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Figure 1: Adjoint invariant distance to orbit. Our Lie algebra voting approach to symmetry and orbit detection maps SE(3) transformations
into points in a logarithmic space composed of a rotation part ω ∈ R3 and a translation part u ∈ R3. The rotational orbit of the church and
the translational orbit of the side railing (a) are mapped into collinear blue and red spheres respectively (a few transformations within these
two orbits are marked with circled numbers to enhance comprehension). When the scene is centered, the two lines are orthogonal to each
other and easy to distinguish (b). However, after a rigid translation of the scene, the rotational orbit now has u-values near the translation
orbit points, making it impossible to automatically distinguish these two orbits using a Euclidean distance (d), while our adjoint invariant
distance for orbit shows no discernible difference in results as evidenced by a binning of detected orbit sizes for both situations (e).

Abstract
In this paper, we formulate an automatic approach to the detection of partial, local, and global symmetries and orbits in
arbitrary 3D datasets. We improve upon existing voting-based symmetry detection techniques by leveraging the Lie group
structure of geometric transformations. In particular, we introduce a logarithmic mapping that ensures that orbits are mapped
to linear subspaces, hence unifying and extending many existing mappings in a single Lie-algebra voting formulation. Compared
to previous work, our resulting method offers significantly improved robustness as it guarantees that our symmetry detection of
an input model is frame, scale, and reflection invariant. As a consequence, we demonstrate that our approach efficiently and
reliably discovers symmetries and orbits of geometric datasets without requiring heavy parameter tuning.

1 Introduction
Symmetry plays a central role in geometry. Whether they be in
natural or man-made shapes or scenes, symmetric features repre-
sent visually defining properties that are easily recognizable, and
can thus be exploited for semantic classification. Detecting these
(global or local) symmetries is thus a core task in many applica-
tions such as modeling, reconstruction, and segmentation as it helps
increasing robustness of further processing.

Previous work. The importance of symmetry in geometry pro-
cessing has resulted in a variety of approaches to detect near-
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symmetries in geometric datasets—a comprehensive review is pro-
vided in [MPWC13]. Symmetry detection methods can be cate-
gorized as intrinsic or extrinsic. While intrinsic symmetry detec-
tion uses geodesic distances and considers isometric deformation
as in [LTSW09, XZT∗09, JXCZ13], extrinsic symmetry detection
typically looks for rigid transformations instead. We restrict our
exposition to methods detecting partial, approximate and extrinsic
symmetry in 3D meshes.

A number of methods have been proposed to identify the
presence of global symmetries, based for instance on spectral
analysis [BAK10, LCDF10], feature graph matching [BBW∗08,
BBW∗09, THW∗14], descriptors [KFR04], or symmetry trans-
forms [PSG∗06]. While a few of these methods can be used
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to detect local symmetries as well, finding partial symmetry
within an input geometry is most efficiently achieved through vot-
ing [MGP06], by proceeding as follows. After an initial probing
of the geometry that finds pairs of small, similar regions, a series
of candidate transformations between each pair of neighborhoods
are mapped as points in a high-dimensional space—typically R7

to encode the Euler angles, translations, and scale factor of each
transformation. Clustering in this transformation domain is then
performed to find high-density regions, which are evidence of po-
tential symmetries. Depending on the type of symmetry that one
wishes to look for, various mappings to the transformation domain
can be designed: any parameterization of the relevant symmetry
group can be used, and clustering is performed in this parameter
domain identified with Rn, so that a notion of distance between
transformations can be trivially evaluated using the Euclidean met-
ric. This voting framework is intuitive and flexible, and has been
shown to properly confirm a number of important symmetries.

Finding orbits, i.e., regular structures generated by combining k
transformations, is more challenging, and as such, it has been sig-
nificantly less studied. Translational orbits, both discrete and con-
tinuous, were discussed in the context of pattern-aware shape de-
formation [BWKS11]. Pauly et al. [PMW∗08] demonstrated that
the voting framework can handle orbit detection too: with a proper
choice of the map to the transformation domain, orbits are identi-
fiable as lattice structures. Therefore, a more thorough analysis of
the geometric configuration of samples in the transformation do-
main can detect more than just partial symmetries. However, spe-
cific maps are required to recognize specific orbits, stressing the
importance of the choice of transformation domain.

Symmetry detection for urban scenes and building facades have
also been sought after. Methods for this purpose often make as-
sumptions on the orientation of the scene and of the facades. For
example, in [KBWS] an urban scene is considered to have consis-
tent upward orientation, leading to a use of orientation histogram
descriptors to detect symmetry candidates. In [ZXJ∗13], atomic el-
ements of facade images are extracted via box abstraction, before
being hierarchically decomposed by splitting and layering of fa-
cade structures. Instead, our approach detects local (even approxi-
mate) symmetries with no prior knowledge on the original position
and orientation of the data to be robust to arbitrary inputs.

Current limitations. Despite the success of voting methods to find
symmetries and orbits, we point out that this family of approaches
suffers from a number of important shortcomings that limit the
practical detection of shape symmetries. For instance, they rely
on a customized mapping function from the space of transforma-
tions to a linear space based on which symmetries (or composition
thereof) are looked for. Repeated mappings and clustering may thus
be needed to detect a complete set of relevant symmetries. This
lack of a unified transformation mapping also results in a need for
various clustering methods to detect the presence of features such
as concentration points or lattices; note that most of these clus-
tering methods require parameter tuning of their own to perform
efficiently and reliably. Finally, the notion of distance with which
clustering is achieved is often coordinate system dependent, i.e., the
symmetry and orbit detection can be significantly impacted by the
translation, rotation, or scaling of the input geometry. This problem

(detailed in Sec. 4.1) is particularly undesirable since what we call a
symmetry in Euclidean space is, by very definition, frame and scale
invariant. In practice, these limitations imply that one can only find
symmetries reliably when one already knows they are present in the
input geometry since manual tuning is necessary (see, e.g., Fig. 6).
With all these issues, robust, “sight-unseen” symmetry discovery
of geometric datasets is still a challenging task.

