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In this paper, we introduce a hybrid LBM-FVM solver for two-phase fluid flow simulations
in which interface dynamics is modeled by a conservative phase-field equation. Integrating
fluid equations over time is achieved through a velocity-based lattice Boltzmann solver which
is improved by a central-moment multiple-relaxation-time collision model to reach higher
accuracy. For interface evolution, we propose a finite-volume-based numerical treatment for the
integration of the phase-field equation: we show that the second-order isotropic centered stencils
for diffusive and separation fluxes combined with the WENO-5 stencils for advective fluxes
achieve similar and sometimes even higher accuracy than the state-of-the-art double-distribution-
function LBM methods as well as the DUGKS-based method, while requiring less computations
and a smaller amount of memory. Benchmark tests (such as the 2D diagonal translation of a
circular interface), along with quantitative evaluations on more complex tests (such as the rising
bubble and Rayleigh-Taylor instability simulations) allowing comparisons with prior numerical
methods and/or experimental data, are presented to validate the advantage of our hybrid solver.
Moreover, 3D simulations (including a dam break simulation) are also compared to the time-lapse
photography of physical experiments in order to allow for more qualitative evaluations.

1. Introduction

Two-phase flows feature prominently in many natural phenomena, as well as in a majority of processing technologies where
handling interface flow becomes important. In the literature, the interface between two immiscible fluids is typically modeled using
either sharp interface methods which keep track of a zero-thickness interface over time, or with diffuse interface methods which
assume a finite thickness of the interface instead, making interface tracking easier to achieve [1,2]. A popular approach to two-phase
flow simulation with diffuse interface modeling is to use a Cahn–Hilliard [3] or Allen–Cahn [4] equation for the evolution of a
phase-field function taking the role of an order parameter [5–7]. Coupled with the Navier–Stokes (N-S) equations for fluid dynamics,
the whole set of partial differential equations is then evolved by integrating in time typically using the conservative finite-volume
method (FVM) [8].

In contrast to traditional FVM solvers, the lattice Boltzmann method (LBM) [9] has emerged as a promising alternative to effi-
ciently solve fluid equations for both single- and two-phase flows [10]. LBM is constructed from the kinetic theory describing the
fluid flow by a set of discrete distribution functions fi(x, t), which are then evolved over time by repeated streaming and collision
processes. While streaming is relatively straightforward as it simply transfers distribution functions to neighboring nodes, collision
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modeling is key to an accurate and stable solution for LBM. In the past decades, different collision models have been proposed to
improve numerical stability: from the lattice Bhatnagar-Gross-Krook (LBGK) model [9] and the raw-moment multiple-relaxation-time
(RM-MRT) model [11] which unfortunately failed to satisfy Galilean invariance, to a series of central-moment multiple-relaxation-
time (CM-MRT) models [12–15] as well as the regularized collision model [16], and more recently, to the cumulant model [17–19],
the spurious modes for high Reynolds number flows using early collision models due to influence of numerical truncation have been
significantly reduced, thus improving stability and accuracy for simulation in a large range of Reynolds numbers. Moreover, the local
nature of the LBM updates and of the different types of bounce-back schemes [20,21] to deal with complex boundaries allows for
massively-parallel implementation [22], especially on current GPUs [23].

While single-phase flows with turbulence and with fluid-structure interaction have already been extensively studied in academia
as well as in industry [24–26], the simulation of two-phase flows has gradually gained increased attention over the past decade.
Several formulations (based on color gradient [27–31], pseudo-potential [32–34], free energy [35–40], as well as phase field [41,
42] models to name a few) have been proposed, among which the phase-field approach is arguably the most popular one due to
strong theoretical foundations; by now, it has been successfully developed within the lattice Boltzmann (LB) framework by several
authors [43,44,42,45–47].

However, most available phase-field lattice Boltzmann solvers rely on double distribution functions (DDF) where a second set
of distribution functions is used to solve the phase-field equation, thus doubling the memory cost and preventing higher resolution
simulation on a single GPU. Although in-place streaming (such as [48]) can be used to reduce the memory by half, we argue in
this paper that there is still room for further reduction of memory by solving the phase-field equation based on an FVM-based
discretization. Together with a velocity-based collision model improved by central-moment formulation, this new approach results
in a hybrid LBM-FVM solver that not only enables higher grid resolutions given a fixed amount of memory for simulation, but also
can reach similar and sometimes even higher accuracy than existing methods. In that respect, our approach improves upon similar
hybrid methods [49,50] by respectively enforcing a conservative evolution of the phase-field function and leveraging higher-order
approximation models to allow for more accurate and more efficient two-phase flow simulations with high Reynolds numbers and
large density ratios.

Contributions. In this paper, we propose a novel hybrid solver for two-phase flow simulations where the interface evolution is
modeled by the Allen-Cahn equation [51]. To enable better incompressibility and thus higher accuracy especially for flows with a
high density ratio between fluids, a velocity-based lattice Boltzmann formulation is employed to solve for the fluid flow, and a new
finite-volume solver is formulated and applied to the phase-field equation where higher-order reconstructions are used for fluxes
across cell faces as compared to [50], resulting in improved stability and accuracy. Importantly, our hybrid approach systematically
requires a smaller memory footprint than the DDF-LBM solvers [52,19] or the DUGKS solver [53] for a similar accuracy on benchmark
tests, whether in-place streaming is used or not. We implemented our hybrid solver on a single GPU, for both 2D and 3D simulations.
To quantify the accuracy of our solver for interface evolution, we tested our FVM-based phase-field solver on the diagonal translation
of a circular interface, the Zalesak disk, as well as a circular interface in a shear flow, and compare our numerical results to the state-
of-the-art methods. We also tested our coupled two-phase flow hybrid solver on the more challenging examples of a bubble rising
and the Rayleigh-Taylor instability to quantitatively evaluate closeness to the experimental measurements, with accuracy exceeding
existing numerical results in some of these tests. We further show 3D simulations that we compare to time-lapse photographs of a
real experiment to evaluate qualitatively our solver for two-phase flows in more complex setups. Finally, performance of our solver
is analyzed and discussed to highlight that the reduction in memory usage also enhances computational efficiency.

Outline. The remainder of this paper is organized as follows. Sec. 2 reviews the phase-field equation and the lattice Boltzmann
solver for fluid flows based on which we propose our contributions: we introduce in Sec. 2.1 the formulation of the conservative
phase-field equation for interface tracking along with the incompressible Navier-Stokes (N-S) equations describing the fluid dynamics;
we then discuss our FVM-based discretization of the conservative phase-field equation in Sec. 2.2; in Sec. 2.3, we briefly describe
the velocity-based LBM approach which we employ and modify with a CM-MRT formulation for fluid flow equations, as well as its
coupling with the phase-field solver. We then present in Sec. 3 the numerical evaluations of our approach by benchmark tests and
validations using several well-known test examples, followed by further discussions of our method. Sec. 4 concludes with a summary
of our paper.

2. Methodology

We begin with a brief introduction to the phase-field theory for two-phase flow simulations based on Allen-Cahn equations [54],
before describing our new LBM-FVM-based hybrid numerical method for solving such a system.

