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Abstract: In this paper, we construct higher-order variational integrators for a class of degenerate
systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying
such systems and develop the appropriate theory for variational integration. Our main observation
is that the evolution takes place on the primary constraint and the “Hamiltonian” equations of
motion can be formulated as an index-1 differential-algebraic system. We also construct variational
Runge–Kutta methods and analyze their properties. The general properties of Runge–Kutta methods
depend on the “velocity” part of the Lagrangian. If the “velocity” part is also linear in the position
coordinate, then we show that non-partitioned variational Runge–Kutta methods are equivalent to
integration of the corresponding first-order Euler–Lagrange equations, which have the form of a
Poisson system with a constant structure matrix, and the classical properties of the Runge–Kutta
method are retained. If the “velocity” part is nonlinear in the position coordinate, we observe a
reduction of the order of convergence, which is typical of numerical integration of DAEs. We verified
our results through numerical experiments for various dynamical systems.

Keywords: variational integrators; degenerate Lagrangians; Runge–Kutta methods;
differential-algebraic systems; symplectic geometry; dynamical systems

1. Introduction

Geometric integrators are numerical methods that preserve geometric structures and properties
of the flow of a differential equation. Structure-preserving integrators have attracted considerable
interest due to their excellent numerical behavior, especially for long-time integration of equations
possessing geometric properties (see [1–3]).

An important class of structure-preserving integrators are variational integrators. This type of
numerical schemes is based on discrete variational principles and provides a natural framework for the
discretization of Lagrangian systems, including forced, dissipative, constrained, or stochastic ones. For
an overview of variational integration, see [4] (see also [5–18]). Variational integrators were introduced
in the context of finite-dimensional mechanical systems, but were later generalized to Lagrangian field
theories (see [19]) and applied in many computations, for example in elasticity, electrodynamics, or
fluid dynamics (see [20–24]).

Theoretical aspects of variational integration are well understood in the case when the Lagrangian
describing the considered system is regular, that is, when the corresponding Legendre transform is
(at least locally) invertible. However, the corresponding theory for degenerate Lagrangian systems
is less developed. The analysis of degenerate systems becomes more cumbersome, because the
Euler–Lagrange equations may cease to be second order, or may not even make any sense at all. In the
latter case, one needs to determine if there exists a submanifold of the configuration bundle TQ on
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which consistent equations of motion can be derived. This can be accomplished by applying the Dirac
theory of constraints or the pre-symplectic constraint algorithm (see [25,26]).

A particularly simple case of degeneracy occurs when the Lagrangian is linear in velocities. In that
case, the dynamics of the system is defined on the configuration manifold Q itself, rather than its
tangent bundle TQ, provided that some regularity conditions are satisfied. Such systems arise in
many physical applications, including interacting point vortices in the plane (see [17,18,27]), guiding
center dynamics (see [28–32]), or partial differential equations such as the nonlinear Schrödinger [33],
KdV [34,35] or Camassa–Holm equations [36,37]. In Section 5, we show how certain Poisson systems
can be recast as Lagrangian systems whose Lagrangians are linear in velocities. Therefore, our
approach offers a new perspective on geometric integration of Poisson systems, which often arise as
semi-discretizations of integrable nonlinear partial differential equations, e.g., the Toda or Volterra
lattice equations, and play an important role in the modeling of many physical phenomena (see
[38–40]).

This paper is organized as follows. In Section 2, we introduce a proper geometric setup and discuss
the properties of systems that are linear in velocities. In Section 3, we analyze the general properties
of variational integrators and point out how the relevant theory differs from the non-degenerate
case. In Section 4, we introduce variational partitioned Runge–Kutta methods and discuss their
relation to numerical integration of differential-algebraic systems. In Section 5, we present the results
of our numerical experiments for Kepler’s problem, a system of two interacting vortices, and the
Lotka–Volterra model. We summarize our work and discuss possible extensions in Section 6.

2. Geometric Setup

Let Q be the configuration manifold and TQ its tangent bundle. Throughout this work, we
assume that the dimension of the configuration manifold dim Q = n is even. We further assume Q is
a vector space and by a slight abuse of notation we denote by q both an element of Q and the vector
of its coordinates q = (q1, . . . , qn) in a local chart on Q. It is clear from the context which definition is
invoked. Consider the Lagrangian L ∶ TQ Ð→ R given by

L(vq) = ⟨α, vq⟩− H(q), (1)

where α ∶ Q Ð→ T∗Q is a smooth one-form, H ∶ Q Ð→ R is the Hamiltonian, and vq ∈ TqQ. Let (qµ, q̇µ)
denote canonical coordinates on TQ, where µ = 1, . . . , n. In these coordinates, we can consider

L(q, q̇) = αµ(q) q̇µ − H(q), (2)

where summation over repeated Greek indices is implied.

2.1. Equations of Motion

The Lagrangian in Equation (1) is degenerate, since the associated Legendre transform

FL ∶ TQ ∋ vq Ð→ αq ∈ T∗Q (3)

is not invertible. The local representation of the Legendre transform is

FL(qµ, q̇µ) = (qµ,
∂L
∂q̇µ

) = (qµ, αµ(q)), (4)

that is,
pµ = αµ(q), (5)
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where (qµ, pµ) denote canonical coordinates on T∗Q. The dynamics is defined by the action functional

S[q(t)] = ∫
b

a
L(q(t), q̇(t)) dt (6)

and Hamilton’s principle, which seeks the curves q(t) such that the functional S[q(t)] is stationary
under variations of q(t) with fixed endpoints, i.e., we seek q(t) such that

dS[q(t)] ⋅ δq(t) = d
dε

∣
ε=0

S[qε(t)] = 0 (7)

for all δq(t) with δq(a) = δq(b) = 0, where qε(t) is a smooth family of curves satisfying q0 = q and
d
dε ∣ε=0qε = δq. The resulting Euler–Lagrange equations

Mµν(q) q̇ν = ∂µH(q) (8)

form a system of first-order ODEs, where we assume that the even-dimensional antisymmetric matrix
Mµν(q) = ∂µαν(q) − ∂ναµ(q) is invertible for all q ∈ Q. Without loss of generality, we can further
assume that the coordinate mapping pµ = αµ(q) is invertible and its inverse is smooth: if the Jacobian
∂αµ/∂qν is singular, we can redefine αµ(q)→ αµ(q)+ bµ(qµ), where bµ(qµ) are arbitrary functions; the
Euler–Lagrange equations remain the same, and with the right choice of the functions bµ(qµ), the
redefined Jacobian can be made nonsingular. Using B = M−1, Equation (8) can be equivalently written
as the Poisson system

q̇µ = Bµν(q) ∂ν H(q). (9)

The Euler–Lagrange Equation (8) can also be formulated as the implicit “Hamiltonian” system

pµ = αµ(q),

ṗµ = ∂µαν(q) q̇ν − ∂µH(q). (10)

Since the Lagrangian L is degenerate, Equation (10) is an index-1 system of differential-algebraic
equations (DAE), rather than a Hamiltonian ODE system: the Legendre transform is an algebraic
equation and has to be differentiated once with respect to time in order to turn this system into
Equation (8). This reflects the fact that the evolution of the considered degenerate system takes place
on the primary constraint N = FL(TQ) ⊊ T∗Q. It is easy to see that the primary constraint N is (locally)
diffeomorphic to the configuration manifold Q, where the diffeomorphism η ∶ Q ∋ q Ð→ αq ∈ N is
locally, in the coordinates on T∗Q, given by

η(q) = (q, α(q)), (11)

where by a slight abuse of notation α(q) = (α1(q), . . . , αn(q)). This shows that qµ can also be used as
local coordinates on N. Note that η is simply the restriction of α to N, i.e., η = α∣QÐ→N .

2.2. Symplectic Forms

The spaces Q, TQ, T∗Q and N can be equipped with several symplectic or pre-symplectic forms.
It is instructive to investigate the relationships among them in order to later avoid confusion regarding
the sense in which variational integrators for Lagrangians linear in velocities are symplectic. On the
configuration space Q, we can define the two-form

Ω = −dα, (12)
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which in local coordinates can be expressed as

Ω = −dαµ ∧ dqµ = −Mµν(q) dqµ ⊗ dqν. (13)

The two-form Ω is symplectic if it is nondegenerate, i.e., if the matrix Mµν is invertible for all q.
The cotangent bundle T∗Q is equipped with the canonical Cartan one-form Θ̃ ∶ T∗Q Ð→ T∗T∗Q,

which is intrinsically defined by the formula

Θ̃(ω) = (πT∗Q)∗ω (14)

for any ω ∈ T∗Q, where πT∗Q ∶ T∗Q Ð→ Q is the cotangent bundle projection. In canonical coordinates,
we have

Θ̃ = pµdqµ. (15)

We further have the canonical symplectic two-form

Ω̃ = −dΘ̃ = dqµ ∧ dpµ. (16)

The symplectic forms Ω and Ω̃ are related by

Ω = α∗Ω̃. (17)

This follows from the simple calculation

α∗Θ̃ ⋅ vq = Θ̃(αq) ⋅ Tα(vq) = αq ⋅ TπT∗Q ○ Tα(vq) = αq ⋅ T(πT∗Q ○ α)(vq) = αq ⋅ vq, (18)

where we used Equation (14) and the fact that πT∗Q ○ α = idQ. Hence, α∗Θ̃ = α, and taking the exterior
derivative on both sides we obtain Equation (17).

