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Figure 1: Eulerian Geometry: our geometry processing framework offers a fully Eulerian variational approach to (left) outward and inward
surface offset (here spatially varying by height), (center) simultaneous smoothing of foliations (all isosurfaces of volumetric medical data),
and (right) a conservative mass advection for incompressible fluid simulation.

Abstract

We present a purely Eulerian framework for geometry processing of
surfaces and foliations. Contrary to current Eulerian methods used
in graphics, we use conservative methods and a variational interpre-
tation, offering a unified framework for routine surface operations
such as smoothing, offsetting, and animation. Computations are per-
formed on a fixed volumetric grid without recourse to Lagrangian
techniques such as triangle meshes, particles, or path tracing. At the
core of our approach is the use of the Coarea Formula to express
area integrals over isosurfaces as volume integrals. This enables
the simultaneous processing of multiple isosurfaces, while a single
interface can be treated as the special case of a dense foliation. We
show that our method is a powerful alternative to conventional ge-
ometric representations in delicate cases such as the handling of
high-genus surfaces, weighted offsetting, foliation smoothing of
medical datasets, and incompressible fluid animation.

Keywords: Digital geometry processing, Offset surfaces, Normal
flows, Mean curvature flow, Foliations, Fluids.

1 Introduction

Evolving surfaces, be it for modeling or animation purposes, is a
routine task in Computer Graphics. Over the last decade, the method
of choice to process geometry has consisted of a Lagrangian setup
where the surface is explicitly stored as a piecewise-linear mesh, and
vertices are moved so as to achieve the desired deformation [Botsch
and Pauly 2006]. Great success with this approach has been reported
for editing, smoothing, and parameterization, often using variational
formulations [Pinkall and Polthier 1993; Grinspun et al. 2003]. Nev-
ertheless, Lagrangian methods come with their share of difficulties,

including mesh element degeneracies, self-intersections, and topol-
ogy changes, all of which require delicate treatment. While some of
these issues can be addressed with point sets [Alexa et al. 2006], the
problem of continuous (fine) resampling remains, and the concern
of a proper, topologically-sound surface reconstruction arises.

Consequently, Eulerian methods emerged as a great alternative to
meshes in several applications [Frisken et al. 2000; Museth et al.
2002; Tasdizen et al. 2003]. One particularly successful Eulerian ap-
proach is the Level Set Method (LSM), drawing on the development
of numerical solutions to the Hamilton-Jacobi equations in applied
mathematics. The LSM methodology has proven very useful in
vision, image processing, as well as graphics [Sethian 1999; Osher
and Fedkiw 2003] since the traditional hurdles that mesh process-
ing faces are nicely circumvented due to a parameterization-free
treatment. However, other problems arise in this particular Eulerian
approach. From a numerical point of view, the LSM relies on finite
difference methods applied to a distance function. This specific
setup has significant consequences, first and foremost being that vol-
ume loss cannot be prevented without using additional (most often
Lagrangian) computational devices. A less obvious consequence is
that the variational nature of useful flows such as mean curvature
motion, which was numerically exploited and proven crucial for
mesh processing [Desbrun et al. 1999], is no longer respected.

In this paper we present an alternative to current purely-Eulerian
methods in graphics by describing a conservative (i.e., mass-
preserving) and variational treatment of basic geometry processing
tasks. Based on Geometric Measure Theory, our approach even
allows foliation (multiple-surface) processing, a particularly useful
tool, e.g., in the treatment of medical datasets (see Fig. 1 & 10).

1.1 Background

Computing interface motion in the Eulerian setting has recently
received considerable attention in applied mathematics and com-
putational physics (thorough reviews can be found in, for in-
stance, [Sethian 1999; Osher and Fedkiw 2003]). These techniques
have made promising contributions to geometry processing in the
last few years.

Lagrange vs. Euler There is a clear historical preference for La-
grangian methods in surface processing, probably due to the classi-
cal parametric definition of surfaces in differential geometry. More-



over, the large number of efficient data structures available and the
ease with which geometric quantities (volume, area, curvatures, etc)
can be accurately evaluated have contributed to make meshes the
representation of choice for surfaces. In comparison, Eulerian data
structures were, until recently, limited to regular grids or restricted
octrees. However, recent progress (e.g., [Houston et al. 2006]) is
a clear sign that fast and concise Eulerian representations can now
compete with mesh-based methods—their most salient property
over mesh-based approaches being the natural handling of complex
topology changes without special treatment.

Level Set Method Over the years Eulerian approaches have even
shown superiority in applications such as compression of complex
surfaces [Lee et al. 2003], surface offsetting [Breen and Mauch
1999], or even surface mesh extraction from 3D scans [Curless and
Levoy 1996]. In applications where high-quality surfaces need to be
treated, a particular Eulerian technique called the Level Set Method
has also been successfully used for surface editing [Museth et al.
2002], smoothing [Tasdizen et al. 2003], texturing [Bargteil et al.
2006], and even incompressible fluid animation [Foster and Fedkiw
2001] to mention a few. The basic idea of the LSM is to represent a
surface as the zero level set of a signed distance function, referred
to as the level set function, and to evolve this function according to
a partial differential equation of motion [Osher and Sethian 1988].
This level set function is efficiently stored as discrete values on a
fixed regular grid, allowing for simple Finite Difference schemes to
integrate the motion.

