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Abstract

In this paper we present an easy computation of a generalized form of barycentric coordinates for irregular, convex n-sided polygons. Triangular barycentric
coordinates have had many classical applications in computer graphics, from texture mapping to ray-tracing. Our new equations preserve many of the familiar
properties of the triangular barycentric coordinates with an equally simple calculation, contrary to previous formulations. We illustrate the properties and behavior
of these new generalized barycentric coordinates through several example applications.

1 Introduction

The classical equations to compute triangular barycentric coordinates have been known by mathematicians for centuries. These equations have
been heavily used by the earliest computer graphics researchers and have allowed many useful applications including function interpolation,
surface smoothing, simulation and ray intersection tests. Due to their linear accuracy, barycentric coordinates can also be found extensively
in the finite element literature [Wac75].
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Figure 1: (a) Smooth color blending using barycentric coordinates for regular polygons [LD89], (b) Smooth color blending using our generalization to arbitrary polygons, (c)
Smooth parameterization of an arbitrary mesh using our new formula which ensures non-negative coefficients. (d) Smooth position interpolation over an arbitrary convex polygon
(S-patch of depth 1).

Despite the potential benefits, however, it has not been obvious how to generalize barycentric coordinates from triangles to n-sided poly-
gons. Several formulations have been proposed, but most had their own weaknesses. Important properties were lost from the triangular
barycentric formulation, which interfered with uses of the previous generalized forms [PP93, Flo97]. In other cases, the formulation applied
only to regular polygons [LD89]. However, Wachspress [Wac75] described an appropriate extension, unfortunately not very well known
in Graphics1. We will review these techniques, and present a much simpler formulation for generalized barycentric coordinates of convex
irregularn-gons.

We define the notion of generalized barycentric coordinates in the remainder of this paper as follows: letq1, q2, ..., qn ben vertices of a
convexplanar polygonQ in R2, with n ≥ 3. Further, letp be anarbitrary point insideQ. We callgeneralized barycentric coordinatesof
p with respect to{qj}j=1..n any set of real coefficients(α1, α2, ..., αn) depending on the vertices ofQ and onp such that all the following
properties hold:

• Property I (Affine Combination)

p =
∑

j∈[1..n]

αj qj , with
∑

j∈[1..n]

αj = 1. (1)

This property allows us to use the polygon’s vertices as a basis to locate any point inside. This partition of unity of the coordinates
also makes the formulation both rotation and translation invariant.

• Property II (Smoothness): The{αj}j=1..n must be infinitely differentiable with respect top and the vertices ofQ. This ensures
smoothness in the variation of the coefficientsαj when we move any vertexqj .

• Property III (Convex Combination):
αj ≥ 0 ∀j ∈ [1..n].

Such a convex combination guarantees no under- or over-shooting in the coordinates: all the coordinates will be between zero and one.

1This approach has also been generalized for convex polytopes by Warren [War96]
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Figure 2: While (a) Polthier’s formula [PP93] can give negative coefficients for the barycentric coordinates, our generalization (b) has guaranteed non-negativity. (c) and (d)
show a plot of a single barycentric coefficient, generated by linearly varyingp, for (c) Floater’s method and (d) our new method. Note the sharp derivative discontinuities apparent
when Floater’s method crosses a triangle boundary, while our method produces smoothly varying weights.

The usual triangular barycentric coordinates (n = 3) obviously satisfy the aforementioned properties. Note also that Equation (1) can be
rewritten in the following general way:

∑
j∈[1..n]

ωj(qj − p) = 0. (2)

A simple normalization allows us to find partition-of-unity barycentric coordinates:

αj = ωj/(
∑
k

ωk). (3)

2 Previous Work

Several researchers have attempted to generalize barycentric coordinates to arbitraryn-gons. Due to the relevance of this extension in CAD,
many authors have proposed or used a generalization forregular n-sided polygons[LD89, Kur93, Lod93]. Their expressions nicely extend
the well-known formula to find barycentric coordinates in a triangle:

α1 = A(p, q2, q3)/A(q1, q2, q3)

α2 = A(p, q3, q1)/A(q1, q2, q3) (4)

α3 = A(p, q1, q2)/A(q1, q2, q3)

whereA(p, q, r) denotes the signed area of the triangle(p, q, r). Unfortunately, none of the proposed affine combinations leads to the
desired properties for irregular polygons. However, Loop and DeRose [LD89] note in their conclusion that barycentric coordinates defined
over arbitrary convex polygons would open many extensions to their work.