2.1. Conservative phase-field equation and governing equations for hydrodynamics

Suppose we want to simulate two immiscible and incompressible Newtonian fluids with density �H and �L and viscosity �H
and �L, respectively, where the subscripts H and L are used to differentiate the high-density fluid from the low-density one in our
exposition. In order to identify the regions occupied by the two fluids, the diffuse interface model [55,56] introduces a time-varying
phase-field function �(x, t) as an order parameter, where:

�(x, t) =

{
�H , inside high-density fluid,

�L, inside low-density fluid,
(1)

2
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with a smooth, thin transition layer of thickness � between the two fluids. For notational simplicity and without loss of generality, we
will use �H = 1 and �L = 0 in the remainder of this paper. The interface may thus be defined as the iso-surface where the phase-field
function takes the value of ½, and the phase-field equation allows to substitute boundary conditions on the sharp interface by a
partial differential equation for the evolution of the phase-field function to reproduce the correct interfacial dynamics.

Phase-field model. A typical phase-field model [6,57,58] is constructed using a simple, explicit expression for the free energyW of
the system, which involves a Ginzburg-Landau double-well potential F describing the free energy density of the bulk of each phase
and an interfacial Dirichlet energy, resulting in an integral over the physical domain Ω occupied by the two-phase flow system [57]:

W (�,∇�) = ∫
Ω

[F (�) +
�

2
|∇�|2], (2)

where F (�) = � �2(�− 1)2, with � and � being positive constants. For a given interfacial thickness � and a surface tension �, these
values of the free energy are respectively defined as [59]

� =
√
8�∕�, � =

1

6

√
2��, (3)

or equivalently, � = 12�∕� and � = 3��∕2.

Interface profile. Since the chemical potential � is the rate of change of free energy, the assumption that the diffuse interface is at
equilibrium when its chemical potential is null leads to:

� =
)W

)�
= 4��(�− 1)(�−

1

2
) − �∇2� = 0. (4)

One can verify that in the 1D case, the interface profile at equilibrium satisfies:

�(x) =
1

2

[
1 + tanh(2d(x)∕�)

]
, (5)

where d(x) is the signed distance of position x to the interface defined as �(x) = 1∕2.
Equation for interface motion. A conservative form of the interface evolution can be expressed via a modified Allen-Cahn equa-

tion [54,43,44] as:

)�

)t
+∇ ⋅ ( �u

⏟⏟⏟
J1

) = ∇ ⋅

[
M

(
∇�−

4

�
�(1 − �)n

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

J2

]
, (6)

where n represents the unit vector field aligned with the gradient of the phase-field function, i.e.,

n =
∇�

‖∇�‖ . (7)

The mobility parameter M controls the degree of interface splitting, i.e., a small M implies a greater ease for the interface to split
since less diffusion is introduced. Note that J1 is an advective flux density making the phase-field function advected by the fluid
velocity field u, while J2 is the sum of a diffusive flux density and of a separation flux density imposing a predefined interface profile
in 3D of the form:

�(x) =
1

2

[
1 + tanh (2d(x)∕�)

]
, (8)

where d(x) = ±|x − x̄| is the signed distance of point x to its orthogonal projection x̄ on the interface (i.e., �(x̄) = 1∕2), with the
convention that positive distances are in the high density phase and negative distances are in the low density phase.

Equation for fluid flow. In our two-phase fluid flow context, the fluid flow is governed by the incompressible Navier-Stokes
equations [60], i.e.,

⎧⎪⎪⎨⎪⎪⎩

∇ ⋅ u = 0,

)�

)t
+∇ ⋅ (�u) = 0,

)(�u)

)t
+∇ ⋅ (�u⊗ u) = −∇p+ ��∇2u+ Fs + Fb.

(9)

Here, p is the hydrodynamic pressure, � is the kinematic viscosity, Fb = �g is the body force (where g is the gravitational acceleration),
and Fs is the surface tension force which takes the form Fs = �∇� in our phase-field model. The fluid density � is defined through a
linear relationship with the phase-field function [52] as

�(�) = (1 − �)�L + ��H . (10)

The kinematic viscosity in the diffuse-interface method takes, instead, an inverse linear form [61] expressed as:

3
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Fig. 1. Schematic diagram of our finite-volume approach to integrate the phase-field equation on a uniform grid. The values J on the sides of the green box denote
fluxes of the fluid flow moving in and out, which are used to update the phase-field value at node (i, j). (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

1

�
= (1 − �)

1

�L
+�

1

�H
. (11)

For turbulent fluids, we employ the wall-adapted large-eddy (WALE) model [62] to predict an eddy viscosity �′ at each grid node
as a mean subgrid effect that is added to the kinematic viscosity � for simulation through � ← � + �′, similar to [63].

2.2. Finite-volume solver for phase-field equation

In order to integrate the modified Allen-Cahn equation (Eq. (6)) for the phase-field evolution in time, we propose to use a
new finite-volume-based formulation with a proper flux reconstruction which is intrinsically conservative. Using J = J2 − J1 for
conciseness, Eq. (6) once integrated over a small control volume V yields [50]:

∫
V

)�

)t
dV = ∫

V

∇ ⋅ J dV = ∮
S

J ⋅N ds, (12)

where we applied for the last equality the divergence theorem on a fluid domain V and its boundary S = )V , with N denoting the
unit normal vector of S facing outwards.

Since we will simulate the fluid motion through an LBM-based method relying on a (primal) regular grid with the distribution
functions sampled on grid nodes, we use a dual grid (forming also a regular grid) for our integration of the phase-field equation
as illustrated in Fig. 1 to offer a compatible treatment of the phase-field function and velocity field: by ensuring that all the dual
cell values are updated using fluxes of J through dual faces, we leverage the conservative nature of Eq. (12) to update in time the
phase-field function on the nodes of the primal grid, i.e., collocated with the nodes of the distribution functions of the fluid. The
discretization of Eq. (12) (in 2D only for simplicity) can thus be expressed on the dual cell Vi,j associated with the primal node (i, j)
as:

�t+1
i,j

− �t
i,j

Δt
= [ Ji+½,j ⋅Ne + Ji−½,j ⋅Nw + Ji,j+½ ⋅Nn + Ji,j−½ ⋅Ns ]Δx,

(13)

where �t
i,j
is the phase-field function value in volume Vi,j at time t; Δt and Δx are the time step and spatial cell size, while the

values with non-integer indices indicate fluxes, e.g., Ji+½,j is the flux of J through the dual face between Vi,j and Vi+1,j , consistently
oriented towards the increasing indices (see Fig. 1).

Computing fluxes. There are multiple approaches to compute the fluxes, and we settled on a relatively simple approach for our
simulation which is efficient, yet accurate. The value Ji+½,j for instance, corresponding to the flux of J = J2 − J1 through the vertical
wall between cell Vi,j and Vi+1,j , is computed as the difference between flux J1(i+½,j) and flux J2(i+½,j). The latter is straightforwardly
evaluated as follows:

J2(i+½,j) =M
[
∇�i+½,j +

4

�

(
�i+½,j

(
1 − �i+½,j

)
ni+½,j

)]
, (14)

where the x-aligned phase-field gradient ∇�i+½,j is computed to the second-order accuracy as the centered evaluation (�i+1,j −

�i,j )∕Δx. The phase-field function values at half indices are averages of their nearby nodes, i.e.,

�i+½,j =
(
�i,j +�i+1,j

)
∕2, (15)

and the normalized phase-field gradients evaluated at half indices are also obtained through averaging between two adjacent nodes:

ni+½,j =
(
ni+1,j + ni,j

)
∕2. (16)

4
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Finally, we evaluate the phase-field gradients at grid nodes through a second-order weighted isotropic finite-difference scheme [64],
which coincides with the isotropic phase-field gradient evaluation used in [52], i.e., for wk being the quadrature weights and ck the
discrete velocities used in LBM (see App. A.1), we compute

(∇�)i,j = 3
∑
k

wk ck

�i+(ck)x ,j+(ck)y
− �i,j

Δx
. (17)

For J1, corresponding to the convective term, we use an upwind high-order WENO-5 treatment for this hyperbolic component of the
evolution equation [65]. For completeness, we briefly review this high-order evaluation procedure in 2D. The discrete form of the
integral mentioned in Eq. (12) at a grid node (i, j) is

∮
S

J1 ⋅NdS ≡ [ �i+½,jui+½,j ⋅Ne +�i−½,jui−½,j ⋅Nw

+ �i,j+½ui,j+½ ⋅Nn + �i,j−½ui,j−½ ⋅Ns ]Δx

= [ �i+½,jux,(i+½,j) − �i−½,jux,(i−½,j)

+ �i,j+½uy,(i,j+½) − �i,j−½uy,(i,j−½) ]Δx.

