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Abstract
In this paper, we present a numerical technique for perfogrhie advection of

arbitrary differential forms. Leveraging advances in higbolution finite volume
methods for scalar hyperbolic conservation laws, we firstrditize the interior
product (also calledontractior) through integrals over Eulerian approximations
of extrusions. This, along with Cartan’s homotopy formutal @ discrete exterior
derivative, can then be used to derive a discrete Lie darazaihe usefulness of
this operator is demonstrated through the numerical aireof scalar fields and
1-forms on regular grids.

1 Introduction

Deeply-rooted assumptions about smoothness and diffebdity of most continuous
laws of mechanics often clash with the inherently discretture of computing on
modern architectures. To overcome this difficulty, a vashher of computational
techniques have been proposedicretizedifferential equations, and numerical anal-
ysis is used to prove properties such as stability, accusaayconvergence. However,
many key properties of a mechanical system are charaaldniz&s symmetries and
invariants €.g, momenta), and preserving these features in the compughtiealm
can be of paramount importance [19], independent of therafd&ccuracy used in the
computations. To this endgometrically-derivetiechniques have recently emerged as
valuable alternatives to traditional, purely numericasdgtic approaches. In particular,
the use of differential forms and their discretization ash@ins has been advocated in
a number of applications such as electromagnetism [6, 46¢raete mechanics [30],
and even fluids [14].

In this paper we introduce a finite volume based techniquedtwing the discrete Lie
advection equation, ubiquitous in most advection phen@men
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wherew is an arbitrary discrete differentiatform [3, 5, 11] defined on a discrete man-
ifold, and X is a discrete vector field living on this manifold. Our nuncatiapproach
stems from the observation, developed in this paper, teatdmputational treatment of
discrete differential forms share striking similaritieglwfinite volume techniques [26]



and scalar advection techniques used in level sets [36,@&)sequently, we present
a discrete interior product (aontractio) computed using any of thie-dimensional
finite volume methods readily available, from which we de@numerical approxima-
tion of the spatial Lie derivativé€ x using a combinatorial exterior derivative.

1.1 Background on the Lie Derivative

The notion of Lie derivativeC x in Elie Cartan’s Exterior Calculus [10] extends the
usual concept of the derivative of a function along a vecadd X . Although a formal
definition of this operator can be made purely algebraigage [1],§5.3), its nature
is better elucidated from a dynamical perspective §5]4). Consequently, the spatial
Lie derivative (along with its closely related time-depentiversion) is an underlying
element in all areas of mechanics: for example, the raterainstensor in elasticity
and the vorticity advection equation in fluid dynamics aréhlracely described using
Lie derivatives.

A common context where a Lie derivative is used to describbyeipal evolution is
in the advection oBcalar fields a scalar fieldp being advected in a vector field
can be written asdp/dt + Ly p = 0. The case of divergence-free vector fields.(
V-V =0) has been the subject of extensive investigation over teegeeral decades
leading to several numerical schemes for solving thesestgpleyperbolic conservation
laws in various applications (seeg, [37, 12, 41, 24, 22, 14, 13]). Chief among them
are the so-called finite volume methods [26], including umyiENO, WENO, and
high-resolution techniques. Unlike finite difference teicjues based on point values
(e.g, [15, 39, 28]), such methods often resort to the conservébirm of the advection
equation and rely on cell averages and the integrated fluxbstiveen. The integral
nature of these finite volume techniques will be particylatlitable in our context, as
it matches the foundations behind discrete versions ofiextealculus [5, 3].

While finite volume schemes have been successfully useds/faraodecade, they have
been used almost solely to treat scalar fields, be they fumeior densities. To the
authors’ knowledge, Lie advection of non-scalar entitigshsas vorticity for fluids has

yet to benefit from these advances.

1.2 Emergence of Structure-Preserving Computations

Concurrentto the development of high-resolution methodsdalar advection, structure-
preserving geometric computational methods have emeggéaung acceptance among
engineers as well as mathematicians [2]. Computationatrelmagnetism [6, 40],
mimetic (or natural) discretizations [34, 5], and more rgheDiscrete Exterior Cal-
culus (DEC, [23, 11]) and Finite Element Exterior Calcule&EEC, [3]) have all pro-
posed similar discrete structures that discretely preseector calculus identities to
obtain improved numerics. In particular, the relevancextégor calculus (Cartan’s
calculus of differential forms [10]) and algebraic topoja@ee, for instance, [32]) to
computations came to light.

