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Abstract

We present a practical approach to isotropic tetrahedral meshing of
3D domains bounded by piecewise smooth surfaces. Building upon
recent theoretical and practical advances, our algorithm interleaves
Delaunay refinement and mesh optimization to generate quality
meshes that satisfy a set of user-defined criteria. This interleaving is
shown to be more conservative in number of Steiner point insertions
than refinement alone, and to produce higher quality meshes than
optimization alone. A careful treatment of boundaries and their
features is presented, offering a versatile framework for designing
smoothly graded tetrahedral meshes.
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1 Introduction

Meshing a domain consists in defining a concise set of simple el-
ements whose non-overlapping union best describes the domain
and its boundaries, while satisfying a series of criteria on element
shapes and sizes. Most ubiquitous in computer animation and com-
putational sciences is the need for unstructured isotropic tetrahedral
meshes: these versatile geometric representations are used in finite
element and finite volume simulations of physical phenomena as
varied as material deformation, heat transfer, and electromagnetic
effects. As the accuracy and stability of such computational endeav-
ors heavily depend on the shape of the worst element [Shewchuk
2002b], mesh element quality is a priority when conceiving a mesh
generation algorithm. In this paper we introduce a robust, hybrid
meshing algorithm to generate high-quality isotropic tetrahedral
meshes. Delaunay refinements and variational optimizations are
interleaved in order to produce a discretization of the domain that
meets a series of desirable geometric and topological criteria, while
offering smooth gradation of the resulting well-shaped tetrahedra.

1.1 Background

Most previous work aimed at generating isotropic tetrahedral meshes
were designed around four basic concepts: packing, regular lattices,
refinement, and optimization. While packing methods (including
advancing front approaches) were initially favored, their relatively
high computational complexity and lack of theoretical guarantees
have spawned the investigation of alternative methods. Regular lat-
tices have been at the core of some of the fastest meshing techniques,
as they provide a blazingly fast approach to meshing most of the do-
main. While smooth surface boundaries can be efficiently handled

with guaranteed minimum dihedral angles [Labelle and Shewchuk
2007], the regularity of the mesh resulting from these methods (i.e.,
the presence of preferred edge directions) can induce severe aliasing
effects in simulation [Wendt et al. 2007].

Techniques combining Delaunay triangulation and refinement have
received special attention due to their versatility and theoretical foun-

Figure 1: Michelangelo’s David. Our mesh generation algorithm produces
high quality meshes through Delaunay refinements interleaved with optimiza-
tion. The input PSC has 800K triangles; (right) a uniform sizing criterion
generates a 1M vertices mesh; (left) approximation error and shape criteria
alone generate a smaller graded mesh (250K vertices), while guaranteeing
the same mesh quality and a better local approximation error.



dations. They have been used initially in 2D [Chew 1989], then in
3D for polyhedral domains [Nave et al. 2002; Acar et al. 2007], for
smooth surfaces [Chew 1993], for 3D domains bounded by smooth
surfaces [Oudot et al. 2005; Boivin and Ollivier-Gooch 2002] and
for 3D domains bounded by piecewise smooth surfaces [Rineau
and Yvinec 2007; Cheng et al. 2007a; Cheng et al. 2007b]. They
proceed by refining and filtering a 3D triangulation until a set of
user-specified criteria is satisfied. Refinement is achieved through
iterative insertion of Steiner points, either inside the domain or on
the domain boundary, to meet the desired criteria. A filtering process
is applied to cull simplices such that the triangulation restricted to
the input domain tessellates the domain, and such that the boundary
of this restricted triangulation approximates the domain boundary.
This procedure becomes more delicate for piecewise-smooth inputs
(a more general class of domains where the boundary is a collection
of smooth patches meeting at potentially sharp creases), as sharp
creases require additional care. Non-smooth regions subtending
small angles add another level of difficulty for Delaunay refinement.
Refinement techniques are usually judged on the quality of the re-
sulting mesh elements and on the sparsity of Steiner point insertion.

