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Abstract

In this report, we show that the non-uniqueness of the matrix logarithm
has only a small influence on the results of [Shi et al., 2016]. More
specifically, it has no influence on transformations in SO(3) (when
considering both transformation and inverse transformation as men-
tioned in the paper); for more general transformations, the ordering of
the distances with or without considering the non-uniqueness of loga-
rithm remain mostly identical.

1 Non-Unique Logarithm of a Transformation

In this section, we briefly introduce the non-uniqueness issue of the
logarithm of a transformation.

1.1 Periodicity in logarithm of a SO(3) transformation

The issue comes from the 2π periodicity of rotation. For a rotation
R ∈ SO(3), its logarithm is a skew-symmetric (i.e., anti-symmetric)
matrix S assembled from a length-3 vector ω = θU ∈ R3, where U
is a unit vector in R3 representing the rotation axis while the scalar
θ = ‖ω‖ ≥ 0 is the angle of the rotation. The matrix S is then
assembled as:

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (1)

The logarithm of R is not unique because the angle of a rotation is
defined up to a multiple of 2π, which leads to the fact that

R = exp(S(θU)) = exp(S((θ + 2kπ)U)), k ∈ Z. (2)

Usually, one picks θ to be the smallest rotation angle between 0 and π,
leading to a modified definition of logarithm:

log(R) = S(φω), φ ∈ [0, π], ‖ω‖ = 1,

φ = min
k
|θ + 2kπ|, ω =

{
U θ + 2kπ ≥ 0,

−U θ + 2kπ < 0.

(3)

However, this arbitrary choice renders the construction of the loga-
rithm not continuous for rotations of angles around π.

In the remainder of this note, we will often (abusively) refer to ω as the
logarithm of a rotation R as it simplifies the exposition.

1.2 Non-unique logarithm of a SIM(3) transform

As a consequence of the non-uniqueness of logarithm for a rotation,
the logarithm of similarity transform T ∈ SIM(3) is also not unique.
A similarity transform has the form

T =

(
R t
0 w−1

)
, (4)

and its logarithm can be represented by a skew-symmetric matrix as-
sembled from a R7 vector (see Eq. (2) in our original paper). For con-
siveness, we will use

log(T ) = (ωt,ut, s)t, (5)

where ω = log(R), u ∈ R3 (which is related to the value of ω, t
and w), s = log(w) (details about the calculation can be found in
[Eade, 2013]).

When t = 0 and w = 1, T ∈ SO(3), the logarithm of T equals to
(ωt,0t, 0)t, and we are back to the pure rotation case as expected.

2 Distance Computation in [Shi et al., 2016]

The variational (squared) distance used in our paper (Eq. (9) and Eq.
(14)) is defined as

D†(TA, TB) , min{D(TA, TB),D(TA, T
−1
B )}, (6)

and

D(TA, TB)=

{
β‖u‖2 + γ s2 ω = 0

α‖ω‖22 + β〈ω/‖ω‖,u〉2 + γ s2 otherwise
, (7)

where ω = ωA − ωB , u = uA − uB , s = sA − sB .

In [Shi et al., 2016], we used log in the computation, but did not prop-
erly analyze the effect of considering all possible logarithms.

In the following, we will show that the non-uniqueness has no influ-
ence for transformations in SO(3). For more general SIM(3) transfor-
mations, we will prove that ignoring the non-uniqueness of logarithm
leads to different distances, but has only little influence on the results.