Contributions. We propose a simple approach to (partial, local and
global) symmetry and orbit detection for 3D datasets, which uni-
fies all existing voting-based techniques into a single, versatile Lie-
algebra voting framework. Using the group structure of transforma-
tions that are combinations of rigid motions and scaling, we advo-
cate the use of a logarithmic map to naturally encode symmetries
and orbits as linear subspaces of the transformation domain. We
also identify the importance of using an adjoint-invariant metric on
the resulting (Lie algebra) space to enable robust, coordinate frame
independent clustering of linear subspaces from a series of sampled
transformations obtained through probing of the input geometry.
Our group theoretic approach helps discover, systematically and
automatically, relevant symmetry and orbit in arbitrary geometric
datasets by removing many of the limitations of current methods.

2 Background
We begin our exposition by reviewing concepts and mathematical
definitions which will be at the core of our contribution.

2.1 Transformations as Lie groups
Symmetry in shapes in 3D Euclidean space has been extensively
studied since the antiquity. Most relevant to computer graphics are
the notion of isometries, scaling, and reflections, as what we call
shape is always defined up to an arbitrary translation, rotation, scale
or even flip. Consequently, the transformations from the Euclidean
space to itself that do not affect the shape of an object are indispens-
able tools to detect symmetries and orbits. The groups of all 3D ro-
tations (SO(3)), rigid body motions (rotations and translations, de-
noted SE(3)≡SO(3)oR3), or even the more general case of sim-
ilarities (rotation, translation and uniform (non-zero) scaling, de-
noted SIM(3)≡SE(3)oR+) have thus found countless applications
in graphics (see, for instance, [Ale02]). This latter group of simi-
larities will be most relevant to our exposition, as the orientation-
reversing case of reflections will be treated algorithmically instead
of geometrically (see Sec. 5.1). We note that similarity transforma-
tions in SIM(3) form not only a group (elements can be composed
and always have an associated inverse), but a Lie group [MLS94],
i.e., it has a differential structure.

Lie algebra. The tangent space at the identity of a Lie group canon-
ically defines a Lie algebra, which we will denote as sim(3). In-
tuitively, the Lie algebra of the group of similarities represents in-
finitesimal similarity transformations, and thus offers a linear space
where one can easily sum or subtract infinitesimal elements. A Lie
group and its Lie algebra are strongly related, and one can perform
calculations in one by first mapping to the other: the exponential
(exp) and logarithm (log) maps can convert back and forth between
Lie group and Lie algebra. Note that some restrictions apply in gen-
eral; however, our work will only consider rotations limited to 2π,
removing a number of ambiguities present in the general case.
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Representation of elements. A transformation T ∈SIM(3) is typ-
ically represented as a 4×4 matrix of the form:

T =

(
R t
0 w−1

)
(1)

where R∈SO(3) is a 3×3 rotation matrix, t∈R3 a translation, and
w∈R is a scale. Applying this transformation to a geometric object
S simply rotates S by R, translates it by t, then scales it by w. The
matrix logarithm of this group element T maps it to an element of
the Lie algebra which is also typically written out as a 4×4 matrix,
this time expressed as [MLS94, Ead13]

log(T ) =


0 −ω3 ω2 u1

ω3 0 −ω1 u2
−ω2 ω1 0 u3

0 0 0 −s.

 (2)

The vector ω = (ω1,ω2,ω3) can be understood as an infinitesi-
mal rotation (where the direction of ω encodes the axis of rota-
tion, while its norm is an angular speed between 0 and π), while
u= (u1,u2,u3) is akin to an infinitesimal translation and s to an
infinitesimal change of scale factor. These 7 independent values in
log(T ) can be grouped into a single vector l̂og(T )≡ (ωt ,ut ,s)t . It
should be noticed that in general, u 6= t since rotations and transla-
tions are intertwined in the calculation of the log matrix. The map-
ping T→ l̂og(T ) is often referred to as the logarithmic map. Note
also that this logarithm of a transformation T has a clear geometric
meaning, particularly when w= 1: in that case, s= 0, so ω and u
represent the constant angular and linear velocity of a screw mo-
tion [vKC99] that brings the identity element of SIM(3) to T . With
the scale added, one can think of the logarithm of a transformation
T as a dilating screw motion, since the scale is also changing (i.e.,
growing or shrinking) along the screw motion.

Adjoint action. While a Lie algebra is the tangent space of its Lie
group at the identity element, it is often important to work in the
tangent space of an arbitrary transformation. The adjoint serves ex-
actly this purpose, since it linearly transforms tangent vectors from
one tangent space of the Lie group to another [MLS94]. This ad-
joint map is easy to define from the notion of conjugation by an
element F ∈SE(3): a similarity T is conjugated by F through the
composition FT F−1. The adjoint map is the differential of conju-
gation at identity; that is, for an arbitrary element F of SE(3), the
adjoint map AdF with respect to F is the linear operator acting on
Lie algebra elements as:

AdF =

 R 0 0
t×R R − t
0 0 1

 , (3)

where t× is a skew-symmetric matrix satisfying t×d= t×d for an
arbitrary vector d ∈ R3. Conjugation and adjoint will be especially
useful when we talk about change of coordinate frames later. These
group actions and geometric entities are thus not purely abstract:
they, in fact, offer a coherent framework to manipulate 3D transfor-
mations in a principled manner.

2.2 Transformation voting strategy
Now that we have a general notion of shape congruence through
the action of similarity transformations, we can define what we

call a partial symmetry in a geometric object S: if a local part
P of the object and a transformation T ∈ SIM(3) exist such that
T (P)∩ S is itself a large patch of the object, we infer a visual
symmetry for the object corresponding to the transformation T . An
exploration of closely-matching pairs of small patches on an in-
put geometry was proposed in [MGP06] to find candidate transfor-
mations Ti. Mapping this multitude of transformations into a well-
chosen transformation domain creates a point cloud, in which high-
density regions indicate the presence of a large number of similar
transformations—and thus a potential symmetry.