Using the Legendre transform (Equation (3)) we can define the Lagrangian two-form Ω̃L on TQ
by Ω̃L = FL∗Ω̃, which in canonical coordinates (qµ, q̇µ) is given by

Ω̃L = dqµ ∧ dαµ = −Mµν(q) dqµ ⊗ dqν. (19)

The Lagrangian form Ω̃L is only pre-symplectic, because it is degenerate. Noting that FL = α ○πTQ,
where πTQ ∶ TQ Ð→ Q is the tangent bundle projection, we can relate Ω and Ω̃L through the formula

Ω̃L = (πTQ)∗α∗Ω̃ = (πTQ)∗Ω. (20)

The symplectic structure on N can be introduced in two ways: by pushing forward Ω from Q, or
pulling back Ω̃ from T∗Q. Both ways are equivalent, with

Ω̃N = η∗Ω = i∗Ω̃, (21)

where i ∶ N Ð→ T∗Q is the inclusion map. This follows from the calculation

η∗Ω = (η−1)∗α∗Ω̃ = (α ○ η−1)∗Ω̃ = i∗Ω̃, (22)

where we used α = i ○ η. If we use qµ as coordinates on N, then the local representation of Ω̃N is given
by Equation (13).

2.3. Symplectic Flows

Let ϕt ∶ Q Ð→ Q denote the flow of Equation (8) or Equation (9). This flow is symplectic on Q,
that is

ϕ∗t Ω = Ω. (23)
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This fact can be proven by considering the Hamiltonian or Poisson properties of Equation (8) or
Equation (9) (see [1,26]). It also follows directly from the action principle in Equation (7) (see [17]).

Since the Lagrangian in Equation (1) is degenerate, the dynamics of the system is defined on Q
rather than TQ. However, we can obtain the associated flow on TQ through lifting ϕt by its tangent
map Tϕt ∶ TQ Ð→ TQ. This flow preserves the Lagrangian two-form

(Tϕt)∗Ω̃L = Ω̃L. (24)

This can be seen from the calculation

(Tϕt)∗Ω̃L = (Tϕt)∗(πTQ)∗Ω = (πTQ ○ Tϕt)∗Ω = (ϕt ○πTQ)∗Ω = (πTQ)∗ϕ∗t Ω = Ω̃L, (25)

where we use Equations (20) and (23), and the property πTQ ○ Tϕt = ϕt ○πTQ.
The flow ϕt induces the flow ϕ̃t ∶ N Ð→ N in a natural way as

ϕ̃t = η ○ ϕt ○ η−1. (26)

This flow is symplectic on N, i.e.,
ϕ̃∗t Ω̃N = Ω̃N , (27)

which can be established through the simple calculation

ϕ̃∗t Ω̃N = (η ○ ϕt ○ η−1)∗η∗Ω = (η−1)∗ϕ∗t η∗(η−1)∗Ω = η∗ϕ∗t Ω = Ω̃N , (28)

where we use Equations (21) and (23). The flow ϕ̃t can be interpreted as the symplectic flow for the
“Hamiltonian” DAE in Equation (10).

3. Veselov Discretization and Discrete Mechanics

3.1. Discrete Mechanics

For a Veselov-type discretization, we consider the discrete state space Q ×Q, which serves as a
discrete approximation of the tangent bundle (see [4]). We define a discrete Lagrangian Ld as a smooth
map Ld ∶ Q ×Q Ð→ R and the corresponding discrete action

S =
N−1
∑
k=0

Ld(qk, qk+1). (29)

The variational principle now seeks a sequence q0, q1, ..., qN that extremizes S for variations
holding the endpoints q0 and qN fixed. The Discrete Euler–Lagrange equations follow

D2Ld(qk−1, qk)+D1Ld(qk, qk+1) = 0. (30)

Assuming that these equations can be solved for qk+1, i.e., Ld is non-degenerate, they implicitly
define the discrete Lagrangian map FLd ∶ Q × Q Ð→ Q × Q such that FLd(qk−1, qk) = (qk, qk+1). Let
(qµ, q̄µ) denote local coordinates on Q ×Q. We can define the discrete Legendre transforms FL+d ,FL−d ∶
Q ×Q Ð→ T∗Q, which in local coordinates on Q ×Q and T∗Q are, respectively, given by

F+Ld(q, q̄) = (q̄, D2Ld(q, q̄)),

F−Ld(q, q̄) = (q,−D1Ld(q, q̄)), (31)

where q = (q1, . . . , qn) and q̄ = (q̄1, . . . , q̄n). The Discrete Euler–Lagrange Equation (30) can be
equivalently written as

F+Ld(qk−1, qk) = F−Ld(qk, qk+1). (32)
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Using either of the transforms, one can define the discrete Lagrange two-form on Q × Q by
ωLd = (F±Ld)∗Ω̃, which in coordinates gives

ωLd =
∂2Ld

∂qµ∂q̄ν
dqµ ∧ dq̄ν. (33)

It then follows that the discrete flow FLd is symplectic, i.e., F∗Ld
ωLd = ωLd . Using the Legendre

transforms, we can pass to the cotangent bundle and define the discrete Hamiltonian map F̃Ld ∶
T∗Q Ð→ T∗Q by F̃Ld = F±Ld ○ FLd ○ (F

±Ld)−1. This map is also symplectic, i.e., F̃∗Ld
Ω̃ = Ω̃.

3.2. Exact Discrete Lagrangian

To relate discrete and continuous mechanics, it is necessary to introduce a timestep h ∈ R. If
the continuous Lagrangian L is non-degenerate, it is possible to define a particular choice of discrete
Lagrangian which gives an exact correspondence between discrete and continuous systems (see [4]),
the so-called exact discrete Lagrangian

LE
d (q, q̄) = ∫

h

0
L(qE(t), q̇E(t)) dt, (34)

where qE(t) is the solution to the continuous Euler–Lagrange equations associated with L such that it
satisfies the boundary conditions qE(0) = q and qE(h) = q̄. Note, however, that in the case of a regular
Lagrangian, the associated Euler–Lagrange equations are second order, therefore boundary value
problems are solvable, at least for sufficiently small h and q̄ sufficiently close to q. In the case of the
Lagrangian defined in Equation (1) the associated Euler–Lagrange Equation (8) is first order in time,
therefore we have the freedom to choose an initial condition either at t = 0 or t = h, but not both. An
exact discrete Lagrangian analogous to Equation (34) cannot thus be defined on the whole space Q×Q.
We therefore assume the following definition:

Definition 1. Let Γ(ϕh) = {(q, ϕh(q)) ∈ Q × Q} be the graph of ϕh. The exact discrete Lagrangian LE
d ∶

Γ(ϕh)Ð→ R for the Lagrangian given in Equation (1) is

LE
d (q, q̄) = ∫

h

0
L(qE(t), q̇E(t)) dt, (35)

where qE(t) is the solution to Equation (8) that satisfies the initial condition qE(0) = q.

Note that in this definition we automatically have qE(h) = q̄.

3.3. Singular Perturbation Problem

As mentioned above, the purpose of introducing an exact discrete Lagrangian is to establish an
exact correspondence between the continuous and discrete systems. For a regular Lagrangian L and
its exact discrete Lagrangian LE

d , one can show that the exact discrete Hamiltonian map F̃LE
d

is equal
to ϕ̃h, where ϕ̃t is the symplectic flow for the Hamiltonian system associated with L. The problem
is that the exact discrete Lagrangian given in Equation (35) is not defined on the whole space Q ×Q,
so the discrete Euler–Lagrange Equation (30) does not make sense, and it is not entirely clear how
to define the associated discrete Lagrangian map FLE

d
. One possible way to deal with this issue is to

consider a singular perturbation problem. Assume that Q is a Riemannian manifold equipped with
the nondegenerate scalar product ⟪., .⟫. Define the ε-regularized Lagrangian

Lε(vq) =
ε

2
⟪vq, vq⟫+ ⟨α, vq⟩− H(q), (36)

or in coordinates
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Lε(q, q̇) = ε

2
gµν q̇µ q̇ν + αµ(q) q̇µ − H(q), (37)

where gµν denotes the local coordinates of the metric tensor. Without loss of generality assume that in
the chosen coordinates gµµ = 1 and gµν = 0 if µ /= ν. For ε > 0, this Lagrangian is nondegenerate and the
Legendre transform FLε ∶ TQ Ð→ T∗Q is given by

