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Abstract: Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used
for the numerical simulation of time-dependent partial differential equations. These methods keep
the total number of mesh points fixed during the simulation, but redistribute them over time to
follow the areas where a higher mesh point density is required. There are a very limited number
of moving mesh methods designed for solving field-theoretic partial differential equations, and the
numerical analysis of the resulting schemes is challenging. In this paper we present two ways to
construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian
field theories. The first method uses a variational discretization of the physical equations and the
mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second
method treats the mesh points as pseudo-particles and incorporates their dynamics directly into
the variational principle. A user-specified adaptation strategy is then enforced through Lagrange
multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss
the advantages and limitations of our methods. Numerical results for the Sine-Gordon equation are
also presented.

Keywords: geometric numerical integration; variational integrators; multisymplectic integrators;
field theory; moving mesh methods; moving mesh partial differential equations; solitons; Sine-Gordon
equation

1. Introduction

The purpose of this work is to design, analyze and implement variational and multisymplectic
integrators for Lagrangian partial differential equations with space-adaptive meshes. In this paper we
combine geometric numerical integration and r-adaptive methods for the numerical solution of PDEs.
We show that these two fields are compatible, mostly due to the fact that in r-adaptation the number of
mesh points remains constant and we can treat them as additional pseudo-particles whose dynamics
is coupled to the dynamics of the physical field of interest.

Geometric (or structure-preserving) integrators are numerical methods that preserve geometric
properties of the flow of a differential equation (see [1]). This encompasses symplectic integrators
for Hamiltonian systems, variational integrators for Lagrangian systems, and numerical methods
on manifolds, including Lie group methods and integrators for constrained mechanical systems.
Geometric integrators proved to be extremely useful for numerical computations in astronomy,
molecular dynamics, mechanics and theoretical physics. The main motivation for developing
structure-preserving algorithms lies in the fact that they show excellent numerical behavior, especially
for long-time integration of equations possessing geometric properties.

Submitted to Mathematics, pages 1 —56 www.mdpi.com/journal/mathematics
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An important class of structure-preserving integrators are variational integrators for Lagrangian
systems ([1], [2]). This type of integrator is based on discrete variational principles. The variational
approach provides a unified framework for the analysis of many symplectic algorithms and is
characterized by a natural treatment of the discrete Noether theorem, as well as forced, dissipative and
constrained systems. Variational integrators were first introduced in the context of finite-dimensional
mechanical systems, but later Marsden, Patrick and Shkoller [3] generalized this idea to field theories.
Variational integrators have since then been successfully applied in many computations, for example
in elasticity ([4]), electrodynamics ([5]) or fluid dynamics ([6]). Existing variational integrators so far
have been developed on static, mostly uniform spatial meshes. The main goal of this paper is to design
and analyze variational integrators that allow for the use of space-adaptive meshes.

Adaptive meshes used for the numerical solution of partial differential equations fall into three
main categories: h-adaptive, p-adaptive and r-adaptive. R-adaptive methods, which are also known
as moving mesh methods ([7], [8]), keep the total number of mesh points fixed during the simulation, but
relocate them over time. These methods are designed to minimize the error of the computations by
optimally distributing the mesh points, contrasting with h-adaptive methods for which the accuracy of
the computations is obtained via insertion and deletion of mesh points. Moving mesh methods are a
large and interesting research field of applied mathematics, and their role in modern computational
modeling is growing. Despite the increasing interest in these methods in recent years, they are still in a
relatively early stage of their development compared to the more matured h-adaptive methods.

Overview

There are three logical steps to r-adaptation:

e Discretization of the physical PDE
e Mesh adaptation strategy
o Coupling the mesh equations to the physical equations

The key ideas of this paper regard the first and the last step. Following the general spirit of variational

integrators, we discretize the underlying action functional rather than the PDE itself, and then derive

the discrete equations of motion. We base our adaptation strategies on the equidistribution principle

and the resulting moving mesh partial differential equations (MMPDEs). We interpret MMPDEs as

constraints, which allows us to consider novel ways of coupling them to the physical equations. Note

that we will restrict our explanations to one time and one space dimension for the sake of simplicity.
Let us consider a (1+1)-dimensional scalar field theory with the action functional

"Tax [ Xmax
sol = [ [ g, 90) X, M

where ¢ : [0, Xinax] X [0, Tiax] —> R is the field and £ : R x R x R — R its Lagrangian density. For
simplicity, we assume the following fixed boundary conditions

(P(O' t) = (PL/
‘P(Xmmut) = ¢r- ()

In order to further consider moving meshes let us perform a change of variables X = X(x, t) such that
for all t the map X(.,t) : [0, Xymax] — [0, Xinax] is a “diffeomorphism’—more precisely, we only require
that X (., t) is a homeomorphism such that both X(.,t) and X(.,t)~! are piecewise C'. In the context of
mesh adaptation the map X(x, t) represents the spatial position at time ¢ of the mesh point labeled
by x. Define ¢(x,t) = ¢(X(x,t),t). Then the partial derivatives of ¢ are ¢x (X(x,t),t) = ¢x/ Xy and
Ot (X(x,t),t) = ¢r — ¢ X¢/ Xx. Plugging these equations in (1) we get
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T, X
- max max & B (PxXt & ~
sigl = [ [ £ (0 B o — B Xedxat = Slgl, ST, X &)

where the last equality defines two modified, or ‘reparametrized’, action functionals. For the first one,
S is considered as a functional of @ only, whereas in the second one we also treat it as a functional of X.
This leads to two different approaches to mesh adaptation, which we dub the control-theoretic strategy
and the Lagrange multiplier strategy, respectively. The ‘reparametrized’ field theories defined by S[¢]
and S[g, X] are both intrinsically covariant; however, it is convenient for computational purposes to
work with a space-time split and formulate the field dynamics as an initial value problem.

Outline

This paper is organized as follows. In Section 2 and Section 3 we take the view of infinite
dimensional manifolds of fields as configuration spaces, and develop the control-theoretic and
Lagrange multiplier strategies in that setting. It allows us to discretize our system in space first
and consider time discretization later on. It is clear from our exposition that the resulting integrators
are variational. In Section 4 we show how similar integrators can be constructed using the covariant
formalism of multisymplectic field theory. We also show how the integrators from the previous sections
can be interpreted as multisymplectic. In Section 5 we apply our integrators to the Sine-Gordon
equation and we present our numerical results. We summarize our work in Section 6 and discuss
several directions in which it can be extended.

2. Control-theoretic approach to r-adaptation

At first glance, it appears that the simplest and most straightforward way to construct an
r-adaptive variational integrator would be to discretize the physical system in a similar manner
to the general approach to variational integration, i.e. discretize the underlying variational principle,
and then derive the mesh equations and couple them to the physical equations in a way typical of the
existing r-adaptive algorithms. We explore this idea in this section and show that it indeed leads to
space adaptive integrators that are variational in nature. However, we also show that those integrators
do not exhibit the behavior expected of geometric integrators, such as good energy conservation. We
will refer to this strategy as control-theoretic, since in this description the field ¢ represents the physical
state of the system, while X can be interpreted as a control variable and the mesh equations as feedback

(see, e.g., [9]).
2.1. Reparametrized Lagrangian

For the moment let us assume that X(x, t) is a known function. We denote by (X, t) the function
such that &(.,t) = X(.,,t)71, thatis ¢(X(x,t),t) = x 1. We thus have S[p] = S[@(&(X,t),1)].

Proposition 1. Extremizing S[¢] with respect to ¢ is equivalent to extremizing S|¢| with respect to ¢.

Proof. The variational derivatives of S and S are related by the formula

6Slg] - d(x,t) = 8S[p(E(X,1),1)] - 6(E(X, 1), t). )

Suppose ¢(X, t) extremizes S[¢], i.e. 65[¢p] - 6¢ = 0 for all variations é¢. Given the function X(x, t),
define ¢(x,t) = ¢(X(x,t),t). Then by the formula above we have 5S[¢] = 0, so ¢ extremizes S.

1 We allow a little abuse of notation here: X denotes both the argument of ¢ and the change of variables X(x, t). If we wanted

to be more precise, we would write X = h(x, t).
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Conversely, suppose ¢(x,t) extremizes S, that is §S[¢] - §¢ = 0 for all variations J¢. Since we assume
X(.,t) is a homeomorphism, we can define ¢(X,t) = ¢(¢(X,t),t). Note that an arbitrary variation
5¢(X, t) induces the variation 6¢(x,t) = 6¢(X(x,t),t). Then we have 6S[¢] - 5¢ = 65[¢p] - 5¢ = 0 for
all variations d¢, so ¢(X, t) extremizes S[¢].

O

The corresponding instantaneous Lagrangian L : Q x W x R — R is

~ »Xmax ~
Lig, i 1] = /O L(@, 9z, g1, 1) dx ®)
with the Lagrangian density
5 X
L(9, 92 91,%,t) = L(9, % q)x,q) B2 X ©)
X

The function spaces Q and W must be chosen appropriately for the problem at hand, so that (5)
makes sense. For instance, for a free field we will have Q = H'([0, Xyuax]) and W = L2([0, Xpax])-
Since X(x, t) is a function of ¢, we are looking at a time-dependent system. Even though the energy
associated with (5) is not conserved, the energy of the original theory associated with (1)

E= [ (05 (00,00 ~ L0000 dX @)
=/OXW f— q)"Xt)a(Pt (o5 o (p;‘(ft) ~£(o o - ¢§f*)}xxdx ®)

is conserved. To see this, note that if ¢(X, t) extremizes S[¢| then dE/dt = 0 (computed from (7)).
Trivially, this means that dE /dt = 0 when formula (8) is invoked as well. Moreover, as we have noted

earlier, ¢(X, t) extremizes S[¢] iff ¢(x,t) extremizes S[¢]. This means that the energy (8) is constant on
solutions of the reparametrized theory.

2.2. Spatial Finite Element discretization

We begin with a discretization of the spatial dimension only, thus turning the original
infinite-dimensional problem into a time-continuous finite-dimensional Lagrangian system. Let
Ax = Xypax/ (N + 1) and define the reference uniform mesh x; = i- Ax fori =0,1,..., N + 1, and the
corresponding piecewise linear finite elements

SEL ifxg <x <y,
ﬂi(x) = _%/ if Xi <x< Xit1s (9)
0, otherwise.
We now restrict X(x, t) to be of the form
N+1

) =Y Xi(t)ni(x) (10)
i=0

with Xo(t) = 0, Xn+1(t) = Xmax and arbitrary X;(t), i = 1,2,..,N as long as X(,f) is a
homeomorphism for all ¢. In our context of numerical computations, the functions X; () represent the
current position of the i" mesh point. Define the finite element spaces

Qn = Wy = span(1o, .-, IN+1) (11)

and assume that Qn C Q, Wy C W. Let us denote a generic element of Qn by ¢ and a generic element
of Wy by ¢. We have the decompositions
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N+1 N+1
o() = Y yimi(x), ()=}, yimi(x)- (12)
i=0 i=0
The numbers (y;, ;) thus form natural (global) coordinates on Qn x Wy. We can now approximate
the dynamics of system (5) in the finite-dimensional space Qn x Wy. Let us consider the restriction
Ln = L|g, xwy xr of the Lagrangian (5) to Qn x Wy x R. In the chosen coordinates we have

y N+1 N+1
LN (Yo, s YN+1,H0, - UN+1 E) = [ Z yini(x Z yini(x } (13)

Note that, given the boundary conditions (2), yo, Yn+1, Yo, and yx 1 are fixed. We will thus no longer
write them as arguments of Ly.

The advantage of using a finite element discretization lies in the fact that the symplectic structure
induced on Qn x Wy by Ly is strictly a restriction (i.e., a pull-back) of the (pre-)symplectic structure?
on Q x W. This establishes a direct link between symplectic integration of the finite-dimensional
mechanical system (Qn x Wy, Ly) and the infinite-dimensional field theory (Q x W, L)

2.3. DAE formulation and time integration

We now consider time integration of the Lagrangian system (Qn x Wy, Ly). If the functions
X;(t) are known, then one can perform variational integration in the standard way, that is, define the
discrete Lagrangian L; : R x Qn x R x Qn — R and solve the corresponding discrete Euler-Lagrange
equations (see [2], [1]). Lett, = n-At forn = 0,1,2,... be an increasing sequence of times and
{y°,y!,...} the corresponding discrete path of the system in Q. The discrete Lagrangian Ly is an
approximation to the exact discrete Lagrangian LE, such that

~ ~ bnp1
Laltu,y" w1,y & Lty i,y = [ (0,900, 0 dt, (14)

where y" = (7, .., y}), v = (yi T, .., y%™) and y(t) is the solution of the Euler-Lagrange equations

corresponding to Ly with the boundary values y(t,) = y", y(t,41) = y"*!. Depending on the
quadrature we use to approximate the integral in (14), we obtain different types of variational
integrators. As will be discussed below, in r-adaptation one has to deal with stiff differential equations

n+1

or differential-algebraic equations, therefore higher order implicit integration in time is advisable (see
[11], [12]). We will employ variational partitioned Runge-Kutta methods. An s-stage Runge Kutta
method is constructed by choosing

S

Li(tw, ¥ tus1, ¥") = (tus1 — tn) Y biLn(Ys, Yi 1), (15)
i=1

where t; = t, + ci(t,+1 — tn), the right-hand side is extremized under the constraint y”Jrl =
y" + (ty11 — tn) Y5 b;Y;, and the internal stage variables Y;, Y; are related by Y; = y" + (t,41 —
tn) Z] 1 al]Y It can be shown that the variational integrator with the discrete Lagrangian (15) is
equivalent to an appropriately chosen symplectic partitioned Runge-Kutta method applied to the
Hamiltonian system corresponding to Ly (see [2], [1]). With this in mind we turn our semi-discrete
Lagrangian system (Qn x Wy, Ly) into the Hamiltonian system (Qy x W5, Hy) via the standard
Legendre transform

2 In most cases the symplectic structure of (Q x W, L) is only weakly-nondegenerate; see [10]
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N
HN(]/lz---/]/N/ P10 PNs X1, oo XN, X1y oo XN) = Z pivi — LN(]/1,...,]/N,]]1,...,]]N, i’), (16)
i=1

where p; = 9Ly /9y; and we explicitly stated the dependence on the positions X; and velocities X; of
the mesh points. The Hamiltonian equations take the form?

oA .

i = 5, (v P X, X), (17)
of .

pi=— ayi\] (y, P;X(t),X(t))

Suppose that the functions X;(t) are C! and Hy is smooth as a function of the yi’s, pi’s, Xi’s and Xi's
(note that these assumptions are used for simplicity, and can be easily relaxed if necessary, depending
on the regularity of the considered Lagrangian system). Then the assumptions of Picard’s theorem are
satisfied and there exists a unique C! flow Fiop = (Fty0 r Ft’; ,t) 1 QN X WY — On x WY, for (17). This
flow is symplectic.