The same strategy can also discover k-orbits, i.e., subgroups
of SIM(3) generated by a set of k generative transformations
{G1, · · · ,Gk} which commute with each other [PMW∗08]. An ele-
ment T of a k-orbit is thus of the form

T = ∏
i

G ri
i

for arbitrary integers or reals ri (in continuous orbits), and the pres-
ence of such orbits signals the existence of repetitive patterns in
the shape. Unlike a symmetry which is captured by a single trans-
formation (e.g., a point in the transformation domain), a k-orbit
is usually mapped to a k-dimensional linear structure (or lattice if
ri ∈N)—and can thus be detected by applying a robust shape de-
tection approach such as RANSAC (repeated stochastic sampling
consensus [FB81]) to the point cloud in the transformation domain.

In the remainder of this paper, we show that adopting a Lie algebra
viewpoint when using the voting framework provides significantly
more robust foundations for the discovery of symmetries and orbits.

3 Lie Algebra Domain
While previous works formulated various mappings from elements
of SIM(3) to the transformation domain, we propose the use of a
logarithmic map instead. This simple, easily computable map to
the Lie algebra of similarity transformations satisfies key properties
that will ease the process of symmetry and orbit detection through
voting. It is also generic, as it can be used for most previously-
studied symmetries and orbits.

3.1 Logarithmic mapping
We introduced the logarithm map l̂og in Sec. 2.1 which converts
any element T of SIM(3) to a vector l̂ogT ∈ R7 encoding the ma-
trix logarithm of T . This operation offers a very convenient map to
a general transformation domain. Just like the initial approach of
Mitra et al. [MGP06], it is seven dimensional; it is, however, a lo-
cal diffeomorphism as well: transformations that are quite similar
will be mapped to nearby points in R7. Such a basic requirement
was not satisfied by the Euler angle based mapping of [MGP06].
Using this log-based map thus leverages the differential structure
of Lie groups, since we directly use the Lie algebra representation
of a transformation as its coordinates in the transformation domain.

3.2 Orbits as linear structures
Because the Lie algebra sim(3) is a linear space, we reap additional
benefits as well. If F and G are two transformations of SIM(3) that
commute, then the composition of F and G satisfies:

FG = exp(log(F)+ log(G)).
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Thus, if a k-orbit T is generated by transformations {G1, ...,Gk}
which commute with each other, then its logarithmic mapping to
the transformation domain has the following property:

l̂og(T ) = l̂og(∏
i

G ri
i ) = ∑

i
ri l̂og(Gi). (4)

Consequently, a k-orbit always generates a k-dimensional linear
subspace (line for k=1, plane for k=2, etc...) in the mapped do-
main. Our logarithmic mapping thus generalizes the orbit detection
proposed in [PMW∗08] as we no longer have to construct a partic-
ular mapping to detect each type of k-orbit: our log-based transfor-
mation reveals the linear structure of all types of orbits in a unified
manner. Note finally that our approach, much like previous work,
cannot handle the case of non-commutative orbit; fortunately, most
relevant orbits are commutative [PMW∗08].

3.3 Basic notion of distance

Finally, the l̂og map has a last natural property that is particularly
convenient to extract orbits. For each mapping to a transformation
domain, a reliable distance measurement dist(F,G) between two
transformations F and G must be formulated. One could consider
the composition of F and G−1 as a notion of difference δ=FG−1

between the two, then use a matrix norm of δ to obtain a scalar
measurement. However, this leads to inconsistencies since ‖δ‖ �=
‖δ−1‖ in general, which means that the distance between F and G
is not equal to the distance between G and F .

Instead, the matrix logarithm does satisfy log(δ)=− log(δ−1); we
can thus define a consistent distance via the Euclidean norm (or any
weighted variant) of the vector l̂og(δ), such that:

dist2(F,G)= l̂og(δ)t




α Id 0 0
0 β Id 0
0 0 γ


l̂og(δ)≡ ‖ l̂og(δ)‖2

E .

The parameters α,β and γ have to be fixed by the user as they reflect
the arbitrariness of the importance ratio between a unit translation
vector, a unit rotation and a unit scaling. Note that for α=β= γ=
1, the norm ‖ · ‖E becomes the usual Euclidean norm of a vector
in R7. The distance between F and G can be measured directly
in the transformation domain as the (possibly weighted) Euclidean
distance between the two points corresponding to F and G:

dist(F,G) = ‖ l̂og(F)− l̂og(G)‖E .

While this simple notion of distance in our transformation space
is already substantially more reliable than previously proposed dis-
tances, we show next that another metric can be devised to further
increase robustness of the symmetry discovery process.

4 Optimal Distances in Lie Algebra
Due to the shape congruence we discussed in Sec. 2.1, what con-
stitutes a symmetry or orbit of an input object should not depend
on its location in Euclidean space or on its scale. This invariance,
which is key to robustness in shape analysis, has been surprisingly
overlooked in previous work. Next, we discuss the specific math-
ematical requirements it imposes on the metric in our transforma-
tion domain, and deduce a practical notion of distance that vastly
improves robustness over previous work.

4.1 Adjoint invariance
Consider an arbitrary rigid transformation F∈SE(3). If one applies
this transformation to an input geometry, and feeds this rotated and
translated object to a symmetry detection algorithm, one should ex-
pect the output to be exactly the same as if F had not been applied:
after all, applying the rigid F does not change the equivalence class
in which the object is since its shape is entirely preserved. How-
ever, the transformations Ti generated by the voting strategy de-
scribed in Sec. 2.2 will be each transformed into their conjugation
by F , i.e., they become of the form FTiF−1. Alas, these conju-
gated transformations do not have the same pairwise distances as
their non-conjugated counterparts in any of the transformation do-
mains proposed in the past—and even the canonical metric ‖ · ‖E

defined in Sec. 3.3 is only invariant to rotations of the input. This is
not just a mathematical wrinkle: this lack of invariance to similar-
ity is a huge impediment to the discovery of obvious symmetries as
demonstrated in Fig. 2, where a simple rotation and translation of a
3D model is enough to disrupt the proper extraction of trivial sym-
metries. Indeed, following the approach of [MGP06] (Sec. 2) and
discarding the scale for simplicity, two sample points pi and p j on
this model would find a rotation Ri j to align their respective local
frames and a translation ti j = p j−Ri j pi. If the brick model is now
translated globally by a vector T , then the new translation would
become t′i j = ti j+(I−Ri j)T , which can be very different from ti j
in general (even on flat surfaces if noise is present), preventing the
detection of even simple structures.