(18)

The velocity on the face between Vi,j and Vi+1,j is computed from the average of two adjacent nodes as:

ui+½,j = (ui,j + ui+1,j )∕2. (19)

As an upwind scheme, the surrounding five stencil points for the calculation of �i+½,j are chosen as

stencil =

{ {
(i− 2, j), (i− 1, j), (i, j), (i+ 1, j), (i+ 2, j)

}
if ux ≥ 0{

(i− 1, j), (i, j), (i+ 1, j), (i+ 2, j), (i+ 3, j)
}

if ux < 0
. (20)

That is, based on the sign of the flux determined by the resulting velocity calculated from Eq. (19), we evaluate the phase-field
function values on the dual face using three distinct finite-difference stencils: assuming for instance that the flux is positive (ux ≥ 0),
we evaluate:

�
[1]
i+½,j

=
1

3
�i−2,j −

7

6
�i−1,j +

11

6
�i,j ,

�
[2]
i+½,j

= −
1

6
�i−1,j +

5

6
�i,j +

1

3
�i+1,j ,

�
[3]
i+½,j

=
1

3
�i,j +

5

6
�i+1,j −

1

6
�i+2,j .

Similarly for a negative flux based on Eq. (20). Smoothness indicators {�i}i=1..3 are evaluated on each of these stencils’ support
through [66]:

�1 =
13

12

(
�i−2,j − 2�i−1,j + �i,j

)2
+

1

4

(
�i−2,j − 4�i−1,j + 3�i,j

)2
,

�2 =
13

12

(
�i−1,j − 2�i,j + �i+1,j

)2
+

1

4

(
�i−1,j − �i+1,j

)2
,

�3 =
13

12

(
�i,j − 2�i+1,j + �i+2,j

)2
+

1

4

(
3�i,j − 4�i+1,j + �i+2,j

)2
.

A 5th-order accurate reconstruction of the phase-field function value �i+½,j can then be obtained through a linear combination of
the three third-order finite-difference estimates computed above as:

�
i+

1
2
,j
= !1�

[1]

i+
1
2
,j
+!2�

[2]

i+
1
2
,j
+!3�

[3]

i+
1
2
,j
, (21)

where the three positive coefficients !j are evaluated as:

!j =
!̃j

!̃1 + !̃2 + !̃3

, for !̃j =

j(

�j + "
)2 .

The remaining parameters are set as [65]: 
1 = 1∕10, 
2 = 3∕5, 
3 = 3∕10, and " = 10−6. The calculation in the y direction proceeds
in a similar way. The corresponding update of � in 3D space is given in App. A.2 for completeness.

2.3. Lattice Boltzmann method for hydrodynamics

While the phase-field equation is solved using a finite-volume discretization as described above, the fluid equations are solved
instead through a lattice Boltzmann solver based on a velocity-based model [67], which we further improve with a central-moment
formulation to offer higher accuracy and stability in our two-phase flow simulation context. The fluid is thus represented through a

5



ARTICLE IN PRESS
JID:YJCPH AID:112920 /FLA [m3GeSsc; v1.350] P.6 (1-23)

Y. Ma, X. Xiao, W. Li et al. Journal of Computational Physics ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Fig. 2. The lattice structure D2Q9 (a) used in 2D, along with the lattice structure D3Q27 (b) used in 3D, where the vectors ci are lattice velocities.

set of discrete probability distribution functions g = {gi} of fluid particles on a regular grid, with a D2Q9 lattice structure in 2D and
a D3Q27 structure in 3D (see Fig. 2). The discretization of the continuous Boltzmann transport equation reads as follows, at each
node xk of the regular grid:

gi(xk + ci�t, t+ �t) − gi(xk, t) = Ω
g
i
(�,u) +Gi(�,u, �), (22)

where the index i corresponds to the lattice velocity ci (see App. A.1 for details); �t is the time step which is usually normalized to 1
in LBM; and Gi is the i-th component of the projection of the total force F composed of:

F = Fb + Fs + Fp + F� , (23)

where Fp and F� correspond respectively to the pressure gradient and the viscous force, evaluated using the method proposed
in [67]; Fs and Fb are the surface tension and body forces appearing in Eq. (9). Aside from the last term, these forces depend on the
phase-field gradient ∇� to properly couple the two fluids through interface dynamics.

While the collision 
g = {Ω
g
i
}i in Fakhari’s work [67] uses a Weighted Multiple-Relaxation-Time (WMRT) collision model to

improve over the original BGK model [9] for numerical stability and accuracy for flows at a higher Reynolds number, we instead rely
on a high-order Central-Moment Multiple-Relaxation-Time (CM-MRT) collision model [15,68]: this numerical collision treatment
better respects Galilean invariance and has been shown to be more accurate in single-phase fluid simulations [69] while generating
promising results on two-phase flow simulations [70,71]. The collision components are expressed as (see App. A.3 for a thorough
description):



g
CM-MRT = −M−1SM(g− geq), (24)

where M is the central-moment projection matrix [15], and M−1 is its inverse which is analytically computed; S is the diagonal
relaxation matrix [71], and geq is the Maxwell-Boltzmann equilibrium distribution expressed as:

g
eq
i

= Γi + (p∗ − 1)wi −
1

2
Gi, (25)

where p∗ is the normalized pressure (related to the dimensionless pressure p through p = �c2s p
∗ with cs = 1∕

√
3 being the speed of

sound); wi refers to the i-th lattice weight (see App. A.1 for details), and Γi is expressed as:

Γi =wi

[
1 +

ci ⋅ u

c2s
+

1

2

(
ci ⊗ ci

c2s
− I

)
∶
uu

c2s

]
. (26)

Note that the variables p∗ and u are computed through the moments of g via:

p∗ =
∑
i

gi, (27)

u =
∑
i

cigi +
F

2�
. (28)

Finally, the lattice Boltzmann equations in Eq. (22) are integrated via operator splitting, involving a collision step followed by a
streaming step:

g∗i (x, t) = gi(x, t) + Ω
g
i
+Gi, (collision) (29)

gi(x + ci, t+ 1) = g∗i (x, t), (streaming) (30)

where the asterisk denotes the (temporary) post-collision distribution functions.

6
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Algorithm 1: Update of phase-field function and velocity field.

1 Initialize the values of density �, body force Fb , surface tension force Fs and distribution distributions g based on the initial phase-field function � and velocity field u.
2 t← 0.
3 repeat
4 Update ∇� through Eq. (17).
5 Update n through Eq. (7) to help with the wetting condition.
6 Update J2 through Eq. (14).
7 Update J1 through Eq. (19) and Eq. (21).
8 Update the phase-field function value of each grid node (Eq. (13)).
9 Compute the wetting boundary condition through Eq. (31).
10 Update � through Eq. (10).
11 Update g through Eq. (30).
12 Update p∗ through Eq. (27).
13 Update Fb , Fs , Fp and F� as described in Sec. 2.1 and Sec. 2.3.
14 Update u as Eq. (28).
15 Update Γ through Eq. (26).
16 Update geq through Eq. (25).
17 Update 
g

CM-MRT
through Eq. (24) with M as in Eq. (58).