Pinkall and Polthier [PP93], and later Ecket al [EDD+95], presented a conformal parameterization for a triangulated surface by solving a
system of linear equations relating the positions of each pointp to the positions of its first ring of neighbors{qj}j=1..n as:

∑
j

(cot(αj) + cot(βj))(qj − p) = 0 (5)

where the angles are defined in Figure 2(a). As Desbrunet al. showed in [DMSB99], this formula expresses the gradient of area of the 1-ring
with respect top, therefore Property II is immediately satisfied. The only problem is that the weights can be negative even when the boundary
of the n-sided polygon is convex (as indicated in Figure 2(a) by the red colored weights), violating Property III.

Floater [Flo97, Flo98] also attempted to solve the problem of creating a parameterization for a surface by solving linear equations. He
defined the barycentric coefficients algorithmically to ensure Property III [Flo97]. Additionally, most of the other properties are also enforced
by construction; alas, due to the algorithmic formulation used, Property II does not hold, as proven by a cross-section in Figure 2(c). These
barycentric coefficients are onlyC0 as the point{p} is moved within the polygon.

However, in 1975, Wachpress proposed a construction of rational basis functions over polygons that leads to the appropriate properties.
For the non-normalized weightωj (see Equation 2) corresponding to the pointqj of Figure 3(a), Wachspress proposed [Wac75] to use a
construction leading to the following formulation:

ωj = A(qj−1, qj , qj+1) . Πk/∈{j,j+1}A(qk−1, qk, p) (6)

Thus, each weightωj is the product of the area of thejth “boundary” triangle formed by the polygon’s three adjacent vertices (shaded in
Figure 3), and the areas of then− 2 interior triangles formed by the pointp and the polygon’s adjacent vertices (making sure to exclude the
two interior triangles that contain the vertexqj). The barycentric weights,αj , are then computed using equation 3. We refer the reader to the
appendix for a very short proof of Property I. Properties II and III obviously stand since we use positive areas for convex polygons, continuous
in all the points. Notice also that, in addition to thepseudoaffine propertydefined in [LD89], this formulation also enforcesedge-preservation:
whenp is on a border edgeqiqi+1 of the polygon, these barycentric coordinates reduce to the usual linear interpolation between two points.
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Figure 3: (a) Our expression for each generalized barycentric coordinates can be computed locally using the edgepqj and its two adjacent angles. (b) For an arbitrary convex
polygon, the basis function of each vertex is smooth as indicated by the isocontours.

3 Simple Computation of Generalized Barycentric Coordinates

In this section we provide the simplest form of generalized barycentric coordinates for irregularN -sided polygons that retains Property I
(affine combination), Property II (smoothness) and Property III (convex combinations) of the triangular barycentric coordinates. This new
barycentric formulation issimple, local and easy to implement. In addition, our formulation reduces to the classical equations whenn = 3,
and is equivalent to the analytic form of [Wac75], yet much simpler to compute.

If p is strictly within the polygonQ, we can rewrite the non-normalized barycentric coordinates given in equation 6 as:

ωj =
A(qj−1, qj , qj+1)

A(qj−1, qj , p)A(qj , qj+1, p)

= [sin(γj + δj)||qj − qj−1|| ||qj − qj+1||] /

[sin(γj)||qj−1 − qj || ||qj − p||2sin(δj)||qj − qj+1||]

=
sin(γj + δj)

sin(γj)sin(δj)||p− qj ||2

Therefore, using trigonometric identities for the sine function, we obtain the condensed, local formula:

ωj =
cot(γj) + cot(δj)

||p− qj ||2
(7)

This formulation has the main advantage of beinglocal: only the edgepqj and its two adjacent anglesγj andδj are needed. The cotangent
should however not be computed through a trigonometric function call, for obvious accuracy reasons. It is far better to use a division between
the dot product and the cross product of the triangle involved. Still, compared to the original Equation 6, we obtain locality, hence simplicity
of computation. A simple normalization step to compute the real barycentric coordinates{αj}j=1..n using Equation 3 is the last numerical
operation needed. The pseudocode in Figure 4 demonstrates the simplicity of our barycentric formulation when the pointp is strictly within
the polygonQ.

// Compute the barycentric weights for a pointp in an n-gonQ
// Assumesp is strictly withinQ and the verticesqj ofQ are ordered.
computeBarycentric(vector2dp, polygonQ, int n, realw[ ])

weightSum = 0
foreach vertexqj ofQ:

prev = (j + n− 1) modn
next = (j + 1) modn
wj = (cotangent(p,qj ,qprev) + cotangent(p,qj ,qnext))/‖p− qj‖

2

weightSum +=wj
// Normalize the weights
foreach weightwj :

wj /= weightSum

// Compute the cotangent of the non-degenerate triangleabcat vertexb
cotangent(vector2da, vector2db, vector2dc)

vector2dba = a - b
vector2dbc = c - b

return
(

bc·ba
‖bc×ba‖

)

Figure 4:Pseudocode to compute the barycentric weights.