Exterior calculus is a concise formalism to express difide¢ and integral equations
on smooth and curved spaces in a consistent manner, whéalieyg the geometrical
invariants at play. At its root is the notion of differentiatms, denoting antisymmetric



tensors of arbitrary order. As integration of differenfiaims is an abstraction of the
measurement process, this calculus of forms provides &nsitt, coordinate-free ap-
proach particularly relevant to concisely describe a rtudg of physical models that
make heavy use of line, surface and volume integrals [8, 118931, 9, 17]. Sim-
ilarly, many physical measurements, such as fluxes, ar@mpeefl as specific local
integrations over a small surface of the measuring instrimBointwise evaluation
of such quantities does not have physical meaning; insteael,should manipulate
those quantities only as geometrically-meaningful esgtithtegrated over appropriate
submanifolds—these entities and their geometric propedre embodied in discrete
differential forms.

Algebraic topology, specifically the notion of chains andltains (seeg.qg, [43, 32],
has been used to provide a natural discretization of théfeeatitial forms and to emu-
late exterior calculus on finite grids: a set of values onigest edges, faces, and cells
are proper discrete versions of respectively pointwisetions, line integrals, surface
integrals, and volume integrals. This point of view is eglticompatible with the treat-
ment of volume integrals in finite volume methods, or scalacfions in finite element
methods [5]; but it also involves the edge elements and flestents as introduced
in E&M as specialHy;, and H.,,1 basis elements [33]. Equipped with such discrete
forms of arbitrary degree, Stokes’ theorem connectingediffitiation and integration
is automatically enforced if one thinks of differentiatian the dual of the boundary
operator—a particularly simple operator on meshes. Witisétbasic building blocks,
important structures and invariants of the continuousrggttirectly carry over to the
discrete world, culminating in a discrete Hodge theory (geent progress in [4]). As
a consequence, such a discrete exterior calculus has, aawseartentioned, already
proven useful in many areas such as electromagnetism [6fl4{@] simulation [14],
surface parameterization [18], and remeshing of surfat®sd mention a few.

Despite this previous work, the contraction and Lie denabf arbitrary discrete
forms—two important operators in exterior calculus—haseeived very little atten-
tion, with a few exceptions. The approach in [7] (that we wéView in §3.1) is to
exploit the duality between the extrusion and contractiperators, resulting in an inte-
gral definition of the interior product that fits the existiiogindations. While a discrete
contraction was derived using linear “Whitney” elements,method to achieve low
numerical diffusion and/or high resolution was proposagtttrermore, the Lie deriva-
tive was not discussed. More recently Heumann and Hiptr2ajrigveraged this work
to suggest an approach similar to ours in a finite elementdveork for Lie advection
of forms of arbitrary degree, however orilyforms were addressed and analyzed.

1.3 Contributions

In this paper we extend the discrete exterior calculus rmeehiby introducing dis-
cretizations of contraction and Lie advection with low nuiva diffusion. Our work
can also be seen as an extension of classical numericalgeesfor hyperbolic con-
servation laws to handle advection of arbitrary discreffedintial forms. In particular,
we will show that our scheme in 3D is a generalization of fimitdume techniques
where not onlycell-averagesare used, but alstace-and edge-averagesas well as
vertex values



2 Mathematical Tools

Before introducing our contribution, we briefly review thdasting mathematical tools

we will need in order to derive a discrete Lie advection: rafiscussing our setup, we
describe the necessary operators of Discrete ExteriouCalcbefore briefly review-

ing the foundations of finite volume methods for advectiamthis paper continuous

guantities and operators are distinguished from theirrdisccounterparts through a
bold typeface.

2.1 Discrete Setup

Space Discretization. Throughout the exposition of our approach, we assume a reg-
ular Cartesian grid discretization of spac@&his grid forms an orientablg-manifold

cell complexK = (V, E, F,C) with vertex setV = {v;}, edge setf = {¢;;}, as

well as face seft’ and cell setC. Each cell, face and edge is assigned an arbitrary yet
fixed intrinsic orientation, while vertices and cells alwayave a positive orientation.
By convention, if a particular edgs; is positively oriented then;; refers to the same
edge with negative orientation, and similar rules applyHigher dimensional mesh
elements given even vs. odd permutations of their vertesoiimd).