Figure 2: Top: Mesh (5,499 vertices) generated by Delaunay refinement
(shape and boundary approximation criteria activated). Notice the cluster
in the middle of the armhole. Right image shows tetrahedra with dihedral
angles smaller than 15 degrees. Bottom: Mesh (3,701 vertices) generated by
interleaving Delaunay refinement and optimization so as to satisfy the same
criteria. Distributions of dihedral angles are shown on the left.

The quest for ever better quality meshes has sparked advances in
mesh optimization through local vertex relocation to optimize a spe-
cific notion of mesh quality [Amenta et al. 1999; Persson and Strang
2004], topological operations [Cheng et al. 2000], or both [Freitag
and Ollivier-Gooch 1997]. Further improvement of the mesh quality
can be achieved by inserting additional vertices and/or incorporat-
ing a rollback mechanism to undo previous optimizations in order
to guarantee a monotonic increase in mesh quality [Klingner and
Shewchuk 2007]. Among the large body of work in mesh opti-
mization, the Optimal Delaunay Triangulation approach (ODT for
short) stands out, as it casts both geometric and topological mesh
improvement as a single, unified functional optimization [Chen and
Xu 2004; Chen 2004] that tries to minimize in R4 the volume be-
tween a paraboloid and the linear interpolation of the mesh vertices
lifted onto the paraboloid. This approximation-theoretical method to
obtain isotropic meshes was adapted for tetrahedral meshing of 3D
domains [Alliez et al. 2005], mixed with a constrained Lloyd relax-
ation on the domain boundary. While this technique was shown to
only produce nicely-shaped tetrahedra throughout the domain, sliv-
ers (i.e., nearly degenerate elements) could appear near the domain
boundary, as the boundary vertices were guided by Lloyd relaxation

and were thus unaffected by the 3D optimization. Furthermore, this
method lacks a number of useful features. First, the algorithm is
not designed to satisfy the type of user-defined criteria commonly
handled by Delaunay-based mesh generation techniques [Rineau
and Yvinec 2007]. Also, an estimate of the boundary local feature
size (lfs) is required to derive a sizing function; however, there is
currently no consensus on how to extend the notion of lfs to polyhe-
dral domains. Finally, this method cannot handle arbitrary boundary
meshes, requiring a restricted Delaunay triangulation instead.

1.2 Contributions

This paper combines the efficacy of Delaunay refinement methods
with the isotropic quality induced by optimal Delaunay optimization
techniques (extending the 2D approach of [Tournois et al. 2007])
to provide a practical, high-quality meshing algorithm for domains
bounded by piecewise smooth boundaries. This combination of tech-
niques is motivated by the desire to maximize mesh quality while
reducing mesh size. Delaunay refinement alone tends to generate
overly complex meshes, with, e.g., spurious clusters of vertices due
both to the greedy nature of the algorithm and to encroachment
mechanisms; interleaving parsimonious refinement and mesh op-
timization instead turns out both to reduce the number of Steiner
points and to improve the overall mesh quality (see Fig. 2). Un-
like previous mesh optimization methods which either consider the
boundary fixed or use boundary conditions incompatible with global
mesh improvement, we introduce a consistent variational treatment
applied to both interior and boundary nodes, improving the overall
quality of the mesh. To speed up Delaunay refinement and make it
parsimonious, we select subsets of isolated Steiner points using the
probabilistic multiple choice approach [Wu and Kobbelt 2002] to
reduce the treatment of short-lived primitives and provide indepen-
dent refinements before each round of optimization. The practicality
of our approach further stems from additional, distinctive features.
First, we only rely on simple intersection tests to probe the domain
boundary to make the approach as generic as possible with respect
to the boundary surface representation. Second, we do not require a
mesh sizing function as input and provide instead a dynamic sizing
function which evolves throughout refinement until all user-specified
criteria are satisfied. Finally, the method is versatile enough to serve
as a general framework for isotropic tetrahedral meshing, as each
step involved in the process can be adapted to special requirements.