Note that the above formulation is only valid whenp is strictly within the polygonQ. We remedy this problem, as well as avoid numerical
problems (such as divisions by extremely small numbers) through a special case. If the pointp is within ε of any of the boundary segments
(determined, for instance, by‖(qj+1 − qj)× (p− qj)‖ ≤ ε‖qj+1 − qj‖) the weights can be computed using a simple linear interpolation
between the two neighboring boundary points (or even using the non-local equation 6).



4 Applications

As mentioned in the abstract, the use of a barycentric coordinate system is extremely useful for a wide range of applications. Since our new
formulation easily extends this notion to arbitrary polygons, many domains can benefit from such a simple formula. We describe three very
different example applications.

4.1 Interpolation Over N -sided Polygons

The obvious first application is to use our formula directly for interpolation of any scalar or vector field over polygons. In Figure 1, we
demonstrate the smoothness for various six-sided polygons. While the regular case matches with previous formulations [LD89, Kur93], the
extension to irregular polygons provides an easy way to still guarantee smoothness and non-negative coefficients.

As mentioned in the introduction, many previous formulations had various shortcomings. In Figure 2, we notice that the Polthier expres-
sion [PP93] leads to negative coefficients, while the Floater formulation [Flo97] only providesC0 continuity.

4.2 Parameterization

Parameterization of triangular meshes has recently been studied extensively, focusing on texturing or remeshing of irregular meshes. This
consists of defining a piecewise smooth mapping between the triangulated surface and a 2D parameter plane(u, v). Floater [Flo97, Flo98]
noticed that a necessary condition to define this mapping is that every vertex of the surface is mapped to a linear combination of its neighbors’
mapped positions. It turns out that our formulation provides a new and appropriate way to satisfy this condition. Indeed, we can now compute
directly on the surface the area-weighted barycentric coordinates of every interior point of a mesh with respect to its 1-ring neighbors,simply
by using Equation 7. Assuming that no triangles are degenerate, we will obtain a linear combination for every vertex on the surface with
respect to its 1-ring neighbors. Solving the resulting linear system of equations (using a conjugate gradient solver to exploit sparsity) will
provide a quick and safe way to obtain a parameterization of an arbitrary mesh [DMA02]. Figure 1(c) demonstrates this technique: starting
from an irregular face mesh, we can smoothly map a grid texture on it at low computational cost and in a robust way.

4.3 Surface Modeling and CAD

In [LD89], Loop and DeRose proposed a generalization of Bézier surfaces to regular n-sided polygons, defining what they callS-patches.
Relying on a generalization of barycentric coordinates, they unify triangular and tensor product Bézier surfaces. However, they were limited
to regular polygonswith their formulation, which added hard constraints to the modeling process. Similarly, other modeling techniques (see
for instance [VMT98]) use generalized barycentric coordinates, but are again constrained to regular base polygon meshes.

The new formulation we describe provides a very general way to extend the notion of Bézier surfaces. Any convex polygon provides an
adequate convex domain to compute a polynomial surface. Figure 1(d) demonstrates the smoothness of a patch of order one, defined over an
irregular convex domain, using our barycentric coordinate formula.

5 Conclusion

In this paper, we have introduced a straightforward way to compute smooth, convex-preserving generalized barycentric coordinates. We
believe that this simple expression allows many existing works to be extended to irregular polygons with ease. We are currently investigating
various avenues, ranging from generalizing this expression to 3D polyhedra, to applying it for the smoothing of meshes.

Web Information A simple C++ code implementation is available on the web athttp://www.acm.org/jgt/papers/MeyerEtAl02.
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A Derivation of Equation 6

We present here a simple proof of Equation 6. As before, let’s callq1, ...qn then vertices of a convex polygonQ, andp a point insideQ.
If we write the triangular barycentric coordinates for the pointp with respect to a “boundary” triangleT = (qj−1, qj , qj+1), we get (using
Equation 4):

A(T ) p = A(qj , qj+1, p) qj−1 +A(qj−1, qj , p) qj+1

+(A(T )−A(qj , qj+1, p)−A(qj−1, qj , p)) qj

Since none of these areas can be zero whenp is inside the polygon, we rewrite the previous equation as:

A(T )

A(qj , qj+1, p)A(qj−1, qj , p)
(p− qj) =

1

A(qj−1, qj , p)
[qj−1 − qj ] +

1

A(qj , qj+1, p)
[qj+1 − qj ]

By summing the contributions of all boundary triangles, the terms on the right hand side of the previous equation will cancel two by two,
and we are left with Equation 6. �


