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Abstract
We introduce Hodge-optimized triangulations (HOT), a family
of well-shaped primal-dual pairs of complexes designed for fast
and accurate computations in computer graphics. Previous work
most commonly employs barycentric or circumcentric duals; while
barycentric duals guarantee that the dual of each simplex lies within
the simplex, circumcentric duals are often preferred due to the in-
duced orthogonality between primal and dual complexes. We in-
stead promote the use of weighted duals (“power diagrams”). They
allow greater flexibility in the location of dual vertices while keep-
ing primal-dual orthogonality, thus providing a valuable extension
to the usual choices of dual by only adding one additional scalar per
primal vertex. Furthermore, we introduce a family of functionals
on pairs of complexes that we derive from bounds on the errors in-
duced by diagonal Hodge stars, commonly used in discrete compu-
tations. The minimizers of these functionals, called HOT meshes,
are shown to be generalizations of Centroidal Voronoi Tesselations
and Optimal Delaunay Triangulations, and to provide increased ac-
curacy and flexibility for a variety of computational purposes.

Keywords: Optimal triangulations, Discrete Exterior Calculus,
Discrete Hodge Star, Optimal Transport.
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1 Introduction
A vast array of modeling and simulation techniques assume that
a mesh is given, providing a discretization of a 2D or 3D domain
in simple triangular or tetrahedral elements. As the accuracy and
stability of most computational endeavors heavily depend on the
shape and size of the worst element [Shewchuk 2002], mesh ele-
ment quality is often a priority when conceiving a mesh generation
algorithm. Be it for finite-volume, finite-element, finite-difference,
or less mainstream computational schemes, the need for good trian-
gle or tetrahedron meshes is ubiquitous not only in computer graph-
ics, but in computational sciences as well—and as computational
power increases, so does the demand for effective meshing.

While generically “good” dual or primal elements can be obtained
via Centroidal Voronoi Tesselations [Du et al. 1999] or Optimal De-
launay Triangulation [Alliez et al. 2005] respectively, an increasing
number of numerical methods need strict control over both primal
and dual meshes: from discrete differential operators in modeling
(e.g., [Meyer et al. 2003]) to pressure solves in fluid simulation (as
recently mentioned in [Batty et al. 2010]), the placement of primal
elements with respect to their orthogonal dual elements is increas-
ingly recognized as crucial to reliable computations. However, very
little is available to quickly and effectively design such orthogonal

Figure 1: Primal/Dual Triangulations: Using the barycentric
dual (top-left) does not generally give dual meshes orthogonal to
the primal mesh. Circumcentric duals, both in Centroidal Voronoi
Tesselations (CVT, top-middle) and Optimal Delaunay Triangula-
tions (ODT, top-right), can lead to dual points far from the barycen-
ters of the triangles (blue points). Leveraging the freedom pro-
vided by weighted circumcenters, our Hodge-optimized triangula-
tions (HOT) can optimize the dual mesh alone (bottom-left) or both
the primal and dual meshes (bottom-right), e.g., to make them more
self-centered while maintaining primal/dual orthogonality.

primal-dual structures over complex domains. To address this lack
of adequate meshing tools, we introduce a theoretical analysis of
what makes a mesh and its dual numerically optimal in some com-
mon graphics contexts, along with practical algorithms to produce
optimized primal-dual triangulations.

1.1 Previous Work

Meshing complex 2D or 3D domains with high-quality elements
has generated a tremendous number of research efforts. Bounds
on numerical errors have resulted in the use of Delaunay triangu-
lations [Edelsbrunner 1987] for finite-element computations, and
Voronoi diagrams [Okabe et al. 2000] for finite-volume methods.
However, the combined use of a primal mesh and its dual structure
has increased over the last decade in both modeling and simulation,
with quantities of both geometric (normals, mean and Gaussian cur-
vatures, tangents) and physical (velocities, fluxes, circulations, vor-
ticities) nature inherently located either on the primal mesh or its
dual [Desbrun et al. 2007]. Calculations involving these primal and
dual values in graphics were formalized in Discrete Exterior Calcu-
lus (DEC—see, e.g., [Hirani 2003]), now used in vision and image
processing as well [Grady and Polimeni 2010].

Delaunay/Voronoi pairs. In the context of discrete differential ge-
ometric operators, Meyer et al. [2003] recommended a Voronoi (cir-
cumcentric) dual for tighter error bounds—but locally reverted to
the barycentric dual when a dual vertex was not contained in its pri-
mal simplex. For fluid simulation, Perot and Subramanian [2007]
and Elcott et al. [2007] advocated circumcentric duals as well, this
time to ensure that pressure gradients between adjacent cells were
parallel to the velocity samples stored on the common face. In
DEC terminology, this simply means that the flux through a face
and the circulation along its associated dual edge measure the same
component of a vector field. Moreover, another advantage of the
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Delaunay/Voronoi duality for fluid simulation exploited in [Elcott
et al. 2007] is that the convexity and non-self-intersection of dual
Voronoi cells make them ideal for the use of generalized barycen-
tric coordinates [Warren et al. 2007]. Still, the seemingly natural
choice of Delaunay/Voronoi triangulation is far from being with-
out drawbacks. First and foremost, it it extremely difficult in prac-
tice to get “self-centered” Delaunay triangulations [Rajan 1994] for
which each circumcenter lies inside its associated tetrahedron: fail-
ure to satisfy this property locally can lead to numerical degenera-
cies. Recent methods attempting to optimize meshes to avoid this
issue remain impractical for complex domains [VanderZee et al.
2010]. A second drawback of a Delaunay/Voronoi pair is the in-
ability to choose the positions of dual nodes locally without sig-
nificantly degrading the primal mesh: having more flexibility in
the placement of pressure samples would significantly improve the
treatment of free surfaces in embedded boundary methods [Batty
et al. 2010]. Consequently, and while abundantly vetted by theoret-
ical guarantees, Delaunay/Voronoi triangulations are too restrictive
in many practical situations. We will, instead, promote the use of
arbitrary convex orthogonal primal/dual pairs to offer significantly
more flexibility (see Fig. 1).

Accuracy vs Efficiency. Sparsity is crucial when dealing with
large linear algebraic problems frequently encountered in geometry
processing. Graphics literature is replete with low order methods
using as-sparse-as-possible formulations for efficiency. While non-
linear and/or high-order methods have their own advantages and
proponents, it is often highly desirable to find the simplest, fastest
approximation valid for most applications, even if only to initialize
a subsequent non-linear solver. In the context of DEC, this quest
for efficiency often translates to the use of the so-called diagonal
Hodge stars (that include the famous cotangent weights [Pinkall
and Polthier 1993] widely used in geometry processing) over other
discretizations of Hodge stars [Bossavit 1998; Auchmann and Kurz
2006; Wilson 2007] to approximate primal values based on dual
values (and vice-versa); as inverse Hodge stars appear even in ba-
sic operators [Fisher et al. 2006; Elcott et al. 2007], having diag-
onal approximations can greatly increase computational efficiency.
However, once a primal-dual triangulation is chosen, one has no
control over the error incurred by diagonal approximations: effi-
ciency may thus only be achieved on particularly good meshes. We
will, instead, design meshes to minimize formal error bounds of di-
agonal Hodge stars, generally increasing accuracy without the ad-
ditional costs associated with refinement (increasing system sizes)
or higher-order Galerkin Hodge stars (decreasing the sparsity and
making inversion more difficult).

1.2 Contributions

While most previous meshing methods focused on designing well-
shaped primal triangulations or dual complexes, we provide a uni-
fying approach to mesh quality based on the placement of pri-
mal and orthogonal dual elements with respect to each other. In
an effort to provide meshes most appropriate for fast, yet reliable
computations, we propose functionals on primal-dual mesh pairs—
more precisely, regular triangulations along with their associated
power diagrams—that offer formal bounds on the numerical error
induced by the use of diagonal Hodge stars. We then demonstrate

Figure 2: Duality: The dual of a triangulation in Rd associates to
each k-simplex σk a (d−k)-cell ∗σk (here, k= 0, 1, 2, 3). Having
σk ∩∗σk “well centered” within the primal simplex and its orthog-
onal dual cell is crucial to numerics in modeling and simulation.

that meshes that minimize our functionals have desirable geomet-
rical and numerical properties. These resulting Hodge-optimized
meshes offer a much-needed alternative to the traditional use of
barycentric or circumcentric duals in discrete computations. More-
over, our work unveils an important connection between Hodge star
accuracy and optimal transport. Finally, the resulting set of mesh-
ing tools we introduce has wide applications: even when a specific
connectivity is needed, some of our contributions can be applied to
improve condition numbers of basic operators as well as increase
numerical robustness and accuracy.

2 Preliminaries and Definitions
Before introducing our Hodge-based meshes, we first provide some
background on orthogonal primal/dual triangulations and optimal
transport as we will make heavy use of these notions throughout
the paper.

2.1 Regular-Power Triangulations

The notion of dual for a triangulation T in Rd is well known and
routinely used in graphics: each d-simplex is associated with a dual
vertex (dual 0-cell), each (d−1)-simplex is associated with a dual
edge (dual 1-cell) between the two dual vertices associated with the
two adjacent d-simplices, etc. Primal vertices xi are then associ-
ated with dual d-cells Vi, and the dual of T forms a cell complexD.
However, this concept of dual is abstract, as the location of the dual
vertices are not specified a priori. A very common dual to a triangu-
lation is the cell complex which uses the circumcenters of each d-
simplex as dual vertices. If the initial triangulation is Delaunay (i.e.,
satisfying the empty circumsphere property [Edelsbrunner 1987]),
this dual is simply the Voronoi diagram of the primal vertices, and
its nice properties of non-self-intersection, convexity, and orthogo-
nality of the primal and dual elements have led to its use in count-
less papers in graphics and computational sciences. The barycentric
dual, for which barycenters are used instead of circumcenters (see
Fig. 1), is also quite common in particular for finite-volume com-
putations; however, it fails to satisfy both the orthogonality and the
convexity conditions on general triangulations.

Desirable primal-dual pairs. Remaining agnostic with respect to
the choice of a dual, we will call a primal-dual triangulationM
in Rn any pair (T ,D) with T being a triangulation in Rd and D a
compatible dual complex of T (i.e., their respective adjacency ma-
trices are transpose of each other). Moreover, if every edge [xi,xj ]
of T and its dual Vi∩Vj inD are orthogonal to each other, the pair
(T ,D) is said to form an orthogonal primal-dual triangulation. Fi-
nally, we will denote as ∗ the operation of duality (see Fig. 2); that
is, a primal simplex σ will have its dual referred to as ∗σ with the
orientation induced by the primal orientation and the manifold ori-
entation. For a more formal definition, see [Munkres 1984; Hirani
2003].

Regular/power duality. Delaunay/Voronoi primal-dual triangula-
tions are restrictive in that they allow no choice on the dual once
the primal mesh is fixed. A natural question to ask is: are
there other primal-dual triangulations that satisfy the orthogonal-
ity, non-intersection, and convexity conditions we require? The
answer is affirmative: the known duality between regular tri-
angulations (also called weighted Delaunay triangulations) and
power diagrams (also called Laguerre or weighted Voronoi dia-
grams) provides all the satisfactory orthogonal primal-dual trian-
gulations [Glickenstein 2005]. This exact characterization of the
primal/dual triangulations we seek will be particularly convenient
as it will lead to a number of new geometric functionals measuring
mesh quality; it will also yield straightforward generalizations of
standard DEC operators without some of the most limiting factors
that the Delaunay/Voronoi duality possesses.

Formally, a weighted point set is defined as a pair (X,W) =



{(x1, w1), . . . , (xn, wn)}, where X is a set of points in Rd, and
{wi}i∈[1,...,n] are real numbers called weights. The power of a
point x ∈ Rd with respect to a weighted point (xi, wi) (sometimes
referred to as the Laguerre distance) is defined as ‖x−xi ‖2−wi,
where ‖ . ‖ stands for the Euclidean distance. Using this power
definition, to each xi we can associate its weighted Voronoi region
V wi ={x∈Rd| ‖x−xi ‖2−wi ≤ ‖x−xj ‖2−wj , ∀j}. The power
diagram of (X,W ) is the cell complex whose cells are the weighted
Voronoi regions. The dual of the power diagram of (X,W ) is the
regular triangulation of (X,W ): this triangulation contains a k-
simplex with vertices x0,x1, . . . ,xk in X iff

⋂j=k
j=0 V

w
j 6= ∅.

Note that in a regular triangulation, a point xi ∈ X can be hidden,
i.e., it may not be used in the triangulation because its weighted
Voronoi region is empty. Note also that when the weights are all
equal, the power diagram coincides with the Euclidean Voronoi di-
agram of X. Geometrically, one can think of the weight wi as the
square of the radius of a unique circle centered at vertex xi; then
there exists in each triangle a circle, centered at what is known as
the weighted circumcenter, which is orthogonal to each of the cir-
cles centered at the vertices. All of these properties can be extended
to the case where the weights are negative [Pedoe 1988], and thus
regular triangulations and their associated power diagrams general-
ize the usual Delaunay/Voronoi duality nicely. This simple addition
of a weight to each vertex allows us to conveniently parameterize
the entire space of good (i.e. orthogonal, convex, and non-self-
intersecting) primal-dual triangulationsM.

2.2 Basics of Optimal Transport
The optimal transport problem dates back to Gaspard Monge. (For
a description of the vast literature on this topic, we refer the reader
to [Villani 2009].) In essence, it seeks to determine the optimal
way to move a pile of dirt M to a hole N of the same volume,
where “optimal” means that the integral of the distances by which
the dirt is moved (one infinitesimal unit of volume at a time) is
minimal. While Monge’s variational formulation of the problem
assumed that all the dirt at a point x ∈ M must be moved through
a point-to-point mapping s to one location s(x) ∈ N , this restric-
tion was relaxed by Kantorovich who replaced the mapping swith a
probability measure π ∈ P(M×N) that specifies the joint measure
of dirt-hole correspondences; i.e., π is a transport plan between a
probability measure µ on M and a probability measure ν on N
with π(· ×N)=µ and π(M × ·)=ν. This extension to the trans-
port of measures marked a renewed interest in optimal transport as
it proved general enough to apply to many scientific fields (for re-
cent graphics-related applications, see [Mémoli 2011; Lipman and
Daubechies 2010]).

Wasserstein metric. For measures the notion of “distance” (i.e.,
cost of transport) may vary based on context. A common distance
function defined between probability measures in Rd with bounded
support is the q-Wasserstein metric, defined as

Wq(µ, ν) =

(
inf

π∈P(µ,ν)

∫
Rd×Rd

‖x− y‖q dπ(x, y)

)1/q

.

To reuse the analogy mentioned above, if each measure is viewed as
a unit amount of piled-up dirt, the metric is the minimum “cost” of
turning one pile into the other, which is assumed to be the amount
of dirt that needs to be moved times the Lp distance it has to be
moved. Because of this analogy, the metric is sometimes called the
earth mover’s distance. Note, as it will be crucial in Section 3, that
by a direct application of the Hölder inequality for two measures of
unit mass,

W1(µ, ν) ≤W2(µ, ν). (1)

Finally, we will also need the Kantorovich-Rubinstein theorem,
stating that for two measures µ and ν with bounded support, the

1-Wassertein distance between µ and ν can be rewritten as:

W1(µ, ν) = sup
ϕ:Rd→R
Lip(ϕ)≤λ

1

λ

∫
Rd

ϕ(x) d(µ− ν), (2)

where Lip(ϕ) represents the Lipschitz constant of function ϕ. This
expression will be useful shortly to link optimal transport and ap-
proximation error of diagonal Hodge stars.

3 Error Functionals for Diagonal Hodge Stars
To demonstrate the advantages of using regular/power triangula-
tions, we focus on a particularly relevant type of functional measur-
ing primal and dual properties. Recall that for an arbitrary primal el-
ement σ, the diagonal approximation of the Hodge star ? [Bossavit
1998] of a continuous differential form α assumes∫

∗σ
?α ≈ | ∗σ||σ|

∫
σ

α, (3)

where |.| denotes the Lebesgue measure (length, area, volume) of
a simplex or cell. In other words, the discrete kth Hodge star is
encoded as a diagonal matrix ?k with

∀i, (?k)ii :=
| ∗σki |
|σki |

,

where σki (resp., ∗σki ) is the ith k-simplex (resp., (d−k)-cell) of
the primal-dual triangulationM = (T ,D); the discrete Hodge star
of a discrete primal k-form ωk is then computed as ?k ωk, and the
extension to dual discrete forms (now with (?k)−1) is trivial (for
further details see, e.g., [Desbrun et al. 2007]).

3.1 Deriving Tight Bounds through Optimal Transport
While computationally convenient, diagonal Hodge stars are not
very accurate: they are generally only exact for constant forms. We
can quantify the induced inaccuracy of ?k by defining the error
density ei on the dual of a k-simplex σi as the average difference
between the discrete approximation and the exact Hodge star value:

ei :=
1

| ∗σi|

∣∣∣∣ | ∗σi||σi|

∫
σi

ω −
∫
∗σi
?ω

∣∣∣∣ =

∣∣∣∣ 1

|σi|

∫
σi

ω − 1

| ∗σi|

∫
∗σi
?ω

∣∣∣∣ .
We now notice that due to the orthogonality of σ and ∗σ, the com-
ponent of ω along σ is the same as the component of ?ω along ∗σ
(this is the same property that allows orthogonal primal-dual trian-
gulations to admit a diagonal Hodge star in the first place). Writing
this component as a scalar function f(x), we can rewrite the inte-
grals involved above as∫

σi

ω =

∫
σi

f(x) dµσi and
∫
∗σi
?ω =

∫
∗σi
f(x) dµ∗σi ,

where dµσi and dµ∗σi are the volume forms of σi and ∗σi respec-
tively. We can use these expressions to rewrite the error density as

ei=

∣∣∣∣∫
σi

f(x)
dµσi
|σi|
−
∫
∗σi
f(x)

dµ∗σi
| ∗σi|

∣∣∣∣= ∣∣∣∣∫
Rd

f(x) d(µ̄σi−µ̄∗σi)
∣∣∣∣ (4)

where now dµσi/|σi| and dµ∗σi/| ∗σi| are uniform probability dis-
tributions over σi and ∗σi respectively, and dµ̄σi and dµ̄∗σi are
their trivial extensions to Rd—i.e., for any measurable set S in Rd,∫

S

dµ̄σi =

∫
S∩σi

dµσi
|σi|

and
∫
S

dµ̄∗σi =

∫
S∩∗σ

dµ∗σi
| ∗σi|

.



From Eq.(4) and Eq.(2), we deduce that the tightest bound one can
find on the Hodge star error density per simplex for an arbitrary λ-
Lipschitz form is simply λ times the minimum cost over all trans-
port plans between σi (seen as a uniform probability measure over
the mesh element) and ∗σi (also seen as a uniform probability mea-
sure over the dual element); that is, with a slight abuse of notation,

ei ≤ λ W1(σi, ∗σi). (5)

This formally establishes a link between Hodge star accuracy and
optimal transport. Note that we only required ω to be Lipschitz
continuous, a reasonable assumption in many graphics applications.

3.2 Error Functionals on Meshes

From these local error densities, we can assemble a total error by
taking the Lp≥1 integral norm of the error over the mesh area, i.e.,
by summing the integrals of the pth power of the error densities
ei over local regions, specific to σi and ∗σi, that tile the mesh.
Such regions have been defined in previous work, coined “support
volumes” in [Hirani 2003] and “diamonds” in [Hauret et al. 2007;
Desbrun et al. 2007]: when σi and ∗σi intersect, these regions that
we will refer to as �(σi∪∗σi) are just the convex hulls of σi and ∗σi;
in the general case, they become signed unions of convex hulls of
the primal vertices of σi and each boundary element of the dual cell
∗σi . Using Σk to denote the set of k-simplices of a triangulation,
the total error is thus:

Ep(M, ?k)=

 ∑
σi∈Σk

∫
�(σi∪∗σi)

ei
p


1
p

=

 ∑
σi∈Σk

|σi|| ∗σi|(
d
k

) ei
p

1
p

,

since the volume of the diamond �(σi ∪ ∗σi) is, up to a dimension
factor, simply the product of the primal and dual volumes due to
our primal/dual orthogonality assumption of meshM.

From Eq. (5), we conclude that a tight bound for the pth power of
the total error is expressed as:

Ep(M, ?k)p ≤ λp(
d
k

) ∑
σi∈Σk

| ∗σi||σi|W1(σi, ∗σi)p. (6)

Notice that E∞(M, ?k) is thus, up to the Lipschitz constant,
bounded by the maximum of the W1 distances between primal and
dual elements of the mesh as expected. For notational convenience,
we will denote by ?k- HOTp,1(M) the bound (with Lipschitz and
dimension constants removed) obtained in Eq. (6); more generally,
we will define

?k- HOTp,q(M) ≡
∑
σi∈Σk

| ∗σi||σi|Wq(σi, ∗σi)p

as relevant functionals (or energies) to construct meshes, since min-
imizing them will control the quality of the discrete Hodge stars.

Continuity of HOT functionals. Because they are based on vol-
ume integrals, the HOT functionals are continuous over the space
of regular/power triangulations. They are indeed continuous in the
vertex positions of the primal and dual meshes, but also through
primal mesh flips: an edge or face flip in a regular triangulation
happens when a dual (power) edge vanishes. Hence the diamond
weighting we use for our total error renders our HOT functionals
continuous with respect to both vertices and weights. This will be
particularly convenient when it comes time to optimize a mesh in
order to minimize these functionals.

3.3 Discussion

Our HOT energies are archetypical, general-purpose examples of
mesh quality measures imposed on both primal and dual meshes,
but they are by no means unique: from the local error densities
ei, other energies can be formulated to target more specific er-
rors occurring in mesh computations (see some examples in Sec-
tion 5). In particular, linear combinations of HOT energies may
be used if multiple Hodge stars are needed, for example when us-
ing Laplacians of k-forms with k>1. Note also that the use of a
1-Wasserstein distance is notably less attractive numerically than
a 2-Wasserstein distance as we will discuss in Section 4.4. Fortu-
nately, we can also provide a bound of the Hodge star error which,
while less tight than the previously derived HOTp,1, will be par-
ticularly convenient to deal with computationally: the existence of
optimal transport plans when the cost is the distance squared (i.e.,
W2) being well studied, a useful bound on the Hodge star error can
be derived using the inequality given in Eq. (1) to yield:

E2(M, ?k)2≤
∑
σi∈Σk

| ∗σi||σi|W2(σi, ∗σi)2 ≡ ?k- HOT2,2(M).

The reader may have noticed that the functional ?0- HOT2,2(M)
is, in the case of equal weights, the well-known Centroidal Voronoi
Tesselation (CVT) energy (

∑
i

∫
Vi
‖x−xi‖2dV ) for which several

minimization techniques, from Lloyd iterations [Du et al. 1999] to
quasi-Newton methods [Liu et al. 2009], have been developed. Lp
variants (i.e., ?0- HOT2p,2(M) for p ≥ 2) were also explored re-
cently [Lévy and Liu 2010]. However, these energies only corre-
spond to ?0, and are not as tight as HOT1,p. Our HOT energies can
thus be seen as a direct generalization of the CVT-like function-
als. Note finally that the Optimal Delaunay Triangulation (ODT)
energy used in [Alliez et al. 2005] can also be seen as a variant of
?d- HOT2,2(M) in Rd for which the dual mesh is restricted to be
“barycentric”; alas, the resulting mesh will not necessarily lead to
an orthogonal primal-dual triangulation—even if the resulting sim-
plices were proven to be very close to isotropic.

4 Hodge-Optimized Triangulations
In the remainder of this paper, we call a HOT triangulation any pair
M consisting of a regular triangulation T and its associated power
diagramD for which T ,D, or both, have been optimized in order to
reduce one (or a linear combination of) HOT functional(s). We now
describe the basic computations involved in optimizing meshes for
two particularly interesting (and unexplored) families of energies:
HOT2,2 and HOT1,1.

4.1 General Minimization Procedure

Given that both (continuous) vertex positions and (discrete) mesh
connectivity need to be optimized, the task of finding HOT meshes
is seemingly intractable. Thankfully, regular triangulations provide
a good parameterization of the type of primal-dual meshes we wish
to explore: one can simply optimize the continuous values of both
positions and associated weights to find a HOT mesh. However,
HOT energies are not convex in general, and a common down-
fall of non-convex optimization is its propensity to settle into lo-
cal minima. In our case, finding a good non-optimal minimum is
often enough to dramatically improve the mesh quality. We thus
start our minimization process by initializing the domain with uni-
formly sampled vertices over the domain, and running a few it-
erations of CVT [Du et al. 1999] or ODT [Alliez et al. 2005] to
quickly disperse the vertices and get mesh elements roughly sim-
ilar in size: from such a decent initial mesh, an optimized mesh
can be quickly obtained by performing a gradient descent, or al-
ternatively (without much added implementation complexity), an
L-BFGS algorithm [Nocedal and Wright 1999]—a particular quasi-
Newton method where the (inverse) Hessian is approximated based



on the M previous steps (we use M = 7). A (binary or golden-
ratio) linear search is performed to adapt the step size along the
gradient or the quasi-Newton direction based on two simple tests
(known as Wolfe conditions): the step size should be small enough
to make sure the energy decreases, but large enough to induce a
marked gradient change. This common minimization procedure
works quite well without requiring anything else but an evalua-
tion of our HOT energies and their gradients, which we will de-
rive in closed-form from direct integration and/or application of the
Reynolds theorem (see Appendices). Note finally that the positions
xi and the weights wi have very different scales (units of m vs.
m2); we thus proceed by alternatively minimizing our HOT ener-
gies with respect to vertex positions and weights. After each step
the connectivity is updated using the 2D or 3D regular triangula-
tion package of CGAL [CGAL 2010]. Pseudocode of our general
procedure is given in Fig. 3, but more specialized optimization tech-
niques could most likely be devised; in particular, based on the HOT
energy we wish to minimize, a few alternative minimization proce-
dures may be simpler to implement or faster to converge. We will
point out some such special cases shortly.

While both position and weight are optimized by default, HOT op-
timizations are relevant even if only one of these optimizations is
performed. For instance, if one has a given (possibly non-flat) tri-
angulation, vertices could be held fixed while weights are optimized
to better one or more of the Hodge stars. Similarly, weights could
be kept fixed, e.g. in contexts where they represent power or ca-
pacity of the nodes, and a best node placement is sought after—or
simply in cases where a given connectivity needs to be maintained.
We will discuss some useful variants in Section 5.

Boundary Handling. As in any variational method, boundary con-
ditions can significantly affect the results. Except for the work of
Alliez et al. [Alliez et al. 2005; Tournois et al. 2009; Sieger et al.
2010], we found very little about boundary handling in previous
related work in graphics; for instance, recent papers focusing on
the CVT energy like [Lévy and Liu 2010; Liu et al. 2009] only
discuss how to partition a given domain into well-shaped Voronoi
cells, providing no insight on dealing with the difficult issue of
generating good simplices at the domain boundary. While bound-
ary treatment may be context dependent (fixing vertices or even
weights [Cheng et al. 2008] at the boundary being two of the most
desirable options), we experimented with a very simple procedure
to handle boundaries gracefully for all Hodge stars. We first make
sure that each dual vertex c of a boundary d-simplex T is associ-
ated with a “ghost” dual vertex ĉ used to enforce that dual edges
at the boundary never have negative lengths: ĉ is put at the pro-
jection of c onto the boundary face of T if c is within T , and put
on top of c otherwise. We also alter the definition of the energy to
become HOT /|M|, i.e., we simply divide the energy by the total
area: as volume-shrinkage is no longer rewarded, minimizing the
HOT “volume density” makes the optimization steps behave well
even at the boundary. We left the evaluations performed to check
the Wolfe conditions unchanged: we did not alter the connectivity
of the current triangulation (for efficiency reasons) or clamp ver-
tices to the domain during the line search. Once the Newton step
is done, however, a vertex is reprojected on the domain’s bound-
ary if (a) the vertex has an unbounded weighted Voronoi region, (b)
it is outside the domain, or (c) it has one or more of its adjacent
triangles’ circumcenters or barycenters outside the domain. This
approach is simple and it lets the vertices move freely from the in-
side to the boundary and vice-versa. We will not incorporate the
term |M| in our derivations (to avoid cluttering the explanations)
as it is a trivial alteration of our procedure.

4.2 Weighted Circumcenters

Most of the derivations involved in this section rely on the cru-
cial relation linking primal and dual vertices in regular triangula-

// MESH OPTIMIZATION
// Input: vertices x0 = {xi} and weights w0 = {wi},
// and a HOT functional E(x, w).
n← 0
repeat

Compute E(xn, wn) // See Appendices A and B
// Optimize x
Pick step direction dx for E(xn, wn)
Find α satisfying Wolfe’s condition(s)
xn+1 ← xn + α dx // Vertex updates
Update regular triangulation
// Optimize w
Pick step direction dw for E(xn+1, wn)
Find β satisfying Wolfe’s condition(s)
wn+1 ← wn + β dw // Weight updates
Update regular triangulation
n← n+ 1

until (convergence criterion met)

Figure 3: Basic pseudocode of our HOT optimization. Step direc-
tions are picked as gradient descent or quasi-Newton steps.

tions. We will use c(σ) to denote the weighted circumcenter of
simplex σ, i.e., the unique intersection of the mutually-orthogonal
affine spaces supporting the primal simplex σk and its weighted
dual ∗σk (see Fig. 4). Of particular importance are the circumcen-
ters of the d-simplices for a mesh T in Rd: these form the vertices
of its (weighted) dual complex D. For a k-simplex σk, if xi is any
of the vertices of σk, the (weighted) circumcenter is expressed as:

c(σk) = xi +
1

2k!|σk|
∑

xj∈σk

(
|xi−xj |2 + wi−wj

)
σk̂ (7)

where σk̂ denotes the inward-pointing normal of the face of σk op-
posite to xj weighted by the volume of the face. With this general
formula, weighted circumcenters are easy to differentiate, both with
respect to vertices and weights. Notice that when the weights of σk

are all equal, one finds the expression for the (Voronoi) circumcen-
ter used in [Alliez et al. 2005]. Armed with this useful identity, we
can now formulate the various HOT energies.

4.3 HOT2,2 Meshes
When a W2-based transport cost is used, the HOT functionals are
quite easy to compute in closed form. Indeed, a direct application of
Pythagoras’ theorem reveals that an optimal transport plan to move
the normalized uniform measure for a simplex σ to its orthogonal
dual ∗σ can be achieved by splitting the plan into two stages: first,
optimally transport the measure from σ to its (weighted) circum-
center c(σ), then from c(σ) to the dual cell ∗σ. The fact that the
circumcenter c(σ) is at the intersection of the mutually-orthogonal
affine spaces supporting σ and ∗σ makes the cost of the direct op-
timal transport and the sum of transport costs via c(σ) equal. The
optimal transport cost is thus directly expressible as we now detail.

Figure 4: Weighted Circumcenters: Weights on primal vertices
determine the placement of the weighted circumcenters for each
edge (left), triangle (middle), and tetrahedron (right). Moreover,
the orthogonal projection of the (weighted) circumcenter c(σ) onto
one of σ’s faces falls on the (weighted) circumcenter of that face.



Figure 5: Splitting Mesh Elements: Most of our HOT energies are
evaluated by splitting simplices/cells into canonical subsimplices
(in green) for which closed-form integral expressions W (p, T ) of
simplex-T -to-point-p transport are easily found. Notations used
for 2D (left) and 3D (right) in Sections 4.3 and 4.4 are indicated.

Energy computations. For both ?0 and ?d in dimension d=2, 3,
HOT2,2 energies can be easily computed by splitting weighted
Voronoi d-cells or primal d-simplices into canonical simplices for
which a closed form for the optimal transport cost to a point is easy
to obtain—see this splitting in Fig. 5. For instance, for a right trian-
gle T with width a and height b in 2D, the integral over the triangle
of the squared distance to the vertex p adjacent to a is:

W (p, T )=

∫ a

0

∫ bx
a

0

(
x2+y2) dy dx=

a3b

4
+
ab3

12

The equivalent formula in 3D for the bi-orthogonal tetrahedron T
split shown in Fig. 5(right) is now:

W (p, T )=

∫ a

0

∫ bx
a

0

∫ cy
b

0

(
x2+y2+z2) dzdydx=

abc

10

(
a2 +

b2

2
+
c2

6

)
.

Costs for transport from edges are simpler to derive as they only
involve 1D integrals, and the other remaining stars are just combi-
nations of transport over edges, areas, and volumes. For complete-
ness, all the transport costs needed in 2D and 3D can be found in
Appendix A.

?0- HOT2,2 in Rd. As mentioned in Section 3.3, this energy turns
out to be the well-known CVT energy [Du et al. 1999] when all
the weights are equal. For this particular case, various optimization
strategies have been proposed, such as Lloyd iterations (to get near
the optimal mesh) followed by a quasi-Newton method (to acceler-
ate convergence) [Liu et al. 2009], and our approach mimics these
strategies in this case. In the general case, however, the gradient
with respect to a vertex position does not only contain the usual
centroidal term from CVT, but also extra terms based on weight
differences. As for the gradient with respect to a weight, its ex-
pression is surprisingly simple: it is simply the Laplacian (using the
weighted version of the cotangent formula) of the weights, meaning
that a ?0- HOT2,2 mesh will have harmonic weights. We can then
conclude that a CVT mesh is, in fact, a HOT2,2 mesh with Neu-
mann boundary condition for the weights; other non-trivial bound-
ary conditions will lead to HOT2,2 that are not CVT.

Figure 6: ODT vs. ?2-HOT2,2: An ODT mesh (left) and a ?2-
HOT mesh (right) are computed for the same 2D shape; while the
primal triangulations are rather similar, the dual vertices end up
closer to the simplices’ barycenters for the HOT mesh thanks to the
additional freedom provided by the weights.

Figure 7: Laplace equation: We plot the L2 errors (with re-
spect to the solution on a very fine mesh) of the solutions of a
Laplace equation on a circle with Dirichlet boundary conditions
f(u, v) = (u2+v2) sin(u) cos(v) for CVT, ODT, and HOT meshes
with weight optimization only (w) or vertex and weight optimiza-
tion (wx). While the log-log plot of the errors as a function of mesh
size shows, as expected, that the convergence rate is not affected,
our HOT meshes still noticeably outperform both CVT and ODT
meshes, with W1 only marginally better than W2.

?d- HOT2,2 in Rd. Although seemingly the “dual” version of the
?0 case, this energy requires specific derivations that we now go
over. Computing the energy gradient with respect to weights is
made easier if one notices that ∂c(σ)/∂wi is independent of the
weights: Eq. (7) is indeed linear in the weights of the mesh in
any dimension. Consequently, the gradient of the energy (which
is quadratic in c) with respect to a weight is linear in the weights
of the mesh, offering alternative optimization approaches. One can
for instance solve for the optimal weights directly by finding the
weights that make all gradients zero: this is simply achieved via
a global, sparse linear system collecting all the gradient equations
and equating them to zero (see Appendix A; notice that this system
is simply a Poisson problem). A slightly slower approach—but eas-
ier to implement and parallelize—is to compute the optimal weight
w∗i for each vertex assuming that the other weights are unchanged,
and update wi ← (w∗i + wi)/2 (moving straight to the optimal
value may lead to overshooting, hence the half-way update). The
gradient with respect to vertices is detailed in Appendix A, and we
optimize vertex positions as sketched in Fig. 3. A ?d- HOT2,2 result
in 2D can be seen in Fig. 6.

HOT2,2 for Other Stars. Be it in 2D (d = 2) or 3D (d = 3), the
HOT2,2 functionals for ?k (where k = 1 . . . d−1) can be derived
using the circumcenter formula of Eq. 7. However, they do not
simplify in the same way as those for ?0 and ?d did above. Conse-
quently, a direct application of the general HOT algorithm (Fig. 3)
is called for, and it performs as expected.

4.4 HOT1,1 Meshes
While the HOT1,1 functionals provide the tightest L1 bounds on
Hodge star errors, their use of the 1-Wasserstein distance makes
the equations more difficult: optimal transport plans are often much
less obvious to determine, and their costs more difficult to compute.
In fact, the HOT1,1 energy for ?0 is directly related to facility loca-
tion problems [Okabe et al. 2000] that are commonplace in opera-
tions research, as it amounts to find the location (sometimes called
the (continuous, or integral) geometric median) which minimizes
the integrated Euclidean distance to the interior of a polygonal re-
gion. Thankfully, closed forms of many of the energies can still
be found (albeit, with more difficulty) as detailed in Appendix B.
For a few of the energies, in particular those for ?1 and ?2 in 3D,
closed forms are not easily calculated, and numerical quadrature
may be the only practical approach for their computation. However,
in practice we found the HOT1,1 energies to not give significant



Figure 8: Surface Weight Optimization: For a given triangular
mesh (left) there are several triangles whose circumcenter is far
outside the triangle (center, lines drawn in red). By optimizing only
the weights the new dual vertices are better placed inside the un-
changed triangles (right) while keeping primal/dual orthogonality.

improvements over their HOT2,2 counterparts, and thus may only
prove useful when the tightest formal bounds are required (Fig. 7).

4.5 Discussion

In many ways, HOT meshes can be seen as a generalization of
CVT meshes. However, one must be careful with the term “Cen-
troidal Voronoi Tesselation,” as being centroidal is a only necessary
condition of a CVT energy minimum: for instance, a regular grid
is centroidal, and yet the CVT energy is not at a local minimum.
Similarly, having each weighted circumcenter at the barycenter of
its associated triangle is not sufficient to minimize the ?d-HOT2,2

functional in Rd: the functional also captures the error distribution
throughout the domain. A HOT mesh for ?k tries instead to strike
a balance between being “centroidal” or “medial” (i.e., with each
k-simplex being “self-centered” for Wp), and having each k cell
being of the same volume. In 2D, most of these energies are glob-
ally minimized for a perfect hexagonal tiling of the plane; however,
this is no longer true in 3D and above, as an equilateral simplex
no longer tiles Rd>2. Consequently, while geometric functionals
could be easily derived to simply force a mesh to be centroidal or
medial (in the generalized diamond-based sense), HOT functionals
also favor uniform sizing of the optimal mesh.

5 Applications and Results

HOT meshes can be beneficial in a number of contexts in modeling
of surfaces and volumes, as well as in simulation. We mention a few
examples to demonstrate the generality of our approach and provide
numerical experiments. We also discuss variants and extensions.

Figure 9: HOT2,2 Sphere: Optimizing an ODT mesh of a sphere
for both weights and vertex positions results in a nice mesh (left)
with 30 tetrahedra whose dual vertex is outside of the tet (bottom-
right), compared to 206 in the original ODT mesh (top-right).

HOT DEC. Most of the DEC methods in graphics (including
the huge literature on Laplacian, Laplace-Beltrami, and discrete
conformal parameterization) can
be directly adapted to work on
HOT meshes as well. In fact,
if one computes the diagonal
Hodge star using the usual ratio
of (signed) volume of a simplex
and its dual, then no modification
is required. If, instead, closed
form formulae are used to express
each diagonal Hodge star, they only need to be modified to include
the contribution due to the weights. For instance, the traditional
Hodge star (?1)ij =

(
cot(αikj) + cot(αjli)

)
/2 for a one-form

between vertex i and vertex j becomes:

(?1)ij =
1

2

(
cotαikj + cotαjli

+(wi − wk)
cotαkji
||xi − xj ||2

+ (wj − wk)
cotαjik
||xi − xj ||2

+ (wi − wl)
cotαijl
||xi − xj ||2

+ (wj − wl)
cotαlij
||xi − xj ||2

)
.

These changes can be accommodated seamlessly in existing codes,
and allow for much greater flexibility: weights can be, for instance,
optimized (with fixed connectivity or not) to locally “displace” dual
vertices onto an immersed boundary [Batty et al. 2010] through a
least-square fit. Vertices can be optimized as well, for instance in
applications requiring local remeshing to maintain good numerics.

Laplace & Laplace-Beltrami Operators.
A particularly common linear operator in
mesh processing is the Laplacian ∆, be it in
the plane or on a discrete surface. Its DEC
expression for 0-forms being ∆ = dt0 ?

1 d0

and the d0 operator being exact, the only
loss of accuracy rises from the Hodge star.
Consequently, meshes minimizing the HOT
energy for ?1 should be appropriate for its
accurate computation, as evidenced by Fig. 7 where up to 65% er-
ror reduction is achieved compared to CVT. In fact, [Glickenstein
2005] and [Wardetzky et al. 2007] were the first to recognize the im-
portance of orthogonal primal/dual meshes to ensure good numer-
ical qualities of the Laplacian. A ?1-HOT2,2 mesh indeed results,
on a 200V discretization of the test domain depicted in the inset,
in a 5% reduction of the condition number of the Laplacian ma-
trix with Dirichlet boundary conditions compared to a CVT mesh
(much greater improvements are witnessed when compared to arbi-
trary, non-optimized meshes). The result is much more dramatic for
the Laplacian of dual 0-forms, where the condition number drops
from 254 to 90 on the same example. This is partially due to an
increase of the minimum dual edge length (going from 2.0e−3 for
CVT to 1.5e−2 on the same mesh), providing an alternative ap-
proach to removing short dual edges presented recently in [Sieger
et al. 2010]. Similar improvements were found for the Laplace-
Beltrami operator of the surface mesh in Fig. 8.

Improving Dual Structure. We often have to deal with situations
where the triangulation is given and cannot safely be altered. For
instance, moving vertices and/or changing the connectivity of a tri-
angle mesh in R3 is potentially harmful, as it affects the surface
shape. Still, the ability to optimize weights to drive the selection
of the dual mesh is very useful. We can easily find the weights to,
e.g., minimize the L2 distance squared between weighted circum-
centers (defined in Eq. 7 through an equation that is linear in the
weights) and triangle barycenters using a single linear solve. The
connectivity is kept intact, regardless of the weights—only the po-
sition and shape of the compatible dual D is optimized. Although



one cannot guarantee that the resulting dual will be flawless (self-
centered and non-self-intersecting), it will be improved compared
to the original circumcentric dual. Even for HOT energies, our 2D
and 3D tests show that only optimizing the weights is particularly
simple and beneficial on a number of meshes. Fig. 8 depicts a tri-
angle mesh of a hand and its intrinsic dual before and after weight
?2-optimization, showing a drastic reduction in the number of neg-
ative dual edges—thus providing a practical alternative to the use of
intrinsic Delaunay meshes advocated in [Fisher et al. 2006]. Sim-
ilarly, Fig. 11 shows that even an ODT mesh with exceptionally
high-quality tetrahedra [Tournois et al. 2009] can be made signif-
icantly better centered using a simple weight optimization. Note
also that in this example the number of tetrahedra with a dual ver-
tex outside of the primal tet dropped from 17041 on the ODT mesh
to 5489 on the HOT mesh—a two third reduction of “outcentered”
tetrahedra. As a final illustrative example we show results on a 3D
sphere (Fig. 9). Starting from an ODT mesh and optimizing only
the weights drops the number of outcentered tetrahedra from 206
to 52, while allowing the optimization to also move the positions of
the vertices further reduces this number to 30, resulting in the mesh
shown in the figure. On the other hand, if a weighted Delaunay
mesh is undesirable, optimizing only the positions still reduces the
number of outcentered tetrahedra to 118, almost half of the original
ODT mesh, while still using a circumcentric (Voronoi) dual.

Figure 10: HOT1,1 Meshes: A “Medial Voronoi Tesselation” (i.e.,
a ?0- HOT1,1 mesh) has vertices near the integral geometric me-
dian of each Voronoi cell (left); ?1- HOT1,1 mesh tends to have pri-
mal and dual edges intersecting near their midpoints (right, weights
shown as balls with color/size indicating sign/magnitude).