FL(qµ, q̇µ) = (qµ, ε gµν q̇ν + αµ(q)), (38)

that is,

pµ = ε gµν q̇ν + αµ(q). (39)

The Euler–Lagrange equations

ε gµν q̈ν = Mµν(q) q̇ν − ∂µH(q) (40)

are second order. The corresponding Hamiltonian equations (in implicit form) are

pµ = ε gµν q̇ν + αµ(q),

ṗµ = ∂µαν(q) q̇ν − ∂µH(q). (41)

There is no reason to expect that the solutions of Equation (40) or Equation (41) unconditionally
approximate the solutions of Equation (8) or Equation (10), respectively. Equation (41) is a system
of first-order ordinary differential equations, and therefore it is possible to specify arbitrary initial
conditions q(0) = qinit and p(0) = pinit, whereas initial conditions for Equation (10) have to satisfy the
algebraic constraint pinit = α(qinit). Under certain restrictive analytic assumptions, for some singular
perturbation problems it is possible to show that, in order to satisfy the initial conditions, the solutions
initially develop a steep boundary layer, but then rapidly converge to the solution of the corresponding
DAE system (see [41]). On the other hand, for other singular perturbation problems, when the initial
conditions do not satisfy the algebraic constraint, it may happen that the solutions do not converge to
the solution of the DAE, but instead rapidly oscillate (see [42,43]). We expect the latter behavior for
Equation (41), as demonstrated by a simple example in Section 3.5. Since our main goal here is to show
how the notion of a discrete Legendre transform can be introduced for the exact discrete Lagrangian in
Equation (35), we make two intuitive, although nontrivial, assumptions. We refer the interested reader
to [41,42] for techniques that can be used to prove these statements rigorously.

Assumption 1. Let (q(t), p(t)) and (qε(t), pε(t)) be the unique smooth solutions of Equations (10) and (41)
on the interval [0, T] satisfying the initial conditions q(0) = qinit, qε(0) = qinit and pε(0) = pinit, where
pinit = α(qinit). Then, qε(t)Ð→ q(t), pε(t)Ð→ p(t) and q̇ε(t)Ð→ q̇(t), ṗε(t)Ð→ ṗ(t) uniformly on [0, T]
as ε Ð→ 0+.

Assumption 2. Let q(t) be the unique smooth solution of Equation (8) on the interval [0, T] satisfying the
initial condition q(0) = qinit and let qε(t) be the unique smooth solution of Equation (40) on the interval [0, T]
satisfying the boundary conditions qε(0) = qinit, qε(T) = q f inal , where q f inal = q(T). Then, qε(t)Ð→ q(t) and
q̇ε(t)Ð→ q̇(t) uniformly on [0, T] as ε Ð→ 0+.

With these assumptions, one can easily see that

LE
d (q, q̄) = lim

ε→0+
Lε,E

d (q, q̄), (42)
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where Lε,E
d is the exact discrete Lagrangian corresponding to the Lagrangian given in Equation (36).

3.4. Exact Discrete Legendre Transform

Since Lε is regular, Lε,E
d is properly defined on the whole space Q×Q (or at least in a neighborhood

of Γ(ϕh)) and the associated exact discrete Legendre transforms satisfy the properties (see [4])

F+Lε,E
d (q, q̄) = FLε(qε

E(h), q̇ε
E(h)) = (q̄, ε ˙̄qε + α(q̄)),

F−Lε,E
d (q, q̄) = FLε(qε

E(0), q̇ε
E(0)) = (q, εq̇ε + α(q)), (43)

where qε
E(t) is the solution to the regularized Euler–Lagrange Equation (40) satisfying the boundary

conditions qε
E(0) = q and qε

E(h) = q̄, and we denote q̇ε = q̇ε
E(0), ˙̄qε = q̇ε

E(h). In the spirit of Equation (42),
we can assume the following definitions of the exact discrete Legendre transforms F±LE

d ∶ Γ(ϕh)Ð→
T∗Q

F+LE
d (q, q̄) = lim

ε→0+
F+Lε,E

d (q, q̄) = (q̄, α(q̄)),

F−LE
d (q, q̄) = lim

ε→0+
F−Lε,E

d (q, q̄) = (q, α(q)), (44)

where εq̇ε Ð→ 0 and ε ˙̄qε Ð→ 0 by uniform convergence of q̇ε
E(t). Note that F±LE

d = α ○π±, where π+ ∶
Γ(ϕh) ∋ (q, q̄)Ð→ q̄ ∈ Q and π− ∶ Γ(ϕh) ∋ (q, q̄)Ð→ q ∈ Q are projections (both π± are diffeomorphisms).
This is a close analogy to FL = α ○πTQ (see Section 2). We also note the property

F+LE
d (q, q̄) = FL(qE(h), q̇E(h)),

F−LE
d (q, q̄) = FL(qE(0), q̇E(0)), (45)

where qE(t) is the solution of Equation (8) satisfying the initial condition qE(0) = q. This further
indicates that our definition of the exact discrete Legendre transforms is sensible. Note that
F±LE

d (Γ(ϕh)) = N. It is convenient to redefine F±LE
d ∶ Γ(ϕh) Ð→ N, that is F±LE

d = η ○ π±, so that
both transforms are diffeomorphisms between Γ(ϕh) and N.

The discrete Euler–Lagrange equations for LE
d can be obtained as the limit of the discrete

Euler–Lagrange equations for Lε,E
d , that is, one can substitute Lε,E

d in Equation (32) and take the
limit ε Ð→ 0+ on both sides to obtain

F+LE
d (qk−1, qk) = F−LE

d (qk, qk+1). (46)

This equation implicitly defines the exact discrete Lagrangian map FLE
d
∶ Γ(ϕh) ∋ (qk−1, qk) Ð→

(qk, qk+1) ∈ Γ(ϕh), which, given our definitions, necessarily takes the form FLE
d
(qk−1, qk) = (qk, ϕh(qk)).

Using the discrete Legendre transforms F±LE
d , we can define the corresponding exact discrete

“Hamiltonian” map F̃LE
d
∶ N Ð→ N as F̃LE

d
= F±LE

d ○ FLE
d
○ (F±LE

d )
−1. The simple calculation

F̃LE
d
= η ○π± ○ FLE

d
○ (π±)−1 ○ η−1 = η ○ ϕh ○ η−1 = ϕ̃h (47)

shows that the discrete “Hamiltonian” map associated with the exact discrete Lagrangian LE
d is equal

to the “Hamiltonian” flow ϕ̃h for Equation (10), i.e., the evolution of the discrete systems described by
LE

d coincides with the evolution of the continuous system described by L at times tk = kh, k = 0, 1, 2, . . .
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3.5. Example

Let us illustrate these ideas with a very simple example for which analytic solutions are known.
Let Q = R2 and let (x, y) denote local coordinates on Q. The tangent bundle is TQ = R2 ×R2, and the
induced local coordinates are (x, y, ẋ, ẏ). Consider the Lagrangian

L(x, y, ẋ, ẏ) = 1
2

yẋ − 1
2

xẏ. (48)

The corresponding Euler–Lagrange Equation (8) is simply

ẋ = 0,

ẏ = 0, (49)

so the flow ϕt ∶ Q Ð→ Q is the identity, i.e., ϕt(x, y) = (x, y). Let (x, y, px, py) denote canonical
coordinates on the cotangent bundle T∗Q ≅ R2 ×R2. The Legendre transform is

FL(x, y, ẋ, ẏ) = (x, y,
1
2

y,−1
2

x). (50)

Let h be a timestep. Note Γ(ϕh) = {(x, y, x, y) ∣ (x, y) ∈ Q}. The exact discrete Lagrangian define in
Equation (35) is therefore

LE
d (x, y, x, y) = 0. (51)

Let us now consider the ε-regularized Lagrangian

Lε(x, y, ẋ, ẏ) = ε

2
ẋ2 + ε

2
ẏ2 + 1

2
yẋ − 1

2
xẏ. (52)

The corresponding Euler–Lagrange Equation (40) takes the form

εẍ + ẏ = 0,

εÿ + ẋ = 0. (53)

One can easily verify analytically that

xε(t) = 1
2
[(xi + x f )− (y f − yi) cot

T
2ε

]+ 1
2
[(y f − yi)+ (x f − xi) cot

T
2ε

] sin
t
ε

− 1
2
[(x f − xi)− (y f − yi) cot

T
2ε

] cos
t
ε

,

yε(t) = 1
2
[(yi + y f )+ (x f − xi) cot

T
2ε

]− 1
2
[(x f − xi)− (y f − yi) cot

T
2ε

] sin
t
ε

− 1
2
[(y f − yi)+ (x f − xi) cot

T
2ε

] cos
t
ε

, (54)

is the solution to Equation (53) satisfying the boundary conditions (xε(0), yε(0)) = (xi, yi) and
(xε(T), yε(T)) = (x f , y f ). Note that, if xi /= x f or yi /= y f , then as ε Ð→ 0+ this solution is rapidly
oscillatory and not convergent. However, if (x f , y f ) = ϕT(xi, yi) = (xi, yi) (cf. Assumption 2), then
we have

xε(t) = xi,

yε(t) = yi, (55)
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and this solution converges uniformly (in this simple example it is in fact equal) to the solution
of Equation (49) with the same initial condition. We can also find an analytic expression for the
exact discrete Lagrangian defined in Equation (34) associated with the Lagrangian considered in
Equation (52) as