Boundary Operators. Assuming that mesh elements I are enumerated with an
arbitrary (but fixed) indexing, the incidence matricesiofthen define the boundary
operators. For example, we gt denote theV'| x |E| matrix with (9%),. = 1 (resp.,
—1) if vertex v is incident to edge: and the edge orientation points towards (resp.,
away from)v, and zero otherwise. Similarly? denotes théE| x |F| incidence matrix

of edges to faces wittv!).; = 1 (resp.,—1) if edgee is incident to facef and their
orientations agree (resp., disagree), and zero otheriiseincidence matrix of faces
to cellsd? is defined in a similar way. See [32] for details.

2.2 Calculus of Discrete Forms

Guided by Cartan’s exterior calculus of differential forots smooth manifolds, DEC
offers a calculus on discrete manifolds that maintains tdwagant nature of the quan-
tities involved.

Chains and Cochains. At the core of this computational tool is the notionabfaing
defined as a linear combination of mesh elemenétschain is a weighted sum of ver-
tices, al-chain is a weighted sum of edges, etc. Since dadimensional cell has a
well-defined notion of boundary (in fact its boundary is ainhitself; the boundary
of a face, for example, is the signed sum of its edges), thedemy operator natu-
rally extends to chains by linearity. @iscrete formis simply defined as the dual of
a chain, orcochain a linear mapping that assigns each chain a real number., @hus
0-cochain (that we will abusively call @&form sometimes) amounts to one value per
0-dimensional cell, such that ariychain can naturally pair with this cochain. More
generallyk-cochains are defined by one value perell, and they naturally pair with
k-chains. The resulting pairing ofiacochaina* and ak-chainoy, is the discrete equiv-
alent of the integration of a continuoksform o over ak-dimensional submanifold

1A brief discussion on possible avenues to extend this apprwsarbitrary simplicial complexes will be
given ing5.
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While attractive from a computational perspective due &irtbonceptual simplicity
and elegance, the chain and cochain representations argesply rooted in a theoret-
ical framework defined by H. Whitney [43], who introduced tWaitney and deRham
maps that establish an isomorphism between the cohomologiynplicial cochains
and the cohomology of Lipschitz differential forms. Withetle theoretical founda-
tions, chains and cochains are used as basic building blocl#ect discretizations of
important geometric structures such as the deRham comiplexgh the introduction
of two simple operators.

Discrete Exterior Derivative. The differentiald (called exterior derivative) is an ex-
isting exterior calculus operator that we will need in ounstouction of a Lie derivative.
The discrete derivativé is constructed to satisfy Stokes’ theorem, which eluciltdte

duality between the exterior derivative and the boundasrator. In the continuous

sense, it is written
/da:/ a. (2)
o oo

Consequently, ity is a discrete differentiat-form, then the £+1)-form do is defined
on any §+1)-chaino by
(da, o) = (o, Do), 3)

wheredo is the §-chain) boundary of, as defined ir§2.1. Thus the discrete differ-
entiald, mappingk-forms to +1)-forms, is given by the co-boundary operator, the
transpose of the signed incidence matrices of the comflexdy, = (9')”7 maps
0-forms to 1-forms, d; = (9%)7 maps1-forms to 2-forms, and more generally in
nD, dy = (0**1)T. In relation to standard 3D vector calculus, this can be sesen a
dy = V,d; = VX, andd, = V.. The fact that the boundary of a boundary is
empty results indd = 0, which in turn corresponds to the vector calculus facts that
V X V =V .Vx = 0. Notice that this operator is defined purely combinatoyjall
and thus doenot need a high-order definition, unlike the operators we wildduce
later.

2.3 Principles of Finite Volumes

Given the integral representation of discrete forms usdbeérprevious section, a last
numerical tool we will need is a method for computing solngi®o advection problems
in integral form. Finite volume methods were developed f@atly this purpose, and
while we now provide a brief overview of this general procedfor completeness,
we refer the reader to [26] and references therein for furdle¢ails and applications.
One approach of finite volume schemes is to advect a funatiohby a velocity field
v(x) using a Reconstruct-Evolve-Average (REA) approach. Indimension, we can
define the cell average of a functiafiz) over cellC; with width Az as

1
ulzﬂ/au(x)dx 1=1,2,...,N.