18 Set S as described in Sec. 2.3.
19 Update g through Eqs. (29)-(30).
20 t← t+ 1

21 until t ≥ T ;

The projection of the distribution functions into central-moment space enhances numerical stability and accuracy of the simula-
tion, but other nonlinear spaces such as cumulants [17,19] can also be used, which are expected to have even higher accuracy and
stability when carefully implemented for high Reynolds number flows. Since the study of collision modeling is not the focus of this
paper, we leave it as future work.

2.4. Wetting boundary condition for phase-field equation

For the enforcement of boundary conditions near solid boundaries, various models to simulate wetting phenomena have been
proposed to fix the phase-field function value �w at a solid boundary in order to control the gradient of the phase-field function
along the boundary normal. In this work, we follow Jacqmin’s contact model [72], which uses a boundary condition expressed as:

nw ⋅∇�||xw = −

√
2�

�
cos(�)�w

(
1 −�w

)
, (31)

where �w is the phase-field function value at position xw of the boundary wall interpolated from the � values of the surrounding grid
nodes, nw is the normal of the solid boundary, and � is the equilibrium contact angle. This condition offers a fine control over the
hydrophobic (� > �∕2) or hydrophilic (� < �∕2) nature of the contact. The concrete discretization details of the wetting boundary
condition are spelled out in [73], and we strictly follow them in our implementation.

2.5. Implementation

We implemented our hybrid LBM-FVM solver on GPU where a Structure-of-Array data layout is used for distribution functions to
improve efficiency [74]. To reduce memory usage, we eliminate the need for intermediate temporary variables in the LBM updates
(Eqs. (29)-(30)) by using the “in-place streaming” [48]. Our implementation thus requires a total of 15 floats per node in 2D space
and 34 floats per node in 3D space. (Note that the density field � and velocity field u could be computed on the fly to further reduce
memory usage, but we found convenient to store them as often done in other LBM implementations.) Whether in-place streaming
is used or not, our approach saves memory through its use of an FVM-based treatment of the phase-field evolution compared to
the existing two-phase fluid flow solvers based on DDF-LBM — especially for those employing a D3Q27 lattice structure for better
rotational symmetry.

3. Numerical tests and validations

In this section, we present a number of numerical tests that we ran to evaluate our new hybrid LBM-FVM solver. We include tests
with prescribed, spatially-varying vector fields to evaluate our FVM-based solution of the phase-field equation with a computation of
the l2-norm of the relative error with respect to previous works [75]. We also compare our results on a number of common examples
such as Rayleigh-Taylor instability and bubble rising with experimental measurements from previous works to assess quantitatively
the accuracy of our method. Finally, we evaluate our simulations of 3D droplet coalescence when merged to a flat interface and of a
3D dam break example compared to a photography of an experiment to qualitatively measure the accuracy of our simulation.

In the following, unless stated, the dimensionless parameters of each example are defined as follows: the Reynolds number is
Re =U0L0∕� where U0 is the reference flow speed and L0 the characteristic dimension, while � is the kinematic viscosity; the Péclet
number is Pe =U0L0∕M where M is the mobility; the Cahn number is Cℎ = �∕L0 where � is the interface width in the phase-field

7
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Fig. 3. Diagonal translation of a circular interface at Pe = 60. Phase-field contours (� = 0.5) at t = 0 (a) and t = 10T (b) are shown.

Table 1
Relative errors for the diagonal translation of a circular
interface after a period of 10T using the setup in [44].

Approach "

Ours 0.0057

Ref. [44] (Zu and He) 0.1176

Ref. [44] (Geier’s FD) 0.0074

Ref. [44] (Geier’s Moments) 0.0874

Ref. [76] (DUGKS-I (WENO-Z5)) 0.0064

Ref. [76] (DUGKS-II (WENO-Z5)) 0.0064

Table 2
Relative errors for the Zalesak disk after a period of 2T at different Pe
using the setup in [75].

Approach Pe

80 400 800 4000

Ours 0.0566 0.0510 0.0517 0.0557

FD [75] 0.0593 0.0590 0.0558 0.0505

Moments [75] 0.0567 0.0482 0.0483 0.0501

Ref. [77] (Zu et al.) 0.1226 0.1186 0.1170 0.1194

Ref. [77] (Geier et al.) 0.1307 0.1224 0.1209 0.1472

Ref. [77] (Wang et al.) 0.1307 0.1224 0.1209 0.1471

model. By default, we setM = 0.001, � = 3 and U0 = 0.02: these parameters correspond to a Mach numberMa ≈ 0.035— a value to
avoid deleterious compressibility effects [75]. The time step of the FVM solver is given by Δt = �Δx where � controls the temporal
step size with respect to the grid size. By default, we set � = 1, but it can be reduced for higher accuracy.

3.1. Diagonal translation of a circular interface

We consider the motion of a circular interface in a constant velocity field u0 = (U0,U0), and adopt the setup found in [44].
Initially, a circular interface with radius R = L0∕4 is placed at the center of a square domain with a size L0 ×L0 where L0 = 100,
with Pe =U0�∕M = 60. Periodic boundary conditions are used, and we set � = 0.5. The simulation is carried out until t = 10T where
T = L0∕U0 is the full motion cycle after which the interface is expected to move back to its initial position. The accuracy of the
method is evaluated by comparing the l2-norm of the relative phase-field error (denoted as ") between the initial state and the state
at the end of the simulation, i.e.,

" =

√√√√
∑

x(�10T − �0)
2

∑
x �

2
0

. (32)

A visual representation of the initial interface (encoded by �0) and the one after a period of 10T (encoded via �10T ) is shown in
Fig. 3, while the errors " for our method and five other existing methods are listed in Table 1. With the same setup and resolution, our
method has the smallest error compared to other state-of-the-art methods, indicating higher accuracy of our FVM-based phase-field
solver in this case.

3.2. Zalesak disk

The Zalesak disk test consists in a phase-field function in the shape of a slotted circular disk located at the center of a fluid field
domain which is advected in a rotating fluid velocity prescribed as:

8
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Fig. 4. Zalesak disk at Pe = 800: interface at (a) t = 0, (b) t = 0.5T , (c) t = T , (d) t = 1.5T , (e) t = 2T .

Fig. 5. Zalesak disk at Pe = 4000: interface at (a) t = 0, (b) t = 0.5T , (c) t = T , (d) t = 1.5T , (e) t = 2T .

Table 3
Relative errors of a deforming circular
interface in a smooth shear flow after
a period of 2T using the setup in [75].

Model "

Ours 0.0138

FD [75] 0.0199

Mom [75] 0.0204

Ref. [77] (Zu et al.) 0.0125

Ref. [77] (Geier et al.) 0.0136

Ref. [77] (Wang et al.) 0.0139

ux = −U02�

(
y

L0

− 0.5

)
,

uy =U02�

(
x

L0

− 0.5

)
. (33)

After a period of time T = L0∕U0, the disk should return to its initial position with its original shape if the numerical advection is
error-free. In our experiment, the radius of the disk is set to R = 80, and the fluid domain size is of L0 ×L0 with L0 = 200. The width
of the slot is set to 15 grid cells, and the Cahn number Cℎ here is set to 0.01 (corresponding to an interface width � = 2). The l2
error between the initial disk and the isovalue 1∕2 of the phase-field function after a full revolution is measured for our FVM-based
phase-field solver and reported in Table 2, along with other existing methods. Our results are on par with the latest work of De Rosis
and Enan [75], despite our reduced memory footprint. We visualize our results for Pe = 800 and Pe = 4000 in Fig. 4 and Fig. 5,
respectively. We note that the errors are smaller for Pe = 400 and Pe = 800, showing that the mobility parameter M affects the
accuracy of this experiment — which is consistent with the results previously reported in [75,77].