Figure 2: Lack of adjoint invariance. A lego brick has a 2-
generator translational orbit highlighted with the orange grid and
yellow spheres (top left). While a “good” placement of this brick in
space exhibits clear structures in R7 (bottom left), simply rotating
and translating the brick breaks this structure (right, two different
views), rendering automatic orbit detection completely impossible.

In order to enforce invariance to the placement and scale of the
input, we instead need to find a special metric in the transformation
domain that is adjoint invariant, i.e., that satisfies for any pair of
transformations A and B:

‖ l̂og(A)− l̂og(B)‖= ‖AdF l̂og(A)−AdF l̂og(B)‖.

Intuitively, this is a Lie group extension of the idea of frame in-
variance for pairwise distances between points; but in our more
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complex setup, this is far from an easy requirement to satisfy. Not
surprisingly, this type of requirement on the metric has been stud-
ied in robotics at the end of the ’90s for the case of SE(3), see
for instance [MLS94, vKC99]. We can easily extend their find-
ings to SIM(3): once we write out the requirements that an adjoint-
invariant metric must satisfy, we discover that only a 3-parameter
family of quadratic forms M of the form:

M =

 α Id 1
2 β Id 0

1
2 β Id 0 0

0 0 γ

 (5)

is able to enforce this invariance. For these quadratic forms, one
can trivially verify the adjoint-invariance property:

∀δ≡ (ωt ,ut ,s)t ∈sim(3),

‖AdF δ‖M =‖δ‖M =α〈ω,ω〉+β〈ω,u〉+ γs2.
(6)

Unfortunately, the resulting notion of distances (whose geodesics
are screw motions [vKC99]) corresponds to only pseudo-
Riemannian metrics: even after restricting the three parameters to
be positive, this distance in the transformation domain can be nega-
tive, or even blind to translations when ω=0. In other words, there
is no perfect metric for our purpose. Despite this disappointing re-
alization, one can still produce a useful metric that will be adjoint-
invariant over most of the transformation domain, which will be
enough to render clustering significantly more robust.

4.2 Variational Distance
Although there is no perfect adjoint invariant metric on SIM(3), we
propose a variationally-defined metric which is adjoint-invariant al-
most everywhere. We define distance ‖ · ‖A based on the smallest
norm over all adjoints of rigid body transformations, i.e.,

∀δ∈sim(3), ‖δ‖A = min
F
‖AdF δ‖2

E , F ∈ SE(3). (7)

That is, this distance should represent the smallest (weighted) Eu-
clidean metric of δ over all possible coordinate frames defined by
a coordinate system change F , which corresponds to the “shortest”
screw motion from Id to δ. Expanding this definition via Eq. (3)
leads to a simpler expression of the form:

‖AdF δ‖2
E = α‖ω‖2

2 +β‖t×Rω+Ru− st‖2
2 + γs2,

The s component in δ here measures the difference of scaling be-
tween two sampled transformations, and is usually small. Thus, we
approximate the above equation as

‖AdF δ‖2
E ≈ α‖ω‖2

2 +β‖t×Rω+Ru‖2
2 + γs2

= α‖ω‖2+β

(
‖u‖2+ΨR,t(ω,u)

)
+γ s2,

where: ΨR,t(ω,u) = ω
T RT tT

×t×Rω+ 2ω
T RT tT

×Ru. The fact that
RTR= Id and RT t×R=(RT t)× also implies

ΨR,t(ω,u) = ΨId,RT t(ω,u).

Thus, we can always assume R= Id without changing the value of
the minimum over all F . Substituting R= Id into the optimization
problem defining the norm, one gets:

‖δ‖A = min
t

α‖ω‖2 +β‖t×ω+u‖2 + γ s2. (8)

This quadratic problem has a simple closed form solution. When
ω 6= 0, u can be decomposed in the component u‖= 〈ω/‖ω‖,u〉ω
parallel to ω and the remaining part u⊥=u−u‖ orthogonal to ω,
thus picking t×ω=−u⊥ leads to the solution. Thus, we get:

‖δ‖A =
{

β‖u‖2 + γ s2
ω = 0

α‖ω‖2
2 +β〈ω/‖ω‖,u〉2 + γ s2 otherwise

, (9)

Note that this formulation changes the term 〈ω,u〉 in Eq. (6), elim-
inating the issue of negative distances and returning a reasonable
value when ω = 0. However, we traded positive-definiteness for
continuity: this distance is now discontinuous at ω= 0. We regu-
larize this distance by defining a vector ω̄ increasingly aligned with
u as the norm of ω approaches zero, and equal to the normalized
vector ω/‖ω‖ otherwise, through:

ω̄=ω/(‖ω‖+ ε)

for ε small (we use ε= 10-6 in all our experiments). We can now
define the final expression of this regularized distance as:

‖δ‖A≡α‖ω‖2
2 +β((1−‖ω̄‖)‖u‖+‖ω̄‖〈ω̄,u〉)2+ γs2. (10)

This new distance definition combines the benefits of continuity
and adjoint invariance (and consequently, of robustness) away from
ω= 0. Equipped with this distance on sim(3), we can proceed as
advocated in [MGP06] with a mean shift algorithm [Che95] to clus-
ter samples in the transformation domain, where the sample mean
m(δ) of a sample set S at δ is computed as

m(δ) = ∑
δs∈S

K(‖δ−δs‖A) δs / ∑
δs∈S

K(‖δ−δs‖A), (11)

where K used in our method is the unit Gaussian kernel. The result-
ing cluster centers will serve as reliable detectors of the significant
symmetries present in the input.