Lε,E
d (x, y, x̄, ȳ) =

x̄y − xȳ
2

+
(x̄ − x)2 + (ȳ − y)2

4
cot

T
2ε

. (56)

Restricting the domain to Γ(ϕh) we get Lε,E
d (x, y, x, y) = 0, and comparing to Equation (51) we

verify that Equation (42) indeed holds. The discrete Legendre transforms in Equation (31) associated
with Lε,E

d take the form

F+Lε,E
d (x, y, x̄, ȳ) = (x̄, ȳ,

y
2
+ x̄ − x

2
cot

T
2ε

,−x
2
+

ȳ − y
2

cot
T
2ε

),

F−Lε,E
d (x, y, x̄, ȳ) = (x, y,

ȳ
2
+ x̄ − x

2
cot

T
2ε

,− x̄
2
+

ȳ − y
2

cot
T
2ε

). (57)

Restricting the domain to Γ(ϕh) and taking the limit ε Ð→ 0+ as in Equation (44), we can define
the exact discrete Legendre transforms associated with Equation (51)

F+LE
d (x, y, x, y) = (x, y,

y
2

,−x
2
),

F−LE
d (x, y, x, y) = (x, y,

y
2

,−x
2
). (58)

Comparing with Equation (50), we see that the property described in Equation (45) is satisfied,
which replicates the analogous property for regular Lagrangians.

3.6. Variational Error Analysis

For a given continuous system described by the Lagrangian L, a variational integrator is
constructed by choosing a discrete Lagrangian Ld which approximates the exact discrete Lagrangian
LE

d . We can define the order of accuracy of the discrete Lagrangian in a way similar to that for discrete
Lagrangians resulting from regular continuous Lagrangians (see [4]).

Definition 2. A discrete Lagrangian Ld ∶ Q ×Q Ð→ R is of order r if there exists an open subset U ⊂ Q with
compact closure and constants C > 0 and h̄ > 0 such that

∣Ld(q(0), q(h))− LE
d (q(0), q(h))∣ ≤ Chr+1 (59)

for all solutions q(t) of the Euler–Lagrange Equation (8) with initial conditions q(0) ∈ U and for all h ≤ h̄.

We always assume that the discrete Lagrangian Ld is non-degenerate, so that the discrete
Euler–Lagrange Equation (30) can be solved for qk+1. This defines the discrete Lagrangian map
FLd ∶ Q×Q Ð→ Q×Q and the associated discrete Hamiltonian map F̃Ld ∶ T∗Q Ð→ T∗Q, as in Section 3.1.
Of particular interest is the rate of convergence of F̃Ld to ϕ̃h. One usually considers a local error (error
made after one step) and a global error (error made after many steps). We assume the following
definitions, which are appropriate for differential-algebraic systems (see [1,4,41,44]).

Definition 3. A discrete Hamiltonian map F̃Ld is of order r if there exists an open set U ⊂ N and constants
C > 0 and h̄ > 0 such that

∥F̃Ld(q, p)− ϕ̃h(q, p)∥ ≤ Chr+1 (60)

for all (q, p) ∈ U and h ≤ h̄.
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Definition 4. A discrete Hamiltonian map F̃Ld is convergent of order r if there exists an open set U ⊂ N and
constants C > 0, h̄ > 0 and T̄ > 0 such that

∥(F̃Ld)
K(q, p)− ϕ̃T(q, p)∥ ≤ Chr+1, (61)

where h = T/K, for all (q, p) ∈ U, h ≤ h̄, and T ≤ T̄.

If the Lagrangian L is regular, then one can show that a discrete Lagrangian Ld is of order r if
and only if the corresponding Hamiltonian map F̃Ld is of order r (see [4]). In addition, the associated
Hamiltonian equations are a set of ordinary differential equations, and under some smoothness
assumptions one can show that if F̃Ld is of order r, then it is also convergent of order r (see [44]).
However, in the case of the Lagrangian defined in Equation (1) it is not true in general—both the order
of the discrete Lagrangian and the local order of the discrete Hamiltonian map may be different than
the actual global order of convergence (see [41,45]), as demonstrated in Section 4.

Example: Midpoint Rule. In a simple example, we demonstrate that the variational order of accuracy
of a discretization method is unaffected by a degeneracy of a Lagrangian L. To calculate the order of
a discrete Lagrangian Ld, we can expand Ld(q(0), q(h)) in a Taylor series in h and compare it to the
analogous expansion for LE

d . If the two expansions agree up to r terms, then Ld is of order r. Expanding
q(t) in a Taylor series about t = 0 and substituting it into Equation (35), we get the expression

LE
d (q(0), q(h)) = hL + h2

2
(∂L

∂q
q̇ + ∂L

∂q̇
q̈)+ h3

6
(∂L

∂q
q̈ + ∂L

∂q̇
...q + q̇T ∂2L

∂q2 q̇ + 2q̇T ∂2L
∂q∂q̇

q̈ + q̈T ∂2L
∂q̇2 q̈)+ o(h3), (62)

where we denote q = q(0), q̇ = q̇(0), etc., and the Lagrangian L and its derivatives are computed at (q, q̇).
For the Lagrangian given in Equation (1), the values of q̇, q̈, and ...q are determined by differentiating
Equation (8) sufficiently many times and substituting the initial condition q(0). Note that in case
of regular Lagrangians the value of q̇ is determined by the boundary conditions q(0), q(h), and the
higher-order derivatives by differentiating the corresponding Euler–Lagrange equations, but apart
from that Equation (62) remains qualitatively unaffected.

The midpoint rule is an integrator obtained by defining the discrete Lagrangian

Ld(q, q̄) = hL(
q + q̄

2
,

q̄ − q
h

). (63)

Calculating the expansion in h yields

Ld(q(0), q(h)) = hL + h2

2 ( ∂L
∂q q̇ + ∂L

∂q̇ q̈)+ h3( 1
4

∂L
∂q q̈ + 1

6
∂L
∂q̇

...q + 1
8 q̇T ∂2L

∂q2 q̇ + 1
4 q̇T ∂2L

∂q∂q̇ q̈ + 1
8 q̈T ∂2L

∂q̇2 q̈)+ o(h3). (64)

Comparing this to Equation (62) shows that the discrete Lagrangian defined by the midpoint rule
is second order regardless of the degeneracy of L. However, as mentioned before, if L is degenerate we
cannot conclude about the global order of convergence of the corresponding discrete Hamiltonian map.
The midpoint rule can be formulated as a Runge–Kutta method, namely the 1-stage Gauss method.
We discuss Gauss and other Runge–Kutta methods and their convergence properties in more detail in
Section 4. Note that low-order variational integrators based on the midpoint rule for Lagrangians as in
Equation (1) have been studied in [17,18] in the context of the dynamics of point vortices.

4. Variational Partitioned Runge–Kutta Methods

4.1. VPRK Methods as PRK Methods for the “Hamiltonian” DAE

To construct higher-order variational integrators one may consider a class of partitioned
Runge–Kutta (PRK) methods. Variational partitioned Runge–Kutta (VPRK) methods for regular
Lagrangians are described in [1,4]. In this section, we show how VPRK methods can be applied to
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systems described by Lagrangians defined in Equation (1). As in the case of regular Lagrangians,
we construct an s-stage variational partitioned Runge–Kutta integrator for the Lagrangian given in
Equation (1) by considering the discrete Lagrangian

Ld(q, q̄) = h
s
∑
i=1

biL(Qi, Q̇i), (65)

where the internal stages Qi, Q̇i, i = 1, . . . , s, satisfy the relation

Qi = q + h
s
∑
j=1

aijQ̇j, (66)

and are chosen so that the right-hand side of Equation (65) is extremized under the constraint

q̄ = q + h
s
∑
i=1

biQ̇i. (67)

A variational integrator is then obtained by forming the corresponding discrete Euler–Lagrange
Equation (30).

