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Figure 1: Decomposing Vector Fields: the tangential component of a wind field interacting with an ear (left, LIC visualization [5]) reveals
its curl free component (middle) and divergence-free component (right) after decomposition. In this paper, simple computational tools are
introduced to produce such a decomposition, for discrete 2D and 3D vector fields defined on irregular grids, even on curved manifolds.

Abstract
While 2D and 3D vector fields are ubiquitous in computational sci-
ences, their use in graphics is often limited to regular grids, where
computations are easily handled through finite-difference methods.
In this paper, we propose a set of simple and accurate tools for
the analysis of 3D discrete vector fields on arbitrary tetrahedral
grids. We introduce a variational, multiscale decomposition of vec-
tor fields into three intuitive components: a divergence-free part, a
curl-free part, and a harmonic part. We show how our discrete ap-
proach matches its well-known smooth analog, called the Helmotz-
Hodge decomposition, and that the resulting computational tools
have very intuitive geometric interpretation. We demonstrate the
versatility of these tools in a series of applications, ranging from
data visualization to fluid and deformable object simulation.
Keywords: Vector fields, Variational approaches, Hodge decom-
position, Scale-space description, Animation, Visualization

1 Introduction
Discrete multivalued fields such as vector and tensor fields are ubiq-
uitous in computational sciences. In Computer Graphics, they are
used in a large number of applications ranging from fluid and de-
formable object simulation to the analysis of MRI data for medical
prognosis. Due to the sheer complexity of these nonscalar fields,
their numerical processing is most often performed on regular grids,
due to a lack of simple and accurate tools for irregular grids. Yet,
arbitrary grids are more efficient and flexible at discretizing 2D and
3D regions, whether they are in Euclidean spaces or on curved man-
ifolds. The goal of this paper is to present a simple and accurate
approach to vector field processing on arbitrary tetrahedral grids,
to catalyze the development of algorithms and implementations of
such rich data in computer graphics.

Most of the work done so far on discrete vector field analysis has
tried to mimic well-known differential properties of vector fields
dating back to Poincaré (1854-1912). Globus et al. [11] for instance

described a methodology for vector field analysis by examining the
eigenvalues of the jacobian matrix of a velocity field trilinearly in-
terpolated on curvilinear grids. They also created a discrete topol-
ogy of vector fields by connecting critical points through stream-
lines. This notion of topology can be used to not only analyze, but
also to describe vector fields, even noisy ones that can be smoothed
while preserving [29] or simplifying [27, 14] their topology. An al-
ternative for computing the singularities of three dimensional flow
fields was shown in [16] using Clifford algebra. It can not only find
and classify point singularities, but also line and surface singulari-
ties. However, the approach is so far restricted to regular grid data;
moreover, the computations involved provide topological informa-
tion only, and often return false positives. This is actually a com-
mon problem: since most vector field feature detections are based
on very local estimates (often using the jacobian or the winding
number), inevitable noise in the data often leads to poor numerical
quality of the approximants, and thus inaccurate feature detection.
As we will see, we use instead a variational approach to offer a
more global solution to feature detection that does not suffer from
such sensitivity to noise.

Smoothing vector fields has also been proposed as an efficient
way to simplify complex datasets, and render the analysis more
tractable [29, 4]: for instance, [24, 9] use anisotropic nonlinear dif-
fusion methods to clean “noise” (small-scale features) from 2D and
3D fluid flows. This general idea is essential when dealing with
very complex data sets issued from large simulation on supercom-
puters: the native resolution of the data prevents any global pro-
cessing without prior simplification. We will also provide, in con-
junction with a vector field decomposition, a multiscale description
of vector fields to allow for a multiresolution probing of the data.

1.1 Hodge Decomposition for Smooth Fields
For smooth data, there is a well known way to decompose a vec-
tor field into both intuitive and useful components: it is called
the Helmholtz-Hodge decomposition [1]. First, recall that ∇ =
(∂/∂x,∂/∂y,∂/∂z)t is the gradient, ∇· = ∂/∂x +∂/∂y+∂/∂z is the
divergence operator, and ∇× is the curl operator (also called rota-
tional). With this notation, for a smooth 3D vector field ξ defined
in a region T , there exists a unique decomposition satisfying the
following properties:

ξ = ∇u+∇×v+h (1)

where:
� u is a scalar potential field; note that ∇×(∇u) = 0,
� v is a vector potential field; note that ∇ · (∇×v) = 0, and
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� h is the so-called ”harmonic” vector field; note that ∇ ·h = 0 and
∇×h = 0.

The uniqueness requires proper boundary conditions as well: ∇u
must be normal to the boundary ∂T of T , while ∇×v must be tan-
gential to it. Due to the properties of the potential fields, ∇u is
called the curl-free component (∇×(∇u) = 0), while ∇×v is called
the divergence-free component (∇ · (∇×v) = 0). This decompo-
sition is particularly interesting for extraction of the features and
singularities of a flow. For instance, in 2D fields, the curl-free term
∇u contains only sources and sinks, while the divergence free term
∇×v contains only vortices (see Figure 3). Therefore, in addition
to the intrinsic mathematical values of this decomposition, these
components correspond to our intuition about what is a flow.