4.3 Adjoint-invariant distance to orbit
The distance defined in Eq. (10) provides a measurement between
mapped transformations, so that a voting strategy can be used to
find the most significant symmetries. In order to detect orbits, how-
ever, we also need to provide a distance between a point in the
transformation domain and an orbit. As orbits have a linear struc-
ture in our construction (see Sec. 3.2), a k-generator orbit can be
represented by its k generators as a base matrix G of size 7×k.
Any element in the orbit can be written as Gr with r ∈ Rk; thus an
intuitive definition of point-to-orbit distance could be the minimal
Euclidean distance from a point p to this linear structure, i.e.,

min
r
‖p−Gr‖E . (12)

The k dimensional vector r can be viewed as the coefficients of
the projection point of p in the orbit structure. From this quadratic
optimization, we can directly derive an explicit formula for r, and
compute the distance. However, this definition suffers from not be-
ing frame or scale invariant.

Extending our design of a distance between points, we can also
define an adjoint-invariant point-to-orbit distance using:

distG(p) = min
F,r
‖AdF p−AdF Gr‖E . (13)
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Following the same reasoning as in Section 4.2, we find that the ro-
tation R of F is also irrelevant to this distance definition: the above
optimization problem can be solved by fixing R in F as Id, and
solving in alternation for t and r via simple quadratic optimization.
Because the Hessian of t can be singular, we use Singular Value
Decomposition to compute the Hessian’s pseudo-inverse. Starting
from r = 0 as the initial value, the optimization usually ends in less
than 10 iterations, where convergence is tested through the gradi-
ent norm. After getting t and r, we use Eq. (10) to compute the
distance to avoid the discontinuity issue.

We can now use RANSAC [FB81] to find the k-generator orbits
present in the sampled transformations. Grid fitting can also be ap-
plied to each orbit as in [PMW∗08] if needed.

5 Results
Using the Lie algebra representation of transformations and our
new adjoint-invariant distances, we can now reliably employ the
voting framework to discover symmetries and orbits. In this sec-
tion, we discuss how to efficiently implement our approach, and
provide various results and comparisons with previous work.

5.1 Implementation Details
Our new transformation mapping and distances can be readily
plugged into any existing voting framework. Our implementation
mostly follows the pipeline advocated in [MGP06] (see their Fig.
2), which we briefly review to highlight our changes:
1. Sampling. A set P of sample points is uniformly selected from

the model S; after pruning [MGP06], we get a reduced sample set
P̄ = {pi}.

2. Pairing. A local frame is constructed for each point pi based on
estimations of normal and principal curvature directions. From
a random subset P′ ⊂ P̄ with |P′|= |P|/5, a transformation Ti j
is then computed for each pair pi ∈P′, p j ∈ P̄ that aligns their
local frames. Unlike Mitra et al. [MGP06], who reject pairs if
their distance in the signature space is too large, we compute
the alignment error of neighboring patches surrounding pi, p j in
terms of the average distance between the closest point pairs, and
pairs with large alignment error are discarded. This procedure im-
proves robustness to noise (see Fig. 13).

3. Clustering. The remaining set of transformations {Ti j} is then
clustered in logarithmic space using our adjoint-invariant distance
metric. For symmetry detection, mean shift [Che95] clustering is
performed, while RANSAC [FB81] is used to find orbits.

4. Extracting. As in [MGP06], we use each resulting cluster cen-
ter as a representative transformation, and extract its associated
symmetry region using a region growing algorithm.

We also point out a few important details that we used to further in-
crease the accuracy and efficiency of symmetry and orbit detection.

Handling inverses. One simple, yet important issue that we identi-
fied is the ambiguity that may rise between a transformation and its
inverse. As the pairs of samples that the initial sampling stage of the
voting strategy generates are not ordered, one can arbitrarily find
either a matching transformation T or its inverse depending on the
order in which the samples are compared. While a large enough set
of samples will create high densities around both transformations,

this approach weakens the density of each transformation unnec-
essarily. Using our Lie algebraic representation of transformations,
this problem can be addressed easily, since T maps to l̂og(T ) while
T−1 is mapped to −l̂og(T ). Thus, the distance between two trans-
formation A and B is further altered to read:

min(‖ l̂og(A)− l̂og(B)‖A,‖ l̂og(A)+ l̂og(B)‖A), (14)

to account for the inevitable presence of these doublets. This mod-
ified distance also avoids the typical issue due to the 2π periodicity
of rotations: the distance between two rotations along the same axis
by −π+ε and π−ε respectively will be small as expected.

Culling via metric estimates. Since symmetry and orbit detec-
tion relies on finding local accumulation of samples, any pair of
transformations that are sufficiently dissimilar should be efficiently
culled instead of being submitted to an exact distance computation.
We obtain a speedup of a factor 3 by first checking the following
lower bound on the distance defined in Eq. (10): α‖ω‖2 + γ s2 ≤
‖δ‖A. If this lower bound is beyond a given large threshold, we can
safely skip further computations for this pair during clustering.

Dealing with reflections. Recall that we did not consider reflec-
tions in our method so far, as their orientation-reversing effect cre-
ates complications in the mathematical definitions since reflection
matrices have no real logarithm [Cul66]. We remedy this issue by
applying a reflection to the whole model and adding the result to
the input; more specifically:
1. Points are sampled from an input scene S and its YZ-plane re-

flection S̃=TYZS. (Note than any planar reflection of the original
scene can be used instead: the purpose is simply to add one re-
flection, since all other reflections will be reachable via composi-
tion with rigid body transformations—which our method captures
precisely thanks to our use of a logarithmic mapping.)

2. In the pairing step, we construct the set of transformations {Ti j}
for which at least one point of pi, p j ∈ S∪ S̃ is in the original
scene, i.e., we only deal with pairs satisfying {pi, p j}∩ S 6=∅ to
avoid unnecessary computations.

3. In the clustering step, if more than half of the transformations in
a cluster involves points coming from S̃, this cluster with trans-
formation T is declared a reflection symmetry TYZT .