However, in practice we do not know the X;’s and we in fact would like to be able to adjust them
on the fly’, based on the current behavior of the system. We will do that by introducing additional
constraint functions g;(y1, ..., yN, X1, ..., Xy ) and demanding that the conditions g; = 0 be satisfied at
all times*. The choice of these functions will be discussed in Section 2.4. This leads to the following
differential-algebraic system of index 1 (see [11], [12], [13])

/

vi = ai * (v X, X), (18)

pi = —aal_;N (y,p;X,X),

i

0=gi(y, X),
yi(to) = yl@,
pilto) = p”

fori =1, ..., N. Note that an initial condition for X is fixed by the constraints. This system is of index 1
because one has to differentiate the algebraic equations with respect to time once in order to reduce it
to an implicit ODE system. In fact, the implicit system will take the form

It is computationally more convenient to directly integrate the implicit Hamiltonian system p; = 9Ly /9y;, p; = 9Ln/y;,
but as long as system (1) is at least weakly-nondegenerate there is no theoretical issue with passing to the Hamiltonian
formulation, which we do for the clarity of our exposition.

In the context of Control Theory the constraints g; = 0 are called strict static state feedback. See [9].
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y= agfv(y, p; XX) (19)
p= —aal?@,p;X,X),

where X0 is a vector of arbitrary initial condition for the X;’s. Suppose again that Hy is a smooth

. - . 1 . dg 9g 0°Hy -
function of y, p, X and X. Futhermore, suppose that g is a C* function of y, X, and 35 — 3y aXa;]

invertible with its inverse bounded in a neighborhood of the exact solution.”> Then, by the Implicit
Function Theorem equations (19) can be solved explicitly for , p, X and the resulting explicit ODE
system will satisfy the assumptions of Picard’s theorem. Let (y(t), p(t), X(t)) be the unique C'
solution to this ODE system (and hence to (19)). We have the trivial result

Proposition 2. If g(y(©), X(O)) =0, then (y(t), p(t), X(t)) is a solution to (18).°

In practice we would like to integrate system (18). A question arises in what sense is this system
symplectic and in what sense a numerical integration scheme for this system can be regarded as
variational. Let us address these issues.

Proposition 3. Let (y(t), p(t), X(t)) be a solution to (18) and use this X (t) to form the Hamiltonian system
(17). Then we have that

y(t) =F 99,  p)=F 9 p)
and

3(FL v, p0), X(1) =0,

where Fy, ¢ (1, p) is the symplectic flow for (17).

Proof. Note that the first two equations of (18) are the same as (17), therefore (y(t), p(t)) trivially
satisfies (17) with the initial conditions y(tp) = y(©) and p(ty) = p©). Since the flow map F,; is
unique, we must have y(t) = Ftyolt(y(o), p0) and p(t) = th,t (9, p©)). Then we also must have that
g (Ftyo ,t(y(o), p©), X(t)) = 0, that is, the constraints are satisfied along one particular integral curve of
(17) that passes through (y(©, p(0)) at t,.

O

Suppose we now would like to find a numerical approximation of the solution to (17) using an
s-stage partitioned Runge-Kutta method with coefficients a;;, b;, a;;, b;, ¢; ([14], [1]). The numerical
scheme will take the form

Again, these assumptions can be relaxed if necessary.
Note that there might be other solutions, as for any given y(®) there might be more than one X (%) that solves the constraint
equations.

6
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yi — 9HN (Y% P X (b + i), X0+ i), (20)
9p
Pi = ag/N (Yl Pl X(i’n + CiAt),X(tn + CZ'At)),
. s ..
Y =y"+ ALY a;Y,

j=1

. S )
P'=p"+At) a;P,
j=1

s »
y' =y + Aty bYY,
i=1

S .
pn+1 —_ pn T+ At ZEiPl/
i=1

where Y?, Y/, P!, P! are the internal stages and At is the integration timestep. Let us apply the same
partitioned Runge-Kutta method to (18). In order to compute the internal stages Q', Q' of the X
variable we use the state-space form approach, that is, we demand that the constraints and their time
derivatives be satisfied (see [12]). The new step value X"*! is computed by solving the constraints as
well. The resulting numerical scheme is thus

L aHN L
i i pi. i
Y = ETE (Y P; Q' Q) (21)
. aHN L
i_ i pi.A A
P = oy (Y P, Q)
S .
Y = yn + At Zain],

j=1
. S .
P'=p" +At) a;P,
j=1
Q),

=g(Y/,
g i z ag i i\ i
@Of Q)Y+ 55 (YL,Q) O,

Yt =yt At Z bY!,
i=1

S .
PnJrl _ pn 4+ At ZEiPl/
i=1
0= g(y”“,X”H).

We have the following trivial observation.

Proposition 4. If X(t) is defined to be a C' interpolation of the internal stages Q', Q' at times t, + c; At (that
is, if the values X (ty + c;At), X (t, + c;At) coincide with Q', Q'), then the schemes (20) and (21) give the same
numerical approximations y", p" to the exact solution y(t), p(t).

Intuitively, Proposition 4 states that we can apply a symplectic partitioned Runge-Kutta method
to the DAE system (18), which solves both for X(t) and (y(t), p(t)), and the result will be the same as
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if we performed a symplectic integration of the Hamiltonian system (17) for (y(t), p(t)) with a known
X(t).

2.4. Moving mesh partial differential equations

The concept of equidistribution is the most popular paradigm of r-adaptation (see [7], [8]).
Given a continuous mesh density function p(X), the equidistribution principle seeks to find a mesh
0= Xp < X7 <... < XN+1 = Xpax such that the following holds

Mo ax = [ o)X = = [ o(x)dx 2
| eyax = [exyax .= [ p(x)ax, @)

1 XN
that is, the quantity represented by the density function is equidistributed among all cells. In the
continuous setting we will say that the reparametrization X = X(x) equidistributes p(X) if

X (x) x
/0 p(X)dX = m@ (23)

where o = fOX"’” p(X) dX is the total amount of the equidistributed quantity. Differentiate this equation
with respect to x to obtain
0X 1
X(x))=— = . 24
pX(x) 5 =50 1)

It is still a global condition in the sense that ¢ has to be known. For computational purposes it is
convenient to differentiate this relation again and consider the following partial differential equation

2 (px(N ) =0 (25)

with the boundary conditions X(0) = 0, X(Xymax) = Xmax- The choice of the mesh density function
p(X) is typically problem-dependent and the subject of much research. A popular example is the
generalized solution arclength given by

p=y1+a2(32) = [rrar( L) (26)

It is often used to construct meshes that can follow moving fronts with locally high gradients ([7], [8]).
With this choice, equation (25) is equivalent to

o PxPxx + Xy Xyx =0, (27)

assuming X, > 0, which we demand anyway. A finite difference discretization on the mesh x; =i - Ax
gives us the set of contraints

gi(]/ll --~ryN/Xlr weey XN) =
(Y1 — vi)* + (Xip1 — Xi)? — (i —yio1)? — (X — Xi21)? =0, (28)

with the previously defined y;’s and X;’s. This set of constraints can be used in (18).

2.5. Example

To illustrate these ideas let us consider the Lagrangian density

1
L(p px 1) = 597 = W(9x)- (29)

The reparametrized Lagrangian (5) takes the form
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- Ximax 1 x 2 ¥
Lig, git] = /O LXX(@ - ;%Xf) = w(;’zx)xx] dx. (30)
Let N =1and ¢; = ¢r = 0. Then
p(x,t) = y1()m(x), X(x,t) = Xp(£)11.(x) + Ximax 72(x). (31)

The semi-discrete Lagrangian is

6 X1 (t) 6 Ximax — X1

The Legendre transform gives p; = 0Ly /01 = Xmax1/3, hence the semi-discrete Hamiltonian is

2 2
iN(yllyl/ i’) :Xl(t) (yl — yl Xl(t)> + M <yl + ;Vlmxl(t)>

3 5 1 XmaxXj 2

o Xy, X)) = pp L Smexfy
NP2 =P 6 X K — X
n __n _
—I—W(X1>X1+W( Xmax—Xl)(X"’”" X1). (33)
The corresponding DAE system is
3
7 — , 34
h=x—n (34)
: 1 XpaxX} (Y1 / n
= —Nn—W +WH — ),
1= 330 (Ko — X1) 7! (X1> ( Xmax—Xl)

0= g1(y1, X1)-

This system is to be solved for the unknown functions y; (), p1(t) and X (¢). It is of index 1, because
we have three unknown functions and only two differential equations — the algebraic equation has to
be differentiated once in order to obtain a missing ODE.

2.6. Backward error analysis

The true power of symplectic integration of Hamiltonian equations is revealed through backward
error analysis: it can be shown that a symplectic integrator for a Hamiltonian system with the
Hamiltonian H(g, p) defines the exact flow for a nearby Hamiltonian system, whose Hamiltonian can
be expressed as the asymptotic series

A(q,p) = H(q,p) + MtHy(q, p) + APH3(q,p) + ... (35)

Owing to this fact, under some additional assumptions symplectic numerical schemes nearly conserve
the original Hamiltonian H(g, p) over exponentially long time intervals. See [1] for details.

Let us briefly review the results of backward error analysis for the integrator (21). Suppose g(y, X)
satisfies the assumptions of the Implicit Function Theorem. Then, at least locally, we can solve the
constraint X = h(y). The Hamiltonian DAE system (18) can be then written as the following (implicit)
ODE system for y and p
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oH 1N
i = (v rh) K w)y), (36)
oH N
p= —TyN(y, pih(y), 1 (1)7)-

Since we used the state-space formulation, the numerical scheme (21) is equivalent to applying the
same partitioned Runge-Kutta method to (36), that is, we have Q' = h(Y’) and Q' = I/ (Y?)Y. We
computed the corresponding modified equation for several symplectic methods, namely Gauss and
Lobatto IIIA-IIIB quadratures. Unfortunately, none of the quadratures resulted in a form akin to (36)
for some modified Hamiltonian function /4 related to Hy by a series similar to (35). This hints at
the fact that we should not expect this integrator to show excellent energy conservation over long
integration times. One could also consider the implicit ODE system (19), which has an obvious triple
partitioned structure, and apply a different Runge-Kutta method to each variable y, p and X. Although
we did not pursue this idea further, it seems unlikely it would bring a desirable result.

We therefore conclude that the control-theoretic strategy, while yielding a perfectly legitimate
numerical method, does not take the full advantage of the underlying geometric structures. Let us
point out that, while we used a variational discretization of the governing physical PDE, the mesh
equations were coupled in a manner that is typical of the existing r-adaptive methods (see [7], [8]). We
now turn our attention to a second approach, which offers a novel way of coupling the mesh equations
to the physical equations.

3. Lagrange multiplier approach to r-adaptation

As we saw in Section 2, discretization of the variational principle alone is not sufficient if we
would like to accurately capture the geometric properties of the physical system described by (1). In
this section we propose a new technique of coupling the mesh equations to the physical equations. Our
idea is based on the observation that in r-adaptation the number of mesh points is constant, therefore
we can treat them as pseudo-particles, and we can incorporate their dynamics into the variational
principle. We show that this strategy results in integrators that much better preserve the energy of the
considered system.

3.1. Reparametrized Lagrangian

In this approach, we treat X(x,t) as an independent field, that is, another degree of freedom,
and we will treat the ‘modified” action (3) as a functional of both ¢ and X: S = S[g, X]. For the
purpose of the derivations below, we assume that ¢(.,t) and X(.,t) are continuous and piecewise
C!. One could consider the closure of this space in the topology of either Hilbert or Banach space
of sufficiently integrable functions and interpret differentiation in a sufficiently weak sense, but this
functional-analytic aspect is of little importance for the developments in this section. We refer the
interested reader to [15] and [16]. As in Section 2.1, let (X, t) be the function such that &(.,t) =
X(.,t)7L, thatis &(X(x,t),t) = x. Then S[, X] = S[@(&(X,t),t)]. We begin with two propositions and
one corollary which will be important for the rest of our exposition.

Proposition 5. Extremizing S|¢] with respect to ¢ is equivalent to extremizing S|, X] with respect to both ¢
and X.

Proof. The variational derivatives of S and S are related by the formula



288

200

291

292

295

296

297

300

301

302

303

304

307

308

309

311

312

313

314

316

Version July 18, 2019 submitted to Mathematics 12 of 56

615[g, X] - 6¢(x,t) = 8S[p(E(X, 1), 1)] - 6(E(X, 1), 1), (37)
5,819, X] - X (x,t) = 5S[@(E(X, ), 1)] - (— max@(x t),t)),

where é; and 6, denote differentiation with respect to the first and second argument, respectively.
Suppose ¢(X, t) extremizes S[¢], i.e. 6S[¢] - 5¢ = 0 for all variations d¢. Choose an arbitrary X(x, t),
such that X(., t) is a (sufficiently smooth) homeomorphism and define ¢(x,t) = $(X(x,t),t). Then by
the formula above we have 6, 5[, X] = 0and 6,5[¢, X] = 0, so the pair (¢, X) extremizes S. Conversely,
suppose the pair (¢, X) extremizes S, that is 515[@, X] - ¢ = 0 and 6,S[¢, X] - §X = 0 for all variations
d¢ and 5X. Since we assume X (., t) is a homeomorphism, we can define ¢(X, t) = ¢(¢(X, t),t). Note
that an arbitrary variation d¢ (X, t) induces the variation d¢(x,t) = d¢(X(x,t),t). Then we have
3S[¢] - 6¢ = 615, X] - 6¢ = 0 for all variations 6¢, so ¢(X, t) extremizes S[¢)].

O

Proposition 6. The equation 6,5[p, X] = 0 is implied by the equation 51S[¢p, X] = 0.

Proof. As we saw in the proof of Proposition 5, the condition §15[¢, X] - §¢ = 0 implies §S = 0. By
(37), this in turn implies 6,5, X] - 6X = 0 for all 6X. Note that this argument cannot be reversed:
5,5[@, X] - 6X = 0 does not imply §S = 0 when ¢, = 0.

O

Corollary 1. The field theory described by S|g, X] is degenerate and the solutions to the Euler-Lagrange
equations are not unique.