2 Algorithm

The algorithm we now detail interleaves refinement and optimiza-
tion of an initial 3D Delaunay triangulation. Mesh simplices are
gradually improved to meet user-defined criteria on boundary ap-
proximation and on the shapes and sizes of elements through refine-
ments, while passes of optimization further improve the shape of
the elements. The high-level pseudo-code is as follows:

Algorithm 1 Mesh generation at a glance

Require: Domain Ω ∈ R3 (Section 2.1)
and a set {k1,k2, ...,kn} of user-defined criteria (Section 2.2).
Initialize coarse meshM (Section 2.3)
while Criteria {k1,k2, ...,kn} not all met do

Refine through sparse vertex insertions (Section 2.4)
Optimize mesh (Section 2.5)

end while
Perturb remaining slivers (Section 2.6)

2.1 Input

The input is a 3D domain Ω whose boundary ∂Ω is defined as
a piecewise smooth complex (PSC). More specifically, our cur-



rent implementation takes as input a piecewise linear approx-
imation of a PSC. This approximation is provided as a trian-
gle surface mesh, watertight, and forming a 2-manifold with
no self-intersection. In addition, we assume that sharp edges
as well as feature vertices of this mesh are tagged. Dart
(resp., corner) vertices are deduced from tagged sharp edges
as they are incident to one (resp., three or more) sharp edges.
Tip and cusp vertices, which are incident re-
spectively to zero and two sharp edges, cannot
be derived solely using the sharp edge tags
and hence must be specified by the user. By
chaining sharp edges together, we obtain a set
of polylines that we will refer to as creases. A
crease may either connect two feature vertices
or form a cycle. All creases are enumerated,
and each sharp edge of the input surface mesh
is marked with the index of its associated crease. Finally, we iden-
tify and enumerate surface patches as connected components of the
boundary, bounded (or not) by sharp creases. Each face of the input
surface mesh is marked with the index of its associated patch as de-
picted in the inset. The sharp input creases subtending angles should
not be too small (the theoretical bound is 90 degrees) to have a guar-
antee that Delaunay refinement steps will terminate (see [Rineau
and Yvinec 2007]).

2.2 Parameters

The user selects a set of criteria that the final mesh must satisfy.
These criteria, which accommodate the typical user requirements
for mesh generation, are used to guide the refinement process as
explained in Section 2.4. All of them but the first criterion are
optional in our implementation:
• Sizing: a spatially-varying sizing function (or possibly a sin-

gle value if constant) indicates the maximum mesh edge length
allowed within the domain.

• Approximation: an approximation control function defines a
local upper bound εmax for the surface or crease approximation
error. Similar to the mesh sizing function, it is defined either as
a single value if the function is constant over the boundary, or as
a spatially-varying scalar function.

• Shape: two global element shape quality bounds are defined as
the maximum circumradius to shortest edge ratio allowed in the
final mesh. We denote by σ f

max and σ t
max these bounds for

facets and tetrahedra, respectively.
• Topology: a Boolean flag determines whether the topology of

the input PSC should be preserved, i.e., if the vertices of each
restricted facet must belong to the same patch, and if the vertices
of each restricted edge must belong to the same crease.

• Manifold: a Boolean flag determines whether the final mesh
boundary should be a two-manifold surface.

2.3 Initialization

A first mesh M of the domain is obtained by inserting in M all
feature vertices (corners and such) of the input surface mesh. These
vertices remain untouched throughout the mesh generation proce-
dure. We also add the eight corners of a large bounding box of
the input domain, in order not to have to deal with infinite Voronoi
faces in later stages. Finally, we ensure that each surface patch and
each crease have received the minimal number of sample points to
seed the refinement process by adding more vertices if necessary,
as in [Rineau and Yvinec 2007]. The meshM is defined to be the
Delaunay mesh of all these vertices. Finally, we refine this initial
mesh with respect to looser criteria than those defined by the user
(typically, we relax the various input criteria parameters by a factor
two), using our refinement procedure that we detail next.

2.4 Refinement

The refinement process is entirely driven by the user-defined criteria
listed in Section 2.2. Each refinement step is designed to remove
a set of bad elements (simplices not satisfying at least one of the
given criteria) by inserting so-called Steiner vertices toM. Unlike
typical Delaunay refinement techniques that insert one Steiner point
at a time, we proceed in batches of refinement, inserting a sparse
subset of all the candidate Steiner points per batch (see Fig. 3).