4. In the extracting step, for reflection symmetry TYZT , one of the
seeds for patch growing pi, p j is in S̃, and after mapping it to S,
the method proposed in [MGP06] can be directly used to extract
the symmetry patches of S.

While this procedure is hidden from the user, this algorithmic trick
is enough to deal with plane reflections with minimal changes to the
code—see Fig. 3. However, it does double the computational cost
of symmetry and orbit discovery. Note that a similar procedure can
be applied to find point reflections.

Parameters. We used α=β=1 and γ=10 in all our experiments.
The weight γ was set larger than α and β because we have found
that the evaluation of the scale component of a transformation is
typically not as reliable as the rotation and translation parts. The
main reason is that the estimation of principal curvature uses a
fixed neighborhood radius, which is suboptimal for point pairs with
scaling symmetry [MGP06, PMW∗08]. The regularization param-
eter ε= 1e-6 is used in all our results, but any value in the range
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Figure 3: Reflections. Each point of these models is colored by its
distance from the global reflection plane detected by our approach.

[1e-6,1e-3] produces visually indistinguishable results. Higher val-
ues of ε makes our metric closer to the Euclidean metric, it thus
loses some of its valuable properties.

Orbit fitting. As previously identified in [PMW∗08], the voting dis-
tribution of orbit parameters has a special characteristic: for the
translation orbit T k of the railing in Fig. 1 for instance, a plot of
the voting histogram as a function of k (inset) reveals a linear drop
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(T and T−1 are grouped together to increase
reliability as we mentioned above). This pat-
tern indicates that the symmetry close to the
end of the orbit is harder to detect because
of a smaller number of votes. Exploiting this
characteristic helps us infer finer symmetries
even for low sample counts.

Mean shift clustering. An important parameter rarely discussed in
symmetry detection is the kernel size σ used in mean shift clus-
tering. We automatically set it through an initial calibration pro-
cess: we randomly pick a small number of pairs of transformations
and evaluate their variational distance ‖ · ‖A to estimate the average
distance h̄ in the transformation set sampled from the object. We
experimentally found that choosing a kernel size σ in the interval
[0.01h̄,0.1h̄] consistently leads to robust symmetry detection.

5.2 Comparisons of transformation spaces
In order to further demonstrate the advantages of our logarithmic
mapping space over the usual R7 space [MGP06], we compare the
distribution of transformation samples on a series of model to pro-
vide a fair, parameter-free estimation of how a clustering algorithm
is likely to find symmetries.

For a cluster Ci of transformation samples (with center ci), we first
define its radial spatial distribution (inspired by [WS09]) as the
function τi(r) = | f (ci,r)∩Ci|/| f (ci,r)∪Ci|, where f (ci,r) repre-
sents the set of samples that are within a sphere centered at ci with
radius r, and | · | represents the volume of a set. This notion of ra-
dial spatial distribution reveals the quality of a cluster, as shown in
Fig. 4: when a cluster is clearly separated from other samples, its
radial distribution will reach a plateau at its maximum value 1, from
a minimum radius rmin to a maximum radius rmax—see Fig. 4(a).
Note that the ratio rmax/rmin thus measures the compactness of the
cluster. Instead, if a cluster overlaps other nearby clusters, then the
maximum value that τ reaches indicates a separation distance of
this cluster from other samples, and can thus be seen as a good
measure of compactness—see Fig. 4(b).

In order to compare how the choice of transformation space affects
symmetry detection, we need to generate a set of transformation

1 1

τ(r) τ(r)

(a) (b)
rmin rmax rmin rmax0 0r r

rmin

rmax
rmin

rmax

Figure 4: Radial spatial distributions. When two clusters (blue and
red, with their respective centers in green) are well separated, the
radial spatial distribution τ of the blue cluster has a clear plateau
with τ(r)=1 (a). When two clusters overlap, the maximum of τ is
lower than 1, but represents a good measure of compactness (b).

samples for which we know what the results are supposed to be.
We thus generate input scenes as follows:
1. For a given model M, we randomly generate three transforma-

tions T1, T2,T3, and apply them to M to get a new scene M̄ com-
posed of T1M, T2M and T3M.

2. We perform the sampling and pairing step of the traditional vot-
ing approach for M̄ and get the transformation samples.

3. These transformation samples are then mapped to either our log-
arithmic, or the original R7 transformation space.

By construction, the ground truth symmetries in this scene are
known to be T2T−1

1 , T3T−1
1 and T3T−1

2 (and their inverses, ignored
for simplicity). Instead of performing the usual clustering which
would be unfairly biased by the choice of (R7 or variational) dis-
tance, we assign for each pair of transformations one of the three
ground truth symmetries based on the one minimizing the local ICP
error [BM92]—or we simply discard this transformation if the er-
ror is larger than 1% of the bounding box diagonal size. Note that
this assignment is costly to compute, but has the advantage of being
purely geometrical, and thus really indicate how intrinsically good
a mapping is independent of the clustering method used on it.

Kitty Fandisk Bunny

62 54

28 36

N
um

be
rs

of
vo

te

68

22

Finally, we measure the quality of
the results using voting based on
radial spatial distribution: a clus-
ter (corresponding to one of the
three symmetries) casts a vote for
our logarithmic space or the R7

space based on which embedding space leads to a larger max value
of its radial spatial distribution—or for the embedding space with
the larger ratio of rmax/rmin if both spaces leads to the same max-
imum. This voting is done for 30 scenes that were randomly gen-
erated from a model. In our tests, the logarithmic space systemati-
cally outvotes the R7 space by at least 50%, as demonstrated in the
inset. Therefore, even if one ignores the advantages of our adjoint
invariant clustering, the use of a logarithmic space is valuable in
itself.

Adjoint invariance. Using radial spatial distributions, we can also
demonstrate that our adjoint-invariant distance leads to improved
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robustness in the choice of kernel size used in mean shift cluster-
ing: as Fig. 5 illustrates, distributions change significantly when the
scene is rotated and translated for the R7 space mapping, while they
remain unchanged in our method. This invariance to rigid transfor-
mations is crucial to robust symmetry and orbit detection.