3.2. Spatial Finite Element discretization

The Lagrangian of the ‘reparametrized’ theory L:OxGxWxZ—R,

- Ximax X
Lo X, oo X = [ £(0, % g0 = B ) Xed, (38)

7
X

has the same form as (5) (we only treat it as a functional of X and X; as well), where Q, G, W
and Z are spaces of continuous and piecewise C! functions, as mentioned before. We again let
Ax = Xpmax/ (N + 1) and define the uniform mesh x; = i - Ax fori = 0,1, ..., N + 1. Define the finite
element spaces

Qn = Gy = Wy = Zn = span(1o, ..., IN+1), (39)

where we used the finite elements (9). We have Qn C Q, Gy C G, Wy C W, Zy C Z. In addition to
(12) we also consider

N+1 ) N+1 )
X(x) = ;) Xin;i(x), X(x) = ;) Xini(x). (40)

The numbers (y;, X;,;, X;) thus form natural (global) coordinates on Qn x Gy X Wy X Zy. We again
consider the restricted Lagrangian Ly =1] Onx Gy xWyxZy- In the chosen coordinates

EN (W10 YN Xt XN 1 G, K Xv) = L] 0(3), X(2), (), X(x)], (41)

where ¢(x), X(x), ¢(x), X(x) are defined by (12) and (40). Once again, we refrain from writing v,
YN11, Y0, YN+1, X0, Xn11, Xo and Xy 41 as arguments of Ly in the remainder of this section, as those
are not actual degrees of freedom.
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3.3. Invertibility of the Legendre Transform

For simplicity, let us restrict our considerations to Lagrangian densities of the form

1
L(p,¢x 1) = 507 = R(9x,9)- (42)

We chose a kinetic term that is most common in applications. The corresponding ‘reparametrized’
Lagrangian is

= Xinax 1
Llg, X, g1, Xi] = /0 EXx(q)t — %

where we kept only the terms that involve the velocities ¢; and X;. The semi-discrete Lagrangian

2
xt) dx — ..., (43)

becomes

In= ixzﬂgxz[(y - %‘L—%ixi)u U= MX) (i1 - LY

Xit1 — X Xit1 — X Xit1 — X;
, Vit —Yi v \?
] — X — ... 44
+ (]/Hl Xi+1 — Xi z+1> } ( )

Let us define the conjugate momenta via the Legendre Transform

JLN JdLN .
P = , S, = —, =1,2,.. N. 45
pi a]]i i Fye 1 (45)
This can be written as
p1 }{'1
51 Xl
o= Ma@ )| ], (46)
PN QN
SN XN

where the 2N x 2N mass matrix My (y, X) has the following block tridiagonal structure

Ay B
By Ay B
B, As; Bs
Fin(y,X) = , )
- By
Bny-1 AN
with the 2 x 2 blocks
1 1 1 1 1 1
s .4+ 15 — L6 17ii1 — L6y 1s. — L6
A = 3Vi—1 3V 3Vi—-1/i 3V V)i , B: — 6Yi 6Yi li , (48)
: ( —30ii1%ic1— 36 30i17Ey + 3077 l —80vi g0}
where
0 = Xiy1 — X, g = S I (49)
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From now on we will always assume 6; > 0, as we demand that X(x) = Zili T)l Xini(x) be a
homeomorphism. We also have

1
50101 (vi1 = m)* (50)

detA; =
Proposition 7. The mass matrix My (y, X) is non-singular almost everywhere (as a function of the y;'s and
Xi’s) and singular iff v;_q = <y; for some i.

Proof. We will compute the determinant of My(y, X) by transforming (47) into a block upper
triangular form by zeroing the blocks B; below the diagonal. Let us start with the block B;. We
use linear combinations of the first two rows of the mass matrix to zero the elements of the block B;
below the diagonal. Suppose g = 1. Then it is easy to see that the first two rows of the mass matrix
are not linearly independent, so the determinant of the mass matrix is zero. Assume g # 1. Then
by (50) the block A; is invertible. We multiply the first two rows of the mass matrix by B A; Land
subtract the result from the third and fourth rows. This zeroes the block B; below the diagonal and
replaces the block A; by

C, = Ay — B1A]'B;. (51)

We now zero the block By below the diagonal in a similar fashion. After n — 1 steps of this procedure
the mass matrix is transformed into

G B
G B

Cu Bu . (52)
By An+1

Bn-1
Bny-1 AN

In a moment we will see that C,, is singular iff ¢,,_1 = 9, and in that case the two rows of the matrix
above that contain C,, and B,, are linearly dependent, thus making the mass matrix singular. Suppose
Yn—1 7 Yn, so that Cy is invertible. In the next step of our procedure the block A, 1 is replaced by

Cpi1 = Aps1 — BuC;, 'B,. (53)

Together with the condition C; = A; this gives us a recurrence. By induction on n we find that

1 1 1 1
10n-1+ 30n —1%n-17n-1— 30nTn
C. — §on-1713 £on-1Tn-1 "3 54

! ( *%571—1'7;1—1 - %511'771 4115;1—1')’721_1 + %511')’% &4

and
1 2
detCi = 56i-10i(vi-1 = 711)% (55)
which justifies our assumptions on the invertibility of the blocks C;. We can now express the
determinant of the mass matrix as detC; - ... - det Cp. The final formula is

600283 _10n

det My (y, X) = 9. N1 (70 = 711)% (N1 — )% (56)
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We see that the mass matrix becomes singular iff ;1 = ; for some i and this condition defines a
measure zero subset of R?V.
O

Remark I.

This result shows that the finite-dimensional system described by the semi-discrete Lagrangian
(44) is non-degenerate almost everywhere. This means that, unlike in the continuous case, the
Euler-Lagrange equations corresponding to the variations of the y;’s and X;’s are independent of
each other (almost everywhere) and the equations corresponding to the X;’s are in fact necessary for
the correct description of the dynamics. This can also be seen in a more general way. Owing to the fact
we are considering a finite element approximation, the semi-discrete action functional Sy is simply a
restriction of 5, and therefore formulas (37) still hold. The corresponding Euler-Lagrange equations
take the form

51§[q0, X]-d¢(x,t) =0, (57)
5,5, X] - 6X(x,t) =0,

which must hold for all variations 5 (x,t) = YN | 8y; (£)77;(x) and 6X(x,t) = YN, 6X;(t)y;(x). Since
we are working in a finite dimensional subspace, the second equation now does not follow from the
first equation. To see this, consider a particular variation 6X(x,t) = 6X(t)yx(x) for some k, where
60Xy # 0. Then we have

o0 — Y1 OXp () (%), ifxpq < x < xy,
— ==0X (1) = =7k 6 Xy (£) (%), if xp < x < xp4q, (58)
0, otherwise,

which is discontinuous at x = x and cannot be expressed as YV ; dy;(t)7;(x) for any dy;(t), unless
Yk—1 = Yk Therefore, we cannot invoke the first equation to show that 6,5[¢, X] - 6X(x,t) = 0. The
second equation becomes independent.

Remark II.

It is also instructive to realize what exactly happens when 7;_1 = . This means that locally in
the interval [X}_1, Xy 1] the field ¢(X, t) is a straight line with the slope . It also means that there
are infinitely many values (X, yx) that reproduce the same local shape of ¢(X, t). This reflects the
arbitrariness of X(x, t) in the infinite-dimensional setting. In the finite element setting, however, this
holds only when the points (X1, yx—1), (Xi, ¥x) and (Xy11, Yx+1) line up. Otherwise any change to
the middle point changes the shape of ¢(X, t). See Figure 1.

3.4. Existence and uniqueness of solutions

Since the Legendre Transform (46) becomes singular at some points, this raises a question about
the existence and uniqueness of the solutions to the Euler-Lagrange equations (57). In this section we
provide a partial answer to this problem. We will begin by computing the Lagrangian symplectic form

N
ON = ZdyiAdpi—i-dXi/\dSi, (59)

i=1
where p; and S; are given by (45). For notational convenience we will collectively denote q =
(y1, X1, yn, Xn)T and ¢ = (91, X1, ..., yn, Xn)T. Then in the ordered basis (a%, ey aq%, %, ey aq%)

the symplectic form can be represented by the matrix
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(X1r+l’yk+1)

(Xk+1 'yk+1) (XIH Vi1 )

Y
Y

X X

Figure 1. Left: If 7y, _1 # 7, then any change to the middle point changes the local shape of ¢(X, t).
Right: If yx_1 = 7, then there are infinitely many possible positions for (Xj, yx) that reproduce the
local linear shape of ¢(X, f).

On(q.9) = ( fﬁz(z)) M%(q) ) (60)

22 where the 2N x 2N block Ay (g, 4) has the further block tridiagonal structure

I A
-AT T, A
i AT T3 A;
Bn(g,9) = (61)
AN-1
*AIT\/—l I'n
ses with the 2 x 2 blocks
r— | | . 0 o _y+13y 1 1;' Yio1 + ‘g Loy, I
Yit1 5%71 + Xz>13+2Xi Yi1— 2Xi+3Xi+1 Vi 0
Xi+X; Jiv1—Yi | Xi+2X;
Ai = ( 3 }XHX - yx+x S ) (62)
Jiv1—Yi itXi i+ Xi )
y+16y + 'Z 1oy, _ ZH%‘Z
se  In this form, it is easy to see that
3 _ 5 2
det O (q,4) = (det My(q))", 63)
ses 50 the symplectic form is singular whenever the mass matrix is.
386 The energy corresponding to the Lagrangian (44) can be written as
- . 1 T A~ . N Xk+1 Xk+l — Xk
En(g,4) = 50" Mn(9)4+ ) /x R (e i) +]/k+l77k+1(x)>de- (64)
k=0 %

sz In the chosen coordinates, dEy can be represented by the row vector dEy = (dEn /941, ..., 0EN /9dan ).
sss It turns out that
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@i =( o5 (65)
N(g.9) ( Mn(q)q )
;0 where the vector ¢ has the following block structure
1
¢ = : . (66)
N

300 Each of these blocks has the form ¢, = (ém,ék,z)T. Through basic algebraic manipulations and
301 integration by parts, one finds that

Gy = Y1 2Xeg1 + Xi) + 0k X1 — Xio1) — Pt (X +2X51)
’ 6
X2+ X Xp1+ X2, Xl%—&-l + Xpp1 Xi + X2
Yi—1 — Yk
3 3
1 (% oR
Y /XH dpx (kalfykflﬂkfl(x) + yknk(x)) dx

1 /xk+1 oR

TAx )y ogx ('Ykrykﬂk(x) + Yi+17k+1 (x)) dx (67)
Xk

1 1
+ Y1 [R(fy"*l’yk) T Ax Sy, R('kalr]/k—lﬂk—l(x) +yk17k(x)) dx}

1 X41

1
o {R(Wk,yk) “ax )y, R(')’k/ Yk (x) +yk+l77k+1(x)) dx],

302 and

Y2y Vk—1Vk — U1 — Vi
6

Xp+ XK+ X8, 5 Xpa + Xen X+ X¢
— . Y1 + 6 Tk

Vk-1 /x" oR
_ - Y 11 (x) + x) | dx

Ax | . 39x ('Yk U Yk-11k—1(%) + yare( ))
Yk /xk+1 oR

T Ar . oPx (’Yk, YT (x) + yk+l’7k+1(x)) dx 68)

_,_L/Xk R( (x) + (x)) dx
Ax Jx, Yk—1,Yk—1Tk-1 YiTk

1 X+1
Y / R (71 a7 (x) + Yt () d

Xk

Sko =

303 We are now ready to consider the generalized Hamiltonian equation
izQn = dEy, (69)

s0a  which we solve for the vector field Z = 21251 ®;9/0q; + B; 0/94;. In the matrix representation this
305 equation takes the form

Ol (q.4) - ( g > = dE{ (4, 9)- (70)
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Equations of this form are called (quasilinear) implicit ODEs (see [17], [18]). If the symplectic form is
nonsingular in a neighborhood of (§(%,4(?)), then the equation can be solved directly via

Z = [On(q.9)]" 4EN(9,4)
to obtain the standard explicit ODE form and standard existence/uniqueness theorems (Picard’s,
Peano’s, etc.) of ODE theory can be invoked to show local existence and uniqueness of the flow of Z in

a neighborhood of ({9, 4()). If, however, the symplectic form is singular at (q(©), 4(%)), then there are
two possibilities. The first case is

dEL (7,4 ¢ Range OF (4, 4?) (71)

and it means there is no solution for Z at (g(%),§(%)). This type of singularity is called an algebraic one
and it leads to so called impasse points (see [19]-[17], [18]).
The other case is

dE§(99,4%) € Range OF (49, 4() (72)

and it means that there exists a nonunique solution Z at (4(?),4(9)). This type of singularity is called a
geometric one. If (¢(©),4(0)) is a limit of regular points of (70) (i.e. points where the symplectic form is
nonsingular), then there might exist an integral curve of Z passing through (g(%),4(0)). See [19], [20],
[21], [22], [23], [17], [18] for more details.

Proposition 8. The singularities of the symplectic form Qn(q, 4) are geometric.

Proof. Suppose that the mass matrix (and thus the symplectic form) is singular at (§(?),4(9)). Using
the block structures (60) and (65) we can write (70) as the system

~An(q?, 4 a — My ) =¢,
Mn(g9) a = My (q?) 4. (73)

The second equation implies that there exists a solution « = §(?). In fact this is the only solution
we are interested in, since it satisfies the second order condition: the Euler-Lagrange equations
underlying the variationl principle are second order, so we are only interested in solutions of the form
Z =y2N 43:9/0q; + B; 9/94;. The first equation can be rewritten as

Mn(q©) = —¢ — An (g, 4) 4. (74)

Since the mass matrix is singular, we must have ;_1 = ¥, for some k. As we saw in Section 3.3, this
means that the two rows of the k™ ‘block row” of the mass matrix (i.e., the rows containing the blocks
By_1, A and By) are not linearly independent. In fact we have

(Bk—1)2+ = —=7k(Br—1)1+, (Ar)2e = =7 (Ag)14s (Bik)2+ = —7i(Bk) 14/ (75)

where a,,. denotes the m™ row of the matrix a. Equation (74) will have a solution for g iff the RHS
satisfies a similar scaling condition in the the kth ‘block element’. Using formulas (62), (67) and (68), we
show that —& — Ay 4(*) indeed has this property. Hence, dE%,(q(?),4(?)) € Range OF(4®,4(®) and
(99,40 is a geometric singularity. Moreover, since yx_; = -yx defines a hypersurface in R?N x R2V,
(39,4 is a limit of regular points.

O
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Remark I.

Numerical time integration of the semi-discrete equations of motion (70) has to deal with the
singularity points of the symplectic form. While there are some numerical algorithms allowing one to
get past singular hypersurfaces (see [17]), it might not be very practical from the application point of
view. Note that, unlike in the continuous case, the time evolution of the meshpoints X;’s is governed
by the equations of motion, so the user does not have any influence on how the mesh is adapted. More
importantly, there is no built-in mechanism that would prevent mesh tangling. Some preliminary
numerical experiments show that the mesh points eventually collapse when started with nonzero
initial velocities.

Remark II.

The singularities of the mass matrix (47) bear some similarities to the singularities of the mass
matrices encountered in the Moving Finite Element method. In [24] and [25] the authors proposed
introducing a small ‘internodal” viscosity which penalizes the method for relative motion between the
nodes and thus regularizes the mass matrix. A similar idea could be applied in our case: one could add
some small ¢ kinetic terms to the Lagrangian (44) in order to regularize the Legendre Transform. In
light of the remark made above, we did not follow this idea further and decided to take a different route
instead, as described in the following sections. However, investigating further similarities between
our variational approach and the Moving Finite Element method might be worthwhile. There also
might be some connection to the r-adaptive method presented in [26]: the evolution of the mesh in that
method is also set by the equations of motion, although the authors considered a different variational
principle and different theoretical reasoning to justify the validity of their approach.

3.5. Constraints and adaptation strategy

As we saw in Section 3.4, upon discretization we lose the arbitrariness of X(x, ) and the evolution
of X;(t) is governed by the equations of motion, while we still want to be able to select a desired mesh
adaptation strategy, like (28). This could be done by augmenting the Lagrangian (44) with Lagrange
multipliers corresponding to each constraint g;. However, it is not obvious that the dynamics of the
constrained system as defined would reflect in any way the behavior of the approximated system (42).
We will show that the constraints can be added via Lagrange multipliers already at the continuous
level (42) and the continuous system as defined can be then discretized to arrive at (44) with the desired
adaptation constraints.