Accuracy & Extensions. While we described archetypical
primal-dual HOT energies, one can use regular triangulations and
power diagrams to derive other relevant energies. Even in the con-
text of Hodge star accuracy, we point out that the “diamond weight-
ing” proposed in Section 3 can be modified if one wishes to improve
a particular Hodge star (and not its inverse): for instance, the dis-
crete Hodge star between 0-forms and d-forms in Rd should use
a weighting equal to 1, while the inverse Hodge star should use
the volume of the local d-cells. Similarly, one may minimize a
linear combination of HOT energies if multiple Hodge stars need
to be optimized simultaneously. Designing new energies based on
targeted numerical tasks should be straightforward—although con-
tinuity and convexity of these functionals will need to be studied
on a case-by-case basis. Nevertheless, our ?k-HOT energies lead
consistently to a 5% to 35% L1- and L∞- improvement on both
?k and (?k)−1 for linear and non-linear functions alike on 2D non-
convex domains like depicted in the inset earlier—even if the error
minimization is not run to convergence. As for the 3D Bimba mesh
in Fig. 11, our ?3-optimization of only the weights already reduces
both the L1 and L2 norm of ?3-errors for linear functions by 16%.

HOT1,1 vs. HOT2,2. While slower to converge when the 1-
Wasserstein distance is used, HOT1,1 and HOT2,2 meshes are vi-
sually quite similar. Numerical tests, similarly, do not demon-
strate major differences: a simple Laplace’s equation with Dirich-

Figure 11: 3D Weight Optimization: A high-quality ODT mesh
of the Bimba con Nastrino (top left cross-section; 195K tets, 36K
vertices) can be ?3-optimized by a few (30) iterations of our weight
optimization, thus improving minimal dual edge length and self-
centeredness (bottom left; weights are displayed according to sign
(red/green) and magnitude (radius)). When we single out the tetra-
hedra with a distance between weighted circumcenter and barycen-
ter greater than 0.5% of the bounding box, one can see the HOT
mesh (bottom right) is significantly better than the original ODT
(top right), even if the primal triangulations are exactly matching.
If we further increase the visualization threshold to the point when
the HOT mesh has a single “bad” tetrahedron, the non-weighted
original Bimba mesh then exhibits 192 such tetrahedra.

let boundary conditions on various mesh sizes clearly indicate that
HOT1,1 are slightly better than HOT2,2, but both are significantly
better than CVT or ODT (see Fig. 7). HOT1,1 meshes can, in fact,
be slightly worse than their W2 equivalents when their accuracy
is tested using polynomial test functions. It is therefore unclear
that using the W1 cost is worth the added computational burden for
graphics applications, despite offering tighter theoretical bounds.

6 Future Work

Several future directions are ripe for exploration. For instance,
formulating other functionals based on particular numerical tasks
(such as eigenvalue problems) or other families of functions (other
than just Lipschitz) could be of interest. In fact, the induced
symmetries of our HOT meshes may improve other operators as
well. Deriving Lp-based functionals (using the quadratures pointed
in [Lévy and Liu 2010]) or incorporating a sizing field in the func-
tionals should be relatively straightforward. We also believe that a
sustained effort to produce better optimizations for HOT-like ener-
gies is in order to ensure efficient, industrial-strength implementa-
tion. Finally, as always in meshing, providing a richer set of bound-
ary conditions would also extend the number of potential applica-
tions, thus helping the adoption of HOT meshes. Combining HOT
optimization with feature protection through boundary weights as
proposed in [Cheng et al. 2008] could offer a practical extension of
our approach in this direction.
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A HOT2,2 Energies
In this appendix, we give explicit 2D and 3D formulations of
HOT2,2 energies and their gradients in a form most amenable
for direct implementation. In any dimension d, HOT2,2 energies
can be expressed as a function of the signed distances between
the (weighted) circumcenters of n− and (n + 1)-simplices, for
0 ≤ n ≤ d − 1 (considering the primal vertices as circumcenters
of 0-simplices). This is based on the simple geometric observation
that the (weighted) circumcenter of an (n+1)-simplex projects or-
thogonally to the (weighted) circumcenters of its n-subsimplices.
We will make use of this property when deriving closed-form ex-
pressions of the HOT2,2 energies.

Signed Distances between Circumcenters Let c0...n denote
the (weighted) circumcenter of simplex [x0, . . . ,xn]. For any
0 ≤ n ≤ d − 1, the signed distance between the circumcen-
ter of the n-simplex [x0, . . . ,xn] to the circumcenter of the
(n + 1)-simplex [x0, . . . ,xn+1] is defined as the Euclidean dis-
tance between c0...n and c0...(n+1) and its sign is positive if
the simplex [x0, . . . ,xn, c0...(n+1)] has the same orientation as
[x0, . . . ,xn,xn+1], and negative otherwise.

We further denote by dij the
signed distance between the cir-
cumcenter of the 0-simplex [xi]
to the circumcenter of the 1-
simplex [xi,xj ], i.e., the distance
between ci(= xi) and cij , with a
positive sign if (xi − cij) has the
same orientation as (xi−xj), and
negative otherwise. Note that dji thus corresponds to the signed
distance between xj and cij . It is easy to see that:

dij =
|eij |2+wi−wj

2|eij |
, dji =

|eij |2+wj−wi

2|eij |
, where eij = xj − xi.

Going further up in dimension, we denote by hk the signed distance
between cij and cijk in a triangle tijk = [xi,xj ,xk]. We have

hk =
cotβk|eij |

2
+

cotβiwj + cotβjwi
2|eij |

− wk|eij |
4|tijk|

where βk is the angle at xk in triangle tijk. Finally, we denote by
Hl the signed distance between cijk and cijkl in tetrahedron Tijkl.

Through the cell and simplex splitting explained in Section 4.3, we
can use the integral forms of W (p, T ) given earlier, resulting in
closed-form expressions of all the HOT2,2 energies for every trian-
gle tijk and tetrahedron Tijkl as a function of the signed distances
dij , hk, and Hl between circumcenters as follows:

2D HOT2,2 Formulas:

?0- HOT2,2(tijk) =
∑
i,j,k

(d3
ijhk

4
+
dijh

3
k

12

)
.

?1- HOT2,2(tijk) =
∑
i,j,k

(d3
ijhk

6
+
dijh

3
k

6

)
.

?2- HOT2,2(tijk) =
∑
i,j,k

(d3
ijhk

12
+
dijh

3
k

4

)
.

3D HOT2,2 Formulas:

?0- HOT2,2(Tijkl)=
∑
i,j,k,l

1

5

(H3
l hkdij
12

+
Hlh

3
kdij
4

+
Hlhkd

3
ij

2

)
.

?1- HOT2,2(Tijkl)=
∑
i,j,k,l

1

3

(H3
l hkdij
12

+
Hlh

3
kdij
4

+
Hlhkd

3
ij

6

)
.

?2- HOT2,2(Tijkl)=
∑
i,j,k,l

1

3

(H3
l hkdij

6
+
Hlh

3
kdij
4

+
Hlhkd

3
ij

12

)
.

?3- HOT2,2(Tijkl)=
∑
i,j,k,l

1

5

(H3
l hkdij

2
+
Hlh

3
kdij
4

+
Hlhkd

3
ij

12

)
.

Vertex Position Optimization In order to find the optimized posi-
tion of the vertices of the mesh, we only need the derivative of the
signed distances between (weighted) circumcenters with respect to
vertices. Some of them may be easily derived from the formulas we
provided before in this appendix. For instance:

∂dij
∂xi

= − (xj − xi)

2|eij |
+

(wi − wj)(xj − xi)

2|eij |3
.