3 The case of SO(3)

When RA, RB ∈ SO(3), we have

ωA = log(RA) = θaA, ωB = log(RB) = θbB,

θa, θb ∈ [0, π], ‖A‖ = ‖B‖ = 1.
(8)

The distance can be computed as

D(RA, RB) = ‖θaA− θbB‖22 = θ2a + θ2b − 2θaθb〈A,B〉. (9)

If we consider the non-uniqueness of the logarithm, we have a different
definition of distance D̃:

D̃a,b(RA, RB) = ‖(θa + 2aπ)A− (θb + 2bπ)B‖22, a, b ∈ Z. (10)

In many cases, D(RA, RB) = D̃0,0(RA, RB) may not be equal to
mina,b D̃a,b. However, if we consider the inverse of the transformation
instead, they are identical:

D†(RA, RB) ≡ D̃†(RA, RB). (11)

The proof will be given in this section.
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3.1 Without the inverse transformation

To compare the value of D(RA, RB) and D̃a,b(RA, RB), we take a
simple case with A = −B =W below.

First we have

D(RA, RB) = θ2a + θ2b + 2θaθb = (θa + θb)
2. (12)

Then we find

D̃a,b(RA, RB) = ‖(θa + 2aπ)W + (θb + 2bπ)W‖
= ‖(θa + θb + 2aπ + 2bπ)W‖

= (θa + θb + 2(a+ b)π)2.

(13)

When θa + θb > π, we deduce

D̃0,−1(RA, RB) = (2π − (θa + θb))
2 < D(RA, RB), (14)

which means that in general cases, D(RA, RB) is not the smallest
distance considering periodic angle changes, namely D(RA, RB) 6=
mina,b D̃a,b(RA, RB).

3.2 Considering the inverse transformation

However, in our application, the inverse ofRB is also involved in com-
puting the distance, which makes a significant difference. An intuitive
illustration can be found in Fig. 1.

0 π−π 2π−2π
A

θa−θa

B

θb

−θb

Figure 1: Illustration: the red circular dots indicate the logarithms of
rotation RA, and the blue ones are for rotation RB . The red and blue
star shapes are the logarithms of R−1

A and R−1
B respectively.

In the following, we will prove that considering the non-uniqueness or
not has no influence to the result. We first introduce two lemmas which
help to simplify the proof.

Lemma 1. mina,b∈Z D̃a,b(RA, RB) = minb∈Z D̃0,b(RA, RB).

Proof. Note that θa, θb ∈ [0, π]. If ab ≥ 0, D̃a,b(RA, RB) −
D̃0,b−a(RA, RB) = 4aπ(θa + θb + 2bπ)(1 − 〈A,B〉) ≥ 0. If
ab < 0, D̃a,b(RA, RB) − D̃0,b+a(RA, RB) = 4aπ(θa − θb −
2bπ)(1 + 〈A,B〉) ≥ 0. Therefore, mina,b∈Z D̃a,b(RA, RB) =

minb∈Z D̃0,b(RA, RB).

Figure 2 gives an intuitive illustration of the above lemma.

Lemma 2. mina,b∈Z D̃a,b(RA, RB) = minb∈{0,−1} D̃0,b(RA, RB).

Proof. Using the previous lemma, we only need to prove
minb∈Z D̃0,b(RA, RB) = minb∈{0,−1} D̃0,b(RA, RB). Note that
θa, θb ∈ [0, π]. When b 6= −1, D̃0,b(RA, RB) − D̃0,0(RA, RB) =

4bπ(bπ + θb − θa〈A,B〉) ≥ 0. Thus, minb∈Z D̃0,b(RA, RB) has
minimum value when b = 0 or b = −1.

A
θa2π − θa 2π + θa4π − θa

B

θb

2π − θb

2π + θb

4π − θb

l(θa, θb)
l(2π + θa, 2π + θb)

Figure 2: Illustration. We use line l(θa, θb) to represent the logarithm
distance between two rotations, it is clear that moving θa, θb towards
the origin simultaneously by 2π will make the length of the line shorter.
For example, l(θa, θb) < l(2π+θa, 2π+θb), l(2π−θa, θb) < l(4π−
θa, 2π + θb).

Now, we prove the following theorem:

Theorem 1.