This natural decomposition is, alas, only well defined for dif-
ferential vector fields. One has to extend this smooth definition
to the discrete setting for computational purposes, and this is no
trivial matter as even the notion of divergence or curl needs to
be properly defined for discrete data. Discrete Helmholtz-Hodge
decomposition on regular grids has already been used in graph-
ics (see [25, 10] for instance) and is relatively straightforward to
implement with a finite-difference approach. It is, however, much
harder to design a practical and accurate method for arbitrary grids.
Several mathematical methods have been proposed to solve this is-
sue for piecewise-linear vector fields(see [3]). Recently, Polthier
and Preuß have successfully derived a technique for 2D discrete
piecewise-constant vector fields in [22, 23]1 that is particularly sim-
ple to implement, and has the attractive feature of preserving most
of the continuous properties of its differential counterpart. Thus, we
propose to extend this technique to 3D, as well as combine it with
a multiscale decomposition to provide a complete set of convenient
tools for vector fields.

1.2 Outline and Contributions
In this paper, we first propose in Section 2 a discrete 3D Helmholtz-
Hodge decomposition for irregular 3D grids, that both extends pre-
vious work [22, 23, 25] and matches its well-known differential
analog. Our projection of a vector field into three unique vector
field components (a curl-free field, a divergence-free field and a
harmonic field) preserves all the natural smooth properties in the
discrete sense. In developing our discrete decomposition, we will
introduce two discrete operators Div and Curl with definitions de-
rived from a simple variational approach. These discrete versions
of the smooth operators divergence and curl have intuitive physi-
cal meaning that matches their smooth counterparts. We then in-
troduce in Section 3 a multiscale representation of the projected

1Another attempt to define such a decomposition was also proposed
in [26], but in a different context.

Figure 2: Piecewise-constant Vector Fields: A 3D example of a vec-
tor field used in a scientific simulation; the vector field is assumed
constant within each tetrahedron.

fields, where fine-scale details are successively suppressed while
main features are preserved. Such a hierarchical decomposition is
particularly interesting for visualization purposes, as complex flows
can be represented at multiple scales to heighten the user’s intuition
and understanding of the global and local phenomena present in
the data. The resulting multiscale vector field decomposition is a
versatile computational tool: several applications are discussed and
demonstrated in Section 4, from a vector field processing and visu-
alization toolbox, to the animation of fluids and elastic objects on
irregular grids.

2 3D Vector Field Decomposition
In this section, we introduce a discrete vector field decomposition
that guarantees a proper and unique separation of a discrete vec-
tor field into a curl-free, a divergence-free and a harmonic field.
We show that this discrete treatment closely parallels the smooth
Helmholtz-Hodge decomposition (described in Section 1.1), pre-
serving all the fundamental differential properties while resulting
in a very simple implementation. Moreover, the geometric inter-
pretations behind each of the different step of this technique are
simple and intuitive.

2.1 Setup and Definitions
Our basic setup is largely inspired by [23], and extended to 3D vec-
tor fields.

Domain The finite domain on which the vector analysis needs to
be performed is given in the form of a tetrahedralization T . We will
make no assumption on the shape of the tetrahedra, or on the genus
of the region: they can be arbitrary. However, for clarity’s sake,
we will assume in this section that our domain is a region of the
“flat” 3D (Euclidean) space. It will be shown later (in Section 4.2.2)
how straightforward it is to extend our discrete Helmholtz-Hodge
decomposition to arbitrary embedding (for 3D volumes embedded
in nD, as in space-time simulations for instance).

Discrete Vector Fields On this domain, we will assume the
input discrete vector field ξ to be cell-centered: inside each tetrahe-
dron Tk of the domain, the vector field is supposed to be constant,
and is represented by a vector ξk. If the input vector field is not cell-
centered (as in finite element computations for instance), the field
can be averaged over each tetrahedron or simply sampled at the
barycenter to create the appropriate cell-centered representation.

Discrete Potential Fields Our goal is to mimic the smooth
Hodge decomposition. We thus need to define two potentials (resp.
u and v) such that their derivatives (resp. gradient and curl) repre-
sent the curl-free and divergence-free components of an input field
ξ. Given our choice of input vector fields, it is natural to define
these potential fields as being linear on each tetrahedron of T , i.e.,
defined at vertices (also called nodes) of the domain and linearly in-
terpolated within each tetrahedron. The gradient or the curl of any
node-based linear function will then be constant within any given
tetrahedron, defining a proper cell-centered vector field. Notice that
this is reminiscent of the staggered grid approach commonly used
for regular grids [25] due to its superior numerical qualities: the
vector field and the potentials are not collocated, but instead, live
on dual grids. In our case, the primal potential field defined using
linear finite elements naturally induces a dual vector field, constant
in each grid cell. This is also the traditional setup of what is some-
times called the mixed finite-volume/finite-element method [17].