There are, however, serious theoretical and practical issues with
LSM. First, the use of a distance function brings inherent limitations:
even in the continuous limit, a Lie-advected distance function is no
longer a distance function. Consequently, an Eulerian discretiza-
tion of this particular setup introduces an inevitable numerical drift
resulting in volume loss, particularly in regions of high curvature.
A multitude of remedies to this intrinsic deficiency have been pro-
posed, sometimes as simple as refining the grid, but often at the cost
of significantly higher computational complexity [Sussman and
Puckett 2000; Frolkovic and Mikula 2005; Olsson and Kreiss 2005;
Losasso et al. 2004; Mihalef et al. 2006; Bargteil et al. 2006]. The
addition of a large amount of Lagrangian particles was introduced as
a way to compensate for volume loss [Enright et al. 2002], although
high-frequency perturbations of the surface can appear [Bargteil
et al. 2006] (one promising approach is to store the level set on
SPH-like particles [Hieber and Koumoutsakos 2005] as it benefits
from a dual Lagrangian-Eulerian representation). Second, the LSM
uses a traditionally cell-centered representation of vector fields, in-
compatible with conventional incompressible Navier-Stokes solvers
that use staggered Marker-And-Cell (MAC) grids.

Gradient Flows Gradient flows are the linchpin of geometry pro-
cessing: many now-traditional geometric tools for meshes such as
mean curvature flow (MCF), shape optimization, and conformal pa-
rameterization are best expressed and numerically resolved through
simple variational principles [Botsch and Pauly 2006; Grinspun
2006] mostly based on L2-minimizations. However, Eulerian ge-
ometric methods (including LSM) rarely exploit these variational
qualities to derive robust numerical schemes. In particular, the nu-
merical implementation of MCF in LSM relies on finite differences
to directly approximate the partial differential equations, instead of
treating the underlying variational principles.

1.2 Our Approach

In this paper, we propose a fully-Eulerian approach to geometry pro-
cessing that is numerically based on variational principles and de-
signed to preserve fundamental invariants—two critical differences

from LSM-based techniques. We show that processing foliations
allows the treatment of single surfaces and multiple surfaces in a
unified framework based on the Coarea Formula. Reusing existing
numerical techniques as much as possible (e.g., the large body of
work on Eulerian advection), we go through the list of basic geom-
etry processing tools: advection, outward and inward offset, mean
curvature flow, and other gradient flows.

Our contributions include a number of distinctive features:

• We use a fully Eulerian representation for our surface(s), elimi-
nating the need to prevent the typical degeneracies of Lagrangian
mesh elements.

• Unlike LSM, volume control is facilitated by construction, al-
lowing conservative flows (as in the case of incompressible fluid
simulation) to be easily approximated.

• Gradient flows are numerically achieved through a simple vari-
ational approach based on the Coarea Formula. In particular,
we perform mean curvature flow through area minimization as
proposed in [Droske and Rumpf 2004]—but with no need for
regularization.

• Multiple surface processing (where all the isosurfaces in a
dataset are handled at once) is easily achieved.

2 Processing Eulerian Foliations

Before delving into the mathematical foundations of our approach,
we first discuss the dedicated data structures and representations we
wish to utilize. We focus particularly on finding a representation
that is as simple as possible (a single value per grid cell to optimize
efficiency and memory requirements), but able to capture basic
geometric measures like area.

2.1 Discrete Setup

A fully-Eulerian setup requires special types of surface representa-
tions: we only allow ourselves to encode and process data stored
on a fixed grid. However, the exact type of data to use is, a priori,
arbitrary. Out of the various possibilities, we must rule out using the
conventional LSM distance function representation: as we discussed
earlier, such a setup does not appear to be a viable solution due to an
inevitable loss of volume however accurate its numerical treatment
is—particularly in the case of incompressible fluids (see Fig. 3 for a
simple example). Unfortunately, Volume-Of-Fluid methods (VOF,
where the exact ratio of occupancy of an object within each cell
is stored [Puckett et al. 1997]) must also be ruled out despite their
perfect volume control, due to their notorious difficulty in accurately
evaluating geometric quantities such as curvatures. Note that newer
variants have partially addressed this deficiency, at the price of a
dramatic increase in data storage and processing [Dyadechko and
Shashkov 2006]. Embracing the specificity of Eulerian grids, the
Phase Field Method (PFM) by [Anderson et al. 1998] proposes in-
stead the notion of a smeared interface representation, where grid
cells in a finite width around the interface capture rapid but smooth
transitions in density. PFM, however, presupposes the profile of
the smeared interface, requiring very fine grids to obtain detailed
results.

Finite Volumes Instead, we opt for a (cell-centered) Finite-
Volume setup, where a single value per cell is stored. This setup
falls in the category of interface capturing methods, as it defines
the interface as a region of steep gradient of a characteristic-like
function (as opposed to LSM-like interface tracking methods which
treat the interface as a sharp discontinuity moving through a grid).
This setup has an obvious physical interpretation: acknowledging
the fact that explicitly maintaining a perfect Heaviside function of
the object is impossible in the discrete Eulerian setting, we do not



Figure 2: Surface Advection: (left) the bunny is advected in a vortex flow causing severe deformation. (right) Comparison of final results
obtained after reversing the vortex flow using a piecewise-constant (PWC) and WENO-5 advection scheme. Grid size: 2803.

encode the exact surface, but instead store an approximate (blurred,
in a sense) mass density of the object inside each cell. Thus, a cell
with a value of 0 will be considered completely outside the object,
a cell at 1 will be considered as completely inside, and the rest of
the cells (with densities varying from 0 to 1) represent a smeared
interface of the object. (Note that we will use the terms density and
mass density interchangeably as our explanations will always use
densities restricted to [0,1].) Unlike VOF or PFM, we do not restrict
the profile of our density function, avoiding the computational over-
head incurred when a special profile needs to be maintained, as well
as allowing the treatment of multiple isosurfaces with varying shape.
Note finally that this density-based setup will facilitate the use of
this Eulerian representation in applications such as fluid simulation.