D†(RA, RB) ≡ D̃†(RA, RB), RA, RB ∈ SO(3). (15)

Proof. Let 〈A,B〉 = γ ∈ [−1, 1]. We have

D̃† , min{min
a,b
D̃a,b(RA, RB),min

a,b
D̃a,b(RA, R

−1
B )}

= min
b∈{0,−1}

‖θaA± (θb + 2bπ)B‖22

= min
b∈{0,−1}

θ2a + (θb + 2bπ)2 ± 2θa(θb + 2bπ)γ.

(16)

When b = 0,

D̃†b=0 = min{θ2a + θ2b ± 2θaθbγ}. (17)

When b = −1,

D̃†b 6=0 = min{θ2a + (θb − 2π)2 ± 2θa(θb − 2π)γ}. (18)

If γ > 0,

D̃†b=0 = θ2a + θ2b − 2θaθbγ

D̃†b=−1 = θ2a + (θb − 2π)2 + 2θa(θb − 2π)γ

D̃†b=0 − D̃
†
b=−1 = −4(π − θb)(π − θaγ) < 0.

(19)

If γ < 0,

D̃†b=0 = θ2a + θ2b + 2θaθbγ

D̃†b=−1 = θ2a + (θb − 2π)2 − 2θa(θb − 2π)γ

D̃†b=0 − D̃
†
b=−1 = −4(π − θb)(π + θaγ) < 0.

(20)

Thus, D̃† = D̃†b=0 = D†.

4 The case of SIM(3)

In the previous section, we showed that the log non-uniqueness has
no influence in our symmetry-finding application for SO(3) trans-
formation. However, for similarity transformations (SIM(3)), non-
uniqueness does have consequences. A simple example is shown first,
before studying the influence of these consequences on distance evalu-
ations.
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4.1 An example

Suppose there are two similarity transformations TA and TB , with

TA =

(
RA tA
0 1

)
, TB =

(
RB tB
0 1

)
, (21)

such that

log(RA) = θaA, log(RB) = θbB,

θa, θb ∈ (0, π], A = (1, 0, 0)t, B = (0, 1, 0)t,

tA = (ta, 0, 0)
t, tB = (0, 0,−2tb)t.

(22)

Let θ̃a and θ̃b denote θa+2aπ and θb+2bπ for some a, b ∈ Z respec-
tively. The logarithms of the two transformations then involve:

uA = (ta, 0, 0)
t,uB = (θ̃btb, 0, c̃b)

t, (23)

where c̃b is a value computed by Equs. (70)-(78) in [Eade, 2013]. Ac-
cording to the definition of variational distance, we have:

D̃(TA, TB) = α(θ̃2a + θ̃2b ) + β
(ta − θ̃btb)2θ̃2a

θ̃2a + θ̃2b
,

D̃(TA, T
−1
B ) = α(θ̃2a + θ̃2b ) + β

(ta + θ̃btb)
2θ̃2a

θ̃2a + θ̃2b
.

(24)

If we choose tb > 0, ta = (θb + 2π)tb, then we have

D̃0,1(TA, TB) =α(θ
2
a + (θb + 2π)2),

D̃0,0(TA, TB) =α(θ
2
a + θ2b ) + β

(2πtb)
2θ2a

θ2a + θ2b
,

D̃0,0(TA, T
−1
B ) =α(θ2a + θ2b ) + β

(2θbtb + 2πtb)
2θ2a

θ2a + θ2b
.

(25)

It is easy to see that D̃0,0(TA, TB) < D̃0,0(TA, T
−1
B ). By

choosing a large enough tb, we can make D̃0,1(TA, TB) <

D̃0,0(TA, TB) = min{D(TA, TB),D(TA, T
−1
B )}, which provides an

example to demonstrate that D† > D̃†.

4.2 Practical influence

However, when used in a voting framework, the non-uniqueness issue
could be acceptable if the induced difference is small enough. In this
section we will analyze the influence in more detail.