Definitions In order to avoid confusion, we will always use the
index i to refer to a node of the tetrahedralization T at a spatial
position xi and use the index k for a tetrahedron Tk ∈ T . We now
define the function spaces we will be working with.
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� We will call L the (primal) space of piecewise-linear potential
fields. A potential (scalar or vector) field f ∈ L is expressed as:

f (x) = ∑
i

φi(x) fi,

with φi being the piecewise-linear basis function valued 1 at node
xi, and 0 at all other nodes of T , and fi being the value of f at
xi. Due to the local support of the basis functions φi, the value
of f within a tetrahedron defined by (xi1 ,xi2 ,xi3 ,xi4 ) is simply:
f = φi1 fi1 +φi2 fi2 +φi3 fi3 +φi4 fi4 . We will also use the notation
φik to refer to the function φi restricted to tetrahedron Tk.

� We will call C the (dual) space of piecewise-constant vec-
tor fields. A vector field w ∈ C can expressed as: w(x) =
∑k ψk(x)wk, with ψk being the piecewise-constant basis function
valued 1 inside tetrahedron Tk and 0 anywhere else. The vector
field w is therefore valued wk inside the tetrahedron Tk. Notice
that both the gradient (resp. the curl) of a primal scalar (resp.
vector) potential field in L is a dual vector field, i.e., a member
of C , since a piecewise-linear field has piecewise-constant first
derivatives.

The discrete vector field decomposition we present next can
therefore be formulated as follows:

For a vector field ξ ∈ C , find the two potential fields u ∈ L
and v ∈ L , and the vector field h ∈ C , such that a Hodge-
type decomposition (Eq. 1) can be formulated for ξ.

Next, we define the discrete notions of divergence-free and curl-
free components of a vector field, and propose a discrete decom-
position that satisfies the uniqueness property for proper boundary
conditions.

2.2 Curl-free Component
Using the smooth Hodge decomposition as a guide, we wish to find
a piecewise-linear function u such that its spatial gradient ∇u cap-
tures the curl-free part of the original vector field ξ. In the smooth
case, this component corresponds to the L2 projection of ξ onto the
space of curl-free fields [1]. Therefore a natural, globally-optimal
field u satisfying this property can be defined as minimizing the fol-
lowing quadratic functional [23]:

F(u) =
1
2

∫
T

(∇u−ξ)2 dV (2)

A necessary condition for a potential u to be a minimizer of
this function is to satisfy, for each node i, the linear equation
∂F(u)/∂ui = 0. In the Appendix A, we show that these linear equa-
tions can be expressed as:

∀i,
∫

T
∇φi ·∇u dV =

∫
T

∇φi ·ξ dV. (3)

2.2.1 Solving for the Potential
The optimality conditions being linear, it is straightforward to find
the potential u by solving the linear system in Eq. 3, which can be
rewritten at each node as a simple sum over the neighboring tets:

∀i, ∑
Tk∈N (i)

∇φik · (∇u)k |Tk| = ∑
Tk∈N (i)

∇φik ·ξk |Tk| (4)

where N (i) is the set of all tetrahedra immediately adjacent to the
node i, and |Tk| is the volume of tetrahedron Tk. The locality of
these conditions leads to a sparse matrix. Forming this matrix is
a simple matter of computing the non-zero coefficients involved;
rewriting (∇u)k as a function of the local basis functions indicates
that these coefficients are of the form ∇φik ·∇φ jk. To facilitate the
implementation, we note that ∇φik is simply the vector orthogonal
to the face fik opposite to i in the tet Tk, pointing towards i and with

a magnitude of |∇φik| = area( fik)
3 |Tk| . Using this geometric definition

Figure 3: Vector Field Decomposition (visualized using LIC [5]):
a 2D field (top, left) is decomposed into its curl-free part (middle,
left) and its divergence-free part (bottom, left). Right: the same de-
composition after a non-linear smoothing of the potentials. Notice
that only the small vortices have disappeared as can be seen from
the superimposed features (top).

of the terms involved, the coefficients of the matrix of this linear
system can then be computed easily.

To guarantee uniqueness we also need to specify boundary con-
ditions. We choose to set u|∂T = 0: this results in ∇u being orthog-
onal to each face on the boundary which is a required condition for
uniqueness in the smooth Hodge decomposition [1]. Notice that
any other constant value at the boundary could be used, reflecting
the fact that the potential u is defined up to a constant. Given these
boundary conditions the sparse linear system can now be solved
efficiently using a conventional conjugate gradient technique.

2.2.2 Discrete Divergence
Eq. (3) suggests the introduction of a discrete operator Div. For a
vector field w ∈ C and a node xi, we define:

(Div w)(xi) = ∑
Tk∈N (i)

∇φik ·w |Tk| . (5)

Indeed, with this definition, Eq. 4 can be directly expressed as a
discrete equivalent of the Poisson equation:

Div(∇u) = Div ξ. (6)

Notice that in the smooth case, u satisfies the same Poisson equa-
tion, but with the smooth divergence operator ∇·, as can be seen by
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applying ∇· to both sides of Eq. 1. Note also that Div(∇u) is the
discrete Laplacian defined for 2D in [20], and for 3D in [18]: our
operator is therefore in agreement with previous work, as already
noticed for the 2D case in [22, 21].