2.2 Foliations

The use of smeared-out Heaviside functions to define an interface
is common in phase field and level set methods (e.g., when surface
tension must be transferred to the surroundings). However, unlike
LSM and PFM that use predefined expressions for the smearing (typ-
ically piecewise Gaussian or sine functions), we will demonstrate
that there is significant benefit to keeping our approach valid for any
function: we will be able to either accurately capture the motion of
a single surface by keeping the density function sharp, or process
the whole family of isosurfaces that a density function represents.
Such a family of isosurfaces of a given function in R3 is a foliation,
while a single isosurface is a leaf of this foliation (think “layers” of
an onion as an analogy). At the core of our approach is the idea that
one could manipulate foliations instead of single surfaces: we do
not favor one isosurface over another, but rather move them all in
concert. We show in the next section that such foliation processing
can be achieved through simple volume integration, which has a
natural resilience against numerical noise.

Single Surface as a Sharp Foliation For the treatment of single
surfaces, we offer a compromise between the inherent volume loss
of LSM and the artifacts found in exact volume-preserving VOF
methods. Rather than trying to preserve the volume of a particular
isosurface, we instead use conservative methods to exactly preserve
the total mass used to represent the surface. This mass conservation
leads to standard volume conservation in the limit of a sharp (un-
smeared) interface, in which case our representation becomes the
characteristic function of the surface. To this end, a sharpening pro-
cedure (akin to the LSM redistancing) can be employed to maintain
a sharp interface and therefore give good volume control while min-
imizing artifacts. In particular, this exact mass preservation means
simulations of moving interfaces (e.g. fluids) can be run indefinitely
without continually accumulating volume loss.

2.3 Coarea Formula

Geometric Measure Theory provides a wealth of geometric knowl-
edge particularly relevant in graphics: its use of integration and
measure theory provides generalizations of differential notions to

discrete surfaces. For instance, discrete (integral) curvatures are
nicely defined through Steiner’s polynomial [Schröder 2006], a vari-
ational characterization of infinitesimal displacements. Of particular
interest in our work is another celebrated result from Geometric Mea-
sure Theory (surprisingly absent in the graphics literature) called
the Coarea Formula [Federer 1959]. When reduced to the case of
3D (Euclidean) space, this formula states that for a scalar field ρ

with mild continuity conditions, integrating a function over each of
its isolevels in a regionR can be done directly by a volume integral
overR through:∫

R

∫
ρ−1(c)∩R

f (x) dA dc =
∫
R

f (x) |∇ρ|dV, (1)

where c denotes an isovalue of ρ , ρ−1(c) represents the c-isosurface
(i.e., the set of 3D points such that ρ(x) = c), and f (.) is an arbitrary
function of space. In other words, the term |∇ρ| measures a local
“density of isosurface area”. Consequently, if we think of the foli-
ation consisting of all ρ−1(c) as the representation of a “smeared
interface”, the Coarea Formula elucidates the relationship between
the sum of area integrals and a global volume integral. We now
have not only a representation, but also a mathematical formalism
to process it.

2.4 Overview of Foliation Processing

In the remainder of this paper, we discretize a domain Ω by a
regular grid G (extension to arbitrary grids will be discussed in
Section 7). A grid cell of G is denoted Ci, and the spacing be-
tween cells is denoted h. A cell average 1

h3

∫
Ci

ρdV is abbreviated
to ρi. We denote Fi j the (oriented) face between cells Ci and C j.
The mass flux between these cells (i.e., the amount of mass per
unit time crossing Fi j) is denoted fi j (a positive value meaning
a transfer from i to j). Finally, when using a
vector field u, we denote ui j its flux through the
face Fi j, i.e., ui j =

∫
Fi j

u ·nFi j dA. The step size
used for time integration is denoted dt.

Foliation Evolution In our Eulerian framework, generating a par-
ticular type of surface(s) evolution is achieved through an update
of the density field ρ . As we will see next, such an update is per-
formed via integration of a partial differential equation of the general
form (different from the LSM due to its conservative and variational
nature):

∂ρ

∂ t
= −

advection︷ ︸︸ ︷
∇·(ρu) +

gradient f lows︷ ︸︸ ︷
∂L
∂ρ

|∇ρ| (2)

The first rhs term is an advection (i.e., the surface is moved along
a given vector field) corresponding to the classical mass continuity
(hyperbolic partial differential) equation. The second term handles a
large class of surface deformations known as gradient flows, where
the gradient of an energy functional L is driving the surface’s mo-
tion. In particular, we will show that for the mass functional, a



motion in the normal direction to the interface (the traditional out-
ward or inward offset for constant propagation speed) is generated.
A variational, entropy-satisfying numerical scheme will be designed
to avoid artifacts like swallow tails. Another gradient flow that we
will demonstrate is the mean curvature flow (when L is the surface
area), now corresponding to a parabolic partial differential equation.
We now review these two terms separately over the course of the
next two sections.

3 Surface Advection

We first describe how our Eulerian surface(s) representation is up-
dated to achieve advection along a given vector field u. We follow
the typical MAC set-up, i.e., the vector field is given as fluxes on
the grid cell boundaries. Note that these fluxes can be trivially com-
puted regardless of whether the vector field is given analytically or
via node values.

3.1 Density Advection

Since our grid stores a density value per cell, evolving the set of
all isosurfaces along an external vector field simply amounts to
advecting the density, i.e., transporting mass along the velocity field.
This (Lie) advection is achieved through the following equation:

∂ρ

∂ t
+∇·(ρu) = 0 (3)

We can enforce this continuous equation weakly on each cell Ci
of our regular grid G through integration, as traditionally done in
Finite Volume Methods, by applying the divergence theorem to the
previous equation, yielding

∂

∂ t

∫
Ci

ρdV +
∫

∂Ci

(
ρu ·~n

)
dA = 0 (4)

The interpretation of this last equation is particularly intuitive: mass
gets moved along the vector field from one cell to the next through
faces. This interpretation leads to the evolution equation of the cell
averages:

dρi

dt
= − 1

h3 ∑
j∈N (Ci)

fi j

whereN (Ci) denotes the set of cells adjacent to Ci, while fi j refers
to the flux of matter between cells Ci and C j induced by ui j as
defined in Section 2.4. Because mass is only transferred across
cells, the total mass will be preserved by construction. The crux
of advection is thus to derive “correct” density exchanges at each
cell boundary. Note the obvious link with the conventional level-
set Hamilton-Jacobi equation [Sethian 1999]: for divergence-free
vector fields, the two continuous partial differential equations are
equivalent—only their numerical treatment differs.