3.5.1. Global constraint

As mentioned before, eventually we would like to impose the constraints

gi(yl,...,yN, Xl/ ooy XN) =0 i= 1,...,N (76)

on the semi-discrete system (44). Let us assume that ¢ : R?N — RN, ¢ = (gy,...,¢n)7 is C! and
0 is a regular value of g, so that (76) defines a submanifold. To see how these constraints can be
introduced at the continuous level, let us select uniformly distributed points x; =i-Ax,i =0,.., N +1,
Ax = Xyyax/ (N 4 1) and demand that the constraints

gi((p(xl,t),..., P(xn, 1), X(x1, 1), ) X (XN, t)) =0, i=1,.,N (77)

be satisfied by ¢(x, t) and X(x,t). One way of imposing these constraints is solving the system
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515[p, X] - 6¢p(x,t) =0 for all 6¢g(x, t), (78)

8i (91, 1), e 9o, £), X(x1, )y X (23, 1) ) = 0, i=1,.,N.

This system consists of one Euler-Lagrange equation that corresponds to extremizing S with respect
to ¢ (we saw in Section 3.1 that the other Euler-Lagrange equation is not independent) and a set
of constraints enforced at some pre-selected points x;. Note, that upon finite element discretization
on a mesh coinciding with the pre-selected points this system reduces to the approach presented in
Section 2: we minimize the discrete action with respect to the y;’s only and supplement the resulting
equations with the constraints (76).

Another way that we want to explore consists in using Lagrange multipliers. Define the auxiliary
action functional

~ ~ N Tmﬂx
Scle, X, Ay] = Slo, X] — 2/0 Ai(t) ~gi(g0(x1,t), o @(xn, 1), X(xq,t), ...,X(xN,t)> dt. (79)
i=1

We will assume that the Lagrange multipliers A;(t) are at least continuous in time. According to the
method of Lagrange multipliers, we seek the stationary points of Sc. This leads to the following system
of equations

~ N Tmax a .
5S[p, X]-dp(x,t) — Zi Z%/o Ai(t) a—ij dg(xj,t)dt =0 forall 6¢(x,t),
i=1j=
~ N N max ag
5,809, X] - 6X(x,t) — ¥ 2/ Ailt) 556 (xj, 1) dt = 0 for all 6X (x, 1),
i=1j=1"0 j
gi((p(x1,t), s @(XN, 1), X(x1, ), ...,X(xN,t)) =0, i=1,..,N, (80)

where for clarity we suppressed writing the arguments of 3—5; and g—)g(l]

Equation (78) is more intuitive, because we directly use the arbitrariness of X(x, ) and simply
restrict it further by imposing constraints. It is not immediately obvious how solutions of (78) and
(80) relate to each other. We would like both systems to be ‘equivalent’ in some sense, or at least their
solution sets to overlap. Let us investigate this issue in more detail.

Suppose (¢, X) satisfy (78). Then it is quite trivial to see that (¢, X, A1, ..., Ax) such that Ay =0
satisfy (80): the second equation is implied by the first one and the other equations coincide with those
of (78). At this point it should be obvious that system (80) may have more solutions for ¢ and X than
system (78).

Proposition 9. The only solutions (¢, X, A1, ..., AN) to (80) that satisfy (78) as well are those with Aj = 0 for
all k.

Proof. Suppose (¢, X, A1, ..., An) satisfy both (78) and (80). System (78) implies that §;S - ¢ = 0 and
5,5 - 86X = 0. Using this in system (80) gives
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N Tinax N ag
Y / dtsg(xj,t) Y Ai(t) =2 =0 for all 5¢(x, t),
=170 i=1 %;j
N Tax N ag
y / deoxX(x;,t) Y Ai(t) 281 — g for all 5X (x, £). (81)
j=1"0 i=1 9X;

In particular, this has to hold for variations ¢ and 6 X such that 6¢(x;j,t) = 6X(xj,t) = v(t) - 6, where
v(t) is an arbitrary continuous function of time. If we further assume that for all x € [0, Xmax] the
functions ¢(x,.) and X(x,.) are continuous, both Y-, A;(#) g% and YN, Ai(1) g% are continuous and

we get

Dg(q)(xl,t),...,qo(xN,t),X(xl,t),...,X(xN,t))T A(t) =0 (82)

for all t, where A = (Aq, ..., AN)T and the N x 2N matrix Dg = [g% aa—%(] - is the derivative of g.
ik=1,..,

Since we assumed that 0 is a regular value of ¢ and the constraint ¢ = 0 is satisfied by ¢ and X, we
have that for all ¢ the matrix Dg has full rank—that is, there exists a nonsingular N x N submatrix &.
Then the equation ZTA(#) = 0 implies A = 0.

O

We see that considering Lagrange multipliers in (79) makes sense at the continuous level. We can
now perform a finite element discretization. The auxiliary LagrangianLc : Q x GXx W x Zx RN — R
corresponding to (79) can be written as

N
LC[(P/ Xr Got/ Xtr /\k] = L[(P/ X/ (Pt/ Xt} - Z )\i : gi (qo(xl)r"-/ (P(xN)rX(xl)l-"r X(.XN)), (83)
i=1

where L is the Lagrangian of the unconstrained theory and has been defined by (38). Let us choose a
uniform mesh coinciding with the pre-selected points x;. As in Section 3.2, we consider the restriction

LCN = LC‘QNXGNXWNXZNXRN and we get

N
Len (Wi X 0k Xio Am) = L (Vi X, Vo X1) = Y Ai - &Y, 0 YN, X1y oo XN)- (84)
i=1

We see that the semi-discrete Lagrangian Lcy is obtained from the semi-discrete Lagrangian Ly by
adding the constraints g; directly at the semi-discrete level, which is exactly what we set out to do at
the beginning of this section. However, in the semi-discrete setting we cannot expect the Lagrange
multipliers to vanish for solutions of interest. This is because there is no semi-discrete counterpart
of Proposition 9. On one hand, the semi-discrete version of (78) (that is, the approach presented in
Section 2) does not imply that 6,5 - §X = 0, so the above proof will not work. On the other hand,
if we supplement (78) with the equation corresponding to variations of X, then the finite element
discretization will not have solutions, unless the constraint functions are integrals of motion of the
system described by Ly (i, Xj, Yk, X;), which generally is not the case. Nonetheless, it is reasonable
to expect that if the continuous system (78) has a solution, then the Lagrange multipliers of the
semi-discrete system (84) should remain small.

Defining constraints by Equations (77) allowed us to use the same finite element discretization for
both L and the constraints, and to prove some correspondence between the solutions of (78) and (80).
However, constraints (77) are global in the sense that they depend on the values of the fields ¢ and X
at different points in space. Moreover, these constraints do not determine unique solutions to (78) and
(80), which is a little cumbersome when discussing multisymplecticity (see Section 4).
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3.5.2. Local constraint

In Section 2.4 we discussed how some adaptation constraints of interest can be derived from
certain partial differential equations based on the equidistribution principle, for instance equation (27).
We can view these PDEs as local constraints that only depend on pointwise values of the fields ¢, X
and their spatial derivatives. Let G = G(¢, X, ¢x, Xx, ¢xx, Xxx, ...) represent such a local constraint.
Then, similarly to (78), we can write our control-theoretic strategy from Section 2 as

515[@, X] - 6 (x,t) =0 forall 6¢(x,t), (85)
G((P/ X/ (PX/ XXI §0xx/ XXXI ) = 0

Note that higher order derivatives of the fields may require the use of higher degree basis functions
than the ones in (9), or of finite differences instead.
The Lagrange multiplier approach consists in defining the auxiliary Lagrangian

~ ~ XIIHLY
Lelo, X, o1, X0 A] = Lig, X, @1, Xt — /0 Ax) - G, X, 9, X, Prxs Xy ) d. (86)

Suppose that the pair (¢, X) satisfies (85). Then, much like in Section 3.5.1, one can easily check that
the triple (¢, X, A = 0) satisfies the Euler-Lagrange equations associated with (86). However, an analog
of Proposition 9 does not seem to be very interesting in this case, therefore we are not proving it here.

Introducing the constraints this way is convenient, because the Lagrangian (86) then represents
a constrained multisymplectic field theory with a local constraint, which makes the analysis of
multisymplecticity easier (see Section 4). The disadvantage is that discretization of (86) requires
mixed methods. We will use the linear finite elements (9) to discretize L (@, X, 1, X¢], but the constraint
term will be approximated via finite differences. This way we again obtain the semi-discrete Lagrangian
(84), where g; represents the discretization of G at the point x = x;.

In summary, the methods presented in Section 3.5.1 and Section 3.5.2 both lead to the same
semi-discrete Lagrangian, but have different theoretical advantages.

3.6. DAE formulation of the equations of motion

The Lagrangian (84) can be written as

+ . 1.7~ .
Len(9,4,4) = 54" Mn(9) 4 = Ru(q) = ATg(q), (87)
where
N - rxeq X, —X
Rn(q) = Z/ R('Ykz]/k’?k(x) +yk+177k+1(x)) % dx. (88)
k=0" %k

The Euler-Lagrange equations thus take the form

i=u,
My(q) 1 = f(q,u) — Dg(q)" A,
g(q) =0, (89)

where

ORy | & 19(Mn)ij  d(Mn)u

fila ) = =5 +i’jZ:;1 (5 5o, i Jui. (90)
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System (89) is to be solved for the unknown functions g(t), u(t) and A(t). This is a DAE system
of index 3, since we are lacking a differential equation for A(t) and the constraint equation has to
be differentiated three times in order to express A as a function of g, u and A, provided that certain
regularity conditions are satisfied. Let us determine these conditions. Differentiate the constraint
equation with respect to time twice to obtain the acceleration level constraint

Dg(q)u = h(q,u), 91)
where
2N ang
hi(g,u) = — UilU;. (92)
k(q ) i,j:1 aqlaq] [3ag]

We can then write (91) and the second equation of (89) together as

Mn(q) Dg(gq)" i\ _ | flqu)
(o 2 ) () - (e ) ®

If we could solve this equation for # and A in terms of g and u, then we could simply differentiate the
expression for A one more time to obtain the missing differential equation, thus showing system (89) is
of index 3. System (93) is solvable if its matrix is invertible. Hence, for system (89) to be of index 3 the
following condition

My(q) Dg(q)"
det( Dg(q) 0 );éo (94)

has to be satisfied for all g or at least in a neighborhood of the points satisfying g(q) = 0. Note that
with suitably chosen constraints this condition allows the mass matrix to be singular.

We would like to perform time integration of this mechanical system using the symplectic
(variational) Lobatto IIIA-IIIB quadratures for constrained systems (see [1], [12], [27], [28], [2], [29],
[30], [31]). However, due to the singularity of the Runge-Kutta coefficient matrices (a;;) and (a;;) for
the Lobatto IIIA and IIIB schemes, the assumption (94) does not guarantee that these quadratures
define a unique numerical solution: the mass matrix would need to be invertible. To circumvent this
numerical obstacle we resort to a trick described in [28]. We embed our mechanical system in a higher
dimensional configuration space by adding slack degrees of freedom r and # and form the augmented
Lagrangian L{} by modifying the kinetic term of Ly to read

! N
Haran =5 (4 fT)~<A£§((j)> Ps@) >'<Z>—RN(5I)- (95)

Assuming (94), the augmented system has a non-singular mass matrix. If we multiply out the terms
we obtain simply

L3(q.7.4,#) = Ln(q,4) +# Dg(q) 4. (96)

This formula in fact holds for general Lagrangians, not only for (44). In addition to g(q) = 0 we further
impose the constraint » = 0. Then the augmented constrained Lagrangian takes the form

Len(q. 74,4, A 1) = Ln(q,4) +#Dg(q) 4 — ATg(q) — pu'r. 97)

The corresponding Euler-Lagrange equations are
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q=1u,
T=w,
M (q) it + Dg(q)" @ = f(g,u) — Dg(q)" A,
Dg(q) 1 = h(q,u) —u,
g(q) =0,
r=0 (98)

It is straightforward to verify that r(t) = 0, w(t) = 0, u(t) = 0 is the exact solution and the remaining
equations reduce to (89), that is, the evolution of the augmented system coincides with the evolution of
the original system, by construction. The advantage is that the augmented system is now regular and
we can readily apply the Lobatto IILA-IIIB method for constrained systems to compute a numerical
solution. It should be intuitively clear that this numerical solution will approximate the solution of
(89) as well. What is not immediately obvious is whether a variational integrator based on (96) can be
interpreted as a variational integrator based on Ly . This can be elegantly justified with the help of
exact constrained discrete Lagrangians. Let V' C Qn x Gy be the constraint submanifold defined by
¢(g) = 0. The exact constrained discrete Lagrangian E%E : N x N — Ris defined by

At
LG (a0®) = [ Lu(a(e),d() at, ©9)

where ¢(t) is the solution to the constrained Euler-Lagrange equations (89) such that it satisfies the
boundary conditions §(0) = ¢! and g(At) = . Note that N’ x {0} C (Qn x Gn) x RN is the
constraint submanifold defined by ¢(g7) = 0 and r = 0. Since necessarily rM) = ) = 0, we can define
the exact augmented constrained discrete Lagrangian I:f,’C’E : N xN — Rby

if,'C'E (q(l),q(z)) = /ON 4 (q(t),r(t),4(t),#(t)) dt, (100)

where g(t), r(t) are the solutions to the augmented constrained Euler-Lagrange equations (98) such
that the boundary conditions §(0) = gV, g(At) = ¢® and r(0) = r(At) = 0 are satisfied.

7ACE
LN

Proposition 10. The exact discrete Lagrangians and ilc\]’E are equal.

Proof. Let g(t) and r(t) be the solutions to (98) such that the boundary conditions g(0) = ¢,
q(At) = ¢® and r(0) = r(At) = 0 are satisfied. As argued before, we in fact have r(t) = 0 and g(t)
satisfies (89) as well. By (96) we have

LN (q(6),r(8),4(8),#()) = Ly (q(1),4(t))

7ACE _ 7CE
for all t € [0, At], and consequently Ly~ = Ly".
O

This means that any discrete Lagrangian L; : (Qn x Gy) x RN x (Qn x Gy) x RN — R that
approximates EQ'C'E to order s also approximates I:%E to the same order, that is, a variational integrator
for (98), in particular our Lobatto IIIA-IIIB scheme, is also a variational integrator for (89).

Backward error analysis.

The advantage of the Lagrange multiplier approach is the fact that upon spatial discretization
we deal with a constrained mechanical system. Backward error analysis of symplectic/variational
numerical schemes for such systems shows that the modified equations also describe a constrained
mechanical system for a nearby Hamiltonian (see Theorem 5.6 in Section IX.5.2 of [1]). Therefore,
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we expect the Lagrange multiplier strategy to demonstrate better performance in terms of energy
conservation than the control-theoretic strategy. The Lagrange multiplier approach makes better use of
the geometry underlying the field theory we consider, the key idea being to treat the reparametrization
field X(x,t) as an additional dynamical degree of freedom on equal footing with ¢(x,t).