3.3. Deformation of a circular interface in a smoothed shear flow

To further test the capacity of our solver in capturing interface deformation, we consider a common benchmark test where the
interface undergoes a large deformation in a smooth shear flow. For a square domain of size L0 ×L0 with L0 = 512, and an interface
width � = 2, a circularly shaped interface having a radius of R =L0∕5 is placed at the center of the domain and driven by a smooth,
time-dependent and non-linear flow field defined as:

ux = −U0 sin

(
4�

x

L0

)
sin

(
4�

y

L0

)
cos

(
4�

t

T

)
,

uy = −U0 cos

(
4�

x

L0

)
cos

(
4�

y

L0

)
cos

(
4�

t

T

)
. (34)

The period for this case is set to T = L0∕U0, corresponding to the time that the interface should recover its original shape, and we
use � = 0.5. As shown in Table 3, the error achieved by our method is on par to that of the other methods. The interface evolution

9
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Fig. 6. Deformation of a circular interface in a smooth shear flow: interface at (a) t = 0, (b) t = 0.5T , (c) t = T , (d) t = 1.5T , (e) t = 2T .

Fig. 7. 2D Rayleigh Taylor instability at Re = 256.

for our approach over a period is shown in Fig. 6. At time t = T ∕2, the largest shape change of the interface takes place (exhibiting
a thin filament structure in the middle of the domain), consistent with reported results in other works [75,59,44,78,79,77].

3.4. 2D Rayleigh-Taylor instability

Another popular benchmark test case is the Rayleigh–Taylor instability, which tests the ability of a numerical scheme to tackle
a system composed of two immiscible fluids for more complex interactions. Here, the heavier fluid is initially placed on the top. A
rectangular domain of size L0 × 4L0 where L0 = 256 is used, with the boundary of the two fluids initialized as:

�(x, t = 0) = �H , if y > 2L0 + 0.1L0 cos

(
2�

x

L0

)
,

�(x, t = 0) = �L, otherwise. (35)

Boundary conditions for the vertical walls are set as periodic, while the top and bottom boundaries enforce no-slip boundary condi-
tions. Gravity is set to g = (0,−g,0), where g =U2

0
∕L0 and U0 = 0.04. The interface width is set to � = 5. The viscosity is set from the

Reynolds number, i.e., it is defined as � =L0

√
gL0∕Re. The Atwood number, defined as At = (�H −�L)∕(�H +�L), is set to 0.5, with

�L = 1. The capillarity number, defined as Ca = �HU0∕�, is set to 0.26. The Péclet number is set to 500. Visualization of our results
for Re = 256, 3000, and 30000 are shown in Figs. 7, 8 and 9, respectively. To assess the accuracy of our solver, the time evolution
of both the bubble front and its spike tip (see Figs. 10) are tracked, and compared to previous experimental results [42,80,76,81] as
listed in [67,53]. The evolution of the spike position y† of the interface normalized by the width of the domain L0 for the three differ-
ent Reynolds numbers are given in Table 4. They agree with the results reported in previous works, see, for instance, [42,82–84]. As
the Reynolds number grows, the breakup of the phase tail into multiple droplets becomes more prominent in the tail. These droplets
are generated from the rolling-up tail of the interface around t = 2.5T , where T is defined as T =

√
L0∕(g ⋅At). These features are

also on par with previous findings [42,83,85].

10
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Fig. 8. 2D Rayleigh Taylor instability at Re = 3000.

Fig. 9. 2D Rayleigh Taylor instability at Re = 30000.

Table 4
2D Rayleigh–Taylor instability at Re = 256, Re = 3000 and Re = 30000: vertical position of the spike of
the interface normalized by the width of the domain at representative times.

t∕T 0 0.5 1.0 1.5 2 2.5 3.0

y†at Re = 256: 1.900 1.859 1.734 1.516 1.258 1.031 0.781

y†at Re = 3000: 1.900 1.832 1.645 1.383 1.137 0.887 0.574

y†at Re = 30000: 1.900 1.828 1.629 1.367 1.117 0.852 0.559

Table 5
3D Rayleigh–Taylor instability at Re = 256, Re = 3000 and Re = 30000: vertical position of the spike of
the interface normalized by the width of the domain at representative times.

t∕T 0 0.5 1.0 1.5 2 2.5 3.0

y†at Re = 256: 1.904 1.844 1.766 1.609 1.406 1.141 0.859

y†at Re = 3000: 1.904 1.844 1.75 1.547 1.297 0.984 0.641

y†at Re = 30000: 1.904 1.844 1.734 1.547 1.281 0.938 0.531
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Fig. 10. Comparisons of the (a) bubble front and (b) spike tip positions at Re = 3000, At = 0.5, Pe = 1000 and �ℎ∕�l = 1 for various numerical techniques.

Fig. 11. 3D Rayleigh Taylor Instability at Re = 256.

Fig. 12. 3D Rayleigh Taylor Instability at Re = 3000.

3.5. 3D Rayleigh-Taylor instability

We also tested the Rayleigh-Taylor instability in a 3D domain, for a size L0 × 4L0 ×L0 with L0 = 64, and with the boundary of
the two immiscible fluids initialized as

12
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Fig. 13. 3D Rayleigh Taylor instability at Re = 30000.

Table 6
3D Rayleigh–Taylor instability at Re = 256: vertical position of the interface spike normalized by the
domain width at representative times (values taken from [75]).

t∕T [70] [71] [87] [88] Ours

0.0 1.897 1.897 1.895 1.904 1.904

0.5 1.897 1.897 1.864 1.869 1.844

1.0 1.753 1.753 1.763 1.776 1.766

1.5 1.592 1.591 1.587 1.618 1.609

2.0 1.381 1.378 1.357 1.396 1.406

2.5 1.126 1.121 1.085 1.149 1.141

3.0 0.844 0.791 0.788 0.863 0.859

�(x, t = 0) = �H , if y > 2L0 + 0.05L0

[
cos

(
2�

x

L0

)
+ cos

(
2�

z

L0

)]
,

�(x, t = 0) = �L, otherwise. (36)

The governing dimensionless parameters are set to: At = 0.5, Ca = 960 and Pe = 256. Gravity is set to g = (0,−g,0), where g =U2
0
∕L0

and U0 = 0.04. Interface width is set to � = 5, and viscosity is set to � = L0

√
gL0∕Re. The reference time scale T is defined as

T =
√
L0∕g. Visualization of the results for Re = 256 is shown in Fig. 11. The light fluid rises up to form a bubble and the heavy

fluid drops to generate a mushroom-shaped spike. At time t = 2T , we observe that the first roll-up of the heavy fluid appears close to
the saddle points, which comes from the presence of a Kelvin-Helmholtz instability. These observations are consistent with the tests
described in [86]. The vertical positions of the spike at different times for Re = 256, Re = 3000 and Re = 30000 are shown in Table 5;
once again, they are in agreement with previous works [70,71,87,88], for which the quantitative results are reported in Table 6 for
comparison purposes. Visualizations of the interface at different times for Re = 3000 and Re = 30000 are shown in Figs. 12 and 13,
respectively.