3.2 Numerical Integration

There are a multitude of available finite-volume techniques to de-
termine density flux through cell boundaries. The reader can find
most relevant references in a recent, thorough review by Barth and
Ohlberger [2004]. We remain agnostic vis-a-vis the optimal method
to use. For our graphics purposes where visual impact overrides
the necessity of accuracy, we opt for a dimension-by-dimension
upwind interpolation. This procedure implements the conventional
REA (reconstruct-evolve-average) algorithm in which the density
is first locally reconstructed by a polynomial such that it fits the
current cell averages, then evolved through the cell boundary, and
finally averaged to deduce the quantity of mass exchange between
two adjacent cells. The lowest order polynomial can often be suf-
ficient in graphics applications, in which case we use a Godunov

Figure 3: 2D Comparison With LSM: Results of advecting a circle
in a vortex flow via the LSM (top) and our method (bottom), both
using WENO-5. Our density-based approach continues to capture
the motion long after the level set has disappeared due to volume
loss during advection. Grid size: 1282

piecewise-constant (PWC) approximation. This is easily computed
using:

fi j = max(ui j,0)ρi +min(ui j,0)ρ j.

When higher accuracy is desirable, a WENO-5 reconstruction [Jiang
and Shu 1996] is preferable as it picks an average-preserving poly-
nomial as non-oscillatory as possible. Note that both PWC and
WENO-5 are upwinding, i.e., they have a stronger dependence on
data upstream from u—a very intuitive physical (and numerical) con-
dition to enforce for correctly “pushing” the density along the vector
field. An example of extreme surface deformation is shown in Fig. 2,
where a bunny model is advected along a strong, vortex-like wind
inducing large deformation. Notice that such an example done in a
Lagrangian setup would require either an extremely dense triangle
mesh to begin with (dense enough to handle the worst deformation),
or an adaptive mesh refinement procedure to avoid artifacts. The
difference that WENO-5 can make compared to PWC in quality be-
comes clear if the deformation is reversed: the shape of the original
bunny is better preserved with a high-order advection scheme.

Time Integration We use a first or second-order Runge Kutta
(TVD—Total Variation Diminishing) time integration [Shu and Os-
her 1988] depending on the targeted accuracy. Time step size may
be adapted according to the maximum velocity in order to satisfy
the CFL condition. Our choice of density advection technique also
allows us to take larger time steps if efficiency is at stake: as detailed
in [Frolkovic and Mikula 2005], the transfer-through-boundary ap-
proach can be used recursively to provide a fast, stable integration
method even for time steps larger than what the CFL stability con-
dition imposes—at the cost of only a small loss of accuracy.

Once an advection procedure is chosen (whichever it may be), we
can proceed to define Eulerian gradient flows, as we now describe.

4 Gradient Flows in Eulerian Setting

Gradient flows are crucial in geometry processing, used in many
design and editing tools. A case in point is the mean curvature
flow (MCF) which, by following the gradient of the surface area
functional, provides a geometric diffusion appropriate for denois-
ing [Desbrun et al. 1999]. This gradient flow and its variants
spawned several research topics such as conformal mapping and
Laplacian editing that successfully employed the same variational
setup. However, in order to define Eulerian counterparts, we first
need to properly define how a geometric functional is expressed for
a surface that is no longer discretized as a 2D simplicial complex,
but as a smeared-out interface in space.



4.1 Geometric Functionals

Various geometric measures can be computed with our Eulerian
density-based setup. A particularly simple (yet useful) one is the
total mass induced by a given density ρ:

Mρ =
∫

Ω

ρ dV, (5)

A cell-localized mass value can similarly be defined as: Mi =∫
Ci

ρ dV = h3ρi. Another measure we will use when dealing with
a single surface is the deviation D of the density function from the
1
2 -isosurface:

Dρ =
∫

Ω

(ρ − 1
2
)4 dV, (6)

This measure will allow us to evaluate how sharp (i.e., how close to
a Heaviside function) our smeared interface is.

One useful property of the Coarea Formula is that it can be used
to compute less obvious geometric measures of surfaces in the Eu-
lerian framework. In particular, the surface area Aρ of a smeared
interface defined by a density field ρ finds an elegant expression and
interpretation. Indeed, one can take all isosurface areas into account
and thus define a total Eulerian surface area (integrated throughout
the foliation) as:

Aρ
def=

∫
(0,1)

∫
ρ−1(c)∩Ω

dA dc
Eq. (1)

=
∫

Ω

|∇ρ| dV (7)

Note that, in the limit case of an infinitely fine grid where ρ is
exactly a characteristic function (1 for inside, 0 for outside), this
integral equals the area of the (unique) interface. Therefore, this Eu-
lerian surface area is a direct extension of the usual Lagrangian area,
accommodating the volumetric nature of our spatial discretization.
Using the exact same derivation, we can also define a “proportion”
of total area in a cell Ci as simply:

Ai =
∫

Ci

|∇ρ| dV.

4.2 Eulerian Gradient Flows

We approach the notion of gradient flows as a way to evolve all iso-
surfaces of our density function ρ in order to minimize a given func-
tional L(ρ). That is, instead of the Lagrangian formulation where a
functional on the surface itself guides the evolution of the interface,
all isodensity surfaces conspire to extremize a volumetric functional.
This approach remains in line with our overarching methodology of
treating the interface as a collection of isosurfaces, while coinciding
with the Lagrangian definition in the limit of infinite resolution; it
simply accounts for the reality of Eulerian discretization.