Theorem 1. The s-stage variational partitioned Runge–Kutta method based on the discrete Lagrangian defined
in Equation (65) with the coefficients aij and bi is equivalent to the following partitioned Runge–Kutta method
applied to the “Hamiltonian” DAE in Equation (10):

Pi = α(Qi), i = 1, . . . , s, (68a)

Ṗi = [Dα(Qi)]TQ̇i −DH(Qi), i = 1, . . . , s, (68b)

Qi = q + h
s
∑
j=1

aijQ̇j, i = 1, . . . , s, (68c)

Pi = p + h
s
∑
j=1

āij Ṗj, i = 1, . . . , s, (68d)

q̄ = q + h
s
∑
j=1

bjQ̇j, (68e)

p̄ = p + h
s
∑
j=1

bj Ṗj, (68f)

where the coefficients satisfy the condition

bi āij + bjaji = bibj, ∀i, j = 1, . . . , s, (69)

and (q, p) denote the current values of position and momentum, (q̄, p̄) denote the respective values at the next
time step, and Dα = (∂αµ/∂qν)µ,ν=1,...,n, DH = (∂H/∂qµ)µ=1,...,n, and Qi, Q̇i, Pi, Ṗi are the internal stages,
with Qi = (Qµ

i )µ=1,...,n, and similarly for the others.

Proof. See Theorem VI.6.4 in [1] or Theorem 2.6.1 in [4]. The proof is essentially identical. The only
qualitative difference is the fact that in our case the Lagrangian given in Equation (1) is degenerate,
thus the corresponding Hamiltonian system is in fact the index-1 differential-algebraic system stated
in Equation (10) rather than a typical system of ordinary differential equations.

4.1.1. Existence and Uniqueness of the Numerical Solution

Given q and p, one can use Equations (68) to compute the new position q̄ and momentum p̄.
First, one needs to solve Equations (68a)–(68d) for the internal stages Qi, Q̇i, Pi, and Ṗi. This is a
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system of 4sn equations for 4sn variables, but one has to make sure these equations are independent,
so that a unique solution exists. One may be tempted to calculate the Jacobian of this system for
h = 0, and then use the Implicit Function Theorem. However, even if we start with consistent initial
values (q0, p0), the numerical solution (qk, pk) for k > 0 will only approximately satisfy the algebraic
constraint; thus, Qi = q and Pi = p cannot be assumed to be the solution of Equations (68a)–(68d) for
h = 0, and, consequently, the Implicit Function Theorem will not yield a useful result. Let us therefore
regard q and p as h-dependent, as they result from the previous iterations of the method with the
timestep h. If the method is convergent, it is reasonable to expect that p − α(q) is small and converges
to zero as h is refined. The following approach was inspired by Theorem 4.1 in [45].

Theorem 2. Let H and α be smooth in an h-independent neighborhood U of q and let the matrix

W(ξ1, . . . , ξs) = (Ā⊗ In){DαT}− (A⊗ In){Dα} (70)

be invertible with the inverse bounded in Us, i.e., there exists C > 0 such that

∥W−1(ξ1, . . . , ξs)∥ ≤ C, ∀(ξ1, . . . , ξs) ∈ Us, (71)

where A = (aij)i,j=1,...,s, Ā = (āij)i,j=1,...,s, In is the n × n identity matrix, and {Dα} denotes the block diagonal
matrix

{Dα}(ξ1, . . . , ξs) =
s
⊕
i=1

Dα(ξi) = blockdiag (Dα(ξ1), . . . , Dα(ξs)). (72)

Suppose also that (q, p) satisfy
p − α(q) = O(h). (73)

Then, there exists h̄ > 0 such that the nonlinear system described by Equations (68a)–(68d) has a solution
for h ≤ h̄. The solution is locally unique and satisfies

Qi − q = O(h), Pi − p = O(h), Q̇i = O(1), Ṗi = O(1). (74)

Proof. Substitute Equation (68c) and Equation (68d) into Equation (68a) and Equation (68b) to obtain

0 = α(Qi)− p − h
s
∑
j=1

āij Ṗ
j,

Ṗi = DαT(Qi)Q̇i −DH(Qi), (75)

for i = 1, . . . , s, where for notational convenience we left the Qi’s as arguments of α, DαT and DH, but
we keep in mind they are defined by Equation (68c), so that Equation (75) is a nonlinear system for Q̇i
and Ṗi. Let us consider the homotopy

0 = α(Qi)− p − h
s
∑
j=1

āij Ṗ
j − (τ − 1)(p − α(q)),

Ṗi = DαT(Qi)Q̇i −DH(Qi)− (τ − 1)DH(q), (76)

for i = 1, . . . , s. It is easy to see that, for τ = 0, Equation (76) has the solution Q̇i = 0 and Ṗi = 0, and,
for τ = 1, it is equivalent to Equation (75). Let us treat Q̇i and Ṗi as functions of τ, and differentiate
Equation (76) with respect to this parameter. The resulting ODE system can be written as

{Dα}(A⊗ In)
dQ̇
dτ

− Ā⊗ In
dṖ
dτ

= 1
h
1s ⊗ (p − α(q)), (77a)

dṖ
dτ

= ({DαT}+ h{B}(A⊗ In))
dQ̇
dτ

−1s ⊗DH(q), (77b)
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where for compactness we introduced the following notations: Q̇ = (Q̇1, . . . , Q̇s)T , similarly for Ṗ;
1s = (1, . . . , 1)T is the s-dimensional vector of ones; {Dα} = {Dα}(Q1, . . . , Qs), and, similarly, {B}
denotes the block diagonal matrix

{B} = blockdiag (B(Q1, Q̇1), . . . , B(Qs, Q̇s)) (78)

with B(Qi, Q̇i) = D2αβ(Qi)Q̇β
i − D2H(Qi), where D2 denotes the Hessian matrix of the respective

function, and summation over β is implied. Equation (77) is further simplified if we substitute
Equation (77b) into Equation (77a). This way, we obtain an ODE system for the variables Q̇ of the form

[(Ā⊗ In){DαT}− {Dα}(A⊗ In)+ h(Ā⊗ In){B}(A⊗ In)]
dQ̇
dτ

=

(Ā1s)⊗DH(q)− 1
h
1s ⊗ (p − α(q)). (79)

Since α is smooth, we have

[{Dα}(A⊗ In)]
ij
= aijDα(Qi) = aijDα(Qj)+O(δ) = [(A⊗ In){Dα}]

ij
+O(δ), (80)

where ∥Qi −Qj∥ ≤ δ for δ assumed small, but independent of h. Moreover, since α and H are smooth,
the term {B}, as a function of Q̇, is bounded in a neighborhood of 0. Therefore, we can write
Equation (79) as

[W(Q1, . . . , Qs)+O(δ)+O(h)]dQ̇
dτ

= (Ā1s)⊗DH(q)− 1
h
1s ⊗ (p − α(q)). (81)

By Equation (71), for sufficiently small h and δ, the matrix W(Q1, . . . , Qs) +O(δ) +O(h) has a
bounded inverse, provided that Q1, . . . , Qs remain in U. Therefore, Equation (81) with the initial
condition Q̇(0) = 0 has a unique solution Q̇(τ) on a non-empty interval [0, τ̄), which can be extended
until any of the corresponding Qi(τ) leaves U. Let us argue that for a sufficiently small h we have
τ̄ > 1. Given Equations (71) and (73), Equation (81) implies that

dQ̇
dτ

= O(1). (82)

Therefore, we have

Q̇(τ) = ∫
τ

0

dQ̇
dζ

dζ = O(τ) (83)

and further
Qi(τ) = q +O(τh) (84)

for τ < τ̄. This implies that all Qi(τ) remain in U for τ ≤ 1 if h is sufficiently small. Consequently,
Equation (79) has a solution on the interval [0, 1]. Then, Q̇i(1) and Qi(1) satisfy the estimates stated
in Equation (74), and are a solution to the nonlinear system formed by Equations (68a)–(68d). The
corresponding Ṗi and Pi can be computed using Equations (68b) and (68d), and the remaining estimates
in Equation (74) can be proved using the fact that α and H are smooth. This completes the proof of the
existence of a numerical solution to Equations (68a)–(68d).

To prove local uniqueness, we substitute the second equation of Equation (75) into the first one to
obtain a nonlinear system for Q̇i, namely

0 = α(Qi)− p − h
s
∑
j=1

āij(DαT(Qj)Q̇j −DH(Qj)), (85)
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for i = 1, . . . , s, where we again left the Qi’s for notational convenience. Suppose there exists another
solution ˙̄Qi that satisfies the estimates stated in Equation (74), and denote ∆Q̇i = ˙̄Qi − Q̇i. Based on the
assumptions, we have ∆Q̇i = O(1), i.e., it is at least bounded as h Ð→ 0. We show that for sufficiently
small h we in fact have ∆Q̇i = 0. Since ˙̄Qi satisfy Equation (85), we have

0 = α(Q̄i)− p − h
s
∑
j=1

āij(DαT(Q̄j) ˙̄Qj −DH(Q̄j)) (86)

for i = 1, . . . , s. Subtract Equation (85) from Equation (86), and linearize around Q̇i. Based on the fact
that ∆Q̇i = O(1), and using the notation introduced above, we get

0 = h[{Dα}(A⊗ In)− (Ā⊗ In){DαT}]∆Q̇ +O(h2∥∆Q̇∥). (87)

By a similar argument as above, for sufficiently small h the matrix [{Dα}(A⊗ In)−(Ā⊗ In){DαT}]
has a bounded inverse, therefore Equation (87) implies ∆Q̇ = O(h∥∆Q̇∥), that is,

∥∆Q̇∥ ≤ C̃h∥∆Q̇∥ ⇐⇒ (1− C̃h)∥∆Q̇∥ ≤ 0 (88)

for some constant C̃ > 0. Note that for h < 1/C̃ we have (1 − C̃h) > 0, and therefore ∥∆Q̇∥ = 0, which
completes the proof of the local uniqueness of a numerical solution to Equations (68a)–(68d).