3.6. 2D bubble rising

We now consider the simulation of a rising bubble in 2D. This buoyancy-driven benchmark test used in many scientific and
engineering applications [89,90] involves a two-phase flow problem where a bubble is made of a light fluid which is surrounded by
a denser fluid. The bubble thus naturally rises in the dense fluid. We tested two different cases, characterized by two dimensionless
numbers which are the Reynolds number (Re) and Eötvos number (Eo), defined as:

Re =
�HD

√
gD

�H
, Eo =

�HgD2

�
, (37)

where D is the initial diameter of the bubble and � is the surface tension [91]. In order to quantify the dynamics of the bubble
during rising, the rising velocity and center of mass of the bubble are measured respectively by

yc =
∫
�<0.5(�H+�L)

�dx

∫
�<0.5(�H+�L)

1dx
, (38)
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Table 7
Physical parameters and dimensionless numbers for two test cases of bubble rising.

Test Case �H �L �H �L Re Eo �H∕�L

1 1 0.1 0.01 0.01 35 10 10
2 1 0.001 0.01 0.1 35 125 1000

Fig. 14. 2D bubble rising for case 1.

Fig. 15. Comparison to the numerical results from [92] for the case 1 of bubble rising, with a density ratio of 10. (a) Time evolution of the bubble’s center of mass,
and (b) of its mean rising velocity.

uc =
∫
�<0.5(�H+�L)

uy(x)dx

∫
�<0.5(�H+�L)

1dx
. (39)

The first test (case 1) sets Re = 35 and Eo = 10, which should produce an ellipsoidal bubble; the second test (case 2) sets Re = 35

and Eo = 125, which should produce a bubble in the ellipsoidal-cap regime. In both cases, the domain has a size of L × 2L, and
the simulation parameters are set to L = 240, U0 = 0.001944, M = 0.005, � = 0.125 and � = 4. Surface tension and viscosity are
determined by Eo and Re. The complete list of physical parameters for the two cases are given in Table 7, and their results are
shown in Figs. 14, 15, 16 and 17. In Figs. 14 and 16, we show the bubble evolution at every T ∕2 time interval (where T =

√
2L0∕g)

for two different Eo numbers. To further verify the accuracy of our solver, we measure the center of mass yc by Eq. (38) and the
rising velocity by Eq. (39) for case 1 and case 2, respectively: Figs. 15 and 17 plot these measurements, proving good agreement with
existing solvers [92,93].

3.7. 3D droplet coalescence with a flat interface

We also simulate a droplet coalescence with an initially flat interface [52,94], a well-studied phenomenon governed by interface
tension, gravity, and viscous forces. The computational domain is set to 2L0 × 2L0 × 2L0 with L0 = 100, and the flat liquid interface
is set to L0 in the y direction. A spherical droplet of diameter D =L0∕3 is positioned at (L0,

7

6
L0+ �,L0), where � is the gap distance

between the droplet and the flat interface. The density ratio is set to �∗ = �H∕�L = 1.316, and the dimensionless parameters (which
mostly influence the coalescence phenomenon [52,94]) are set to �∗ = 0.5, Bo = 9.59 × 10−2 and Oh = 5.53 × 10−3, where the Bond
number Bo is defined as

Bo =
gy

(
�H − �L

)
D2

�
, (40)

with � = 1.8 × 10−4, while the Ohnesorge number Oh is

14
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Fig. 16. 2D bubble rising for case 2.

Fig. 17. Comparison to the numerical results from [92,93] for the case 2 of bubble rising, with a density ratio of 1000. (a) Time evolution of the bubble’s center of
mass, and (b) of its mean rising velocity.

Table 8
Comparison of computing time across different grid resolutions between the DDF-LBM
approach and our hybrid method for a simulation time up to 3T , where T is the reference
time defined in Section 3.5.

Grid Resolution 64 × 256 × 64 128 × 512 × 128 256 × 1024 × 256

DDF-LBM (D3Q27) 19 s 284 s 4590 s
Our LBM-FVM solver 13 s 185 s 3033 s

Oh =
�H√
�H�D

. (41)

Gravity is set to gy = 5 × 10−7 in the vertical direction; interface width is set to � = 3, and mobility is set to 0.1. A visualization of
our result is provided in Fig. 18, showing good agreement with the snapshots of an experiment performed in [94] taken at various

dimensionless times t∗ = t∕tc where tc =
√
�HD3∕� is the capillary time. Our results are thus consistent with previous numerical and

experiment observations [52,94].

3.8. 3D dam break against rectangular pillar

Finally, we compare a simulation of a dam break in 3D using our solver to a corresponding experiment [95], for the setup shown
in Fig. 19. We use a fluid domain of size 4L × 3L × L for L = 180. The physical parameters are set to g = 5 × 10−6, � = 5 × 10−7,
�L = 0.05, �H = 27∕Re, � = 5 and M = 0.1. We use T =

√
4L∕g as a reference time scale. Density ratio is set to 
 = 800, and the

Reynolds number is set to Re = 20000. A visualization of our results is shown in Fig. 20, demonstrating reasonable visual agreement
with snapshots taken from the photograph of the experiment.

3.9. Discussions

The numerical tests we presented above proved that our solver is often at the same level of accuracy, and sometimes even better,
than the existing two-phase flow simulation methods using either DDF-LBM or DUGKS — even if our solver requires less memory
compared to both types of methods. Moreover, our method can freely adapt the time step or the WENO order of our FVM-based
phase-field solver to achieve higher accuracy for interface evolution. In addition, our approach runs with an efficiency at least
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Fig. 18. 3D droplet coalescence with a flat interface where �∗ = 1.316, �∗ = 0.5, Bo = 9.59 × 10−2 and Oh = 5.53 × 10−3 . The isosurface � = 0.5 is shown in green, and
compared with the experiment from [94] at a time interval of 542 µs.

Fig. 19. The experimental setup of a 3D dam break against a rectangular pillar from [95].

equivalent, and sometimes higher than existing methods due to reduced memory access, especially when a GPU implementation
is used. Table 8 shows a comparison of performance for the simulation of a 3D Rayleigh-Taylor instability using different grid
resolutions between the DDF-LBM method (a 3D implementation of [67] where a raw-moment MRT collision model is employed and
a rotationally symmetric D3Q27 lattice structure is used for both the fluid flow and phase-field equations) and our hybrid LBM-FVM
solver. Our reduced use of memory leads to more than 30% improvement in computational efficiency. Note that the DDF-LBM we
implemented does not match the accuracy of our method since a cheaper collision model is involved; it would become even slower if
a similar accuracy is enforced through the use of a higher-order collision model. The DUGKS solver [53] is even slower, although its
accuracy is higher than the DDF-LBM approach. This example highlights the fact that our new LBM-FVM solver is a viable alternative
for high-performance, high-accuracy simulations of high-resolution two-phase flows, particularly when a restricted memory size is
available. We acknowledge the drawback that the use of a high-order WENO scheme involves a larger stencil size, which could
induce more discontinuous memory access, thus potentially slowing down computations; it would also require more careful handling
of boundaries. However, the larger stencil issue could be potentially alleviated through adopting a compact high-order method such
as [96]. In any case, our work provides a conservative and low-memory discretization of the phase-field equation with a higher
order, which could be the only practical approach to accurate multiphase fluid simulations if limited memory is available.
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Fig. 20. Qualitative validation of 3D dam break against a rectangular pillar at Re = 20000 with 
 = 800, compared to the photograph of an experiment from [95].