Given k adjacent cell averages, the method will reconstruct a foncuch that the
average op(z) in each of the: cells is equal to the averagewofz) in those cells. High-
resolution methods attempt to build a reconstruction shehit has only high-order
error terms in smooth regions, while lowering the order @ftbconstruction in favor
of avoiding oscillations in regions with discontinuitiéed shocks. Such adaptation can
be done through the use of slope limiters or by changing Bteimes using essentially
non-oscillatory (ENO) and related methods. This recomwsitva can then be evolved
by the velocity field and averaged back onto the Eulerian grid

Another variant of finite volume methods is one that compfiieses through cell
boundaries. Employing Stokes’ theorem, the REA approantbeaimplemented by
computing only the integral of the reconstruction whichvsleed through each face,
and then differencing the incoming and outgoing integréiteces of each cell to deter-
mine its net change in density. It is this flux differencingpegach that will be most
convenient for deriving our discrete contraction operatoe to the observation that
the net flux through a face induced by evolving a function fmavin a velocity field
is equal to the flux through the face induced by evolving tloe faackwardghrough
the same velocity field. This second interpretation of thegrated flux is the same as
computing the integral of the function over an extrusiorhgftace in the velocity field,
as will be seen in the next section, and therefore we may usefahe wide range of
finite volume methods to approximate integrals over extuifdees.

3 Discrete Interior Product and Discrete Lie Derivative

In keeping with the foundations of Discrete Exterior Calsyjlwe present the con-
tinuous interior product and Lie derivative operators igitlintegral” form, i.e., we
present continuous definitions Bfw and £ x w integratedover infinitesimal subman-
ifolds: these integral forms will be particularly amenabdediscretization via finite
volume methods and DEC as we discussed earlier.

3.1 Towards a Dynamic Definition of Lie Derivative

Interior Product through Extrusion. As pointed out by [7], th@xtrusionof objects
under the flow of a vector field can be used to give an intuitipeasnic definition of
the interior product. I{M is ann-dimensional smooth manifold andl € X(M) a
smooth (tangent) vector field on the manifold, &be ak-dimensional submanifold
on M with k£ < n. The flow¢ of the vector fieldX is simply a functionp : M x
R — M consistent with the one-parameter (time) group structiag, is, such that
p(p(S,t),s) = ¢(S,s +t) with ¢(S,0) = S for all s,t € R. Now imagine
thatS is carried by this flow ofX for a timet; we denote the resultant “flowed-out”
submanifoldSx (¢), which is equivalent to the image & under the mapping, i.e.,
Sx(t) = ¢(8,t). The extrusiorE x (S, t) is then the k+1)-dimensional submanifold
formed by the advection of over the timet to its final positionSx (¢): it is the
“extruded” (or “swept out”) submanifold. This can be exmed formally as a union of

flowed-out manifolds,
x(S, )= |J Sx(7)
T€0,t]



where the orientation adEx (S, t) is defined such that
OEx = S8x(t) — S8 — Ex(98,1t).

These geometric notions are visualized in Figure 1, whezestbbmanifoldS is pre-
sented as &-dimensional curve, flowed out to for$ix (¢), or alternatively, extruded
to form Ex (S, t).

Using this setup, the interior produigt of a time-independent forme evaluated o1&
can now be defined through one of its most crucial propeit&sas the instantaneous
change ofv evaluated orE x (S, t), or more formally,

i),
/s dt{,_o JEx(st)

While this equation is coherent with the discrete spatiatyse, for the discrete Lie
advection we will also wish to integraigcw over a small time interval. Hence, by
taking the integral of both sides of Eq. (4) over the intef@al\¢], the first fundamental
theorem of calculus gives us

At
/ / ixw|dt= / w, 5)
0 Sx (1) Ex(S,At)

which will be used later on for the discretization of the tinéegrated interior product.

Figure 1:Geometric interpretation of the Lie derivative £ x w of a differential form

w in the direction of vector fieldX: (a) for a backwards advection in time of an edge
S (referred to as upwind extrusion), and (b) for a forward achien of S. Notice
the orientation of the two extrusions are opposite, and ddpn the direction of the
velocity field.

Algebraic and Flowed-out Lie Derivative. Using a similar setup, we can formulate
a definition of Lie derivative based on the flowed-out subrfudiS x (¢). Remem-
ber that the Lie derivative is a generalization of the dimwl derivative to tensors,
intuitively describing the change of in the direction ofX. In fact, the Lie deriva-
tive £ xw evaluated orS is equivalent to the instantaneous change»@valuated on
Sx (t), formally expressed by

d
LZXw = —
fooxe =

/ . ®)
t=0JSx(t)



as a direct consequence of the Lie derivative theorem [E¢Tém 6.4.1). As be-
fore, we can integrate Eq. (6) over a small time intef@alA¢], applying the Newton-