The Div operator defined in Eq. (5) has a very natural physical
interpretation, similar to the 2D formula found in [23]: since the
gradient inside a tet of a node’s linear basis function is orthogonal
to the opposite face (see Section 2.2.1), this operator simply sums
the “flux” of the vector field through the one-ring region around a
vertex. Additionally, in Appendix C we prove that Div(∇×w) = 0
for any vector field w ∈ L . Thus Div satisfies an identity analogous
to a vector calculus identity satisfied by the usual divergence oper-
ator. All these analogies with the differential divergence operator
justify the name Div for this discrete operator.

2.3 Divergence-free Component

Still keeping the smooth Hodge decomposition in mind for guid-
ance, we now wish to find a piecewise-linear node-based vector
field v such that its curl captures the divergence-free part of the
original vector field ξ. Following the differential definition of ∇×v
as being the L2 projection of ξ onto the space of divergence-free
fields, we define an energy G as:

G(v) =
1
2

∫
T

(∇×v−ξ)2 dV (7)

The divergence-free component ∇×v of ξ can now be defined
as the minimizer of this quadratic functional. The global critical
point of G must satisfy the following linear equations, as proven in
Appendix B:

∀i,
∫

T
∇φi × (∇×v) dV =

∫
T

∇φi ×ξ dV (8)

2.3.1 Solving for the Potential
The above optimality conditions can, once again, be written as a
local sum over neighboring tetrahedra. Therefore, solving for v
amounts to solve the sparse, linear system defined by:

∀i, ∑
Tk∈N (i)

∇φik × (∇×v)k |Tk| = ∑
Tk∈N (i)

∇φik ×ξk |Tk|. (9)

Since ∇×(∑i φi vi) = ∑i(∇φi ×vi), the non-zero coefficients of the
matrix of this linear system are now related to the cross products
∇φik ×∇φ jk. Their evaluation is simple to perform using the geo-
metric interpretation of ∇φik (see Section 2.2.1): it will reduce to a
scaled version of the cross product between normals to two adjacent
faces.

In the smooth case a sufficient boundary condition to ensure
uniqueness of the Hodge decomposition is that the divergence-free
part be tangential to the boundary. In our discrete setting, a suffi-
cient condition to ensure this condition is that v|∂T = 0 which en-
sures that ∇×w is tangential to the boundary. Given these boundary
conditions the sparse linear system can be solved efficiently using
a conventional conjugate gradient technique.

2.3.2 Discrete Curl

The condition in Eq. 9 suggests the definition of a discrete Curl
operator. For every w ∈ C and a given node xi, we define:

(Curl w)(xi) = ∑
Tk∈N (i)

(∇φik ×wk) |Tk| (10)

Therefore, the critical point v of G satisfies the condition Curl(∇×
v) = Curl ξ as in the smooth case. Notice, that, here again, this
discrete equation is valid in the differential case: it corresponds to
Eq. (1) after we apply the curl operator to each side of the equality.

This discrete Curl operator at a node xi is the volume-weighted
sum of intuitive terms: each cross product within a tetrahedron rep-
resents the vorticity of the component of the input vector field tan-
gent to the face opposite to xi. This vorticity indicates the direction
and magnitude of a small paddle wheel that would create this vec-
tor field locally. Finally, we prove in Appendix C that Curl(∇u) = 0
for any scalar field u ∈ L . Again, this is the discrete analog of the
corresponding identity from vector calculus, further justifying the
name Curl for the discrete operator just defined.

Figure 4: 3D Vector Field Decomposition: A 3D field (left, hedge-
hog visualization) reveals very simple curl-free (middle) and
divergence-free (right, line vortex) fields after processed by our dis-
crete decomposition; in this particular case, the harmonic part is a
large, almost constant vector field.

2.4 Complete Decomposition

Once the divergence-free part and the curl-free part have been
uniquely defined, the original field can be uniquely rewritten as a
sum of three components: ξ = ∇u+∇×v+h, matching the smooth
Helmholtz-Hodge decomposition (Eq. 1). The last cell-centered
vector field h is easily found by subtracting ∇u and ∇×v from the
initial field ξ on a per-tetrahedron basis. This field h is traditionally
called harmonic in the smooth case, as it is both divergence and
curl free. Interestingly, this discrete vector field is also divergence-
free and curl-free in the discrete sense. Indeed, if we apply our
Div operator to Eq. 1, we obtain Divξ = Div(∇u)+ Div(h) since
Div is linear and the discrete divergence of a rotational field is null
as shown in Appendix C. Since u satisfies Eq. 6 at every node of
the domain T , we conclude that Divh = 0. Similarly, by apply-
ing Curl to Eq. 1, we obtain: Curl h = 0. Thus, our decomposition
satisfies all the fundamental properties of the smooth Helmholtz-
Hodge decomposition: our discrete operators are consistent with
their smooth counterparts.