4. Conclusion

In this paper, we propose a hybrid method to solve the coupled phase-field and lattice Boltzmann equations for two-phase flow
simulations. Unlike existing DDF-LBM solvers, we couple a conservative finite-volume solver for the phase-field equation with a
high-order lattice Boltzmann solver for fluid equations. We showed that our numerical treatment to evolve the phase-field equation
matches or exceeds previous works due to our selection of a WENO-5 advection to avoid spurious oscillations around the interface,
and of an isotropic second-order scheme for the phase-field gradient needed in coupling terms. The use of velocity-based collision
model for solving fluid equations is also very important to suppress pressure oscillations in order to achieve higher accuracy. Com-
bined with our LBM integration based on a high-order central-moment multiple-relaxation-time collision model, the resulting hybrid
solver was shown to simulate two-phase flows accurately for a series of benchmark test cases. More importantly, the memory re-
quirement for our FVM-based phase-field evolution is reduced compared to the usual DDF-LBM or DUGKS solvers for the phase-field
equation. As a consequence, our solver can easily handle larger-scale, high-resolution two-phase flow simulations with a restricted
memory size, while retaining similar or even higher accuracy than LBM methods that are purely based on distribution functions.
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Appendix A

A.1. Lattice velocity sets

The lattice velocity set of a D2Q9 lattice structure (Fig. 2, left) is:

cx = [0,1,0,−1,0,1,−1,−1,1]⊤,

cy = [0,0,1,0,−1,1,1,−1,−1]⊤,
(42)

and the fixed lattice weights are

w =
[
4

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

36
,
1

36
,
1

36
,
1

36

]⊤
. (43)

The lattice velocity set for a D3Q27 lattice structure (Fig. 2, right) is:

cx = [0,1,−1,0,0,0,0,1,−1,1,−1,1,−1,1,

− 1,0,0,0,0,1,−1,1,−1,1,−1,1,−1]⊤,

cy = [0,0,0,1,−1,0,0,1,1,−1,−1,0,0,0,

0,1,−1,1,−1,1,1,−1,−1,1,1,−1,−1]⊤,

cz = [0,0,0,0,0,1,−1,0,0,0,0,1,1,1,

− 1,1,1,−1,−1,1,1,1,1,−1,−1,−1,−1]⊤,

(44)

and the fixed lattice weights are

w =
[
8

27
,
2

27
,
2

27
,
2

27
,
2

27
,
2

27
,
2

27
,
1

54
,
1

54
,

1

54
,
1

54
,
1

54
,
1

54
,
1

54
,
1

54
,
1

54
,
1

54
,
1

54
,
1

54
,

1

216
,

1

216
,

1

216
,

1

216
,

1

216
,

1

216
,

1

216
,

1

216

]⊤
.

(45)

A.2. Finite-volume solver for the phase-field equation in 3D

The update of a phase-field function value �i,j,k at a grid node (i, j, k) is:

�(i,j,k),t+1 − �(i,j,k),t

Δt
=

=M ⋅

(
∇�

i+
1
2
,j,k

−∇�
i−

1
2
,j,k

+∇�
i,j+

1
2
,k

−∇�
i,j−

1
2
,k
+∇�

i,j,k+
1
2

−∇�
i,j,k−

1
2

)
Δx

+ [ M ⋅
4

�

(
�
(i+

1
2
,j,k),t

(
1 − �

(i+
1
2
,j,k),t

)
n
(i+

1
2
,j,k),t

)

−M ⋅
4

�

(
�
(i−

1
2
,j,k),t

(
1 −�

(i−
1
2
,j,k),t

)
n
(i−

1
2
,j,k),t

)
(46)
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1
2
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2
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1
2
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�

(
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1
2
),t

(
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2
),t
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1
2
),t
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−

(
J
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1
2
,j,k),t

⋅

(
1
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)
+ J
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1
2
,j,k),t

⋅

(
−1

0
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)
+ J

1,(i,j+
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2
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⋅

(
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(
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(
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2
),t
⋅

(
0

0

−1

))
Δx,

where the phase-field function value at point (i+ 1∕2, j, k) is interpolated from neighboring nodes through

�
i+

1
2
,j,k

=
(
�i+1,j,k + �i,j,k

)
∕2, (47)

and phase-gradient terms such as ∇�
i+

1
2
,j,k

are calculated through central differences. For phase interface normals n
i+

1
2
,j,k
, we use a

linear interpolation scheme: for instance,

n
i+

1
2
,j,k

=
(
ni+1,j,k + ni,j,k

)
∕2

=

(
∇�i+1,j,k

‖∇�i+1,j,k‖ +
∇�i,j,k

‖∇�i,j,k‖
)
∕2, (48)

where the phase-field gradients are also computed using the second-order isotropic central scheme [52], that is,

∇� = 3
∑
i

wici
�(x + ci�t) − �(x)

Δx
. (49)

For J1 in the 3D field, the discrete form of the surface integral around a grid node is:

J
1,(i+

1
2
,j,k),t

⋅

(
1

0

0

)
+ J

1,(i−
1
2
,j,k),t

⋅

(
−1

0

0

)
+ J

1,(i,j+
1
2
,k),t

⋅

(
0

1

0

)

+ J
1,(i,j−

1
2
,k),t

⋅

(
0

−1

0

)
+ J

1,(i,j,k+
1
2
),t
⋅

(
0

0

1

)
+ J

1,(i,j,k−
1
2
),t
⋅

(
0

0

−1

)

= �
(i+

1
2
,j,k),t

u
x,(i+

1
2
,j,k),t

−�
(i−

1
2
,j,k),t

u
x,(i−

1
2
,j,k),t

+ �
(i,j+

1
2
,k),t

u
y,(i,j+

1
2
,k),t

−�
(i,j−

1
2
,k),t

u
y,(i,j−

1
2
,k),t

+ �
(i,j,k+

1
2
),t
u
z,(i,j,k+

1
2
),t
−�

(i,j,k−
1
2
),t
u
z,(i,j,k−

1
2
),t
, (50)

where the values of u at (i+ 1∕2, j, k) are evaluated as

u
i+

1
2
,j,k

=
(
ui+1,j,k + ui,j,k

)
∕2. (51)

Taking the x-direction as an example, the corresponding interpolation stencil for WENO-5 is chosen as:

stencil =

{
(i− 2, j, k), (i− 1, j, k), (i, j, k), (i+ 1, j, k), (i+ 2, j, k) if ux ≥ 0,

(i− 1, j, k), (i, j, k), (i+ 1, j, k), (i+ 2, j, k), (i+ 3, j, k) if ux < 0.
(52)

Assuming that ux ≥ 0 for instance, from Shu’s work [65], we evaluate �
i+

1
2
,j,k

in three different ways:

�
(1)

i+
1
2
,j,k

=
1

3
�i−2,j,k −

7

6
�i−1,j,k +

11

6
�i,j,k,

�
(2)

i+
1
2
,j,k

= −
1

6
�i−1,j,k +

5

6
�i,j,k +

1

3
�i+1,j,k,

�
(3)

i+
1
2
,j,k

=
1

3
�i,j,k +

5

6
�i+1,j,k −

1

6
�i+2,j,k. (53)

Similar to the 2D case, the final approximation is a convex combination of these three third-order approximations:

�
i+

1
2
,j,k

= !1�
(1)

i+
1
2
,j,k

+!2�
(2)

i+
1
2
,j,k

+!3�
(3)

i+
1
2
,j,k

, (54)
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where the nonlinear weights !j of the WENO-5 scheme rely on the smoothness indicators �j defined as:

�1 =
13

12

(
�i−2,j,k − 2�i−1,j,k + �i,j,k

)2

+
1

4

(
�i−2,j,k − 4�i−1,j,k + 3�i,j,k

)2
,

�2 =
13

12

(
�i−1,j,k − 2�i,j,k + �i+1,j,k

)2

+
1

4

(
�i−1,j,k −�i+1,j,k

)2,j,k
,

�3 =
13

12

(
�i,j,k − 2�i+1,j,k + �i+2,j,k

)2

+
1

4

(
3�i,j,k − 4�i+1,j,k +�i+2,j,k

)2
.