4.1.2. Remarks

The condition given in Equation (71) may be tedious to verify, especially if one uses a Runge–Kutta
method with many stages. However, this condition is significantly simplified in the following
special cases:

1. For a non-partitioned Runge–Kutta method, we haveA = Ā, and the condition in Equation (71) is
satisfied if A is invertible, and the mass matrix M(q) = DαT(q)−Dα(q), as defined in Section 2.1,
is invertible in U and its inverse is bounded.

2. If Dα is antisymmetric, then the condition in Equation (71) is satisfied if (A+ Ā) is invertible, and
the matrix Dα(q) is invertible in U and its inverse is bounded.

4.2. Linear αµ(q)

An interesting special case is obtained if we have, in some local chart on Q, αµ(q) = − 1
2 Λµνqν for

some constant matrix Λ. Without loss of generality assume that Λ is invertible and antisymmetric. The
Lagrangian given in Equation (2) then takes the form

L(q, q̇) = −1
2

Λµν q̇µqν − H(q), (89)

the Euler–Lagrange Equation (8) becomes

Λq̇ = DH(q), (90)

and the “Hamiltonian” DAE system in Equation (10) is

p = −1
2

Λq,

ṗ = 1
2

Λq̇ −DH(q). (91)
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Let us consider a special case of the method defined by Equation (68) with aij = āij, i.e., a
non-partitioned Runge–Kutta method. Applying it to Equation (91), we get

Pi = −1
2

ΛQi, i = 1, . . . , s, (92a)

Ṗi = 1
2

ΛQ̇i −DH(Qi), i = 1, . . . , s, (92b)

Qi = q + h
s
∑
j=1

aijQ̇j, i = 1, . . . , s, (92c)

Pi = p + h
s
∑
j=1

aij Ṗj, i = 1, . . . , s, (92d)

q̄ = q + h
s
∑
j=1

bjQ̇j, (92e)

p̄ = p + h
s
∑
j=1

bj Ṗj. (92f)

Since Λ is antisymmetric and invertible, by Theorem 2, this scheme yields a unique numerical
solution to Equation (91) if the Runge–Kutta matrix A = (aij) is invertible.

Theorem 3. Suppose A = (aij) is invertible and p = − 1
2 Λq. Then, the method defined in Equation (92) is

equivalent to the same Runge–Kutta method applied to Equation (90).

Proof. Substitute Equations (92c) and (92d) into Equation (92a), and use the fact p = − 1
2 Λq to obtain

s
∑
j=1

aij(Ṗj +
1
2

ΛQ̇j) = 0, i = 1, . . . , s. (93)

Since A is invertible, this implies

Ṗi = −
1
2

ΛQ̇i, i = 1, . . . , s. (94)

Substituting this into Equation (92b) yields

ΛQ̇i = DH(Qi), i = 1, . . . , s. (95)

Together with Equations (92c) and (92e), this gives a Runge–Kutta method for Equation (90).
Moreover, substituting Equation (94) and p = − 1

2 Λq into Equation (92f), and using Equation (92e), one
has

p̄ = −1
2

Λq + h
s
∑
j=1

bj(−
1
2

ΛQ̇j) = −
1
2

Λq̄, (96)

that is, (q̄, p̄) satisfy the algebraic constraint.

Corollary 1. The numerical flow on T∗Q defined by Equation (92) leaves the primary constraint N invariant,
i.e., if (q, p) ∈ N, then (q̄, p̄) ∈ N.

If the coefficients of the method defined in Equation (92) satisfy the condition in Equation (69),
then Equation (92) is a variational integrator and the associated discrete Hamiltonian map F̃Ld is
symplectic on T∗Q, as explained in Section 3.1. Given Corollary 1, we further have:
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Corollary 2. If the coefficients aij and bi in Equation (92) satisfy the condition stated in Equation (69), then
the discrete Hamiltonian map F̃Ld associated with Equation (65) is symplectic on the primary constraint N, that
is, (F̃Ld

∣N)∗Ω̃N = Ω̃N .

4.2.1. Convergence

Various Runge–Kutta methods and their classical orders of convergence, that is, orders of
convergence when applied to (non-stiff) ordinary differential equations, are discussed in many
textbooks on numerical analysis, for instance [41,44]. When applied to differential-algebraic equations,
the order of convergence of a Runge–Kutta method may be reduced (see [41,43,46]). However, in the
case of Equation (91) Theorem 3 implies that the classical order of convergence of non-partitioned
Runge–Kutta methods defined by Equation (92) is retained.

Theorem 4. A Runge–Kutta method with the coefficients aij and bi applied to the DAE system in Equation (91)
retains its classical order of convergence.

Proof. Let r be the classical order of the considered Runge–Kutta method, (q, p) ∈ N an initial condition,
(qE(t), pE(t)) the exact solution to Equation (91) such that (qE(0), pE(0)) = (q, p), and (qk, pk) the
numerical solution obtained by applying the method given in Equation (92) iteratively k times with
(q0, p0) = (q, p). Theorem 3 states that the method given in Equation (92) is equivalent to applying
the same Runge–Kutta method to the ODE system in Equation (90). Hence, we obtain convergence
of order r in the q variable, that is, for a fixed time T > 0 and an integer K such that h = T/K, we have
the estimate

∥qK − q(T)∥ ≤ Chr+1 (97)

for some constant C > 0 (cf. Definition 4). By Corollary 1, we know that pK = − 1
2 ΛqK, thus we have

the estimate

∥pK − p(T)∥ ≤ 1
2
∥Λ∥∥qK − q(T)∥ ≤ 1

2
∥Λ∥Chr+1, (98)

which completes the proof, since ∥Λ∥ < +∞.

Of particular interest to us are Runge–Kutta methods that satisfy the condition stated in
Equation (69), for instance symplectic diagonally-implicit Runge–Kutta methods (DIRK) or Gauss
collocation methods (see [1]). The s-stage Gauss method is of classical order 2s, therefore we have:

Corollary 3. The s-stage Gauss collocation method applied to the DAE system in Equation (91) is convergent
of order 2s.

As mentioned in Section 3.6, the midpoint rule is a 1-stage Gauss method, therefore it retains its
classical second order of convergence.

4.2.2. Backward Error Analysis

Equation (90) can be rewritten as the Poisson system

q̇ = Λ−1DH(q) (99)

with the structure matrix Λ−1 (see [1,26]). The flow ϕt for this equation is a Poisson map, that is, it
satisfies the property

Dϕt(q)Λ−1 [Dϕt(q)]T = Λ−1, (100)
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which is in fact equivalent to the symplecticity property stated in Equation (23) or Equation (27) written
in local coordinates on Q or N, respectively. Let Fh ∶ Q Ð→ Q represent the numerical flow defined by
some numerical algorithm applied to Equation (99). We say this flow is a Poisson integrator if

DFh(q)Λ−1 [DFh(q)]T = Λ−1. (101)

The left-hand side of Equation (100) can be regarded as a quadratic invariant of Equation (99).
By Theorem 3, the method given in Equation (92) is equivalent to applying the same Runge–Kutta
method to Equation (99). If its coefficients also satisfy the condition in Equation (69), then it can be
shown that the method preserves quadratic invariants (see Theorem IV.2.2 in [1]). Therefore, we have:

Corollary 4. If A = (aij) is invertible, the coefficients aij and bi satisfy the condition stated in Equation (69),
and p = − 1

2 Λq, then the method defined by Equation (92) is a Poisson integrator for Equation (99).

The true power of symplectic integrators for Hamiltonian equations is revealed through their
backward error analysis: a symplectic integrator for a Hamiltonian system with the Hamiltonian
H(q, p) defines the exact flow for a nearby Hamiltonian system, whose Hamiltonian can be expressed
as the asymptotic series

H̃(q, p) = H(q, p)+ hH2(q, p)+ h2H3(q, p)+ . . . (102)

Owing to this fact, under some additional assumptions, symplectic numerical schemes nearly
conserve the original Hamiltonian H(q, p) over exponentially long time intervals (see [1] for details). A
similar result holds for Poisson integrators for Poisson systems: a Poisson integrator defines the exact
flow for a nearby Poisson system, whose structure matrix is the same and whose Hamiltonian has the
asymptotic expansion as in Equation (102) (see Theorem IX.3.6 in [1]). Therefore, if the condition in
Equation (69) is satisfied, we expect the non-partitioned Runge–Kutta schemes defined by Equation (92)
to demonstrate good preservation of the original Hamiltonian H. See Section 5 for numerical examples.