Eulerian Norm of Variations In our Eulerian approach, the tradi-
tional L2 norm of vector fields in the Lagrangian setting must now
be replaced by a special norm on variations of density δρ: indeed,
a deformation is no longer induced by a surface vector field, but by
a volumetric change δρ of the density function. In fact, a direct
application of the Coarea Formula was advocated in [Droske and
Rumpf 2004] to equip the space of all possible deformation fields
δρ with an inner product 〈,〉ρ through:

〈 δ1ρ, δ2ρ 〉ρ =
∫

Ω

δ1ρ δ2ρ|∇ρ|−1dV (8)

for two variations δ1ρ and δ2ρ of ρ . We can now use this metric to
define the gradient flow of L with respect to ρ as:

∂ρ

∂ t
= −(

∂L
∂ρ

)] = −∂L
∂ρ

|∇ρ|, (9)

where the sharp operator ] uses the metric 〈,〉ρ to transform a differ-
ential into a vector [Abraham et al. 1988]. Note that this continuous
expression is exact: no approximations have yet been made.

Weak Form in Tangent Space Droske and Rumpf’s approach
continues by defining a weak (Galerkin) formulation using test func-
tions θ from the tangent space of ρ (i.e., the space in which ∂ρ/∂ t
lives) and enforcing that 〈∂ρ/∂ t,θ〉ρ = 〈−( ∂L

∂ρ
)],θ〉ρ . Rewritten

using the density-based metric leads to the equation:∫
Ω

∂ρ/∂ t θ

|∇ρ|
dV = −

∫
Ω

∂L
∂ρ

θdV.

The use of classical regularization techniques is then proposed to
deal with the denominator on the lhs of this equation.

Discrete Gradient Flows in Dual Tangent Space We, however,
prefer to avoid regularization completely. We resort instead to test
functions θ from the dual space of ∂ρ/∂ t (i.e., covectors) and define
our weak formulation as enforcing the equality between natural
pairings (vector-covector) with all test functions, i.e., (∂ρ/∂ t,θ) =
(−( ∂L

∂ρ
)],θ). This yields the equation

∫
Ω

∂ρ

∂ t
θdV = −

∫
Ω

∂L
∂ρ

|∇ρ|θdV.

Both methods are strictly equivalent if arbitrary continuous test
functions are used. However, we can now restrict θ to the space
spanned by the piecewise-constant basis functions θi, i.e., where θi
is defined to be 1 inside cell Ci and 0 elsewhere. With this Petrov-
Galerkin treatment, a gradient flow integration step is thus performed
by computing:

∂ρi

∂ t
= −

∫
Ci

∂L
∂ρ

|∇ρ|dv ≈−
[

∂L
∂ρ

]
i
|∇ρ|i,

for each cell Ci, meaning that we locally increase/decrease the den-
sity according to the gradient of our functional weighted by the
integrated area of the isosurfaces in cell Ci. This basic idea can now
be implemented for various functionals as we describe next.

5 Examples of Gradient Flows

We now provide examples of basic gradient flows along with numer-
ical details on how to implement them.

5.1 Surface Offsetting

We start off with the simple example of L = ρ , that is, we wish
to extremize the total change of mass. This gives ∂L/∂ρ = 1, in
which case the gradient flow to maximize this functional becomes:

∂ρ

∂ t
= |∇ρ|

As previously mentioned, in the case of a sharp interface the total
mass becomes the total volume of the surface as well. In this case the
flow can be interpreted as maximizing the change in volume, which
we know to be a uniform motion of the surface along its normal
direction, i.e., an offsetting flow. We will show that this gradient flow
can indeed be used for offsetting/insetting surfaces at uniform or
spatially-varying speeds. We will use a simple variational definition
of the term |∇ρ| as the maximum mass gain of a cell (induced
by unit velocity) to derive its numerical approximation (the exact
same argument leads to defining the inward flow that maximizes
mass loss). For conciseness, we will denote |∇ρ|+i the maximum
mass gain that cell Ci can receive in a time step dt, and |∇ρ|−i its



maximum potential mass loss. These two values become identical
for infinitely fine grids (i.e., in the continuous limit), but are different
in our discrete setting.

Approximating Local Mass Gain To obtain an accurate approx-
imation of each maximum mass gain in the grid, we first compute
the mass gain that would be incurred by each cell if the density
was advected by an axis-aligned velocity field. This computation
is easily achieved by simulating an advection step for a time step
dt, for which the PWC or WENO-5 advection approach detailed
in Section 3 is used to compute the flux on each boundary of the
cell for all possible axis-aligned velocity fields. To simplify our
explanations, let us switch to 2D as the extension to 3 dimensions
will be straightforward. Each cell evaluates the following mass-gain
values (2 values per axis, one for each direction):

δ
x+

i =
∫

Ci

(∇ · (ρ
(

1
0

)
)dt)dV δ

x−
i =

∫
Ci

(∇ · (ρ
(
−1
0

)
)dt)dV

δ
y+

i =
∫

Ci

(∇ · (ρ
(

0
1

)
)dt)dV δ

y−
i =

∫
Ci

(∇ · (ρ
(

0
−1

)
)dt)dV

With these values, we can now derive what the mass increase in the
cell would be if the local velocity within the cell were (ux,uy):

δρi dt =
1
h2

(
max(ux,0)δ x+

i +max(−ux,0)δ x−
i

+max(uy,0)δ y+

i +max(−uy,0)δ y−
i

)
.