∂dji
∂xi

= − (xj − xi)

2|eij |
+

(wj − wi)(xj − xi)

2|eij |3
.

More generally, we can derive all other formulas by using Eq. 7,
which defines the equation for the vector from xi to the (weighted)
circumcenter of any simplex incident to xi. Through repeated uses
of Pythagoras’ theorem, one can then easily differentiate the signed
distances between (weighted) circumcenters with respect to xi.

Weight Optimization The weight optimization of each HOT2,2

energy can be easily done using the following simple formulas:

∂dij
∂wi

=
1

2|eij |
,
∂dji
∂wi

= − 1

2|eij |
,

∂hk
∂wi

=
cot θj
2|eij |

,
∂hj
∂wi

=
cot θk
2|eik|

,
∂hi
∂wi

= − |ejk|
4|tijk|

.

While the derivative of the weighted circumcenter with respect to
primal vertices does not have a short expression, the derivative with
respect to the weights can be easily computed in any dimension:
this derivative at a vertex is proportional to the inverse of the dis-
tance to the opposite facet in the outward normal direction of that
facet. In 2D, this results in ∂cwtijk/∂wi = e⊥jk/(4|tijk|), while
in 3D, ∂cwTijkl

/∂wi = ni(Tijkl)/(12 |Tijkl|), where ni(Tijkl)

is the normal (weighted by its area) of the facet opposite to xi in
tetrahedron Tijkl.

?d- HOT2,2-Optimal Weights in Rd: In this particular case, there
is a linear expression for the optimal w∗i ’s when all other weights
are considered fixed. In 2D, we get:

w∗i =
2
∑
j∈Ω(i)

(
cot(βk)+cot(βl)

)
wj+4

∑
tijk

(
ct−bt

)
· e⊥jk∑

tijk

‖ejk‖2
|tijk|

where βk is the angle at xk in triangle tijk, and bt is the barycenter
of the triangle tijk. In 3D, we have instead:

w∗i =

( ∑
Tijkl∈Ω(i)

[
wj cot(αkl)|ekl|+wk cot(αjl)|ejl|+wl cot(αjk)|ejk|

+2(cT−bT ) · ni(Tijkl)
])
/

( ∑
Tijkl∈Ω(i)

2 |tjkl|2

3 |Tijkl|

)

where αkl is the dihedral angle at edge ekl.

B HOT1,1 Energies

In this appendix, we give explicit 2D and 3D formulations of
HOT1,1 energies for those which are practical to compute.



Figure 12: W1 transport between orthogonal edges: For two ar-
bitrary edges parameterized by the length a1, a2, b1, and b2 (left),
the transport plan (sampled in dotted lines) and cost of the nor-
malized measure from one edge to the other can be computed in
closed-form for the three possible configurations displayed above.
Notice that the measure of an edge is sometimes evenly transported
to two locations on the other edge (cases 2 and 3).

HOT1,1 for ?0 and ?d in R2 and R3. Using the cell and simplex
splitting used in Section 4.3, we can derive closed-form expressions
for both ?0- HOT1,1(M) and ?d- HOT1,1(M) as these two cases
only involve transport plans between convex regions and points.
In 2D we can express the integral over a right triangle with width
a > 0 and height b > 0 to the point p adjacent to a (see Fig. 5(left))
as:

W (p, T ) =

∫ a

0

∫ bx
a

0

√
x2+y2 dy dx

=
1

6

[
ab
√
a2+b2 + a3 sinh−1

(
b

a

)]

The gradients of these energies are then expressed as:

∂W (p, T )

∂a
=

1

6

[
b
√
a2+b2 + 3a2 sinh−1

(
b

a

)]
and

∂W (p, T )

∂b
=

1

3
a
√
a2+b2.

The 3D counterpart for a biorthogonal tetrahedron and one of its
vertices (see Fig. 5(right)) becomes:

W (p, T )=

∫ a

0

∫ bx
a

0

∫ cy
b

0

√
x2+y2+z2 dzdydx

=
1

24

(
abc
√
a2+b2+c2+ab

(
b2+3a2

)
sinh−1

(
c

√
a2+b2

)
+3a4

[
tan−1

( b
c

)
−tan−1

( l√a2+b2+c2

ac

)]
+a4

[
tan−1

( c
b

)
−tan−1

( ac

l
√
a2+b2+c2

)] )
.

The algorithm in Fig. 3 can then be applied directly using these
expressions. As expected for ?0, we obtain what could be called
a “Medial Voronoi Tesselation”: each vertex is on (or very near)
the geometric median of its weighted Voronoi regions, see Fig. 10.
(Note that when the weights are all constant, a Lloyd-like algorithm
could also be used, for which each vertex is repeatedly moved to
the median of its own Voronoi cell; we found, however, the quasi-
Newton method with Wolfe conditions to be more efficient as in
the HOT2,2 case.) Similarly for ?d, the resulting meshes have their
dual complex centered at the median of each triangle.

?1- HOT1,1 in 2D. The optimal transport cost from a primal edge
to a dual edge for the 1-Wasserstein distance can be computed in
closed form with some effort. We first compute the optimal trans-
port cost between two separated, orthogonal edges (depicted in
Fig. 12) parameterized as:

W (s, t, u, v) =

∫ t

s

√
x2 +

(v−u
t−s (x− s) + u

)2

dx (8)

where t > s ≥ 0 and v > u ≥ 0, for which a closed-form ex-
pression can be found in Mathematica. The general cost E is then
computed as one of three possible edge configurations depicted in
Fig. 12 (with a=a1+a2, b=b1+b2):

• b1<0 & a1<0: (case 1)

E =
a

2
W (|b1|, b2, |a1|, a2)

• b1<0 & a1>0: (case 2)

E=
a

2
(W (|b1|, 2a1b/a+|b1|, 0, a1)+W (2a1b/a+|b1|, b2, a1, a2))

• Otherwise: (case 3)

E=
a

2
(2W (0, b1, 0, ab1/b) +W (d1, 2a1b/a−b1, ab1/b, a1)

+W (2a1b/a−b1, b2, a1, a2)).

The optimality of these transport plans can be seen by noting that,
by the triangle inequality of the Euclidean metric, transport lines for
the optimal transport plans cannot cross (see Chapter 8 of [Villani
2009]). This uniquely defines the optimal transport plan for case 1,
while the density splitting in cases 2 and 3 follow from this and the
symmetry of the regions in which the density is split.

C Reynolds Transport Theorem
The Reynolds theorem provides an alternate, and often more in-
tuitive way to differentiate integrated quantities like our HOT ener-
gies, which may also prove useful for deriving expressions of future
energies as well. It states that the rate of change of the integral of
a scalar function F within a volume V is equal to the volume inte-
gral of the instantaneous changes of F occurring within the volume,
plus the surface integral of the rate at which F is being transported
through the surface ∂V (bounding V ) to and from the surrounding
region; i.e.,

d

dt

∣∣∣∣
t=t0

∫
Vt

F (x, t) dV =

∫
Vt0

∂F

∂t
(x, t0) dV +

∫
∂Vt0

F (x, t0) ẋ · n dA

where n is the outward unit normal vector to the boundary ∂Vt0 .
The term ẋ should be understood as the derivative of a point on the
boundary with respect to t, so that the second term of the equation
evaluates the transport of F through the boundary as t is varied.