Leibnitz formula to find
dt:/ w—/ w. (7
Sx(At) S

At
L e
0 Sx(t)

Note that the formulation above, discretized using a seagringian method, has
been usede.g, by [14] to advect fluid vorticity; in that case the right haside of
Eq. (7) was evaluated by looking at the circulation throughtioundary of the “back-
tracked” manifold. Rather than following their approacle, severt to discretizing the
dynamic definition of the interior product in Eq. (5) insteadd later constructing the
Lie derivative algebraically. The primary motivation bediithis modification is one of
effective numerical implementation: we can apply a dimendiy-dimension finite vol-
ume scheme to obtain an approximation of the interior produltile the alternative—
computing integrals of approximateg over Sx (t) as required by a discrete version
of Eq. (7)—is comparatively cumbersome. Also, by buildimgtop of standard finite
volume schemes the solvers can leverage pre-existing sodeas CLAWPACK [25],
without requiring modification.

We now show how the Lie derivative and the interior produetlarked through a sim-
ple algebraic relation known as Cartan’s homotopy formturgparticular, this deriva-
tion (using Figure 1 as a reference) requires repeatedcapipin of Stokes’ theorem

from Eq. (2).
1 At 1 ®)
lim —/ / Lxw|dt= lim — / w—/w 8
At—0 At J, Sx(t) At—0 At Sx (At) s
At—=0 At | /gy (s,a0) EX(E)S,At)‘|
:/ixdw+/ ixw (10)
S a8
:/ixdw+/ dixw. (11)
S S

The submanifoldsS and Sx (At) form a portion of the boundary o x (S, At).
Therefore, by Stokes’, we can evaludle on the extrusion and subtract off the other
portions of O Ex (S, At) to obtain the desired quantity. This is how we proceed from
Eq. (8) to Eq. (9) of the proof. The following line, Eq. (103, abtained by applying
the dynamic definition of the interior product given in Eq) {6 each of two terms,
leading us to our final result in Eqg. (11) through one final aapion of Stokes’ theo-
rem. What we have obtained is the Lie derivative expressgebadically in terms of
the exterior derivative and interior product. Notice thgt EL1) is the integral form of
the celebrated identity called Cartan’s homotopyrf@gig formula, most frequently
written as



By defining our discrete Lie derivative through this relatiove ensure the algebraic
definition holds true in the discrete sense by constructibalso implies that the Lie
derivative can be directly defined through interior procarad exterior derivative, with-
out the need for its own discrete definition.

Upwinding the Extrusion We may rewrite the above notions using an “upwinded”
extrusion {.e., a cell extruded backwards in time) as well (see Fig. 1a).example,
Eq. (4) can be rewritten as

d
/ ixw=—— / w. (13)
s dt];—o JEx(s.—t)

While this does not change the instantaneous value of th&amtion, integrating
Eqg. (13) over the time intervél, At] now gives us

At
/ / ixw|dt = —/ w. (14)
0 Sx(t) Ex (8,—At)

Similar treatment for the remainder of the above can be dodéCartan’s formula can
be derived the same way, however by using these definitiamgifollowing discretiza-

tion we will obtain computations over upwinded regions gglént to those computed
by finite volume methods.

3.2 Discrete Interior Product

A discrete interior product is computed by exploiting thénpiples of Eq. (5) and
applying the finite volume machinery. Given a discretform « and a discrete vector
field X, the interior product is approximated by extruding bacldgain time every
(k-1)-dimensional cell- of the computational domain to form a neéwdimensional
cell Ex (o, —At). Evaluating the integral ofc over the extrusion and assigning the
resulting value to the original cefl yields the mappindix «, o) integrated over a time
stepAt. This procedure, once applied to al+{)-dimensional cells, gives the desired
discrete g-1)-formixa.

@) (b)

=

Figure 2: Approximating Extrusions: In the discrete setting, the extrusion of /&
1)-dimensional manifoldi=1 on left, 2 on right) is approximated by projecting the
Lagrangian advection of the manifold in(g) separatek-dimensional components.