(10)

Since we are looking for the maximum mass increase for a unit
velocity, we want to extremize the above expression subject to the
constraint |u|2 = u2

x +u2
y = 1. This is done using a Lagrange multi-

plier λ , resulting in the objective function δρi dt +λ (u2
x +u2

y −1).
Setting its partial derivatives with respect to ux, uy, and λ equal to
0, and substituting the solution back into Eq (10) gives the equation
for the maximum mass increase for a unit velocity in the cell to be:

dt|∇ρ|+i =
1
h2

√√√√ max(max(-δi
x+�

,0)2,min(δi
x− 

,0)2)

+max(max(-δi
y+�

,0)2,min(δi
y− 

,0)2)
(11)

Similarly, if we maximize the magnitude of mass decrease instead,
we get:

dt|∇ρ|−i =
1
h2

√√√√ max(min(-δi
x+�

,0)2,max(δi
x− 

,0)2)

+max(min(-δi
y+�

,0)2,max(δi
y− 

,0)2)
(12)

Readers aware of the LSM machinery will notice the resemblance
with the Godunov scheme for normal flows [Rouy and Tourin 1992].
Hence, our geometric derivation can draw upon applied mathemati-
cal results that proved convergence (in the sense of viscosity solu-
tions) and entropy-satisfying property (as it avoids the formation of

Figure 4: Surface Offsetting: bunny undergoes a negative and
positive offset via normal flow. Notice the sharp corners properly
created in the process. Grid Size: 3503.

superfluous swallow tails) to demonstrate its validity—as well as
its time step restriction. Notice that a closely related scheme to ap-
proximate |∇ρ| is the Engquist-Osher formula [Engquist and Osher
1980]. We found that this formula can also be interpreted directly
in variational geometric terms, by simply allowing the velocity to
be different at each face of the cell while constraining the squared
sum of all these local fluxes to be unit. This scheme is thus a viable
alternative (with fairly minor visual difference) in our context as
well, though its variational roots are less geometrically obvious.

Implementation Once the terms in Eqs (11) and (12) have been
computed, performing a step of positive normal flow is done
through:

ρ
t+dt
i = ρ

t
i + |∇ρ

t |+i dt,

while a negative normal flow is achieved via:

ρ
t+dt
i = ρ

t
i −|∇ρ

t |−i dt.

Fig. 4 provides an example of both flows on the bunny model. For a
more general normal flow with a spatially-varying magnitude µ(x),
the update becomes:

ρ
t+dt
i = ρ

t
i +

(
max(µi,0)|∇ρ

t |+i +min(µi,0)|∇ρ
t |−i

)
dt, (13)

where µi refers to the integral of µ(x) over the cell Ci (see Fig. 1,
left). Finally, we note that while using a WENO-5 advection is more
accurate for approximating mass gain, the computationally-simpler
PWC approach produces very similar visual results in practice.

5.2 Mean Curvature Flow

When the energy functional is the total Eulerian area (i.e., L=Aρ ),
the resulting gradient flow is known as the mean curvature flow.
Therefore, by applying the general expression of a gradient flow, we
can explicitly update the density to produce a MCF through:

ρ
t+dt
i = ρ

t
i −

∂Aρ t

∂ρi
(|∇ρ

t |i dt),

where |∇ρt |i dt is computed as detailed in Section 5.1 depending
on the sign of its multiplicator. What remains to be computed is the
term ∂Aρ/∂ρi for a given cell Ci. To achieve this (again focusing
on 2D for clarity), we use a first-order, centered approximation of
the gradient for simplicity that yields:

Ai =
1
2

√
(ρE(i)−ρW (i))2 +(ρN(i)−ρS(i))2,

where N(i),S(i),W (i),E(i) represent respectively the north, south,
west, and east neighbor of cell Ci. Notice that in this low order
approximation, ρi does not appear in the above expression. Remem-
bering that Aρ = ∑Ai, we can compute

∂Aρ

∂ρi
=

∂AN(i)

∂ρi
+

∂AS(i)

∂ρi
+

∂AW (i)

∂ρi
+

∂AE(i)

∂ρi
(14)

Each of these terms on the rhs is easy to compute; for example

∂AE(i)

∂ρi
=

ρi −ρE(E(i))

4AE(i)
(15)

While we explain the concept of this approach in 2D, the extension to
nD is straightforward. Fig. 5 demonstrates how even our first-order
definition of the gradient of ρ provides accurate results compared to
an analytical solution.
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Figure 5: Mean Curvature Flow: (left) a mean curvature flow of a
circle results in a continuous decrease of the radius; (right) when
simulated in an Eulerian setup, our approach (solid line) follows
the analytical value of the radius closer than the LSM (dashed line)
of equivalent order (WENO-5). Grid Size: 1282

Conservative MCF We can now extend MCF to approximate a
conservative mean curvature flow, a flow defined in the Lagrangian
setup as minimizing surface area while preserving the volume. To
implement this flow in Eulerian form, we need to first compute
the global mass change ∆M induced by a given time step. This is
achieved by computing

∆M = ∑
∂Aρ t

∂ρi
|∇ρ

t |i.

We then update each cell according to

ρ
t+dt
i = ρ

t
i − (

∂Aρ t

∂ρi
− ∆M
Aρ t

)|∇ρ
t |i dt (16)

By our definition of ∆M, the total mass is exactly preserved. Note
that this is analogous to the differential geometric way of writing
conservative mean curvature flow, where instead of moving along
the normal times κ (mean curvature), the magnitude becomes (κ −
κ) where κ is the average mean curvature over the domain. Fig. 6
compares the conservative and non-conservative version of MCF.