4. Multisymplectic field theory formalism

In Section 2 and Section 3 we took the view of infinite dimensional manifolds of fields as
configuration spaces and presented a way to construct space-adaptive variational integrators in
that formalism. We essentially applied symplectic integrators to semi-discretized Lagrangian field
theories. In this section we show how r-adaptive integrators can be described in the more general
framework of multisymplectic geometry. In particular we show that some of the integrators obtained
in the previous sections can be interpreted as multisymplectic variational integrators. Multisymplectic
geometry provides a covariant formalism for the study of field theories in which time and space
are treated on equal footing, as a consegence of which multisymplectic variational integrators allow
for more general discretizations of spacetime, such that, for instance, each element of space may be
integrated with a different timestep (see [4]). For the convenience of the reader, below we briefly
review some background material and provide relevant references for further details. We then proceed
to reformulate our adaptation strategies in the language of multisymplectic field theory.

4.1. Background material

Lagrangian mechanics and Veselov-type discretizations

Let Q be the configuration manifold of a certain mechanical system and TQ its tangent bundle.
Denote the coordinates on Q by ¢/, and on TQ by (4',4'), where i = 1,2,..,n. The system is
described by defining the Lagrangian L : TQ — R and the corresponding action functional
Slgt)] = [, ab L(q'(t),4'(t)) dt. The dynamics is obtained through Hamilton’s principle, which seeks the
curves g(t) for which the functional S[q(t)] is stationary under variations of q(t) with fixed endpoints,
i.e. we seek g(t) such that

d
dslq(t)]-oq(t) = o=|  Slge(t)] =0 (101)
e=0
for all ég(t) with ég(a) = 6q(b) = 0, where g(t) is a smooth family of curves satisfying gy = ¢ and
d% ‘ezoqe = Jq. By using integration by parts, the Euler-Lagrange equations follow as

oL d oL

e 0. (102)
The canonical symplectic form ) on T*Q, the 2n-dimensional cotangent bundle of Q, is given by
Q = dg' A dp;, where summation over i is implied and (', p;) are the canonical coordinates on T*Q.
The Lagrangian defines the Legendre transformation FL : TQ — T*Q, which in coordinates is
given by (¢, p;) = (4', aa—qL,) We then define the Lagrange 2-form on TQ by pulling back the canonical
symplectic form, i.e. () = FL*(). If the Legendre transformation is a local diffeomorphism, then (),
is a symplectic form. The Lagrange vector field is a vector field Xr on TQ that satisfies X Q) = dE,
where the energy E is defined by E(v;) = FL(vy) - v; — L(v4) and  denotes the interior product,
i.e. the contraction of a differential form with a vector field. It can be shown that the flow F; of this
vector field preserves the symplectic form, that is, F;/'(}; = ;. The flow F; is obtained by solving the
Euler-Lagrange equations (102).
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For a Veselov-type discretization we essentially replace TQ with Q x Q, which serves as a
discrete approximation of the tangent bundle. We define a discrete Lagrangian L; as a smooth map
4 ¢ Qx Q — R and the corresponding discrete action S = lec\]:_ol L;(qk,qx+1). The variational
principle now seeks a sequence g, 41, ..., gn that extremizes S for variations holding the endpoints g
and gy fixed. The Discrete Euler-Lagrange equations follow

DLy (qk-1,9x) + D1La(qk, gk+1) = 0. (103)

This implicitly defines a discrete flow F : Q x Q — Q x Q such that F (qk 1qk) = (qk, Jk+1)- One
can define the discrete Lagrange 2-form on Q x Q by wy =

5 q, 5 q, < dgi) A dgl,, where (4, ¢) denotes the

coordinates on Q x Q. It then follows that the discrete flow F is symplectic, i.e. F*w; = wr.

Given a continuous Lagrangian system with L : TQ — R one chooses a corresponding discrete
Lagrangian as an approximation L;(qx, qx+1) ~ |, tiH "L(q(t),4(t)) dt, where q(t) is the solution of the
Euler-Lagrange equations corresponding to L with the boundary values q(t;) = gx and g(fx11) = Gr11-

For more details regarding Lagrangian mechanics, variational principles, and symplectic geometry,
see [32]. Discrete Mechanics and variational integrators are discussed in [2].

Multisymplectic geometry and Lagrangian field theory

Let X be an oriented manifold representing the (n + 1)-dimensional spacetime with local
coordinates (x,x!,...,x") = (t,x), where x° = t is time and (x!,...,x") = x are space coordinates.
Physical fields are sections of a configuration fiber bundle ryy : Y — X, that is, continuous maps
¢ : X — Y such that Tyy o ¢ = idy. This means that for every (f,x) € X, ¢(t, x) is in the fiber over
(t,x), whichis Y{; ) = n;%,((t, x)). The evolution of the field takes place on the first jet bundle J'Y,
which is the analog of TQ for mechanical systems. J'Y is defined as the affine bundle over Y such that
fory € Y(; y) the fiber ];Y consists of linear maps ¢ : T(; ) X — T,Y satisfying the condition Tt yy o 9 =
idT(t,x) x- The local coordinates (x*,4%) on Y induce the coordinates (x*, ", 0?,) on J1Y. Intuitively,
the first jet bundle consists of the configuration bundle Y, and of the first partial derivatives of the
field variables with respect to the independent variables. Let <p(x0, v x™) = (0, Yy, Y™
in coordinates and let ", = y? , = dy”/dx" denote the partial derivatives. We can think of JYY
as a fiber bundle over X'. Given a section ¢ : X — Y, we can define its first jet prolongation
j147 : X — J'Y, in coordinates given by j14>(x0, xl .. Lx) = (xo, ¥l .,x”,yl, . ,ym,ylro, .. .,ym,n),
which is a section of the fiber bundle J'Y over X'. For higher order field theories we consider higher
order jet bundles, defined iteratively by | 2y = J1(J'Y) and so on. The local coordinates on J?Y are
%enoted (xt, y", 0", w",, k3, ). The second jet prolongation j2¢ : X — J?Y is given in coordinates by
FOEr) = (Y Y g Y )-

Lagrangian density for first order field theories is defined as a map £ : J'Y — R. The
corresponding action functional is S[¢] = [, L(j 1p)d"*1x, where Y C X. Hamilton’s principle
seeks fields ¢(t, x) that extremize S, that is

d

A —
FEy A:OS[UY op] =0 (104)

for all 77§ that keep the boundary conditions on ol fixed, where 73 : Y — Y is the flow of a vertical
vector field V on Y. This leads to the Euler-Lagrange equations

L 9 (3L 4\
509~ gt (. (1)) =0 (105

Given the Lagrangian density £ one can define the Cartan (1 + 1)-form @ on J'Y, in local coordinates
givenby @, = 2% Xy + (£ — a% v*,)d"1x, where d"x, = 8, 1d" ! x. The multisymplectic
(n + 2)-form is then defined by Q) = —d@ . Let P be the set of solutions of the Euler-Lagrange
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equations, that is, the set of sections ¢ satisfying (104) or (105). For a given ¢ € P, let F be the set of
first variations, that is, the set of vector fields V on J'Y such that (t,x) — 1% o ¢(t, x) is also a solution,
where 7§, is the flow of V. The multisymplectic form formula states that if ¢ € P then for all V.and W
in F,

/au(jlqb)* 'V aji'wL0or) =0, (106)

where j'V is the jet prolongation of V, that is, the vector field on J'Y in local coordinates given by
'V = (v, ve, 3%; + %vb u ”V%), where V = (V#,V?) in local coordinates. The multisymplectic
form formula is the multisymplectic counterpart of the fact that in finite-dimensional mechanics, the
flow of a mechanical system consists of symplectic maps.

For a k!-order Lagrangian field theory with the Lagrangian density £ : J*¥ — R, analogous
geometric structures are defined on J*~1Y. In particular, for a second-order field theory the
multisymplectic (n + 2)-form Q/ is defined on J3Y and a similar multisymplectic form formula
can be proven. If the Lagrangian density does not depend on the second order time derivatives of the
field, it is convenient to define the subbundle J3Y C J?Y such that J3Y = {¢ € J?Y |8, = 0}.

For more information about the geometry of jet bundles, see [33]. The multisymplectic formalism
in field theory is discussed in [34]. The multisymplectic form formula for first-order field theories is
derived in [3], and generalized for second-order field theories in [35]. Higher order field theory is
considered in [36].

— 0

Multisymplectic variational integrators

Veselov-type discretization can be generalized to multisymplectic field theory. We take X' =
Z x Z = {(j, i)}, where for simplicity we consider dim X = 2,i.e. n = 1. The configuration fiber bundle
is Y = X x .7 for some smooth manifold .7. The fiber over (j,i) € A’ is denoted Yj; and its elements
yji- A rectangle O of A’ is an ordered 4-tuple of the form O = ((j, i), (j,i + 1), j+1,i+1),(j + 1,i)) =
(O, 02,033, 0*). The set of all rectangles in X is denoted X™. A point (j,7) is touched by a rectangle
if it is a vertex of that rectangle. Let &/ C X. Then (j,i) € U is an interior point of U/ if U contains
all four rectangles that touch (j, 7). The interior int{ is the set of all interior points of ¢/. The closure
clYf is the union of all rectangles touching interior points of /. The boundary of f is defined by
oU = (UNcU)\intU. A section of Yisamap ¢ : Y C X — Y such that ¢(j, i) € Yj;. We can now
define the discrete first jet bundle of Y as

TY = {Wji.YjirvYirrivr Yie1i) | God) € X, vjiyjir Yirrion, Y1 € F }
= xH x 4 (107)

Intuitively, the discrete first jet bundle is the set of all rectangles together with four values assigned to
their vertices. Those four values are enough to approximate the first derivatives of a smooth section
with respect to time and space using, for instance, finite differences. The first jet prolongation of
a section ¢ of Y is the map j'¢ : XY — J1Y defined by j'¢(0) = (O, ¢(0O1), p(T2), p(T3), p(04)).
For a vector field V on Y, let Vj; be its restriction to Yj;. Define a discrete Lagrangian L : | y 5 R,
L = L(y1,Y2,Y3, Y1), where for convenience we omit writing the base rectangle. The associated discrete
action is given by

Sl¢] = ). Loj'¢(0)).

Ocu

The discrete variational principle seeks sections that extremize the discrete action, that is, mappings
¢(j, i) such that
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Ti| sl =0 (108)

for all vector fields V on Y that keep the boundary conditions on o/ fixed, where ¢, (j,1) = FXﬁ (¢(j,1))

Vii . . . . . .
and F,” is the flow of Vj; on .. This is equivalent to the discrete Euler-Lagrange equations

L JL
%(]/jir.‘/ji+lr]/j+l i+1,Yj+1i) + @(yji—Lyji,]/j+1i,yj+1i_1)+

+ aayLBleil/]/jlir]/jiryjil) + g;;(]/jli/]/jli+1/yji+lr.‘/ji) =0 (109)
forall (j,i) € intU, where we adopt the convention ¢(j, i) = y;;. In analogy to the Veselov discretization
of mechanics, we can define four 2-forms QIL on J'Y, wherel = 1,2,3,4 and Qi + Q% + Q% =+ Q‘i =0,
that is, only three 2-forms of these forms are independent. The 4-tuple (Qi, Q%, Q%, Q‘i) is the discrete
analog of the multisymplectic form (). We refer the reader to the literature for details, e.g. [3]. By
analogy to the continuous case, let P be the set of solutions of the discrete Euler-Lagrange equations
(109). For a given ¢ € P, let F be the set of first variations, that is, the set of vector fields V on J'Y
defined similarly as in the continuous case. The discrete multisymplectic form formula then states that
if € P thenforall V and Win F,

g ( ; {(jl(P)*(leleWJQIL)}(D)) =0, (110)
Onu#o  Oleau

where the jet prolongations are defined to be

Vo yee yos yee) = (Vo (v, Ve (Wee), Vs (W), Vs (ye)).- (111)

The discrete form formula (110) is in direct analogy to the multisymplectic form formula (106) that
holds in the continuous case.

Given a continuous Lagrangian density £ one chooses a corresponding discrete Lagrangian as
an approximation L(y1, yre, Yop, Yoe) = 5L o j ¢ dxdt, where O is the rectangular region of the
continuous spacetime that contains [J and ¢(t, x) is the solution of the Euler-Lagrange equations
corresponding to £ with the boundary values at the vertices of [] corresponding to y1, Y2, ¥, and

Yo
The discrete second jet bundle J2Y can be defined by considering ordered 9-tuples

B=((-1Li-1),G-11,G-Li+1),(i-1),
(G, i),(,i+1),(j+1,i—-1),(j+1i),(+1Li+1))
= (8, 8, 8°, 8, B°, | 17, B8°, °) (112)

instead of rectangles [J, and the discrete subbundle J3Y can be defined by considering 6-tuples

o= ((,i=1),0(,0,Gi+1),G+1i+1),(G+14),(G+1,i-1))
= (o', %, o®, m*, o°, m°). (113)

Similar constructions then follow and a similar discrete multisymplectic form formula can be derived
for a second order field theory.
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Multisymplectic variational integrators for first order field theories are introduced in [3], and
generalized for second-order field theories in [35].

4.2. Analysis of the control-theoretic approach

Continuous setting

We now discuss a multisymplectic setting for the approach presented in Section 2. Let the
computational spacetime be X = R x R with coordinates (t, x) and consider the trivial configuration
bundle Y = X x R with coordinates (t,x,y). Let i = [0, Tyax] X [0, Xmax] and let our scalar field
be represented by a section ¢ : U/ — Y with the coordinate representation ¢(t,x) = (t,x, ¢(t,x)).
Let (t,x,y,v¢, vy ) denote local coordinates on | 1Y In these coordinates the first jet prolongation of ¢
is represented by j1@(t, x) = (t,x, ¢(t,x), p:(t, x), px(t,x)). Then the Lagrangian density (6) can be
viewed as a mapping £ : J'Y — R. The corresponding action (3) can now be expressed as

§[¢) = /u £(j) dt A dx, (114)

Just like in Section 2, let us for the moment assume that the function X : Y — [0, Xjqx] is known, so
that we can view £ as being time and space dependent. The dynamics is obtained by extremizing S
with respect to §, that is, by solving for ¢ such that

dl s
5| Shieogl=0 (115)

A=0

for all 77 that keep the boundary conditions on o/ fixed, where 773 : Y — Y is the flow of a vertical
vector field V on Y. Therefore, for an a priori known X (¢, x) the multisymplectic form formula (106) is
satisfied for solutions of (115).

Consider the additional bundle 7tys : B = X x [0, Xpax] — X whose sections X : U — B
represent our diffeomorphisms. Let X(t,x) = (¢, x, X(t, x)) denote a local coordinate representation
and assume X(t,.) is a diffeomorphism. Then define Y = Y @& B. We have JY = Jfy @ J*B. In
Section 3.5.2 we argued that the moving mesh partial differential equation (25) can be interpreted as
a local constraint on the fields ¢, X and their spatial derivatives. This constraint can be represented
by a function G : J¥¥ — R. Sections ¢ and X satisfy the constraint if G(j*@, j*X) = 0. Therefore our
control-theoretic strategy expressed in equations (85) can be rewritten as

Al sdos] =
x|, el =0
G(j*¢,j*X) =0, (116)

for all 7§, similarly as above. Let us argue how to interpret the notion of multisymplecticity for this
problem. Intuitively, multisymplecticity should be understood in a sense similar to Proposition 3.
We first solve the problem (116) for ¢ and X, given some initial and boundary conditions. Then we
substitute this X into the problem (115). Let P be the set of solutions to this problem. Naturally, ¢ € P.
The multisymplectic form formula (106) will be satisfied for all fields in P, but the constraint G = 0
will be satisfied only for §.