K-dimensional Splitting. One option for computing this integral would be to do an
n-dimensional reconstruction ef perform a Lagrangian advection of the cello de-
termineEx (o, —At), and then algebraically or numerically computing the iraégf



the reconstructed over this extrusion. In fact, this is the idea behind the apph sug-
gested in [21]. However, with the exception of whiea n, such an approach does not
allow us to directly leverage finite volume methods, as penfog ann-dimensional
reconstruction of a form given only integrals ovedimensional submanifolds would
require a more general finite element framework. For sintgliend ease of imple-
mentation we avoid this generalization and instead resoprtjecting the extrusion
onto the grid-aligned-dimensional subspaces and then applyirigdimensional fi-
nite volume method to each of tf(%) projections. The integrals over the extrusion
of o from each dimension are then summed. Again, note that ingheia case of
k = n no projection is required and we are left exactly withradimensional finite
volume scheme. We have found that this splitting combingt wihigh-resolution fi-
nite volume method, despite imposing at most first order i@t can still give high
quality results with low numerical diffusion, while beingla to leverage existing finite
volume solvers without modification. However, if truly higihorder is required then a
full-blown finite element method would most likely be recqedr{21].

Finite Volume Evaluation. As hinted atin Section 2.3, we notice that the time integral
of the flux of a density field being advected through a subno#ahif is equivalent to the
integral of the density field over the backwards extrusiom of’er the same amount of
time. In fact, some finite volume methods are derived usiigjtiterpretation, doing a
reconstruction of the density field, approximating the @sion, and integrating the re-
construction over this. However, many others are explaioyecbmputing a numerical
flux per face, and then multiplying by the time st&p: this is still an approximation of
the integral over the extrusion, taking the reconstrudiidee a constant (the numerical
flux divided byv) and the extrusion having lengti\¢. Indeed the right hand side of
Eqg. (4) can be seen as analogous to the numerical flux, aftehvity. (5) becomes
the relationship between integrating the flux over time dralform over the extru-
sion. Hence we may use any of the finite volume method&fdimensional density
advection problems when computing the contraction kffarm. The only difference
here is that rather than applying Stokes theorem and sunmtimérgpntributions back to
the originalk-cell (which will be done by the discrete exterior derivatin thedix w
term of the Lie derivative), the contraction simply stores values on thekf1)-cells,
without the final sum.

3.3 Discrete Lie Advection

We now have all the ingredients to introduce a discrete Lieation. Given a&-form

a, we compute thek*+1)-form da by applying the transpose of the incidence matrix
0"+ to « as detailed ir§2.2. We then compute theformix (da), and the k-1)-form
ixa. By applyingd to the latter form and summing the resultibgorm with the other
interior product, we finally get an approximation of Carsahbmotopy formula of the
Lie derivative. An explicit example of this will be given ihé next section to better
illustrate the process and details.

4  Applications and Results

We now present a few direct applications of this discreteddeection scheme. In our
tests we used upwinding one-dimensional WENO schemes faomtraction operator,

10



splitting even thek-dimensional problems into multiple one-dimensional oné¢e
found that when using high-resolution WENO schemes we caolodidin quality results
with little numerical smearing despite this dimensiondit8pg.

A Note on Vector Fields. In this section we assume that vector fields are discretiged b
storing their flux {.e., contraction with the volume form) on all tfe—1)-dimensional
cells of anD regular grid, much like the Marker-And-Cell “staggeredidgsetup [20].
Evaluation of the vector fields at lower dimensional celldasie through simple aver-
aging of adjacent discrete fluxes. We pick this setup as iésaf the most commonly-
used representations, but the vector fields can be givenbitray form with only
minor implementation changes.

4.1 Volume Forms and0-Forms
Applying our approach to volume formsa-forms inn dimensions) we have

Note thati xw is the numerical flux computed by the chosedimensional finite vol-
ume scheme whilel will then just assign the appropriate sign of this flux to each
cell's update, and hence we trivially arrive at the choseitefvolume scheme with no
modification. Similarly, applying this approach@eforms results in well-known finite
difference advection schemes of scalar fields. Indeed, we inahis case

as the contraction of @form vanishes. We are thus left withv computing standard
finite differences of a node-based scalar field on edgesiarnten doing componen-
twise upwind integration of reconstructions of these ddies. Such techniques are
common in scalar field advection, for example in the adveatiblevel sets, and we
refer the reader to [35, 36] and references therein for elesnp

4.2 Advecting al-Form in 2D

The novelty of this approach comes when applied#mrms inn dimensions with
n > k > 0. We first demonstrate the simplest such application of ouhateby
advecting al-form by a static velocity field in 2D using the simple piecsgiconstant
upwinding finite volume advection. To illustrate the getapproach we will explicitly
write out the algorithm for this case. We will assume the g#joX is everywhere
positive in bothz andy components to simplify the upwinding, add” andX ¥ will be
used to represent the integrated flux through vertical amiddratal edges respectively.