Figure 6: Conservative Mean Curvature Flow: while mean curva-
ture flow (bottom) significantly shrinks an object, a conservative
version (top) restricts the flow to preserve the mass of the surface,
leading to near-preservation of the volume. Grid size: 1603

5.3 Sharpening Flow

When treating a single sharp interface the density function may
smear over time, particularly with low-order schemes. As the inter-
face gets more diffused, velocities and densities far from the inter-
face begin to play unintended roles. Additionally, the volume of any
particular isosurface can get farther from the correct value despite
mass preservation. In an effort to both maintain good volume con-
trol and keep the interface reasonably sharp, we may resharpen the
interface by redistributing the density while preserving the interface
shape. A sharpening gradient flow is performed by maximizing the
deviation function Dρ defined in Eq. (6). To avoid over-sharpening
(that could lead to grid aliasing), we add a limiter to the flow such
that regions where the density suddenly jumps by more than a thresh-
old τ (0.4 in all of our experiments) are left intact. Therefore, the
whole sharpening phase is performed by first computing

wi(ρ) = (ρi − .5)3
(

1−min
(
1,

max j∈N (Ci)(|ρi −ρ j|)
τ

))
,

where N (Ci) denotes the set of cells adjacent to Ci; to keep the
sharpening conservative (in a manner similar to the conservative
curvature flow), we then compute the total mass change β that one
step of sharpening creates and finally update each cell according to

ρ
t+dt
i = ρ

t
i +(wi(ρt)− β

Aρ t
)|∇ρ

t |i dt (17)

In practice, |∇ρ|i need only be computed once per sharpening phase
and can be reused in the few iterations needed to sharpen the band.

6 Applications and Implementation Details

With the above treatment of Eulerian gradient flows, our approach
provides a unified framework for a wide range of geometry process-
ing applications. We review three examples that we experimented
with, and provide detailed explanations of our implementation.

6.1 Single Surface Processing

When focusing on a single surface (as in Fig. 2 and 4 for instance),
one should maintain the sharpness of the interface such that most
of the isosurfaces remain densely located in a narrow band around
the surface: this strategy will drastically improve the computational
efficiency by integrating the appropriate differential equations solely
inside this band. We thus keep track of such a narrow band of
cells around the interface and restrict our computations to only be
performed in those band cells. When ρ reaches certain thresholds
(as in a negligible distance from 1, resp. 0) in the boundary cells
of the band, we add the neighboring cells to (resp., remove that
cell from) the band, thus maintaining this band as it evolves in time.
Any remaining small inward/outward flux across the boundary of
the band is applied only to the cell in the band, while the mass
change that would have been applied to the outer cell is postponed
and accumulated globally. Once the magnitude of this accumulated
mass reaches a threshold, it is reinjected into the system to ensure
total mass preservation over time. In practice, over the course of an
entire simulation the total postponed mass was generally less than
half of a percent of the total mass. We stress that this narrow band
and reinjection process is performed only as an optimization. In
fact, while extremely valuable for many geometry processing tasks,
computation on a narrow band only may not be desirable depending
on the application (e.g., when dealing with mixed materials or non
divergence-free velocity fields).

Reinjection There are a few viable options on how to handle the
reinjection of the postponed mass transfers. One simple way is to
take a step of normal flow to increase or decrease the total mass by
the necessary amount. We had better results using a second option
which reinjects the mass along the advective vector field. Once the
threshold is reached, we use the change from the previous advection
step to add (resp., remove) density only in the cells whose density in-
creased (resp., decreased), in an amount proportional to their change
in that step. This has the advantage of only affecting densities in
regions where it is changed regardless. While this method can cause
slight inaccuracies in the total speed of the advection over long peri-
ods of time, it can be sufficient for visual purposes. A third option,
preferred in our tests, is to reinject the mass during sharpening via a
gradient flow, as explained next.

Sharpening When using a narrow band, smearing of the interface
leads to a wider band and therefore a greater computational burden.
For this reason the sharpening procedure explained in Section 5.3
takes on the additional role of maintaining a complexity proportional
to the interface area at all times. Detecting when sharpening is
necessary can be done by occasionally approximating the average
width of the band: this is efficiently achieved by dividing the number



Figure 7: Volumetric Rendering Of Fluid: a bunny-shaped fluid is dropped into a box, preserving the total mass even after gravity is inverted
arbitrarily, causing extreme deformation. Notice how the volumetric rendering reveals intricate details captured by all the isosurfaces
throughout the animation, despite a very coarse resolution (grid size: 643).

of cells in the band by the total surface area given in Eq. (7). If this
average width exceeds some threshold, sharpening is performed as
explained in Section 5.3. A few conservative gradient flow steps
are taken until the band width is narrow enough. As stated above,
reinjection can be performed while sharpening by subtracting the
accumulated mass from β .

6.2 Conservative Mass Advection for Fluid Simulation

Our mass density representation accommodates incompressible free
surface fluid flows seamlessly. Contrary to the level set approach,
mass preservation is easily achieved through our advection scheme
(Eq. 4) guaranteeing that mass is only exchanged through faces,
and hence conserved. This property avoids the visual artifacts of
volume loss traditionally present in particle-free surface capturing
schemes—and without the memory and computational overhead
associated with particles. In fact, having a mass density provides
more intricate visualizations than the traditional single level-set
visualization: Fig. 7 depicts volume renderings of a long simulation
run, showing the complexity of the details captured in the density
function even on a coarse grid—and mass is preserved throughout.

Figure 8: Incompressible Fluid Simulation: the feline flows into
a thin layer of liquid, showing plenty of small-scale motion while
preserving volume - all in the absence of any Lagrangian artifice.
Grid Size: 1283 for density, 643 for fluid solver

Our implementation mostly follows [Foster and Fedkiw 2001] ap-
plied in conjunction with narrow-band velocity extrapolation [Adal-
steinsson and Sethian 1999], but now using our Eulerian setup in-
stead of LSM. A cell is included in the Navier-Stokes solve if it
is ‘full’ of fluid (i.e., if ρi > 1− ε), thus allowing pressure projec-
tion to a divergence-free velocity field to be computed in the usual
fashion. Note that we specify Dirichlet boundary conditions on the
Poisson equation at the fluid/vacuum interface, setting the weight of
the dual edge between two cells on opposite sides of the interface to
1/( 1

2 +ρi), where i is the cell on the ‘vacuum’ side of the interface.