Criteria for influence In our application, the distance between two
transformations is used in the mean shift and RANSAC clustering
methods. In these voting methods, the relative distance value is more
important than the absolute distance value. As an intuitive example, if
TC is closer to TA than TB (for a distance measurement Dx), a dis-
tance measurement Dy which gives the same order Dy(TA, TC) <
Dy(TB , TC) will lead to the same result when merging TC into cluster
centers TA or TB . In such a situation, we will say that Dy is consis-
tent withDx. If D̃† andD† give the same orders for any transformation
pairs, then even if these two distance definitions give different values in
some cases, the clustering results computed from them may still be the
same, depending on the specific clustering method being used. In order
to measure the consistency between them, we first generate large num-
ber of random pairs of transformations, and then evaluate the change
of the orders that the non-uniqueness creates.

Setting of experiments We first randomly sample N = 1000 pairs
of transformations:

• for the rotation part, the three Euler angles are in U(0, 2π);

• for the translation part, each component is in U(−1, 1);

• for the scale component, it is in U(0.9, 1.1).

where U(x, y) indicates the uniform probabilistic distribution in [x, y].

For each pair of transformations, we compute the distance using
D̃† (we evaluate D̃a,b with a, b in [−10, 10]), then sort pairs into
Pi = (TA,i, TB,i) in ascending order so that D̃†(TA,k, TB,k) ≤
D̃†(TA,k+1, TB,k+1). This order is viewed as “ground truth”.

Then we compute D†(TA,i, TB,i), and sort them in ascending order
by a sequence of indices o : [0, · · · , N − 1] → [0, · · · , N − 1] so
that do(k) ≤ do(k+1). Finally we check the difference between the
sequences o and [0, 1, · · · , N − 1], which order the pairs of transfor-
mations according to the distances from D† and D̃† respectively.

Results In Figure 3, the coordinates of the i-th point are (i, , o(i)).
We test for transformations in SO(3) and SIM(3) separately.

Figure 3: Comparison of the indices in ascending order of distances.
The red points represent the result of taking all the transformation pairs
from SO(3), while the blue points represent the result of taking trans-
formation pairs from SIM(3). These red and blue points are almost
distributed along lines of slope 1, indicating that the orders of trans-
formation pairs in either SO(3) or SIM(3) are approximately the same
regardless of considering non-uniqueness or not.

As evidence of the theoretical analysis in the previous sections, the
points of the SO(3) transformation pairs form a perfect line of slope 1,
indicating that the ascending order of the transformation pairs for these
two distance definitions are totally unchanged. Although the distance
values from D† and D̃† are not always the same for SIM(3) transfor-
mation pairs, it still shows a clear line of slope 1, with only a limited
number of points far from the line.

To further compare these two distance methods for SIM(3) transfor-
mations, we first define the “discrete gradients” of o (difference of adja-
cent values), then measure the error by the difference of these gradients
to 1, the expected slope of the perfect line.

∇o(k) , o(k + 1)− o(k), e(k) = |∇o(k)− 1| . (26)
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In Figure 4 we show the histogram distribution of error e. Clearly, most
of the error are zero. This shows that the order of transformation pairs
only changes a little.

Figure 4: Histogram of e. The computation of index difference is
explained in Section 4.2. The chart on the upper right side shows a
zoomed-in view of distribution in [0, 10].

In Figure 5, we visualize the error distribution under different transfor-
mation pair distances. For each interval [x, y], the height of the bar is
hx,y =

∑y
k=x e(k). It is easy to see that the error is distributed ran-

domly, meaning that the error does not affect pairs close to each other
more than remote pairs.

Figure 5: The distribution of error when ignoring the non-uniqueness.
Each interval contains 100 successive transformation pairs. The index
difference is random and small relative to the range (1000).

5 Conclusion

To sum up, considering the statistical character of the clustering
method, the influence of the non-uniqueness of matrix logarithm is neg-
ligible. A more specific conclusion would require studying the effect
of these errors on a particular clustering method.
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