This discrete harmonic term h contains the non-integrable com-
ponent of the field, i.e., the part that can not be expressed as deriving
from potential fields: this corresponds to an incompressible, irrota-
tional flow, and is often in practice a small or near constant vector
field when fluid flows issued from fluid mechanics simulations are
used. Notice however that this term can be rather large for flows on
high-genus volumes.

Notice finally that our 3D results can also be used for 2D flows,
but it then reduces to the 2D decomposition method proposed
in [23], where the curl operator is particularly simpler (the curl is
just a scalar in 2D, while it is a vector in 3D). We use this 2D de-
composition in some of our figures to exemplify the characteristics
of our decomposition, as it provides a much simpler visual under-
standing.

Limitations Although the implementation of our method within
a tet mesh library is straightforward, it is not without limitations.
First, our decomposition requires solving a global, linear system.
Conjugate gradient solvers with good preconditioners being readily
available, this is not a numerical issue in practice (although the con-
dition number of our linear system increases if the tets are degen-
erated) as it only takes less than a second for a datasize of several
thousand nodes. Nevertheless, this is more computationally inten-
sive than a purely local method such as [11]. As already pointed out
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Figure 5: Feature Detection and Smoothing. The leftmost vector field (visualized with LIC) is filtered linearly (middle): the small features
do disappear, but the remaining ones have been significantly attenuated and displaced by the isotropic smoothing. On the other hand, our
non-linear smoothing (right) does preserve the major features intact, while still removing the noise: this will provide a better scale-space.

for 2D vector fields [22], there is however a significant advantage
in finding a varationally-motivated decomposition: the global na-
ture of this approach makes it very robust to both the irregularity of
the 3D mesh, and the vector field noise. Since all the main smooth
properties are also preserved, we argue that the extra computational
cost is well spent.

3 Multiscale Vector Field Description
While breaking down a discrete vector field into intuitive, simpler
components is helpful, complex flows can however be overwhelm-
ingly intricate with phenomena happening at all scales. For an ac-
curate analysis and visualization of such flows, as well as for an
efficient handling of their inherent complexity, we need to develop
adequate tools that highlight the major phenomena present in the
data. In this section, we propose a simple technique to provide a
multiscale description of an arbitrary vector field to remedy this sit-
uation, while being compatible with the previous decomposition.

3.1 Necessity of Multiscale Description
A visual depiction of complex vector fields often fails to convey
the general “trend” of the flow at first sight: multiple tiny vortices
or other local phenomena creates visual noise in the visualization
of what could otherwise be a fairly steady flow. Macroscopic ma-
nipulation of vector field data, for visualization for instance, can
also be seriously impaired by the sheer size of data, even if ex-
tremely small-scale phenomena are often not relevant. These issues
are traditionally addressed by multiscale methods in graphics. Re-
search in vision has been also focusing on the development, based
on empirical studies of our visual system, of the closely-related no-
tion of scale space [15] for object recognition and segmentation of
images. In order to facilitate the analysis and visualization of com-
plex vector fields, we present next a multiscale representation that
helps separating small-scale phenomena from large-scale features.
Combined with the discrete Hodge decomposition, this provides a
powerful and intuitive tool for vector field analysis.

3.2 Smoothing Potential Fields
The key idea to obtain a multiscale representation is to perform fil-
tering of the potentials, instead of the vector field itself as was done
in [24, 8, 9, 29, 18, 4]. Indeed, if we were to smooth the potential
field u, its gradient would still represent a curl-free field, where the
small scale sources and sinks would have been simply eliminated.
Likewise, the curl of a smoothed out field v would always represent
a divergence-free field, where only the large-scale vortices remains.
Thus, we are consistent with the initial decomposition all along the
smoothing process, preserving the fundamental decomposition of
the flow even across scales.

Several smoothing techniques can be used for both potentials u
and v. A linear scale-space [15] can be easily obtained by suc-
cessive Laplace filtering of the potentials, as was proposed in [4].
However, significant reduction of amplitude may happen due to the
linearity of the smoothing operator: small vortices do disappear
during filtering, but large vortices decreases in magnitude and get
shifted (see Figure 5). To remedy this effect, non-linear filtering can
be used instead as it better preserves salient features [9]. A large
number of anisotropic and/or non-linear smoothing have been pro-
posed, mostly following initial work in image processing by Perona
and Malik [19]. Any of these smoothing techniques can be applied
in our context [24, 18]. In the next section, we focus on the two
smoothing procedures we implemented.