Suppose we have a regular two-dimensional grid with squele af sizeh?, and with
each horizontal edge oriented in the positivdirection and each vertical edge oriented
in the positivey direction and numbered according to Fig 3. A discreflerm w is
represented by its integral along each edge. Due to thestamteature of the grid, this
implies that thelz component of the form will be stored on horizontal edges &ed t
dy component will be stored on vertical edges, and we repreékese scalars as? ;

2y
andw? . for the integrals along the, ;) horizontal and vertical edge respectively. The
i g g 2 J g p y

11
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Figure 3:Grid setup: Indexing and location of the various quantities stored dfedi
ent parts of the grid. Arrows indicate the orientation of #dges.

discrete exterior derivative integrated over dgllj), (dw); ;, consists of the signed
sum ofw over cell(z, 7)'s boundary edges, namely

(dw)ij = wi; +wiyyj —wijn —wi;
Using piecewise-constant upwind advection, and remem@éhie assumption of pos-
itivity of the components ofX', we may now computéx dw over a time interval\¢

|

@ )

Figure 4:1-Form advection: (a) A piecewise-constant forrdy within a rectangular
shape outside) is advected in a constant velocity fieXd £ (1,1), blue arrow) on

a unit square periodic domain with a grid resolution4#? and a time steplt =103,

(b) Because the domain is periodic, the form should be addduack to its original
position afterls (1000 steps); however, our numerical method with a piecewise con-
stant upwind finite volume scheme results in considerabémsnyg instead. (¢) Using

a high-resolution scheme (here, WENO-7) as the basic coemgari our form advec-
tion procedure significantly reduces smearing artifactsife number of steps and step
size).
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for the horizontal and vertical edgés j) as

(ide)f = — EXU (dw) -1
»J h2 (15)
At
(1de)” = ﬁX (dw)i—1,j-

Note the sign difference is due to the orientation of thewsitms, and would be dif-
ferent if the velocity field changed sign (see Fig. 1). To catephe second half of
Cartan’s formula we must now computgw at nodes, and then difference them along
the edges. Using dimension splitting, as well averagings#iecity field from edges
to get values at nodes, we get for nddgj)

At

= o3 (X0 + X0y + (X0 + X el ) (16)

(ixw)i,;
We may now trivially computeli x w for edges as

= (in)H*l,j — (in)’Lj

T
1
(dixw)!; = (ixw)ij+1 — (ixw)i;

Cartan’s formula and the definition of Lie advection now leado obtain
At
Aw = —/ L xwdt
0

discretized as the update rule
wij—l- = —(ide)ij — (din)ﬁj
wf,j—l- = —(ide)f,j — (din)'Zj.
A First Example. An example of this low-order scheme can be seen in Figurd}(a-
where we advect a piecewise constasform by a constant vector fielX = (1,1)
in a periodic domain. Advecting the form forward in this ety field for a time of
1s brings the form back to its original position in the contimisccase; however, our
numerical scheme proves very diffusive, as expected omudigsaious forms. We can
however measure the error of our scheme by comparison witthliconditions as a
function of the grid resolution with appropriately scaléue step sizes. To measure
the error we recall thé,, norm of ak-form w is defined over a smooth manifoltt
as

1/p
o], = U |w|”d4 where |w] = (w,w)Z,
M

and(-, -) pm is the scalar product df-forms defined by the Riemannian metric, ahd
is its associated volume form. We hence definelthend2-norms of discreté-forms
on a 2D regular grid with spacingas

lel—hZIw |+ |wi51)

13



b0

Figure 5: High-order Advection: in a vortical vector field (left) typically used for
scalar advection, a piecewise-constant form is advected onit square periodic do-
main with a grid resolution o482 and a time stepit =103 for 0, 200, and 400 steps
(top), 600, 800, and 1000 steps (bottom).

2

wlz = { D (wi, P+ |wi,?)

2]

for simplicity, but we found using more sophisticated dédizations of the norms all
yielded similar results. Figure 6(c) shows the error plofLinand L, norms of this
simple example under power-of-two refinement, confirmirgfitst-order accuracy of
our approach.