This is a heuristic similar in spirit to the level set fluid interface alter-
native described by Bridson [2006], as we are ensuring that pressure
is zero at the surface estimated at the distance of 1

2 +ρi from the fluid
cell. A last improvement is also added to combat the unphysical
scenario of ρ j > 1 (which can arise during numerical integration):
we further augment the Laplacian matrix L of the Poisson equation
by adding (ρ j −1) to L j j iff ρ j > 1, or equivalently by modifying
the rhs of our Poisson equation. This accentuates the pressure in
the cell j, therefore naturally pushing excess mass into neighboring
cells during the next advection time step. Notice in Fig. 8 that our
density-based Eulerian formulation brings robustness to the simu-
lation as even thin layers of fluid are treated appropriately. In the
continuous setting, mass conservation and true volume preservation
are synonymous under divergence freeness. While this is difficult
to achieve in the discrete world, the aforementioned sharpening pro-
cedure goes far to alleviate artifacts of spatial mass diffusion, but
without the visual artifacts often seen with VOF methods.

Miscible fluids can be simulated effortlessly as well, as multiple
fluid densities are admissible in our representation. The total mass
density per cell is directly derived as the sum of these fluid densities.
To demonstrate the mixing between liquids, we use a blending of
colors to indicate the types of fluid (see Fig. 9). Note that our
physically based interpretation of ρ as a mass density could also
be amenable to high-speed compressible fluid models, while again
maintaining mass conservation exactly.

Figure 9: Miscible Fluids: multiple fluid densities can be simulated
in our density-based representation. Displayed are slices of two
miscible fluids to demonstrate that mixing is easily achieved even
on a very coarse grid (643).

6.3 Simultaneous Mean Curvature Flows

As discussed in the introduction, mean curvature flows performed
on meshes are limited: small topological defects can create de-
generacies as triangles distort, requiring either iterative mesh
surgery [Pinkall and Polthier 1993] or an initial topological
cleanup [Wood et al. 2004]. Conversely the Eulerian framework
truly shines when dealing with complex topological objects, as topol-
ogy changes occur naturally without further complications. How-



Figure 10: MCF Of Multiple Isosurfaces: Foliation processing can perform a mean curvature flow of all isovalues concurrently. Volumetric
rendering allows the visualization of several isovalues of the 3D medical scan data being simultaneously smoothed. Grid Size: 2803

ever, our framework allows a nice extension: because our approach
is targeting the foliation instead of a particular surface, we can apply
our mean curvature flow procedure as is to volumetric datasets—
hence performing a curvature flow of all isovalues collectively and
concurrently. This is particularly desirable for 3D data coming from
medical imaging as they represent (often noisy) density functions,
e.g., hydrogen nuclei density in MRI. As our representation is coher-
ent with this density interpretation, we can smooth all the layers of
the head between skin and skull simultaneously as shown in Fig. 10,
while LSM or even Lagrangian methods could only process a single
isosurface at a time. The speedup is therefore significant, provid-
ing a cheap, yet geometrically relevant anisotropic filtering of 3D
datasets (comparison with a direct (isotropic) Laplacian smoothing
provided in Fig. 11).

6.4 Discussion

In order to provide a general estimate of timings with our mini-
mally optimized code, we mention that the advection of the bunny
in Fig. 2 took 1.5 seconds per time step, the smoothing of all the
isovalues of the medical data set required 30 seconds per time step,
and the smoothing of the feline in Fig. 6 required 1.5 seconds per
time step for non-conservative MCF and 2 seconds for conservative
MCF. In general inward or outward offsetting takes times compara-
ble to non-conservative MCF for both volumetric and single surface
data. These simulations were performed on a single PC with a
2.93GHz Intel Core 2 CPU, although only the advection step was
implemented to take advantage of both cores. The fluid simula-
tions were performed on a single 1.86GHz Pentium 4 machine and
took approximately 2 minutes per frame, including the fluid solve,
advection, and file I/O.

Figure 11: Comparison With Laplacian: A skull (red) along with
the same amount of smoothing with our mean curvature flow (teal,
left) and a standard (isotropic) 3D Laplacian smoothing of the
dataset (green, right). Our mean curvature behaves as expected
in convex/concave regions, while Laplacian flow results in signifi-
cant outward motion due to interference from neighboring isovalues.
Grid Size: 2803

7 Conclusions

We have presented a general Eulerian framework along with the
necessary toolkit to perform standard geometry processing on both
single surfaces and foliations through the Coarea Formula. Vari-
ational interpretations, previously proven powerful in Lagrangian
settings, are used to derive simple, robust, and conservative numeri-
cal techniques for routine geometric operations such as offsetting,
mean curvature flow, and animation. The applications are clearly
numerous, ranging from anisotropic diffusion of 3D medical data to
fluid interface simulations. Although we carefully avoid the use of
Lagrangian devices to remain truly Eulerian, our framework does
not prevent either (SPH) particles or semi-Lagragian path tracing to
be incorporated for specific applications.

Extensions Although we only use explicit integration throughout
our paper, implicit integration is an obvious extension deserving
investigation. In particular, the mean curvature flow could benefit
from the same treatment as in the Lagrangian setting where the met-
ric was assumed constant during a time step to allow for a simple
implicit update; a similar process could be applied to, e.g., Eq. (15)
where the denominator would be evaluated with the current value
of ρ while the numerator would represent ρ at the next time step—
resulting in a linear equation to solve for the update. Note also that
while the details of our approach were restricted to regular grids, re-
cent improvements in finite volume advection schemes [Zhang and
Shu 2003] should make the extension to simplicial or cell complexes
both useful and straightforward: once advection is properly defined,
the exact same variational approaches we used can be extended to ar-
bitrary grids. Advances in Eulerian data structures should also yield
further computational improvements. Farther reaching future work
includes investigation of higher order velocity interpolation (which
may be especially useful for adaptive grids), the use of multidimen-
sional density approximations for more accurate advection, as well
as the study of higher order mean curvature (and Wilmore [Droske
and Rumpf 2004]) flow approximations.
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