1988.

[11] Alex Pentland and John Williams. Good vibrations:
Modal dynamics for graphics and animation. Computer
Graphics, 23(3):215–222, July 1989. Proceedings of
SIGGRAPH’89 (Boston, MA, July 1989).

[12] Andrew Witkin and William Welch. Fast animation
and control for non-rigid structures. Computer Graph-
ics, 24(4):243–252, August 1990. Proceedings of SIG-
GRAPH’90 (Dallas, Texas, August 1990).

[13] Stéphane Cotin, Hervé Delingette, and Nicolas Ayache.
Real time volumetric deformable models for surgery

simulation. In Proceedings of Visualization in Biomed-
ical Computing, volume Lectures Notes in Computer
Science, volume 11, September 1996.

[14] Doug James and Dinesh Pai. Accurate real time de-
formable objects. In Alyn Rockwood, editor, SIG-
GRAPH 99 Conference Proceedings, Annual Confer-
ence Series, pages 65–72. ACM SIGGRAPH, Addison
Wesley, August 1999.

[15] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey
Hinton. Neuroanimator: Fast neural network emulation
and control of physics-based models. In Michael Co-
hen, editor, SIGGRAPH 98 Conference Proceedings,
Annual Conference Series, pages 9–20. ACM SIG-
GRAPH, Addison Wesley, July 1998.

[16] Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani,
and Alan Barr. Adaptive simulation of soft bodies in
real-time. In Computer Animation 2000, Annual Con-
ference Series, May 2000.

[17] David Baraff and Andrew Witkin. Large steps in cloth
simulation. In Michael Cohen, editor, SIGGRAPH 98
Conference Proceedings, Annual Conference Series,
pages 43–54. ACM SIGGRAPH, Addison Wesley, July
1998.

[18] Mathieu Desbrun, Peter Schröder, and Alan H. Barr. In-
teractive Animation of Structured Deformable Objects.
In Graphics Interface’99 proceedings, pages 1–8, June
1999.

[19] O.C. Zienkiewicz and R.L. Taylor. The Finite Element
Method. McGraw-Hill, 1991.

[20] William Press, Saul Teukolsky, William Vetterling, and
Brian Flannery. Numerical Recipes in C, second edi-
tion. Cambridge University Press, New York, USA,
1992.

[21] Michael Kass. An introduction to continuum dynamics
for computer graphics. In SIGGRAPH Course Notes.
ACM SIGGRAPH, 1995.

[22] Mathieu Desbrun, Mark Meyer, Peter Schröder, and
Alan Barr. Implicit fairing of irregular meshes using
diffusion and curvature flow. In SIGGRAPH 99 Con-
ference Proceedings, to appear in August 1999. Los
Angeles, CA.

[23] Jean-Dominique Gascuel and Marie-Paule Gascuel.
Displacement constraints for interactive modeling and
animation of articulated structures. The Visual Com-
puter, 10(4):191–204, March 1994. An early version
of this paper appeared in the Third Eurographics Work-
shop on Animation and Simulation, Cambridge, UK,
Sept 92.

[24] C. Van Overveld. An iterative approach to dynamic
simulation of 3-D rigid-body motions for real-time in-
teractive computer animation. The Visual Computer,
7:29–38, 1991.

[25] François Faure. Interactive solid animation using lin-
earized displacement constraints. 9th Eurographics
Workshop on Computer Animation and Simulation,
September 1998.

[26] Jakub Wejchert and David Haumann. Animation aero-
dynamics. In Richard J. Beach, editor, SIGGRAPH
91 Conference Proceedings, Annual Conference Se-
ries, pages 19–22. ACM SIGGRAPH, Addison Wesley,
1991.

[27] William A. McNeely, Kevin D. Puterbaugh, and
James J. Troy. Six degree-of-freedom haptic render-
ing using voxel sampling. In Alyn Rockwood, editor,
SIGGRAPH 99 Conference Proceedings, Annual Con-
ference Series, pages 401–408. ACM SIGGRAPH, Ad-
dison Wesley, August 1999.

[28] Xavier Provot. Collision and self-collision handling in
cloth model dedicated to design garments. In Graphics
Interface’97 proceedings, pages 177–189, 1997.

[29] P. Volino, M. Courchesne, and N. Magnenat-Thalmann.
Versatile and efficient techniques for simulating cloth
and other deformable objects. In SIGGRAPH 95 Con-
ference Proceedings, Annual Conference Series, pages
137–144. ACM SIGGRAPH, Addison Wesley, 1995.

[30] W. Krueger and B. Froehlich. The responsive work-
bench (virtual work environment). IEEE Computer
Graphics and Applications, 14(3):12–15, May 94.

[31] Mark Meyer, Gilles Debunne, Mathieu Desbrun, and
Alan Barr. Interactive animation of cloth-like objetcs
in virtual reality. In IEEE Virtual Reality’2000 Video
Proceedings, 2000. New Brunswick, NJ.

[32] P. Volino and N. Magnenat-Thalmann. Developing
simulation techniques for an interactive clothing sys-
tem. In VSMM 97 Proceedings, pages 109–118. Virtual
Systems and Multimedia, 1997.