Discretization

Discretize the computational spacetime R x R by picking the discrete set of points t; = j - At,
x; = i-Ax,and define X = {(j,i)|j,i € Z}. Let X" and X'T be the set of rectangles and 6-tuples in
A&, respectively. The discrete configuration bundle is Y = & x R and for convenience of notation let
the elements of the fiber Yj; be denoted by yl.LetUd = {(j,i)|j=0,1,...,M+1,i=0,1,...,N+1},

i
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where Ax = Xyax/(N + 1) and At = Tyax/(M + 1). Suppose we have a discrete Lagrangian L :
J'Y — R and the corresponding discrete action S that approximates (114), where we assume that
X(t,x) is known and of the form (10). A variational integrator is obtained by solving

d

| slo=o 17)

for a discrete section ¢ : if — Y, as described in Section 4.1. This integrator is multisymplectic, i.e.
the discrete multisymplectic form formula (110) is satisfied.

Example: Midpoint rule.

In (20) consider the 1-stage symplectic partitioned Runge-Kutta method with the coefficients
a1 = 11 = ¢ = 1/2 and by = b; = 1. This method is often called the midpoint rule and is a 2-nd
order member of the Gauss family of quadratures. It can be easily shown (see [1], [2]) that the discrete
Lagrangian (15) for this method is given by

. . . . Jpyi b it i 1
Ld(tj,yf,th,y]H)—At.LN(y vy Aty’tj+2At>, (118)

where At = t; 1 — t; and y = (y]i, .. .,yg\,). Using (5) and (13) we can write
% i i+1 X Jo j+1 g+
La(ty vty ™) = Y L vl i vl ) (119)
i=0

where we defined the discrete Lagrangian L : J'Y — R by the formula

1 1 Yiel 5 _ _ 1
Ly yial) = At /x , E((P(X),qvx(x),qvt(x),x,t‘JrZAt) dx (120)
with
i + j+1 yj y]+1
o0 = 2 )

j i j+1 j+1
— (x)zlyiJrl_yi_i_llerl yl
Px 27 Ax 2 A ’
j+1 i+

J+
_ i Y Yi vi
pi(x) = Aﬂn(xH*l“ g (x). (121)

Given the Lagrangian density £ as in (6), and assuming X (#, x) is known, one can evaluate the integral
in (120) explicitly. It is now a straightforward calculation to show that the discrete variational principle
(117) for the discrete Lagrangian L as defined is equivalent to the Discrete Euler-Lagrange equations
(103) for L, and consequently to (20).

This shows that the 2-nd order Gauss method applied to (20) defines a multisymplectic method
in the sense of formula (110). However, for other symplectic partitioned Runge-Kutta methods of
interest to us, namely the 4-th order Gauss and the 2-nd/4-th order Lobatto IIIA-IIIB methods, it is not
possible to isolate a discrete Lagrangian L that would only depend on four values %' yl Y yfﬁ, yi“.
The mentioned methods have more internal stages, and the equations (20) couple them in a nontrivial
way. Effectlvely, at any given time step the internal stages depend on all the values yl, ey yN and y; AR

Ny yN , and it it not possible to express the discrete Lagrangian (15) as a sum similar to (119). The
resultmg integrators are still variational, since they are derived by applying the discrete variational
principle (117) to some discrete action S, but this action cannot be expressed as the sum of L over all
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rectangles. Therefore, these integrators are not multisymplectic, at least not in the sense of formula
(110).

Constraints.

Let the additional bundle be B = X" X [0, Xju4x] and denote by X]” the elements of the fiber B]-l-.

Define Y = Y & B. We have J*Y = Jky @ J¥B. Suppose G : 7Y — R represents a discretization of
the continuous constraint. For instance, one can enforce a uniform mesh by defining G : J'Y — R,
G(j'¢,j'X) = Xy — 1 at the continuous level. The discrete counterpart will be defined on the discrete
jet bundle J'Y by the formula

X/ b

JH1 i+l i+1
i X, Xp ) = ’T 1. (122)

Arc-length equidistribution can be realized by enforcing (27), that is, G : J2Y — R, G(j3§,j;X) =
occhx @xx + XxXxx. The discrete counterpart will be defined on the discrete subbundle ]517 by the
formula

i+1  j+1
G vy v X, x]

Gy, Xor) = “Z(ynﬁ - ymz)z + (X — sz) -« (yml yml)z — (X2 — Xml)zz (123)

where for convenience we used the notation introduced in (113) and [,7 = 1,...,6. Note that (123)
coincides with (28). In fact, g; in (28) is nothing else but G computed on an element of ]gY over the
base 6-tuple M such that m? = (j, 7). The only difference is that in (28) we assumed g; might depend on
all the field values at a given time step, while G only takes arguments locally, i.e. it depends on at most
6 field values on a given 6-tuple.

A numerical scheme is now obtained by simultaneously solving the discrete Euler-Lagrange
equations (109) resulting from (117) and the equation G = 0. If we know yﬁ_l, X{ - yﬂ and X{ for
i = 1,...,N, this system of equations allows us to solve for y/ A X{H. This numerical scheme is
multisymplectlc in the sense similar to Proposition 4. If we take X(t, x) to be a sufficiently smooth
interpolation of the values X{ and substitute it in the problem (117), then the resulting multisymplectic

integrator will yield the same numerical values y{ H

4.3. Analysis of the Lagrange multiplier approach

Continuous setting

We now turn to describing the Lagrange multiplier approach in a multisymplectic setting.
Similarly as in Section 4.2, let the computational spacetime be X = R X [0, Xjuqx] with coordinates
(t,x) and consider the trivial configuration bundles tyy : ¥ = X xR — X and 7ty : B =
X % [0, Xjpax] — X. Let our scalar field be represented by a section ¢ : X — Y with the coordinate
representation @(t, x) = (t,x, ¢(t, x)) and our diffeomorphism by a section X : X — B with the local
representation X(t,x) = (t,x, X(t,x)). Let the total configuration bundle be Y = Y & B. Then the
Lagrangian density (6) can be viewed as a mapping £ : J'Y = J'Y @ J'B — R. The corresponding
action (3) can now be expressed as

S[g, X] = / L(j'¢,j'X) dt Ndx, (124)

where U = [0, Tiax] X [0, Xinax]. As before, the MMPDE constraint can be represented by a function
G : J*¥Y — R. Two sections ¢ and X satisfy the constraint if

G(j*¢, %) = 0. (125)
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Vakonomic formulation.

We now face the problem of finding the right equations of motion. We want to extremize the action
functional (124) in some sense, subject to the constraint (125). Note that the constraint is essentially
nonholonomic, as it depends on the derivatives of the fields. Assuming G is a submersion, G = 0
defines a submanifold of J*Y, but this submanifold will not in general be the k-th jet of any subbundle
of Y. Two distinct approaches are possible here. One could follow the Lagrange-d’Alembert principle
and take variations of S first, but choosing variations V (vertical vector fields on Y) such that the
jet prolongations j*V are tangent to the submanifold G = 0, and then enforce the constraint G = 0.
On the other hand, one could consider the variational nonholonomic problem (also called vakonomic),
and minimize S over the set of all sections (@, X) that satisfy the constraint G = 0, that is, enforce
the constraint before taking the variations. If the constraint is holonomic, both approaches yield the
same equations of motion. However, if the constraint is nonholonomic, the resulting equations are
in general different. Which equations are correct is really a matter of experimental verification. It
has been established that the Lagrange-d’Alembert principle gives the right equations of motion for
nonholonomic mechanical systems, whereas the vakonomic setting is appropriate for optimal control
problems (see [37], [38], [39], [40]).

We will argue that the vakonomic approach is the right one in our case. In Proposition 5 we
showed that in the unconstrained case extremizing S[¢] with respect to ¢ was equivalent to extremizing
S[@, X] with respect to ¢, and in Proposition 6 we showed that extremizing with respect to X did not
yield new information. This is because there was no restriction on the fields ¢ and X, and for any given
X there was a one-to-one correspondence between ¢ and ¢ given by the formula ¢(t,x) = ¢(t, X(t,x)),
so extremizing over all possible ¢ was equivalent to extremizing over all possible ¢. Now, let N be the
set of all smooth sections (@, X) that satisfy the constraint (125) such that X(t,.) is a diffeomorphism
for all t. It should be intuitively clear that under appropriate assumptions on the mesh density
function p, for any given smooth function ¢(t, X), equation (25) together with ¢(t,x) = ¢(t, X(t,x))
define a unique pair (¢, X) € N (since our main purpose here is to only justify the application of the
vakonomic approach, we do not attempt to specify those analytic assumptions precisely). Conversely,
any given pair (¢, X) € A defines a unique function ¢ through the formula ¢(t, X) = ¢(t,&(t, X)),
where &(t,.) = X(t,.)"!, as in Section 3.1. Given this one-to-one correspondence and the fact that
S[¢] = S[@, X] by definition, we see that extremizing S with respect to all smooth ¢ is equivalent
to extremizing S over all smooth sections (§, X) € N. We conclude that the vakonomic approach
is appropriate in our case, since it follows from Hamilton’s principle for the original, physically
meaningful, action functional S.

Let us also note that our constraint depends on spatial derivatives only. Therefore, in the
setting presented in Section 2 and Section 3 it can be considered holonomic, as it restricts the
infinite-dimensional configuration manifold of fields that we used as our configuration space. In
that case it is valid to use Hamilton’s principle and minimize the action functional over the set of all
allowable fields, i.e. those that satisfy the constraint G = 0. We did that by considering the augmented
instantaneous Lagrangian (86).

In order to minimize S over the set of sections satisfying the constraint (125) we will use the
bundle-theoretic version of the Lagrange multiplier theorem, which we cite below after [41].

Theorem 1 (Lagrange multiplier theorem). Let 7w g : € — M be an inner product bundle over a
smooth manifold M, Y a smooth section of Trq ¢, and h : M — R a smooth function. Setting N' =¥ ~1(0),
the following are equivalent:

1. o € N isan extremum of h| s,
2. there exists an extremum & € € of h : € — Rsuch that wpy £(7) = 0,

where fl(ﬁ') = h(ﬂ.’M,g((_T)) — <5’,‘P<7‘L’M,g((_7))>5.
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Let us briefly review the ideas presented in [41], adjusting the notation to our problem and
generalizing when necessary. Let
CGY)={r=(pX):UCx —T} (126)
be the set of smooth sections of 77,y onUf. Then S : C;7(Y) — R can be identified with / in Theorem 1,
where M = C;?(Y). Furthermore, define the trivial bundle
HXV:VZXXR%X (127)

and let G5y (V) be the set of smooth sections A : & — V, which represent our Lagrange multipliers
and in local coordinates have the representation A(t,x) = (t,x,A(t, x)). The set C;7(V) is an inner
product space with (A1, 1) = Jyy AMAzdt A dx. Take

E=C(Y)x Cp (V). (128)

This is an inner product bundle over C;7 (Y) with the inner product defined by

<((T,}\1)/ (17/5\2)>(S = (A1, A2). (129)

We now have to construct a smooth section ¥ : C;7(Y) — & that will realize our constraint (125).
Define the fiber-preserving mapping G : J*Y — V such that for ¢ € J*Y

G(9) = (my uy(8), G(9)). (130)

For instance, for k = 1, in local coordinates we have G(t, x,y,v;,vx) = (t,x,G(t,x,y,vt,vx)). Then we
can define

¥ (o) = (¢, G o j*0). (131)

The set of allowable sections N' C Cp?(Y) is now defined by N' = ¥71(0). Thatis, (¢,X) € N
provided that G(j*@, *X) = 0.
The augmented action functional S¢ : € — R is now given by

Sclo] = S[mame ()] — (7, ¥ (mp,e (7)) g (132)

or denoting & = (¢, X, A)

Sclg, X,A] = 8¢, X] - (A, Go (¢, /X))
:/uﬁ(jlga] )dt/\dxf/u}\(t,x)G(jkfp,jk)?)dt/\dx

(19,1 %) = MEx) G(j* g, %)| dt A dx. (133)

Theorem 1 states, that if (¢, X, ;\) is an extremum of S¢, then (@, X ) extremizes S over the set \ of
sections satisfying the constraint G = 0. Note that using the multisymplectic formalism we obtained
the same result as (86) in the instantaneous formulation, where we could treat G as a holonomic
constraint. The dynamics is obtained by solving for a triple (¢, X, A) such that

A1 Sclnsoprgo X oAl =0 (134
€le=0

for all 175, 173, 175, that keep the boundary conditions on dlf fixed, where 17 denotes the flow of vertical
vector fields on respective bundles.
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Note that we can define Yo = Y®B®V and Lc : JfYc — R by setting £Lc = L — A -G,
i.e., we can consider a k-th order field theory. If k = 1,2 then an appropriate multisymplectic form
formula in terms of the fields ¢, X and A will hold. Presumably, this can be generalized for k > 2
using the techniques put forth in [35]. However, it is an interesting question whether there exists any
multisymplectic form formula defined in terms of ¢, X and objects on J¥Y only. It appears to be an
open problem. This would be the multisymplectic analog of the fact that the flow of a constrained
mechanical system is symplectic on the constraint submanifold of the configuration space.

Discretization

Let us use the same discretization as discussed in Section 4.2. Assume we have a discrete
Lagrangian L : J'Y — R, the corresponding discrete action 5[@, X], and a discrete constraint
G:J'Y — Ror G: J2Y — R. Note that S is essentially a function of 2MN variables and we want to
extremize it subject to the set of algebraic constraints G = 0. The standard Lagrange multiplier theorem
proved in basic calculus textbooks applies here. However, let us work out a discrete counterpart of the
formalism introduced at the continuous level. This will facilitate the discussion of the discrete notion
of multisymplecticity. Let

Cu(Y)={oc=(¢,X):UCX —T} (135)

be the set of discrete sections of 77y : Y — X. Similarly, define the discrete bundle V = X x R and
let Cy4, (V) be the set of discrete sections A : Uy — V) representing the Lagrange multipliers, where

Uy C U is defined below. Let A(j,i) = (j,i,A(j,i)) with )\{: = A(j, i) be the local representation. The
set Cy, (V) is an inner product space with (A, fi) = Y (i) etto M. Take € = Cy(Y) x Cyyy (V). Just
like at the continuous level, £ is an inner product bundle. However, at the discrete level it is more
convenient to define the inner product on £ in a slightly modified way. Since there are some nuances

in the notation, let us consider the cases k = 1 and k = 2 separately.

Case k = 1.