3.3 Implementation
To create a linear scale-space, we perform independent Laplacian
smoothing of both u and v, directly onto the irregular grid as in [6].
This smoothing operation can be done very efficiently as we can
reuse the discrete Laplacian matrix we already set up for the dis-
crete Hodge decomposition (see Section 2.2). This amounts to a
convolution of the potential fields by a Gaussian [4], eliminating
the small variations of the potentials, which in turn eliminates the
small features of the original field. Mathematically, we are simply
integrating four diffusion equations:

∂u
∂t

= ku ∇2u

∂vx

∂t
= kv ∇2vx

∂vy

∂t
= kv ∇2vy

∂vz

∂t
= kv ∇2vz

where ku and kv can be chosen independently. The boundary condi-
tions (u|∂T = 0 and v|∂T = 0) are maintained during the smoothing
to preserve the properties of the vector field decomposition.

We also offer the option of creating a multiscale description of
the flow by performing non-linear smoothing of u and v directly on
the irregular grid too, using the methods developed in [8, 18]. This
can be done both in 2D and in 3D, and has the desired effect of
smoothing out small-scale features fast while mostly preserving the
large-scale phenomena as can be seen on Figure 5. The implemen-
tation is straightforward as this technique is also based on the same
discrete Laplacian operator, additionally weighted locally to make
the diffusion non-linear.

In practice, having both tools available is particularly useful:
Laplacian filtering can suppress small details extremely fast in most
flows without severely affecting the main features; there is however
a noticeable shift in the features’ location due to the isotropic diffu-
sion process, as demonstrated in Figure 5. The non-linear filtering,
on the other hand, is much needed when small-scale features with
strong amplitude (such as small, but powerful vortices) are present,
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as these features may be the main interest of the flow. It is, however,
more time consuming (a factor of ten is often observed). Compared
to previous smoothing techniques [9, 4], what we presented in this
section works conjunctly with the discrete decomposition, provid-
ing an enhanced tool for vector field manipulation.

4 Applications and Results

The different computational tools we presented have a large vari-
ety of applications in graphics. In this section, we show how the
multiscale decomposition we propose and the discrete operators we
derived are useful, with little or no extra work, for vector field pro-
cessing, visualization, and even simulation.

4.1 Vector Field Processing Toolbox
With the multiscale decomposition described in the previous sec-
tion, a vector field processing toolbox can easily be designed, by
extending what was done for 3D geometry in [12]. Indeed, high
frequencies can be eliminated through smoothing, but could also
be extracted or even amplified. For instance, if ξ is smoothed
into a new field ξ̂, the difference ξ − ξ̂ will represent the details
of the original signal. Simple linear combinations of this sort will
allow us to extract and process any range of “frequencies” from ar-
bitrary fields. Additionally, the Helmholtz-Hodge decomposition
adds more degrees of freedom in the range of possible manipula-
tion, since we can also target more specific signal components: at
each scale, we have the divergence-free and the curl-free compo-
nent. It is a straightforward operation to, for example, remove the
small-scale divergence-free component of a discrete vector field.
Similarly, our tools allows to resample a divergence-free vector
field on a different grid, while preserving its divergence-free na-
ture. We show vector field processing in Figure 6 where a field is
enhanced, amplifying the amount turbulence initially present in the
data.

Figure 6: Vector Field Processing: An initial flow (top left) is de-
composed in divergence-free and curl-free components; these com-
ponents are then enhanced (resp. bottom left and bottom right), and
summed back to create a new, more turbulent flow (top right).

4.2 Visualization Toolbox
Visualization can be a very strong help in “understanding” a vec-
tor field: van Wijk [28] for instance uses ink advection and decay
to perturb an initial image according to the flow in a realtime 2D
simulation/visualization, creating a very intuitive depiction of the
flow characteristics. The conjunction of a multiscale description
and a decomposition of the vector field that we presented makes
for a very nice framework for developing additional visualization
tools. In this section, we explore some basic visualization tools that
we have implemented in our framework.

4.2.1 Feature Detection
A lot of work has been targeted at finding critical points of vector
fields, as originally attempted in [11]. These critical points are of-
ten classified depending on the eigenvalues of the matrix ∇ξ at a
point in space. In our case, however, critical points of the flow can
be found as critical points of the potentials as we describe next. No-
tice that testing for critical points on potential fields (that have been
found through a global, integral equation) is much less sensitive to
noise in the data. We will therefore be less likely to get false pos-
itives, a serious problem often observed in previous local methods
(see [16] for instance).

Sink and Source Detection A sink corresponds to a local
maximum of the potential u. Following what was done for 2D
fields in [22], we define a vertex of T to be a local maximum if
the value of u at that vertex is larger that the neighbors’ values of
u. Conversely, a source is a local minimum, easy to define on a 3D
irregular grid by simply exploring the 1-ring neighbors. Addition-
ally, a larger support can be used, along with a threshold, to prune
out all the minor details if needed. Figure 5 shows the sinks and
sources for a given flow, and for its smoothed version.

Vortex Detection Each vector in the potential v represents a
direction of vorticity and an amplitude of the local vorticity. Very
similarly, we can also define vortices as local extrema of the scalar
field ||v||. One can also detect the vortices in a given direction d
by finding local maxima of the field v ·d. Finally, one can track a
tube vortex (a curve around which a swirl is happening) by finding
a local extremum in magnitude, then using the vorticity direction to
track the piecewise-linear curve of maximum vorticity.