Partitioned Runge–Kutta methods do not seem to have special properties when applied to systems
with linear αµ(q), therefore we describe them in the general case next.

4.3. Nonlinear αµ(q)

When the coordinates αµ(q) are nonlinear functions of q, then the Runge–Kutta methods discussed
in Section 4.2 lose some of their properties: a theorem similar to Theorem 3 cannot be proved, most
of the Runge–Kutta methods (whether non-partitioned or partitioned) do not preserve the algebraic
constraint p = α(q), i.e., the numerical solution does not stay on the primary constraint N, and therefore
their order of convergence is reduced, unless they are stiffly accurate.

4.3.1. Runge–Kutta Methods

Let us again consider non-partitioned methods with aij = āij. Convergence results for some
classical Runge–Kutta schemes of interest can be obtained by transforming Equation (10) into a
semi-explicit index-2 DAE system. Let us briefly review this approach. More details can be found
in [41,45].

Equation (10) can be written as the quasi-linear DAE

C(y)ẏ = f (y), (103)

where y = (q, p) and

C(y) = ([Dα(q)]T −In

0 0
) , f (y) = ( DH(q)

p − α(q)
) , (104)
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where In denotes the n×n identity matrix. Let us introduce a slack variable z and rewrite Equation (103)
as the index-2 DAE system

ẏ = z, (105a)

0 = C(y)z − f (y). (105b)

This system is of index 2, because it has 4n dependent variables, but only 2n differential equations
(Equation (105a)), and some components of the algebraic equations (Equation (105b)) have to be
differentiated twice with respect to time in order to derive the missing differential equations for z.
Note that C(y) is a singular matrix of constant rank n, therefore it can be decomposed (using Gauss
elimination or the singular value decomposition) as

C(y) = S(y)(In 0
0 0

) T(y) (106)

for some non-singular matrices S(y) and T(y). Since α(q) is assumed to be smooth, one can choose
S and T so that they are also smooth (at least in a neighborhood of y). Premultiplying both sides of
Equation (105b) by S−1(y) turns Equation (105) into

ẏ1 = z1, (107a)

ẏ2 = z2, (107b)

0 = T11(y) z1 + T12(y) z2 − f̃1(y), (107c)

0 = f̃2(y), (107d)

where we introduce the block structure y = (y1, y2), z = (z1, z2), and

T(y) = (T11 T12

T21 T22
) , S−1(y) f (y) = ( f̃1(y)

f̃2(y)
) . (108)

Since T(y) is invertible, we can assume without loss of generality that the block T11(y) is invertible,
too (one can always permute the columns of T(y) otherwise). Let us compute z1 from Equation (107c)
and substitute it into Equation (107a). The resulting system,

ẏ1 = (T11(y))−1( f̃1(y)− T12(y)z2), (109a)

ẏ2 = z2, (109b)

0 = f̃2(y), (109c)

has the form of a semi-explicit index-2 DAE

ẏ = F(y, z2),

0 = G(y), (110)

provided that
DyG Dz2 F = −Dy1 f̃2 T−1

11 T12 +Dy2 f̃2 (111)

has a bounded inverse.
It is an elementary exercise to show that the partitioned Runge–Kutta method defined by

Equation (68) is invariant under the presented transformation, that is, it defines a numerically
equivalent partitioned Runge–Kutta method for Equation (109). Runge–Kutta methods for
semi-explicit index-2 DAEs have been studied and some convergence results are available.
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Convergence estimates for the y component of Equation (109) can be readily applied to the solution of
Equation (103).

As in Section 4.2, of particular interest to us are variational Runge–Kutta methods, i.e., methods
satisfying the condition stated in Equation (69), for example Gauss collocation methods (see [1,44]).
However, in the case when α(q) is a nonlinear function, the solution generated by the Gauss methods
does not stay on the primary constraint N and this affects their rate of convergence, as will be shown
below. For comparison, we will also consider the Radau IIA methods (see [41]), which, although not
variational/symplectic, are stiffly accurate, that is, their coefficients satisfy asj = bj for j = 1, . . . , s, so the
numerical value of the solution at the new time step is equal to the value of the last internal stage, and
therefore the numerical solution stays on the submanifold N. We cite the following convergence rates
for the y component of Equation (110) after [41,45]:

• s-stage Gauss method—convergent of order { s + 1 for s odd
s for s even

; and

• s-stage Radau IIA method—convergent of order 2s − 1.

With the exception of the midpoint rule (s = 1), we see that the order of convergence of the Gauss
methods is reduced. On the other hand, the Radau IIA methods retain their classical order 2s − 1.

Symplecticity. Since the Gauss methods satisfy the condition in Equation (69), they generate a flow
which preserves the canonical symplectic form Ω̃ on T∗Q, as explained in Section 3.1. However, since
the primary constraint N is not invariant under this flow, a result analogous to Corollary 2 does not
hold, i.e., the flow is not symplectic on N.

4.3.2. Partitioned Runge–Kutta Methods

In Section 5, we present numerical results for the Lobatto IIIA-IIIB methods (see [1]). Their
numerical performance appears rather unattractive, therefore our theoretical results regarding
partitioned Runge–Kutta methods are less complete. Below, we summarize the experimental orders of
convergence of the Lobatto IIIA-IIIB schemes that we observed in our numerical computations (see
Figures 2, 6 and 10):

• 2-stage Lobatto IIIA-IIIB—inconsistent;
• 3-stage Lobatto IIIA-IIIB—convergent of order 2; and
• 4-stage Lobatto IIIA-IIIB—convergent of order 2.

Comments regarding the symplecticity of these schemes are the same as for the Gauss methods
mentioned above in Section 4.3.1.

5. Numerical Experiments

In this section, we present the results of the numerical experiments we performed to test the
methods discussed in Section 4. We consider Kepler’s problem, the dynamics of planar point vortices,
and the Lotka–Volterra model, and we show how each of these models can be formulated as a
Lagrangian system linear in velocities.

5.1. Kepler’s Problem

A particle or a planet moving in a central potential in two dimensions can be described by the
Hamiltonian

H(x, y, px, py) =
1
2

p2
x +

1
2

p2
x −

1√
x2 + y2

− H0, (112)

where (x, y) denotes the position of the planet and (px, py) its momentum. H0 is an arbitrary constant.
The corresponding Lagrangian can be obtained in the usual way as
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L = px ẋ + pyẏ − H(x, y, px, py). (113)

If one performs the standard Legendre transform ẋ = ∂H/∂px, ẏ = ∂H/∂py, then L = L(x, y, ẋ, ẏ)
will take the usual nondegenerate form, quadratic in velocities. However, one can also introduce
the variable q = (x, y, px, py) and view L = L(q, q̇) as in Equation (2), that is, a Lagrangian linear in
velocities (see [47]). Comparing Equation (113) and Equation (89), we see that the corresponding Λ
is singular. Without loss of generality we replace Λ with its antisymmetric part (Λ −ΛT)/2, which is
invertible, and consider the Lagrangian

L = 1
2

q3q̇1 + 1
2

q4q̇2 − 1
2

q1q̇3 − 1
2

q2q̇4 − H(q). (114)

As a test problem, we considered an elliptic orbit with eccentricity e = 0.5 and semi-major axis
a = 1. We took the initial condition at the pericenter, i.e., q1

init = (1 − e)a = 0.5, q2
init = 0, q3

init = 0,
q4

init = a
√

(1+ e)/(1− e) ≈ 1.73. This is a periodic orbit with period Tperiod = 2π. A reference solution
was computed by integrating Equation (90) until the time T = 7 using Verner’s method (a sixth-order
explicit Runge–Kutta method; see [44]) with the small time step h = 2× 10−7. The reference solution is
depicted in Figure 1.

−2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Figure 1. The reference solution for Kepler’s problem computed by integrating Equation (90) until the
time T = 7 using Verner’s method with the time step h = 2× 10−7.

We solved the same problem using several of the methods discussed in Section 4 for a number
of time steps ranging from h = 3.5 × 10−3 to h = 3.5 × 10−1. The value of the solutions at T = 7 was
then compared against the reference solution. The max norm errors are depicted in Figure 2. We see
that the rates of convergence of the Gauss and the 3-stage Radau IIA methods are consistent with
Theorem 4 and Corollary 3. For the Lobatto IIIA-IIIB methods, we observe a reduction of order. The
2-stage Lobatto IIIA-IIIB method turns out to be inconsistent and is not depicted in Figure 2. Both the
3- and 4-stage methods converge only quadratically, while their classical orders of convergence are 4
and 6, respectively.
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Figure 2. Convergence of several Runge–Kutta methods for Kepler’s problem.