High-Resolution Methods Note that had we chosen to leverage more sophisticated
finite volume solvers in the previous example, the only cleasngould occur in Equa-
tions (15) and (16) which would use the new numerical flux fanputing the discrete
contraction: any 2D method could be used for Equation (15jlena 1D method is
required for Equation (16). Due to the dimensional spliftobtaining higher order
schemes is not easy, but for many application the order afracy is not always the
most important thing. In particular, in the presence of diguous solutionigh-
resolutionmethods are often preferred for their ability to better pres discontinu-
ities and reduce diffusion. To test the utility and effeetiess of such schemes applied
to forms, we compare the piecewise-constant upwinding atefrom the previous
section with a Finite Volum&™-order 1D WENO upwind scheme (see an overview
of FV-WENO methods in [38]). Figure 4(c) shows the high-taon finite volume
scheme does a much better job at preserving the discomgisiiiespite both methods
being of the same order of accuracy for this discontinuottigifiorm (Figure 6(c)).

Accuracy To further demonstrate that properties from the underlfinige volume
schemes chosen (including their accuracy) carry over tathwection of forms, we
provide additional numerical tests. In Figure 5, we adwketesimple discontinuous
1-form in a vortical shearing vector field (Rudman vortexf)lein a48x48 grid repre-
senting a periodic domain. As expected, the form is advectedspiral-like fashion.
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By advecting the shape back in the the negated velocity faldthie same amount of
time, we can derive error plots to compare ftheand L, norms for this example un-
der refinement of the grid; see Figure 6 for other convergésis when a first-order

upwind method or a WENO-7 method is used in our numericalriegte.

Error (log scale)

0

e | Upwind
e | WENO7

L, Upwind

o= |, Upwind

= | | WENO7
L, Upwind

= |, WENO7

25 2 a5 -
Grid Resolution (log scale)

(b)

Figure 6: Error Plots and Conver-
gence RatesWe provide error plots in
Ly and L, norms for power-of-two re-
finements for (a) advection of a smooth
form in a constant vector field, (b) ad-
vection of a smooth form in the vortical
vector field of Figure 5(left), and (c) ad-
vection of the discontinuous form used
in Figure 5. The black bold segments
indicate a slope of.

-0.5 0

T2 2 -15 -1
Grid Resolution (log scale)

@)

Error (log scale)
o

)

s |, Upwind
e | WENO7

I
&

L, Upwind
e |, WENO7

-3
2.5 1.5 -0.5 0

Grid Resolution (log scale)

(©)

4.3 Properties

Itis easy to show that our discrete Lie derivative will cormtenwith the discrete exterior
derivative as in the continuous case, by using Cartan'stditarand a discrete exterior
derivative which satisfiedd = 0 since we have

dLxw =d(ixdw + dixw)
=dixdw
= (dix +ixd)dw
= Lxdw.

This commutativity does not depend on any properties of tberete contraction and
therefore holds regardless of the underlying finite volurcieesne chosen. A useful
consequence of this fact is thiéie discrete Lie advection of closed forms will remain
closed by constructign.e., the advection of a gradient (resp., curl) field will remain a
gradient (resp., curl) field.

Unfortunately other properties of the Lie derivative do natry over to the discrete
picture as easily. The product rule for wedge products, farmgle, does not hold for
the discrete wedge products defined in [23], although perhajifferent discretization
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of the wedge product may prove otherwise. However, the neatity of the discrete
contraction operator along with the upwinding potentigligking different directions
on simplices and their subsimplices makes designing aetsenalog satisfying this
continuous property challenging.

5 Conclusions

In this paper we have introduced an extension of classicié finlume techniques
for hyperbolic conservation laws to handle arbitrary diserforms. A class of first-
order finite-volume-based discretizations of both coritbacand Lie derivative of ar-
bitrary forms was presented, extending Discrete Exteramc@us to include approx-
imations to these operators. Low numerical diffusion isiatible through the use of
high-resolution finite volume methods. The advection ofrfsrand vector fields are
applicable in a multitude of problems, including conseimainterface advection and
conservative vorticity evolution.

Although finite volume methods can offer high resolution atekatively low compu-
tational cost, numerical diffusion is still present and @mtumulate over time. In
addition, the numerical scheme we presented is not vamigtia naturej.e., it is not
(a priori) derived from a variational principle. These ltations are good motivations
for future work.

In the future, we also expect that extensions can be made ke naly high-order
and high-resolution discretizations of the contractiod &me derivative through-
dimensional reconstructions @éfforms and extrusions: this would lead to a more
straightforward extension to simplicial meshes, as ourexurdimension splitting ap-
proach does not obviously generalize to this frameworkitlespcent progress in this
direction [44, 27].
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