2D visualization of transformation distributions. The role of ad-
joint invariance is illustrated in a simple example in Fig. 6, where
a lamp model contains three identical flower-shape heads. As the
visualization of a distribution of transformation samples in dimen-
sion 7 is difficult, we used multidimensional scaling (MDS) and
multivariate kernel density estimation (MKDE) [VR02] to compute
a 2D projection that best preserves the distances between samples
in R7 (a-d). Such a 2D visualization has the advantage of making
the structure of this high-dimensional distribution visually obvious.
While the distribution of transformations in our logarithm space is
virtually unchanged for two different orientations and positions of
the lamp (a-b), the original symmetry detection algorithm gener-
ates extremely different transformation distributions in R7 (c-d).
This behavior makes it impossible to pick a threshold for the clus-
tering technique to decide which prominent clusters are potential
symmetries. As a consequence, a lack of adjoint invariance leads
to the inability to detect symmetries automatically and reliably. We
point out that simply “normalizing” the position of the object or
the scene by a global transformation does not help either as illus-
trated in Fig. 11, where multiple symmetries and orbits cannot be
recovered with this procedure. In contrast, our metric ‖·‖A performs
as expected with no parameter tuning. Moreover, notice that these
three symmetries (and their inverses) have cluster sizes that are
clearly much larger than any other, so even without knowing the
number or type of symmetries present in this example, the sudden
change in cluster size (Fig. 6, bottom graph) is a clear indication
that only three main symmetries are present. Our approach thus of-
fers a sight-unseen detection of symmetries.

5.3 Ground truth comparison for a complex model
The necklace in Fig. 7 is composed of 32 components with identical
links {Ck},k= 1, · · · ,32. The symmetry transformations between
these components being known in advance, we can measure the ac-
curacy of a symmetry detection algorithm by comparing the result-
ing clusters S={Si} to the ground truth transformations G={Gi},
where each transformation Gi maps a link Ci− to another link Ci+

of the necklace. Ideally, the largest clusters in S should match the
ground-truth symmetries G. We test this hypothesis for both our
Lie-algebra voting and the R7 voting of Mitra et al. [MGP06]. We
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Figure 5: Invariance of radial spatial distribution. While a typical
cluster’s radial spatial distribution in our logarithmic space does
not change if the scene is rotated and translated in space (blue; 3
different poses), the R7 mapping space behaves unreliably (red).
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Figure 6: Adjoint invariance. The lamp model (bottom left) has 3
significant symmetries due to identical heads. For two different po-
sitions of the lamp in space, we plot both multidimensional scaling
(MDS) and multivariate kernel density estimation (MKDE) [VR02]
2D visualizations of the resulting transformation distributions for
our method ((a) and (b)) vs. the original R7 method ((c) and (d)).
Cluster centers corresponding to the correct transformations be-
tween the three heads are colored. While our Lie algebra ap-
proach is unchanged for different positions of the lamp, the original
method differs widely based on position and orientation, with sym-
metries being sometimes co-located (see rectangle in (d)). We also
show the distribution of cluster sizes (number of the transforma-
tions in each cluster, normalized by the largest one; bottom right),
when a sudden change is visible with our Lie-algebra voting after
the first six clusters—thus clearly identifying the three symmetries
(and their inverses) as the only relevant ones.

first find the “closest” transformation S j for each transformation
Gi∈G via min j D(FGiF−1,S j), where F∈SE(3) is a random rigid
transformation applied to the whole necklace to place the necklace
into different positions, and D stands for the distance measurement
(Euclidean distance for R7 parameterization, adjoint invariant dis-
tance for our logarithm parameterization). We then define an error
E(Gi) for each Gi as the average pointwise matching error from
Ci− to Ci+ using S j (normalized by the bounding box diagonal of
the model), since it measures how well we match each known sym-
metry. Finally, the average of all E(Gi) indicates how accurate the
set of discovered symmetries S is. Fig. 7 shows the results (in log
scale) of this test with mean shift clustering for 3 different positions
(translation and rotation) of the necklace model for a large num-
ber of kernel sizes—a parameter that clustering heavily depends
on. Our method produces identical results for all positions, while
the R7 approach exhibits very different behaviors. Moreover, our
approach has better accuracy for most kernel sizes, or near equiv-
alent accuracy for the best of the three positions. Finally, the R7

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



Shi et al. / Symmetry and Orbit Detection via Lie-Algebra Voting

approach fails to detect some of the symmetries Gi in two out of
the three positions. Note that the unit of kernel size on the graph in
Fig. 7 is set to the minimal distance among the transformations in
G, i.e. minGi,Gj∈G D(Gi,G j).
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Figure 7: Ground truth comparison. (a) The necklace model. (b)
The mean shift based symmetry detection error ∑i E(Gi) as a func-
tion of cluster kernel size ratio is generally much smaller for our
Lie-algebra voting approach compared to the R7 method, and does
not depend on the position of the model. Notice that for positions b
and c, the R7 method fails to detect some of ground truth symme-
tries no matter how the cluster kernel size is tuned.

5.4 Orbit detection

Linear structures. Fig. 8 demonstrates that our transformation do-
main exhibits clear linear structures when orbits are present, while
previous R7 representations do not share this property. The bumpy
torus has a 6-fold rotational symmetry and many partial symme-
tries in the form of discrete rotations, while the Thai status model
has a global 3-fold rotational orbit and the workpiece model has a
clear translation orbit. The R7 representation have no clear struc-
tures for these models, but our approach exhibits obvious (and rel-
evant) structures.