Higher-order features One could also find more complex fea-
tures, such as saddles and spiral saddles (where there is a vortex
in a plane, and a source in the orthogonal direction to the plane),
by finding higher-order critical points of the two potentials u and
v. This idea, initially proposed by [23], can also be implemented
rather simply in our context, as inflexion points and saddle points
can be detected on discrete fields by local exploration again. Fur-
ther work needs to be done to really provide the user with a whole
catalog of features, analogous to the types defined by Abraham and
Shaw [2].

4.2.2 Tangential 3D Vector Fields in Higher Space
Although we presented both our Helmholtz-Hodge decomposition
and our multiscale representation for 3D vector fields in 3D, we can
extend it to 3D vector fields living on a 3-manifold embedded in a
higher dimensional space. The vector should be seen as living in the
tangent space of this 3-manifold. All the derivations are still valid,
as they were only using quantities intrinsic to the manifold. The
only difference for the decomposition algorithm is that the bound-
ary conditions have to changed to maintain uniqueness. However,
just like in the 2D case [23], one can add the constraint that the vol-
ume integral of the potentials u and v must be zero: this ensures a
unique pair of potentials, and preserves the Helmholtz-Hodge de-
composition qualities even for arbitrary embedding. Figure1 shows
the equivalent 2D decomposition for a surface embedded in 3D. The
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3D equivalent can be used for space-time simulation, for example.
Notice finally that the Laplacian smoothing turns into a Laplace-
Beltrami smoothing for 3D non-flat manifolds, as previously used
in [7]: we can therefore still build a space-scale easily even for
these higher-dimensional cases. Developing feature-preserving al-
gorithms for non-flat manifolds is however, still an active research
theme.

Figure 7: 3D Vector Field Decomposition: The vector field of a
3D dataset, showing turbulence behind a moving car, has been
decomposed using our technique. Left: we represent the purely
divergence-free part ∇×v of the vector field, evidenced by parti-
cle tracing and a LIC cross-section of this component. Right: this
time, the potential v is represented. The false color cross-sections
represent the magnitudes of these fields.

4.3 Vector Fields for Animation
Our discrete 3D vector field decomposition also has applications in
computer animation and simulation. We review a few connections
we have explored so far.

Fluid Animation
One of the most recognizable features of most fluid flows is the
presence of intricate swirls and complex turbulence. Fluid mechan-
ics and recent work in computer graphics have been able to obtain
very convincing simulation when simulating incompressible fluids
such as water. Keeping the flow divergence-free is essential in get-
ting all the nice vortices we are accustomed to. As mentioned early
on in this paper, most simulations use a projection to get rid of the
curl-free components that may appear during simulation via a finite-
difference approach on regular grids [25]. Similarly, preventing the
damping of smoke vortices by detecting them and slightly increas-
ing their energy has been proven important for the visual rendering
of flows [10]. Our approach allows to extend these routine proce-
dures to arbitrary grids, opening the possibilities for adaptive sim-
ulation: arbitrary boundaries and arbitrary refinements can not be
easily dealt with regular grids, whereas arbitrary grids offer a much
needed flexibility.

The previously-mentioned vector-field processing toolbox can
also be use for “flow design” in animation: a given wind field can
be edited and tweaked as wished using our computational tools. An
animator can for instance sketch a vector field roughly, and our ma-
chinery can turn this coarse field description into a purely vorticial
field, even adding small details if necessary.

Animation of Deformable Objects
Linear elasticity is often used as a particularly simple model for de-
formable object simulation. Internal forces are derived from the de-
formation field, that is, from the displacements from the reference
shape. In particular, in Debunne et al. [6] for instance, Hooke’s
law is expressed as a linear combination of the Laplacian of the de-
formation field ∇2d, representing the propagation of deformation
(pure compression), and of the gradient of the divergence of the de-
formation field, ∇(∇ ·d), representing a volume-preserving force.
The numerical discretization of the Laplacian was exactly similar

to our discrete Laplacian (see Section 2.2). A derivation of the sec-
ond operator was also proposed, but the numerical quality was far
below threshold compared to the Laplacian. Our novel operators
introduced in this paper result in another discretization, fully com-
patible with the Laplacian, therefore guaranteeing better numerical
quality. Indeed, in the smooth as well as in the discrete case, the
following identity holds:

∇(∇ ·w) = ∇×(∇×w)+∇2w

This means that the volume preservation force can be computed
using the Laplacian and the Curl operator we defined, providing a
coherent set of operators. Notice finally that we do not need the
full-blown decomposition, but only the local discrete operators we
derived. We will exploit this application of Div and Curl for elas-
ticity in a future paper.

