
On Reproducibility & Performance: an Addendum to
Symmetry and Orbit Detection via Lie-Algebra Voting

Zeyun Shi1 Pierre Alliez2 Mathieu Desbrun2,3 Hujun Bao1 Jin Huang1∗

1Zhejiang University 2Inria 3Caltech

Symposium of Geometry Processing, 2016

1 Introduction
In this short note, we demonstrate that despite the fact that there are a few parameters involved in our algorithm to detect symmetries
and orbits, these parameters do not need to be tuned—or can be adjusted easily.

2 Implementation details
Implementation details are provided in the main paper, but we mention a few more details here for completeness and reproducibility.

1. Sampling. We uniformly sample a set of points P on the model with a default size of |P | = 1000. Around each sample
pi ∈ P , we extract its neighboring patch C(pi) based on a radius r, set by default to 3 times the minimum distance between
samples.

2. Analysis. A local frame is constructed for each point pi ∈ P based on local (C(pi)) estimation of normal, principal curvatures
(λmin, λmax), and principal curvature directions.

3. Sample pruning. A sample for which λmin = λmax is invariant under rotations around its normal, thus a point pair containing
such a sample can not define a unique transformation. We reject this kind of samples by using a threshold θ on the ratios of
curvatures by requiring | λmin

λmax
| < θ, where θ is set to 0.9 by default (instead of 0.75 in [Mitra et al., 2006]). The remaining set

of samples forms the set P̄ .

4. Pairing. From a random subset P ′ ⊂ P̄ with |P ′| = |P |/5, a transformation Tij is then computed for each pair pi ∈ P ′,
pj ∈ P̄ that aligns their local frames. Since Tij has two possible values (because the principal curvature direction is a “two-
rotational” symmetry vector), we chose the one with the smaller alignment error between C(pi) and C(pj) (in terms of the
average distance between the closest point pairs). Default size of P ′ is 200.

5. Pair pruning. Not all sample pairs give reliable transformation for symmetry (and orbit) detection. By definition, a trans-
formation Tij generated from pair pi, pj is likely to be a candidate symmetry only if regions surrounding pi and regions
surrounding pj match. Thus, we use a threshold ε on alignment error between C(pi) and C(pj) to prune sample pairs (and
their corresponding transformations), the unit of ε is also the minimum distance between samples. (In [Mitra et al., 2006], pair
pruning is done by picking pairing samples close enough in signature space, where the signature of a sample is its principal
curvature ratio.)

6. Clustering. After removing unsuitable pairs, the remaining set of transformations is T . For symmetry detection, mean shift
clustering is performed using Gaussian kernel with kernel size δm, while for orbit detection, RANSAC is used with model
fitting threshold δr. Both δm and δr are set by an initial calibration process: we randomly pick a small number (1000 by
default) of pairs of transformations from T and evaluate their variational distance to estimate the average distance δ̄. Finally,
δm and δr is set to 0.05δ̄ by default.

In Table 1, we list the parameters used in our tests and figures. Notice that most of the parameters take default values, and only
the alignment error threshold ε is sometimes tuned. In practice, we first select ε = 0.1, then gradually increase it if no prominent
cluster appears after clustering (for example, the Thai status model, which contains many fine details, has few sample pairs that
could be accurately aligned); or inversely, if the most prominent clusters correspond to inaccurate or meaningless symmetries (or
orbits), we gradually decrease ε (for example, the tower model, since it contains many small components). We also used a larger
size of P for the Lamp model as it contains a long and thin supporting holder which interfere with the sampling density of the bulbs.
We used a larger size of P ′ for indoor scene, as it contains many potential symmetries and orbits.

∗Corresponding author: hj@cad.zju.edu.cn

1



Model Vertices |P | r θ |P̄ | |P ′| ε |T | δm and δr
Church with side railing 178394 default default default 813 default 0.1 920 default

Lego brick 10981 default default default 932 default 0.2 2444 default
Lamp 16000 2×default default default 1789 default 0.2 1576 default

Sydney Opera House (partial) 15670 default default default 960 default 0.1 223 default
Man 20000 default default default 990 default 0.2 1056 default
Elk 9552 default default default 712 default 0.2 1390 default

Bunny 5000 default default default 970 default 0.2 380 default
Bumpy torus 16815 default default default 889 default 0.2 767 default
Thai status 30000 default default default 955 default 0.3 1621 default
Workpiece 100000 default default default 779 default 0.2 1183 default

Fire hydrant 25000 default default default 913 default 0.1 1130 default
Octopus 30000 default default default 985 default 0.1 339 default
Carter 10000 default default default 901 default 0.2 610 default

Nautilus 29997 default default default 900 default 0.1 382 default
Filigree 50000 default default default 954 default 0.1 205 default
Tower 107736 default default default 767 default 0.05 3386 default

Indoor scene 240861 default default default 901 2×default 0.1 14096 default
Teapot 11144 default default default 971 default 0.2 368 default

Table 1: Statistic analysis of the parameters used in our method.

Model Vertices Clustering (Lie algebra) Clustering (R7)
Lamp 16000 0.354s 0.347s

Sydney Opera House (partial) 15670 0.190s 0.190s
Man 20000 0.228s 0.227s

Bunny 5000 0.188s 0.208s
Elk 9552 0.238s 0.363s

Bumpy torus 16815 0.214s 0.218s
Thai status 30000 0.403s 0.437s

Table 2: Timings in seconds on a 3.5 GHz Xeon E5 with 16GBytes main memory.

3 Performance
Our adjoint invariant distance is more complex than the Euclidean distance, hence it could appear marginally more time consuming.
However, this is not correct: in fact, the clustering step (logarithm mapping with adjoint invariant distance) will often be faster and/or
more efficient at finding clusters than if one uses the R7 mapping with Euclidean distance [Mitra et al., 2006]. As shown in Table 2,
our method is thus at least comparable with R7 method in terms of speed: as discussed in Sec. 5.1 and Sec. 5.2 in our paper, this
is related to the better spatial distribution of transformations with our logarithm mapping. Moreover, recall that our method does
find symmetries without having to test various positions, so performance judged from a user perspective is far superior to existing
symmetry detection methods.

References
[Mitra et al., 2006] Mitra, N. J., Guibas, L., and Pauly, M. (2006). Partial and approximate symmetry detection for 3D geometry.

ACM Trans. Graph., 25(3):560–568.

2


	Introduction
	Implementation details
	Performance