We also investigated the long-time behavior of our integrators and conservation of the
Hamiltonian. For convenience, we set H0 = −0.5 in Equation (112), so that H = 0 on the considered
orbit. We applied the Gauss methods with the relatively large time step h = 0.1 and computed the
numerical solution until the time T = 5× 105. Figure 3 shows that the Gauss integrators preserve the
Hamiltonian very well, which is consistent with Corollary 4. We performed similar computations for
the Lobatto IIIA-IIIB and Radau IIA methods, also with h = 0.1. The results are depicted in Figure 4.
The 3- and 4-stage Lobatto IIIA-IIIB schemes result in instabilities, the planet’s trajectory spirals down
on the center of gravity, and the computations cannot be continued too far in time. The Hamiltonian
shows major variations whose amplitude grows in time. The non-variational Radau IIA scheme yields
an accurate solution, but it demonstrates a gradual energy dissipation.

5.2. Point Vortices

Point vortices in the plane are another interesting example of a system with linear αµ(q)
(see [17,18,27]). A system of K interacting point vortices in two dimensions can be described by
the Lagrangian

L(x1, y1, . . . , xK, yK, ẋ1, ẏ1, . . . , ẋK, ẏK) =
1
2

K
∑
i=1

Γi(xi ẏi − yi ẋi)− H(x1, y1, . . . , xK, yK) (115)

with the Hamiltonian

H(x1, y1, . . . , xK, yK) = 1
4π

K
∑
i<j

ΓiΓj log ((xi − xj)2 + (yi − yj)2)− H0, (116)

where (xi, yi) denotes the location of the i-th vortex, Γi is its circulation, and H0 is an arbitrary constant.
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Figure 3. Hamiltonian conservation for the 1-stage (top row), 2-stage (middle row) and 3-stage (bottom
row) Gauss methods applied to Kepler’s problem with the time step h = 0.1 over the time interval
[0, 5× 105] (right column), with a close-up on the initial interval [0, 150] shown in (left column).

As a test problem, we considered the system of K = 2 vortices with circulations Γ1 = 4 and Γ2 = 2,
respectively, and distance D = 1 between them. The vortices rotate on concentric circles about their
center of vorticity at xC = 0 and yC = 0. We took the initial condition at x(0)1 = Γ2D/(Γ1 + Γ2) ≈ 0.33,

y(0)1 = 0, x(0)2 = −Γ1D/(Γ1 + Γ2) ≈ −0.67 and y(0)2 = 0. The analytic solution can be found (see [27]) as

x1(t) = Γ2

Γ1 + Γ2
D cos ωt, x2(t) = − Γ1

Γ1 + Γ2
D cos ωt,

y1(t) = Γ2

Γ1 + Γ2
D sin ωt, y2(t) = − Γ1

Γ1 + Γ2
D sin ωt, (117)

where ω = (Γ1 + Γ2)/(2πD2). This is a periodic solution with period Tperiod ≈ 6.58 (see Figure 5).
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Figure 4. Hamiltonian for the numerical solution of Kepler’s problem obtained with the 3- and
4-stage Lobatto IIIA-IIIB schemes (top,middle), respectively, and the non-variational Radau IIA
method (bottom).

We performed similar convergence tests as presented in Section 5.1. The value of the numerical
solutions at time T=7 were compared against the exact solution given in Equation (117). The max norm
errors are depicted in Figure 6. The results are qualitatively the same as for Kepler’s problem.
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Figure 5. The circular trajectories of the two point vortices rotating about their vorticity center at xC = 0
and yC = 0.
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Figure 6. Convergence of several Runge–Kutta methods for the system of two point vortices.
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We set H0 = 0 in Equation (116), so that H = 0 for the considered solution. Figures 7 and 8 show
the behavior of the numerical Hamiltonian over a long integration interval. The 3- and 4-stage Lobatto
IIIA-IIIB integrators performed better than for Kepler’s problem. In the case of the Gauss methods ,the
Hamiltonian stayed virtually constant—the visible minor erratic oscillations are the result of round-off
errors. The Radau IIA scheme demonstrated a slow but systematic drift.
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Figure 7. Hamiltonian for the 1-stage (top), 2-stage (second) and 3-stage (third) Gauss, and the 3-stage
Radau IIA (bottom) methods applied to the system of two point vortices with the time step h = 0.1 over
the time interval [0, 5× 105].

5.3. Lotka–Volterra Model

The dynamics of the growth of two interacting (predator/prey) species can be modeled by the
Lotka–Volterra equations

u̇ = u(v − 2),

v̇ = v(1− u), (118)
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where u(t) denotes the number of predators and v(t) the number of prey, and constants 1 and 2 were
chosen arbitrarily. These equations can be rewritten as the Poisson system

(u̇
v̇
) = ( 0 uv

−uv 0
) DH(u, v), (119)

where the Hamiltonian is given by

H(u, v) = u − log u + v − 2 log v − H0 (120)

with an arbitrary constant H0 (see [1]). Using an approach similar to the one presented in Section 5.1,
one can easily verify that the Lagrangian

L(q, q̇) = (
log q2

q1 + q2)q̇1 + q1q̇2 − H(q) (121)

reproduces the same equations of motion, where q = (u, v). The coordinates αµ(q) (cf.
Equation (2)) were chosen, so that the assumptions of Theorem 2 are satisfied for the considered
Runge–Kutta methods.
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Figure 8. Hamiltonian conservation for the 3-stage (top) and 4-stage (bottom) Lobatto IIIA-IIIB
methods applied to the system of two point vortices with the time step h = 0.1 over the time interval
[0, 5× 105] (right column), with a close-up on the initial interval [0, 50] shown in (left column).

As a test problem, we considered the solution with the initial condition q1
init = 1 and q2

init = 1 (note
that q = (1, 2) is an equilibrium point). This is a periodic solution with period Tperiod ≈ 4.66. A reference
solution was computed by integrating Equation (90) until the time T = 5 using Verner’s method with
the small time step h = 10−7. The reference solution is depicted in Figure 9.
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Figure 9. The reference solution for the Lotka–Volterra equations computed by integrating Equation (90)
until the time T = 5 using Verner’s method with the time step h = 10−7.

Convergence plots are shown in Figure 10. The convergence rates for the Gauss and Radau IIA
methods are consistent with the theoretical results presented in Section 4.3.1—we see that the orders of
the 2- and 3-stage Gauss schemes are reduced. The 2-stage Lobatto IIIA-IIIB scheme again proves to be
inconsistent, and the 3- and 4-stage schemes converge quadratically, just as in Sections 5.1 and 5.2.
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Figure 10. Convergence of several Runge–Kutta methods for the Lotka–Volterra model.

We performed another series of numerical experiments with the time step h = 0.1 to investigate the
long time behavior of the considered integrators. The results are shown in Figures 11 and 12. We set
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H0 = 2 in Equation (120), so that H = 0 for the considered solution. The 1- and 3-stage Gauss methods
again show excellent Hamiltonian conservation over a long time interval. The 2-stage Gauss method,
however, does not perform equally well—the Hamiltonian oscillates with an increasing amplitude
over time, until the computations finally break down. The Lobatto IIIA-IIIB methods show similar
problems as in Section 5.1. The non-variational Radau IIA method yields an accurate solution, but
demonstrates a steady drift in the Hamiltonian.
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Figure 11. Hamiltonian conservation for the 1-stage (top row) and 3-stage (bottom row) Gauss methods
applied to the Lotka–Volterra model with the time step h = 0.1 over the time interval [0, 5× 105] (right
column), with a close-up on the initial interval [0, 100] shown in (left column).
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Figure 12. Hamiltonian for the numerical solution of the Lotka–Volterra model obtained with the
2-stage Gauss method (top left), the 3- and 4-stage Lobatto IIIA-IIIB schemes (top right,bottom left),
respectively, and the non-variational Radau IIA method (bottom right).
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6. Summary

We analyze a class of degenerate systems described by Lagrangians that are linear in velocities,
and present a way to construct appropriate higher-order variational integrators. We point out how the
theory underlying variational integration is different from the non-degenerate case and we made a
connection with numerical integration of differential-algebraic equations. We also perform numerical
experiments for several example models.

Our work can be extended in several ways. In Section 5.3, we present our numerical results
for the Lotka–Volterra model, which is an example of a system for which the coordinate functions
αµ(q) are nonlinear. The 1- and 3-stage Gauss methods perform exceptionally well and preserve the
Hamiltonian over a very long integration time. It would be interesting to perform a backward error
(or similar) analysis to check if this behavior is generic. If confirmed, our variational approach could
provide a new way to construct geometric integrators for a broader class of Poisson systems. The study
of modified Lagrangians recently presented in [48] is the first step towards a rigorous backward error
analysis for the variational integrators considered in our work.

Another idea worth exploring is a construction of variational integrators that exactly satisfy
the primary constraint. Certain advances in that direction were made in [49] by applying
projection methods.

It would also be interesting to further consider constrained systems with Lagrangians that are
linear in velocities and construct associated higher-order variational integrators. This would allow
generalizing the space-adaptive methods presented in [24,50] to degenerate field theories, such as the
nonlinear Schrödinger, KdV or Camassa–Holm equations.
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