Let Uy = {(j,i) € U |j < M,i < N}. Define the trivial bundle V = X~ x R and let C;;o(V) be
the set of all sections of V' defined on U"”. For a given section A € Cy, (V) we define its extension

~

AO) = (O,A0OY), (136)

that is, A assigns to the square [J the value that A takes on the first vertex of that square. Note that this
operation is invertible: given a section of C,,c (V) we can uniquely determine a section of Cy, (V). We
can define the inner product

Ay =Y AO"Hu(@). (137)
Ocu

One can easily see that we have (A, 1) = (A, i), so by a slight abuse of notation we can use the same
symbol (.,.) for both inner products. It will be clear from the context which definition should be
invoked. We can now define an inner product on the fibers of £ as

(@A) 0m), = Ap) = (A7), (138)

Let us now construct a section ¥ : Cy;(Y) — & that will realize our discrete constraint G. First, in
analogy to (130), define the fiber-preserving mapping G : J'Y — V such that

Glyg, Xor) = (3, Gy, X)), (139)
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where [, = 1,2,3,4. We now define ¥ by requiring that for ¢ € C;(Y) the extension (136) of ¥ () is
given by
¥(o) = (0,Gojlo). (140)

The set of allowable sections N' C Cy(Y) is now defined by N' = ¥~1(0)—that is, (¢, X) € N
provided that G(j'@,j'X) = 0 for all ) € U". The augmented discrete action S¢ : £ — R is therefore

Ocu Ocu
= ¥ (L('o) - r@HG(i'e)). (141)
Ocu

By the standard Lagrange multiplier theorem, if (§, X, 1) is an extremum of Sc, then (§, X) is an
extremum of S over the set A of sections satisfying the constraint G = 0. The discrete Hamilton
principle can be expressed as

d

dié’ eiOSC [q)e/ Xe, )\e] =0 (142)

for all vector fields V on Y, W on B, and Z on V that keep the boundary conditions on o/ fixed,
where §¢(j, i) = ngﬁ (¢(j,i)) and ngji is the flow of Vj; on R, and similarly for X and A.. The discrete
Euler-Lagrange equations can be conveniently computed if in (142) one focuses on some (j,i) € intY.
With the convention ¢(j,i) = y{:, X(j,i) = X{ JA(, 1) = /\] we write the terms of Sc containing y] X]
and )\g explicitly as

j i S B N B | j+1 i+l
yz’yz+1’yz+1’yz X Xz—l—l’XH—l’X )

L(

1 1 1 1
(v} yz/ﬁ X XXX
( )

1 1 1
y{ 17 yl r?/;‘/?/i 11XZ 1/X] X] X]

j—1 J=1 i1 i j
+L(y; ’yz+1’yz+1’yz’X X X X))

j j+1 4+l i T j+1 j+1
+)‘iG(Vi'yi+1f%+1f% » Xj Xz+1'Xi+1’X‘ )

j j j+1 ]+1 j il i+l

+Ai 1G(yi l’yl’yl ’yz 1’ 1 l’X X X )
=1 xi=1 i i

+ A G yyl fyifyHIXl 1/X X4 Xiq)

j— 1 j J=1 <j j
+ A (yi ’yi+l’yi+1fyi’ Xl+1’XZ+1’Xl')+“' (143)

U

@)

I
+ o+ '+
=

The discrete Euler-Lagrange equations are obtained by differentiating with respect to yg, X{ and /\{,
and can be written compactly as
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oL
Z [ayl(yDI/- . -/]/D4IX[|1, .. '/XD4)+
1,0
(=0t
dG
+ /\Dl1(yEll""/yD4/X[|1/---/X[|4)} =0,
dy
oL
Z [axl(ygl, vy X, e, Xoe )+
1,0
()=t
G
+ Aﬂlﬁ(ygl/- . '/yD4/ XDI, .. .,XD4):| = 0,
jo JH1 g+l sy JH1 51y
G(yi’yi+1fyi+1ryi rXi/ Xi+1’ Xi+1’ Xi ) =0 (144)

for all (j,i) € intl. If we know y{_l, X{_l, y{, X{ and A{_l fori =1,...,N, this system of equations
allows us to solve for yfrl, Xf 1 and Ag.

Note that we can define Yc = Y & B & V and the augmented Lagrangian Lc : J'Yc — R by
setting

Le(il¢, ' X, ' A) = L(j' ¢, /' X) — A(OY) - G(* ¢, /' X), (145)

that is, we can consider an unconstrained field theory in terms of the fields , X and A. Then, the
solutions of (144) satisfy the multisymplectic form formula (110) in terms of objects defined on | 1ye.

Case k = 2.

LetUy = {(j,i) €U |j < M,1 < i < N}. Define the trivial bundle V = X™ x R and let Cu (V)
be the set of all sections of V defined on ¢. For a given section A € Cy, (V) we define its extension
A€ Cyn (V) by

A(m) = (m, A(m?)), (146)

that is, A assigns to the 6-tuple M the value that A takes on the second vertex of that 6-tuple. Like before,
this operation is invertible. We can define the inner product

(A i)=Y, A@*)u(m?) (147)

mcu

and the inner product on £ as in (138). Define the fiber-preserving mapping G : J2Y — V such that

G(]/merED’) = ('II/G(]/D]Z/XIII’))/ (148)
where [, r = 1,...,6. We now define ¥ by requiring that for ¢ € C;(Y) the extension (146) of ¥ () is
given by

¥(0) = (0,G0j30). (149)

Again, the set of allowable sections is ' = ¥ ~1(0). That is, (¢, X) € N provided that G(j3¢,j5X) = 0
for all m € UT. The augmented discrete action Sc : £ —» R is therefore
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Sclo, Al = Slo] = ((@: 1), ¥())
= 8[e] = (A, G o o)
- ¥ Li'0) - ¥ M@)G (o). (150)

Ocu mcu

se2  Writing out the terms involving yf:, X{ and Af explicitly, as in (143), and invoking the discrete Hamilton
se3 principle (142), one obtains the discrete Euler-Lagrange equations, which can be compactly expressed
964 AS

oL
Z W(yﬂll'--/]/D4/Xml,-..,XD4)—§—
1,0
(=0
G
+ Z Amzﬁ(ymlr-"/ymé,Xm],...,Xmé) :O’
1,0 Y
(id)=m’
oL
Z ﬁ(ymll'"/yD4/X51,...,XD4)+
1,0
(=0t
JG
+ Z Amzﬁ(y[ﬂlr‘"/ym6,Xm1,...,Xm6) :O,
1,0
(ji)=m*
G j I A I D D T (AP ARID A I 0 151
Viv ViV Yino Vi Vi X X0 X X, X, X)) = (151)

ses forall (j,i) € intUd. If we know y{fl, X].;l, y{:, X{ and )\{71 fori =1,...,N, this system of equations

sss allows us to solve for yﬁ“, Xf 1 and )\f.

067 Let us define the extension Lex : J3Y — R of the Lagrangian density L by setting
Ly, Xou) if 0* = (4,0), (, N+ 1),
Lextg, .-, Xge) = where Ll =mNU, (152)

% YOcm E(ymll ..., X) otherwise.

ses Letusalsoset G(yq, ..., Xmu) = 0if m® = (j,0), (j, N + 1). Define A = {m | m?, m° € U}. Then (150)
9e0 can be written as

Sl Al = Y [Lex(Be) = A@)G(Re)| = ¥ Le(ie, B), (153)
meA meA

oo where the last equality defines the augmented Lagrangian Lc : J3Yc — Rfor Yo = Y& B V.
onn Therefore, we can consider an unconstrained second-order field theory in terms of the fields @, X and
o2 A, and the solutions of (151) will satisfy a discrete multisymplectic form formula very similar to the
ozs one proved in [35]. The only difference is the fact that the authors analyzed a discretization of the
oza Camassa-Holm equation and were able to consider an even smaller subbundle of the second jet of
ors the configuration bundle. As a result it was sufficient for them to consider a discretization based on
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squares [ rather than 6-tuples m. In our case there will be six discrete 2-forms Qllc forl=1,...,6
instead of just four.

Remark.

In both cases we showed that our discretization leads to integrators that are multisymplectic on
the augmented jets J¥Yc. However, just like in the continuous setting, it is an interesting problem
whether there exists a discrete multisymplectic form formula in terms of objects defined on J*Y only.

Example: Trapezoidal rule.

Consider the semi-discrete Lagrangian (44). We can use the trapezoidal rule to define the discrete
Lagrangian (14) as

. . At - R & o DY R ‘b o B ¢
i xi 41 xi+1y = 28 ixi¥ Y
Ld(]//Xf]/ ’X ) 2LN<]/’X/ At 4 At >

At . , , Lyl it — Xi
1 i1 Y Y
+ > LN (y rX ’ At ’ At )/ (154)

where y/ = (y{,. . ,y]I‘\]) and X/ = (X]i, .. ,Xg\]). The constrained version (see [2]) of the Discrete
Euler-Lagrange equations (103) takes the form

DoLy(q/~, ') + D1La(q), /™) = Dg(q/))™ N,
gt =0, (155)

where for brevity qj = (y]i, X{, e, yé\], X;\I)/ M= (A]i,. ., )\é\,) and g is an adaptation constraint, for
instance (28). If g/~!, ¢/ are known, then (155) can be used to compute /! and A/. It is easy to verify
that the condition (94) is enough to ensure solvability of (155), assuming the time step At is sufficiently
small, so there is no need to introduce slack degrees of freedom as in (95). If the mass matrix (47)
was constant and nonsingular, then (155) would result in the SHAKE algorithm, or in the RATTLE
algorithm if one passes to the position-momentum formulation (see [1], [2]).

Using (38) and (41) we can write

1+ i1 xitl

Fordosd il iy N F () L) ]~
Loy, X0,y X0 = Y Lvi vy v X X X, Xi), (156)

M=

i=0

where we defined the discrete Lagrangian L : J'Y — R by the formula

0 I BN A5 N E5 NS S S S R S |
L(%/%’Hr%ﬂ% o Xis X1 Xigar X )

% :ﬁ f(‘Pj(x),Xf(x)r(Pi(x)f _i(x)/@(x)'xf(x)) dx

At (X Lo s iy j o -
5/ T2 ), M (), @l (), K (), (), i) dx - (57)

+

with
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@ (x ):]/]'771'( )+]/§+177i+1(x),

—j y1+1 yz
qox(x) Ax 4
j+1 j+1
_ _y Yi yl
§r(x) = F () + =y (), (158)

and similarly for X(x). Given the Lagrangian density £ as in (43) one can compute the integrals in
(157) explicitly. Suppose that the adaptation constraint g has a ‘local’ structure, for instance

. . i+1 i+1 i+1 i+1
siy, X) = (%r%ﬂr!/fﬂryf X, X{H, XX, (159)
asin (122) or

gi(yj, Xj) = Gy, Xur), where m? = (j, 1), (160)

as in (123). Itis straightforward to show that (144) or (151) are equivalent to (155), that is, the variational
integrator defined by (155) is also multisymplectic.

For reasons similar to the ones pointed out in Section 4.2, the 2-nd and 4-th order Lobatto IIIA-IIIB
methods that we used for our numerical computations are not multisymplectic.

5. Numerical results

5.1. The Sine-Gordon equation

We applied the methods discussed in the previous sections to the Sine-Gordon equation

82 2
aT(f - aX(Z +sin¢g = (161)

This equation results from the (1+1)-dimensional scalar field theory with the Lagrangian density

L@ 9x,91) = 507 — 503 — (1 - cosg). (162)

The Sine-Gordon equation arises in many physical applications. For instance, it governs the
propagation of dislocations in crystals, the evolution of magnetic flux in a long Josephson-junction
transmission line or the modulation of a weakly unstable baroclinic wave packet in a two-layer fluid.
It also has applications in the description of one-dimensional organic conductors, one-dimensional
ferromagnets, liquid crystals, or in particle physics as a model for baryons (see [42], [43]).

The Sine-Gordon equation has interesting soliton solutions. A single soliton traveling at the speed
v is given by

¢s(X,t) = 4arctan {exp <X_1XO_2M>} (163)
—v

It is depicted in Figure 2. The backscattering of two solitons, each traveling with the velocity v, is
described by the formula

1

(164)

v sinh( 1 =) ]
cosh( )

It is depicted in Figure 3. Note that if we restrict X > 0, then this formula also gives a single soliton
solution satisfying the boundary condition ¢ (0, t) = 0, that is, a soliton bouncing from a rigid wall.

$pss(X,t) = 4arctan l

1—02
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Figure 2. The single soliton solution of the Sine-Gordon equation.

21

T t<0 i

¢

- =0 |

T t>0 -

0

X

Figure 3. The two-soliton solution of the Sine-Gordon equation.



1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

Version July 18, 2019 submitted to Mathematics 41 of 56

5.2. Generating consistent initial conditions

Suppose we specify the following initial conditions

$(X,0) = a(X),
¢:(X,0) = b(X), (165)

and assume they are consistent with the boundary conditions (2). In order to determine appropriate
consistent initial conditions for (18) and (98) we need to solve several equations. First we solve for the
yi'sand X;’s. We have yo = ¢, yn+1 = ¢r, Xo = 0, XN+1 = Xinax. The rest are determined by solving
the system

yi = a(X;),
0:gi(yl,...,yN,X1,...,XN), (166)

fori =1,...,N. This is a system of 2N nonlinear equations for 2N unknowns. We solve it using
Newton’s method. Note, however, that we do not a priori know good starting points for Newton’s
iterations. If our initial guesses are not close enough to the desired solution, the iterations may converge
to the wrong solution or may not converge at all. In our computations we used the constraints (28).
We found that a very simple variant of a homotopy continuation method worked very well in our
case. Note that for « = 0 the set of constraints (28) generates a uniform mesh. In order to solve
(166) for some a > 0, we split [0, a] into d subintervals by picking a, = (k/d) -a fork =1,...,d. We

then solved (166) with a1 using the uniformly spaced mesh points XZ-(O) = (i/(N+1)) - Xyax as our
(1) ( (1) (1)

; 1.1). Then we solved (166) with a; using X; .~ as the initial

i(z) and yl@ i(d) and yl@
solution to (166) for the original value of x. Note that for more complicated initial conditions and
constraint functions, predictor-corrector methods should be used—see [44] for more information.
Another approach to solving (166) could be based on relaxation methods (see [7], [8]).

Next, we solve for the initial values of the velocities y; and X;. Since ¢(x,t) = ¢(X(x,t),t), we
have ¢¢(x,t) = ¢px(X(x, 1), 1) Xe(x, t) + ¢ (X(x, t), ). We also require that the velocities be consistent
with the constraints. Hence the linear system

initial guess, resulting in X’ and y and y

guesses, resulting in X . Continuing in this fashion, we got X as the numerical

v =a' (X)X + b(X;), i=1...N
= 980y x5+ 2 (4, X) %
0= 5, X0+ 52 (1 X)X, 167

This is a system of 2N linear equations for the 2N unknowns y; and X;, where y = (y1,...,yn) and
X = (X1,...,XN). We can use those velocities to compute the initial values of the conjugate momenta.
For the control-theoretic approach we use p; = dLy/9y;, as in Section 2.3, and for the Lagrange
multiplier approach we use (46). In addition, for the Lagrange multiplier approach we also have the
initial values for the slack variables r; = 0 and their conjugate momenta B; = ai;@/ d7; = 0. It is also
useful to use (93) to compute the initial values of the Lagrange multipliers A; that can be used as
initial guesses in the first iteration of the Lobatto IIIA-IIIB algorithm. The initial guesses for the slack
Lagrange multipliers are trivially #; = 0. Note that both A and y are algebraic variables, so their values
at each time step are completely determined by the Lobatto IIIA-IIIB algorithm (see [1], [27], [28] for
details), and therefore no further initial or boundary conditions are necessary.
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5.3. Convergence

In order to test the convergence of our methods as the number of mesh points N is increased,
we considered a single soliton bouncing from two rigid walls at X = 0 and X = X = 25. We
imposed the boundary conditions ¢; = 0 and ¢r = 277, and as initial conditions we used (163) with
Xop = 12.5and v = 0.9. It is possible to obtain the exact solution to this problem by considering a
multi-soliton solution to (161) on the whole real line. Such a solution can be obtained using a Backlund
transformation (see [42], [43]). However, the formulas quickly become complicated and, technically;,
one would have to consider an infinite number of solitons. Instead, we constructed a nearly exact
solution by approximating the boundary interactions with (164):

) #ss(X — Xpmax, t — (dn+1)T) +21  ift € [4nT, (4n+2)T),
Pevact (X, 1) = ¢ss(X,t — (4n+3)T) ift € [(4n+2)T,(4n+4)T), (168)
where 7 is an integer number and T satisfies ¢s5(Xmax/2, T) = 7 (we numerically found T =~ 13.84).
Given how fast (163) and (164) approach its asymptotic values, one may check that (168) can be
considered exact to machine precision.