(55)

The nonlinear weights are computed as:

!j =
!̃j

!̃1 + !̃2 + !̃3

for !̃j =

j(

"+ �j
)2 , (56)

where 
1 =
1

10
, 
2 =

3

5
, 
3 =

3

10
, and " is a small positive value set to 10−6 in our study. Calculations in other directions are similarly

achieved.

A.3. Central-moment MRT models in D2Q9 and D3Q27 lattice structures

D2Q9 lattice structure: Based on [97], we define the shifted discrete lattice velocity as: c = [cx, cy], where each term is written as
cx = cx − ux and cy = cy − uy, and c is one of the lattice velocities (see Appendix A.1 and Fig. 2). u is the local fluid velocity. Using
the moment basis [||T0⟩ ,⋯ , ||T8⟩] defined as

||T̄0
⟩
=
||||ci|

0
⟩
, ||T̄1

⟩
= ||cxi

⟩
, ||T̄2

⟩
=
|||cyi

⟩
,

||T̄3
⟩
=
|||c

2
xi + c

2
yi

⟩
, ||T̄4

⟩
=
|||c

2
xi − c

2
yi

⟩
, (57)

||T̄5
⟩
=
|||cxicyi

⟩
, ||T̄6

⟩
=
|||c

2
xicyi

⟩
,

||T̄7
⟩
=
|||cxic

2
yi

⟩
, ||T̄8

⟩
=
|||c

2
xic

2
yi

⟩
,

the moment projection matrix M is expressed as

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

||T̄0
⟩

||T̄1
⟩

||T̄2
⟩

||T̄3
⟩

||T̄4
⟩

||T̄5
⟩

||T̄6
⟩

||T̄7
⟩

||T̄8
⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|c0|0 |c1|0 ⋯ |c8|0
cx,0 cx,1 ⋯ cx,8
cy,0 cy,1 ⋯ cy,8

c
2
x,0 + c

2
y,0 c

2
x,1 + c

2
y,1 ⋯ c

2
x,8 + c

2
y,8

c
2
x,0 − c

2
y,0 c

2
x,1 − c

2
y,1 ⋯ c

2
x,8 − c

2
y,8

cx,0cy,0 cx,1cy,1 ⋯ cx,8cy,8
c
2
x,0cy,0 c

2
x,1cy,1 ⋯ c

2
x,8cy,8

cx,0c
2
y,0 cx,1c

2
y,1 ⋯ cx,8c

2
y,8

c
2
x,0c

2
y,0 c

2
x,1c

2
y,1 ⋯ c

2
x,8c

2
y,8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (58)

The relaxation matrix S in the moment space is a diagonal matrix, represented as S = diag[s0, ..., si, ..., s8]. The relaxation rates si are
related to the kinematic viscosity � through:

si =

⎧⎪⎨⎪⎩

(
�

c2s
+

1

2

)−1

for i ∈ {4,5}.

1 otherwise,
(59)

where � can be computed using Eq. (11), while the total viscosity is � ← � + �′.
D3Q27 lattice structure: Similarly, the moment basis of D3Q27 is chosen as [15]:

||T̄0
⟩
=
||||ci|

0
⟩
, ||T̄1

⟩
= ||cxi

⟩
, ||T̄2

⟩
=
|||cyi

⟩
, ||T̄3

⟩
= ||czi

⟩
,

||T̄4
⟩
=
|||cxicyi

⟩
, ||T̄5

⟩
= ||cxiczi

⟩
, ||T̄6

⟩
=
|||cyiczi

⟩
,

||T̄7
⟩
=
|||c

2
xi − c

2
yi

⟩
, ||T̄8

⟩
=
|||c

2
xi − c

2
zi

⟩
,
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||T̄9
⟩
=
|||c

2
xi + c

2
yi + c

2
zi

⟩
, ||T̄10

⟩
=
|||cxic

2
yi + cxic

2
zi

⟩
,

||T̄11
⟩
=
|||c

2
xicyi + cyic

2
zi

⟩
, ||T̄12

⟩
=
|||c

2
xiczi + c

2
yiczi

⟩
,

||T̄13
⟩
=
|||cxic

2
yi − cxic

2
zi

⟩
, ||T̄14

⟩
=
|||c

2
xicyi − cyic

2
zi

⟩
, (60)

||T̄15
⟩
=
|||c

2
xiczi − c

2
yiczi

⟩
, ||T̄16

⟩
=
|||cxicyiczi

⟩
,

||T̄17
⟩
=
|||c

2
xic

2
yi + c

2
xic

2
zi + c

2
yic

2
zi

⟩
, ||T̄18

⟩
=
|||c

2
xic

2
yi + c

2
xic

2
zi − c

2
yic

2
zi

⟩
,

||T̄19
⟩
=
|||c

2
xic

2
yi − c

2
xic

2
zi

⟩
, ||T̄20

⟩
=
|||c

2
xicyiczi

⟩
,

||T̄21
⟩
=
|||cxic

2
yiczi

⟩
, ||T̄22

⟩
=
|||cxicyic

2
zi

⟩
,

||T̄23
⟩
=
|||cxic

2
yic

2
zi

⟩
, ||T̄24

⟩
=
|||c

2
xicyic

2
zi

⟩
,

||T̄25
⟩
=
|||c

2
xic

2
yiczi

⟩
, ||T̄26

⟩
=
|||c

2
xic

2
yic

2
zi

⟩
.

The shifted discrete lattice velocity with each component is: c = [cx, cy, cz], where each term is written as cx = cx − ux, cy = cy − uy
and cz = cz − uz. The moment projection matrix M is expressed as

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

||T̄0
⟩

||T̄1
⟩

||T̄2
⟩

||T̄3
⟩

⋮
||T̄23

⟩
||T̄24

⟩
||T̄25

⟩
||T̄26

⟩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|c0|0 |c1|0 ⋯ |c26|0
cx,0 cx,1 ⋯ cx,26
cy,0 cy,1 ⋯ cy,26
cz,0 cz,1 ⋯ cz,26
⋮ ⋮ ⋱ ⋮

cx,0c
2
y,0c

2
z,0 cx,1c

2
y,1c

2
z,1 ⋯ cx,8c

2
y,8c

2
z,8

c
2
x,0cy,0c

2
z,0 c

2
x,1cy,1c

2
z,1 ⋯ c

2
x,8cy,8c

2
z,8

c
2
x,0c

2
y,0cz,0 c

2
x,1c

2
y,1cz,1 ⋯ c

2
x,8c

2
y,8cz,8

c
2
x,0c

2
y,0c

2
z,0 c

2
x,1c

2
y,1c

2
z,1 ⋯ c

2
x,8c

2
y,8c

2
z,8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (61)

The relaxation rates si are defined as:

si =

⎧⎪⎨⎪⎩

(
�

c2s
+

1

2

)−1

for i ∈ {4,5,6,7,8}.

1 otherwise,
(62)

where � can be computed using Eq. (11), while the total viscosity is � ← � + �′.
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