5 Conclusion and Discussion
In this paper, we have developed a discrete multiscale vector field
decomposition, along with a number of computational tools to ma-
nipulate and analyze vector fields. The computations involved are
very straightforward, and the properties exactly match the differen-
tial analog known as the Helmholtz-Hodge decomposition. Further-
more, the discrete operators developed along the way have a very
intuitive justification, as well as a solid variational foundation. A
scale-space can also be constructed by repeated smoothing, while
preserving the initial decomposition across all scales. The result is
a versatile, multi-purpose set of tools that can be used for several
vector field processing applications, such as visualization, analysis,
or even animation.

Future Work We plan on further exploring the visualization pos-
sibilities of our decomposition. Using such a multiscale decompo-
sition on animated vector fields also seems like a natural contin-
uation of our work. Finally, our decomposition is tightly related
to the more general field of differential forms and exterior calcu-
lus [1, 13], tying in nicely with the field of Clifford Algebra. We
will also explore how our new results can be used in dynamics, for
Lie derivatives for instance.
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A Divergence Operator
Below we derive the necessary conditions for a discrete, piecewise-linear
scalar potential field u to be the unique minimum of the quadratic energy:

F(u) =
1
2

∫
T

(∇u−ξ)2 dV

Using basic calculus and the fact that u(x) =∑i φi(x) ui, we can write:

∀i,
∂F(u)

∂ui
=

∫
T

d ∇u
dui

(∇u−ξ) dV (11)

=
∫

T
∇φi · dui

dui
(∇u−ξ) dV (12)

=
∫

T
∇φi · (∇u−ξ) dV (13)

Therefore the condition for u to be a critical point of F is:

∂F(u)
∂ui

=
∫

T
∇φi · (∇u−ξ) dV = 0

This integral can now be rewritten as a direct sum over the tetrahedra di-
rectly adjacent to the node i, since ∇φi is 0 everywhere else. Since ∇u and
ξ are constant inside each tetrahedron, Eq. (3) is thus easily verified, as well
as the correct expression for the discrete divergence operator Div.

B Curl Operator
Now we derive the conditions for a discrete, piecewise-linear vector poten-
tial field v to be the unique minimum of the quadratic energy:

G(v) =
1
2

∫
T

(∇×v−ξ)2 dV

Using basic calculus and the fact that v(x) =∑i φi(x) vi, we can write:

∀i,
dG(v)

dvi
=

∫
T

d ∇×v
dvi

(∇×v−ξ) dV (14)

=
∫

T
∇φi × dvi

dvi
(∇×v−ξ) dV (15)

=
∫

T
∇φi × (∇×v−ξ) dV (16)

where we also used the fact that, for any constant vector vi and for an arbi-
trary function φi, ∇×(φi vi) = ∇φi × vi. Finally, the necessary condition of
minimality for G is simply:

dG(v)
dvi

=
∫

T
∇φi × (∇×v−ξ) dV = 0

Here again, since ∇φi is 0 everywhere except on the tetrahedra adjacent to
the node i, and since ∇×v and ξ are constant inside each tetrahedron, we
directly get Eq. 8, which in turn leads to the natural definition of the discrete
curl operator Curl.

C Discrete Calculus Identities
Here we show that, away from the boundary, the discrete operators Div and
Curl satisfy the following identities as in smooth vector calculus :

Div(∇×v) = 0 (17)

Curl(∇u) = 0 (18)

where u∈L and v ∈L are piecewise linear scalar and vector fields

a

b

e

f

in the domain T . First we need a simple result
about volumes of tetrahedra. For a tetrahedron T
let a,b be 2 of its vertices and let e be the edge
vector that does not contain these vertices, ori-
ented along the direction ∇φa ×∇φb. Then:

|T | ∇φa ×∇φb =
e
6

.

To see this let f be the face opposite to a, θe the dihedral angle at edge e, and
ha,hb the heights of vertices a and b above their respective opposite faces.
Then

|T | ∇φa ×∇φb =
1
3

area( f )ha
1
ha

1
hb

sinθe
e

||e|| =
e
6

.

Now to prove (17) note that for any node xp:

(Div(∇×v))(xp) = ∑
Tk∈N (p)

∇φpk · (∇×v)k |Tk| = ∑
Tk∈N (p)

∇φpk ·
[

∑
i∈Tk

∇φik ×vi

]
|Tk |

= ∑
Tk∈N (p)

∑
i∈Tk

vi · (∇φpk ×∇φik) |Tk| = ∑
Tk∈N (p)

∑
i∈Tk

vi · eip

6
.

The third equality is from a basic identity about scalar triple products and
the last one is from the result about tetrahedral volume derived above. This
resulting sum is null. Indeed, for each vertex i neighbor of p, the oriented
edges eip are opposite to the edge ip, and they form a closed loop around the
edge ip: their sum is therefore zero. To prove (18) we use similar reasoning
and show that:

(Curl(∇u))(xp) = ∑
Tk∈N (p)

∇φpk × (∇u)k |Tk| = ∑
Tk∈N (p)

∑
i∈Tk

(∇φpk ×∇φik) ui |Tk |

= ∑
Tk∈N (p)

∑
i∈Tk

ui
eip

6
= 0 .
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