We performed numerical integration with the constant time step At = 0.01 up to the time
Tax = 50. For the control-theoretic strategy we used the 1-stage and 2-stage Gauss method (2-nd and
4-th order respectively), and the 2-stage and 3-stage Lobatto IIIA-IIIB method (also 2-nd /4-th order).
For the Lagrange multiplier strategy we used the 2-stage and 3-stage Lobatto IIIA-IIIB method for
constrained mechanical systems (2-nd/4-th order). See [1], [14], [12] for more information about the
mentioned symplectic Runge-Kutta methods. We used the constraints (28) based on the generalized
arclength density (26). We chose the scaling parameter to be & = 2.5, so that approximately half of the
available mesh points were concentrated in the area of high gradient. A few example solutions are
presented in Figure 4-7. Note that the Lagrange multiplier strategy was able to accurately capture the
motion of the soliton with merely 17 mesh points (that is, N = 15). The trajectories of the mesh points
for several simulations are depicted in Figure 9 and Figure 10. An example solution computed on a
uniform mesh is depicted in Figure 8.

For the convergence test, we performed simulations for several N in the range 15-127. For
comparison, we also computed solutions on a uniform mesh for N in the range 15-361. The numerical
solutions were compared against the solution (168). The L™ errors are depicted in Figure 11. The L*
norms were evaluated over all nodes and over all time steps. Note that in case of a uniform mesh the
spacing between the nodes is Ax = Xyax/ (N + 1), therefore the errors are plotted versus (N + 1). The
Lagrange multiplier strategy proved to be more accurate than the control-theoretic strategy. As the
number of mesh points is increased, the uniform mesh solution becomes quadratically convergent, as
expected, since we used linear finite elements for spatial discretization. The control-theoretic strategy
also shows near quadratic convergence, whereas the Lagrange multiplier method seems to converge
slightly slower. While there are very few analytical results regarding the convergence of r-adaptive
methods, it has been observed that the rate of convergence depends on several factors, including the
chosen mesh density function. Our results are consistent with the convergence rates reported in [45]
and [46]. Both papers deal with the viscous Burgers” equation, but consider different initial conditions.
Computations with the arclength density function converged only linearly in [45], but quadratically in
[46].

5.4. Energy conservation

As we pointed out in Section 2.6, the true power of variational and symplectic integrators for
mechanical systems lies in their excellent conservation of energy and other integrals of motion, even
when a big time step is used. In order to test the energy behavior of our methods, we performed
simulations of the Sine-Gordon equation over longer time intervals. We considered two solitons
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Figure 4. The single soliton solution obtained with the Lagrange multiplier strategy for N = 15.
Integration in time was performed using the 4-th order Lobatto IIIA-IIIB scheme for constrained
mechanical systems. The soliton moves to the right with the initial velocity v = 0.9, bounces from the
right wall at ¢ = 13.84 and starts moving to the left with the velocity v = —0.9, towards the left wall,
from which it bounces at t = 41.52.
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Figure 5. The single soliton solution obtained with the Lagrange multiplier strategy for N = 31.
Integration in time was performed using the 4-th order Lobatto IIIA-IIIB scheme for constrained
mechanical systems.
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Figure 6. The single soliton solution obtained with the control-theoretic strategy for N = 22. Integration
in time was performed using the 4-th order Gauss scheme. Integration with the 4-th order Lobatto
IITA-IIIB yields a very similar level of accuracy.
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Figure 7. The single soliton solution obtained with the control-theoretic strategy for N = 31. Integration
in time was performed using the 4-th order Gauss scheme. Integration with the 4-th order Lobatto
IITA-IIIB yields a very similar level of accuracy.
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Figure 8. The single soliton solution computed on a uniform mesh with N = 31. Integration in time
was performed using the 4-th order Gauss scheme. Integration with the 4-th order Lobatto IITA-IIIB
yields a very similar level of accuracy.

Y

\Y

Figure 9. The mesh point trajectories (with zoomed-in insets) for the Lagrange multiplier strategy for
N = 22 (left) and N = 31 (right). Integration in time was performed using the 4-th order Lobatto
IITA-IIIB scheme for constrained mechanical systems.



Version July 18, 2019 submitted to Mathematics

N

»

451 )

40 F N

351

30F

-+ 251

20F

=]

o

48 of 56

Figure 10. The mesh point trajectories (with zoomed-in insets) for the control-theoretic strategy for
N = 22 (left) and N = 31 (right). Integration in time was performed using the 4-th order Gauss scheme.
Integration with the 4-th order Lobatto IITA-IIIB yields a very similar result.
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Figure 11. Comparison of the convergence rates of the discussed methods. Integration in time was
performed using the 4-th order Lobatto IIIA-IIIB method for constrained systems in case of the Lagrange
multiplier strategy, and the 4-th order Gauss scheme in case of both the control-theoretic strategy and
the uniform mesh simulation. The 4-th order Lobatto IIIA-IIIB scheme for the control-theoretic strategy
and the uniform mesh simulation yields a very similar level of accuracy. Also, using 2-nd order

integrators gives very similar error plots.
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Figure 12. The two-soliton solution obtained with the control-theoretic and Lagrange multiplier
strategies for N = 25. Integration in time was performed using the 4-th order Gauss quadrature for the
control-theoretic approach, and the 4-th order Lobatto IIIA-IIIB quadrature for constrained mechanical
systems in case of the Lagrange multiplier approach. The solitons initially move towards each other
with the velocities v = 0.9, then bounce off of each other at t = 5 and start moving towards the walls,
from which they bounce at ¢t = 18.79. The solitons bounce off of each other again at f = 32.57. This
solution is periodic in time with the period Te;og = 27.57. The nearly exact solution was constructed
in a similar fashion as (168). As the simulation progresses, the Lagrange multiplier solution gets ahead
of the exact solution, whereas the control-theoretic solution lags behind.

bouncing from each other and from two rigid walls at X = 0 and X, = 25. We imposed the boundary
conditions ¢; = —27 and ¢r = 27, and as initial conditions we used ¢(X,0) = ¢s5(X — 12.5, —5)
with v = 0.9. We ran our computations on a mesh consisting of 27 nodes (N=25). Integration was
performed with the time step At = 0.05, which is rather large for this type of simulations. The scaling
parameter in (28) was set to « = 1.5, so that approximately half of the available mesh points were
concentrated in the areas of high gradient. An example solution is presented in Figure 12.

The exact energy of the two-soliton solution can be computed using (7). It is possible to compute
that integral explicitly to obtain E = 16/+v/1 — v? ~ 36.71. The energy associated with the semi-discrete
Lagrangian (44) can be expressed by the formula

Lpo
En = 54" Mn(q) 4+ Rn(9), (169)

where Ry was defined in (88) and for our Sine-Gordon system is given by



1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

Version July 18, 2019 submitted to Mathematics 50 of 56

35.62

35.61

35.6
>
O) 35.59
| -
@ 3558
L 35571

35.56

35.55

35.54 ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500

w

a

a

©

%)

©
T

w
a1
a1
(o]
w
N
T

35.5828 I I ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500

t

Figure 13. The discrete energy Ey for the Lagrange multiplier strategy. Integration in time was
performed with the 2-nd (top) and 4-th (bottom) order Lobatto IIIA-IIIB method for constrained
mechanical systems. The spikes correspond to the times when the solitons bounce off of each other or
of the walls.

MM e =y SN Yg41 — sinyy
Rn(q) = k;) {2 <Xk+1_Xk> +1- = (Xk+1 — Xk), (170)
and My is the mass matrix (47). The energy Ey is an approximation to (7) if the integrand is sampled at
the nodes Xj,. .., Xn41 and then piecewise linearly approximated. Therefore, we used Ey to compute
the energy of our numerical solutions.

The energy plots for the Lagrange multiplier strategy are depicted in Figure 13. We can see that
the energy stays nearly constant in the presented time interval, showing only mild oscillations, which
are reduced as higher order of integration in time is used. The energy plots for the control-theoretic
strategy are depicted in Figure 14. In this case the discrete energy is more erratic and not as nearly
preserved. Moreover, the symplectic Gauss and Lobatto methods show virtually the same energy
behavior as the non-symplectic Radau IIA method, which is known for its excellent stability properties
when applied to stiff differential equations (see [12]). It seems that we do not gain much by performing
symplectic integration in this case. It is consistent with our observations in Section 2.6 and shows that
the control-theoretic strategy does not take the full advantage of the underlying geometry.
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Figure 14. The discrete energy Ey for the control-theoretic strategy. Integration in time was performed
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Radau ITA (bottom) methods.
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As we did not use adaptive time-stepping and did not implement any mesh smoothing techniques,
the quality of the mesh deteriorated with time in all the simulations, eventually leading to mesh
crossing, i.e. two mesh points collapsing or crossing each other. The control-theoretic strategy, even
though less accurate, retained good mesh quality longer, with the break-down time Ty, ., > 1000, as
opposed to Tpq ~ 600 in case of the Lagrange multiplier approach (both using a rather large constant
time step). We discuss extensions to our approach for increased robustness in Section 6.

6. Summary and future work

We have proposed two general ideas how r-adaptive meshes can be applied in geometric
numerical integration of Lagrangian partial differential equations. We have constructed several
variational and multisymplectic integrators and discussed their properties. We have used the
Sine-Gordon model and its solitonic solutions to test our integrators numerically.

Our work can be extended in many directions. Interestingly, it also opens many questions in
geometric mechanics and multisymplectic field theory. Addressing those questions may have a broad
impact on the field of geometric numerical integration.

Non-hyperbolic equations

The special form of the Lagrangian density (42) we considered leads to a hyperbolic PDE, which
poses a challenge to r-adaptive methods, as at each time step the mesh is adapted globally in response
to local changes in the solution. Causality and the structure of the characteristic lines of hyperbolic
systems make r-adaptation prone to instabilities and integration in time has to be performed carefully.
The literature on r-adaptation almost entirely focuses on parabolic problems (see [7], [8] and references
therein). Therefore, it would be interesting to apply our methods to PDEs that are first-order in time,
for instance the Korteweg-de Vries, Nonlinear Schrodinger or Camassa-Holm equations. All three
equations are first-order in time and are not hyperbolic in nature. Moreover, all can be derived as
Lagrangian field theories (see [47], [48], [49], [42], [50], [51], [35]). The Nonlinear Schrodinger equation
has applications to optics and water waves, whereas the Korteweg-de Vries and Camassa-Holm
equations were introduced as models for waves in shallow water. All equations possess interesting
solitonic solutions. The purpose of r-adaptation would be to improve resolution, for instance, to track
the motion of solitons by placing more mesh points near their centers and making the mesh less dense
in the asymptotically flat areas.

Hamiltonian Field Theories

Variational multisymplectic integrators for field theories have been developed in the Lagrangian
setting ([35], [3]). However, many interesting field theories are formulated in the Hamiltonian setting.
They may not even possess a Lagrangian formulation. It would be interesting to construct Hamiltonian
variational integrators for multisymplectic PDEs by generalizing the variational characterization of
discrete Hamiltonian mechanics. This would allow to handle Hamiltonian PDEs without the need
for converting them to the Lagrangian framework. Recently Leok & Zhang [52] and Vankerschaver
& Ciao & Leok [53] have laid foundations for such integrators. It would also be interesting to see if
the techniques we used in our work could be applied in order to construct r-adaptive Hamiltonian
integrators.

Time adaptation based on local error estimates

One of the challenges of r-adaptation is that it requires solving differential-algebraic or stiff
ordinary differential equations. This is because there are two different time scales present: one defined
by the physics of the problem and one following from the strategy we use to adapt the mesh. Stiff
ODEs and DAEs are known to require time integration with an adaptive step size control based on
local error estimates (see [11], [12]). In our work we used constant time-stepping, as adaptive step
size control is difficult to combine with geometric numerical integration. Classical step size control is
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based on past information only, time symmetry is destroyed and with it the qualitative properties of
the method. Hairer & Soderlind [54] developed explicit, reversible, symmetry-preserving, adaptive
step size selection algorithms for geometric integrators, but their method is not based on local error
estimation, thus it is not useful for r-adaptation. Symmetric error estimators are considered in [28]
and some promising results are discussed. Hopefully, the ideas presented in those papers could be
combined and generalized. The idea of Asynchronous Variational Integrators (see [4]) could also be
useful here, as this would allow to use a different time step for each cell of the mesh.

Constrained multisymplectic field theories

The multisymplectic form formula (106) was first introduced in [3]. The authors, however,
consider only unconstrained field theories. In our work we start with the unconstrained field theory
(1), but upon choosing an adaptation strategy represented by the constraint G = 0 we obtain a
constrained theory, as described in Section 3 and Section 4.3. Moreover, this constraint is essentially
nonholonomic, as it contains derivatives of the fields, and the equations of motion are obtained using
the vakonomic approach (also called variational nonholonomic) rather than the Lagrange-d’Alembert
principle. All that gives rise to many very interesting and general questions. Is there a multisymplectic
form formula for such theories? Is it derived in a similar fashion? Do variational integrators obtained
this way satisfy some discrete multisymplectic form formula? These issues have been touched upon in
[41], but by no means resolved.

Mesh smoothing and variational nonholonomic integrators

The major challenge of r-adaptive methods is mesh crossing, which occurs when two mesh points
collapse or cross each other. In order to avoid mesh crossing and retain good mesh quality, mesh
smoothing techniques were developed ([7], [8]). They essentially attempt to regularize the exact
equidistribution constraint G = 0 by replacing it with the condition €9X/dt = G, where € is a
small parameter. This can be interpreted as adding some attraction and repulsion pseudoforces
between mesh points. If one applies the Lagrange multiplier approach to r-adaptation as described in
Section 3, then upon finite element discretization one obtains a finite dimensional Lagrangian system
with a nonholonomic constraint. This constraint is enforced using the vakonomic (nonholonomic
variational) formulation. Variational integrators for systems with nonholonomic constraints have
been developed mostly in the Lagrange-d’Alembert setting, but there have also been some results
regarding discrete vakonomic mechanics. The ideas presented in [55], [56], and [57] may be used to
design structure-preserving mesh smoothing techniques.
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