Orbit detection. Our approach is able to discover both continuous
and discrete orbits [PMW∗08,BWKS11]. Fig. 9 depicts the fire hy-
drant model containing a continuous rotational symmetry (high-
lighted by the dominant red line), the octopus model containing a
8-fold rotational orbit (clearly visible as 8 separate dots in the trans-
formation domain), and the carter model with a 6-fold rotational
orbit and a partial continuous rotational orbit (exhibiting a contin-
uous line in the ω subspace, with 6 clear dots). Such clear features
are thus easily detected and characterized by common clustering
and linear subspace detection algorithms, without having to experi-
mentally tune a variety of parameters. Robustness of the symmetry
and orbit discovery process is thus much improved. The example
in Fig. 1 contains a rotational orbit (represented by the blue dots)
along the z axis and a translation orbit (represented by the red dots)
along the x axis. When the scene is centered, orbits are easy to de-
tect, even with a Euclidean distance, as the translation component
of the rotational symmetry appears at the origin of the transforma-
tion domain. If the scene is translated along the y axis, however,
the Euclidean distance can no longer distinguish the two orbits cor-
rectly. Our adjoint invariant orbit distance has no such issue, and
all of our results were robustly handled without having to worry

uR7 Translation

ωEuler angle

Euler angle ω

Figure 8: Linear structure of orbits. Our transformation domain
(right, visualized through its ω or u coordinates for simplicity) al-
ways exhibits clear linear structures when orbits are present, while
an Euler-angle based domain is unreliable. Transformation sam-
ples are colored by their alignment error (blue indicating small
values). Cluster centers are shown as red dots.

about whether the scene has to be relocated to detect symmetries
and orbits.

5.5 Unified symmetry and orbit discovery
Detecting symmetries and orbits in a complex scene is a much
harder task than detecting symmetries and orbits in a single model.
Not only do the computational costs associated to both patch sam-
pling and clustering increase, but the resulting complexity of the
density field in the transformation domain can be quite high. How-
ever, because our approach satisfies the linear orbit property as well
as an invariance to similarities, visualizing the transformation do-
main once basic clustering and RANSAC has been performed to
hunt for symmetries and/or orbits is significantly easier. The scene
in Fig. 11 includes various symmetries and orbits; without having
to resort to many different mappings, all the SIM(3) symmetry and
orbits are detected in a unified way. More importantly, if one uses a
coordinate system dependent method instead, significant structures
in the scene are missed because of their arbitrary relative locations.

6 Conclusions
We presented in this paper a new Lie algebra variant of the voting
framework to discover, automatically and reliably, symmetries and
orbits in geometric scenes. By leveraging the Lie group nature of
symmetries and constructing a consistent metric that is fundamen-
tally invariant to rigid body and scale change of the input models,
we significantly improved the robustness and accuracy of the re-
sults. In particular, we introduced a logarithm mapping of transfor-
mations that unifies most previous symmetries and orbits, allowing
for a significantly easier analysis of complex scenes since no man-
ual tuning is required to discover symmetry and orbit.
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Figure 9: Rotational orbits. Our choice of Lie algebra coordinates
renders rotational orbits particularly obvious in the transformation
domain (middle), be they continuous (fire hydrant), discrete (octo-
pus), or both (carter). We can then color the regions of the object
exhibiting orbits (left) and/or visualize particular orbits (right).

Figure 10: Gallery. Our symmetry and orbit detection approach
can find all the symmetries in these classical models with a single
(logarithmic) mapping, and without the need to carefully move the
model to a specific location.

This unified Lie algebraic framework may also benefit common
geometry processing tasks such as editing or reconstruction as it
offers a principled way to identify, even without user interaction,
partial symmetry in geometric data. In particular, we plan to in-
vestigate how symmetry and orbit detection can be used as a reli-
able prior in the context of reconstruction and abstraction of man-
made geometry (where symmetries and orbits abound). Addition-
ally, while we focused on finding simple geometric patterns (linear
subspaces) in the voting space, detecting complex patterns is an
interesting future work as it may allow detection of hierarchical
and/or semantic structures in scenes.

Limitations. While we improved the reliability and robustness of
the clustering step in the symmetry and orbit detection pipeline
through a Lie-algebra voting and an adjoint-invariant distance, a
few limitations of the original voting framework remain. First, our
voting strategy is based on uniform sampling [MGP06], generating
fewer points for symmetries involving small regions. Consequently,
small symmetries have a smaller probability to be detected. For ex-

ω u

Figure 11: Indoor scene. The dining room scene contains many
symmetries and orbits; linear structures of orbits are very clear
as illustrated by our visualization of ω and u components, despite
the complexity of the scene. Bottom rows show the most significant
orbits and some representative symmetries found in this scene using
coordinate frames and lattices to indicate symmetries and orbits.

ample, the 2π/18 symmetry of the corrugated teapot in Fig. 12 may
be missed if too few transformation samples are used.

We showed in Fig. 6 that our method can automatically deter-
mine the number of significant symmetries without manually tun-
ing the parameters by just tracking sudden changes in (normal-
ized) cluster sizes. However, such clear, sudden changes may not be
present in complex examples. For instance, our approach identifies
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correctly all the 992 signifi-
cant symmetries of the necklace
model from 45845 sampled trans-
formations, but there is no clear
demarcation that indicates that
other clusters are simply small
artifacts as the graph in the in-
set indicates. However, we sig-
nificantly outperform the R7 ap-
proach since it cannot even find
all the symmetries for certain positions of the model.

Additionally, as our method depends on the accuracy of transfor-
mation estimates from sample pairs, very noisy data (Fig. 13) or
symmetries with significantly different scales may incur estima-
tion errors which will affect clustering quality. Similarly, while our
experimental kernel size estimation for mean shift clustering (de-
scribed in Section 5.1) works well in most of the cases, an adaptive
strategy may be required to detect complex symmetries and orbits
with many different scales.
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Figure 12: Sampling rates and orbits. From left to right, we show
increasing sample density of a corrugated teapot model and the
corresponding logarithm space (visualizing the ω component). The
linear structure of the rotational orbit of the model only becomes
clear when the number of samples is high enough, at the cost of an
increased computation time as well.
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Figure 13: Effect of noise. We add random Gaussian noise to the
corrugated teapot model and use 500 samples for symmetry detec-
tion (a). Since transformations computed from local frame align-
ment become unreliable, the underlying linear structure of the ro-
tational orbit is less crisp (b), but increasing neighboring patch size
for the sampling points reduces this issue (c).
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