Bad Elements The simplices considered for refinement are the
so-called restricted simplices, that is, the ones considered as inside
the domain Ω or on ∂Ω—namely, tetrahedra whose dual Voronoi
vertex is located inside Ω, facets whose dual Voronoi edge intersects
∂Ω and edges whose dual Voronoi facet intersects an input crease.
We consider one of these restricted elements bad if it violates one of
the following criteria:
• Size: A restricted edge is considered bad if it is longer than the

sizing function evaluated at its midpoint. A restricted facet or a
tet is considered bad if at least one of its edges is badly sized.

• Approximation error: A restricted edge e is considered bad if
the distance from its midpoint to the farthest intersection point
between its dual Voronoi face and an input crease is larger than
the local approximation bound. Similarly, a restricted facet f
is considered bad if the distance from f ’s circumcenter to the
farthest intersection point between its dual Voronoi edge and ∂Ω

is larger than the approximation bound.
• Shape. A restricted facet (resp., tetrahedron) is considered bad

if the ratio of its circumradius to shortest edge is higher than the
user-specified bound σ f

max (resp., σ t
max).

• Topology. A restricted edge (resp., facet) is considered as not
capturing the proper topology if its two (resp., three) vertices do
not belong to the same input crease (resp., surface patch). If the
topology criterion is activated, we store for each vertex v of the
mesh its location with respect to the input PSC. That is, each
vertex is tagged either as an interior, a feature (e.g. corner), a
crease, or a boundary (i.e. surface) vertex. In the last two cases,
the index of the feature (crease or surface patch) is stored too.

In addition to these types of bad elements, we add an extra one to
enforce the topological disk condition [Rineau and Yvinec 2007] as
it is an important indicator of topological conformity of the mesh
to the input domain. For a vertex v tagged as boundary (i.e., on an
input surface patch), the topological disk condition is satisfied iff the
boundary facets incident to v form a topological 2-disk. If v belongs
to an input crease, its incident restricted edges (edges whose dual
Voronoi facet intersects input creases) have to form a topological
1-disk. We thus mark every boundary vertex of the mesh whose
topological disk condition is not satisfied as bad as well.

Steiner Vertices For each bad simplex, we define its associated
Steiner point location. The associated Steiner
point to a restricted edge is the farthest intersec-
tion point between its dual Voronoi face and the
input creases. The associated Steiner point to a
restricted facet is the farthest intersection point
between its dual Voronoi edge and ∂Ω. The as-
sociated Steiner point to a restricted tetrahedron
is its circumcenter. Finally, for each boundary
vertex of the mesh whose topological disk con-
dition is not satisfied, we define its associated
Steiner point to be the Steiner point of the facet (resp., crease edge)
incident to v that realizes the largest approximation error: its inser-
tion will help enforce the topological disk condition.

To ensure termination of the refinement process, we further check



for encroachment [Shewchuk 2002a; Cheng et al. 2007a; Rineau and
Yvinec 2007]. The candidate Steiner point p of a tetrahedron is said
to encroach a boundary facet f if it is inside its restricted Delaunay
ball (centered at f ’s Steiner point and passing through the vertices
of f ). Similarly, the Steiner point of a facet is said to encroach on a
crease edge if it is inside its restricted Delaunay ball (centered at its
Steiner point and passing through its endpoints). In these two cases
of encroachment, we alter the position of the associated Steiner
point, replacing it by the Steiner point of the encroached primitive
(and recursing the encroachment check).

Independent Set Refinement To help define a good subset of
Steiner points to add in batch, we introduce the notion of con-
flict regions and independent sets of conflict regions. For each
Steiner point p, we call the “conflict region” the tetrahedra that
would be affected by its insertion as well as their adjacent tetra-
hedra: these elements are likely to be destroyed by the inser-
tion of p. We call an “independent set” of conflict regions a set
that does not contain overlapping conflict regions, so that none
of the insertions of these selected Steiner points would influence
each other. We construct such an independent set of conflict re-
gions as described in Algorithm 2: we iteratively select Steiner
points in order of increasing dimension of their associated sim-
plices. That is, first crease edges are collected and sorted from
worst to best. As many crease-edge Steiner points as possible are
inserted into the set, along with their conflict regions, while making
sure there is no overlap of conflict regions. Second, we similarly
treat boundary facets. Finally, tetrahedra are handled; however, as
there can be a large number of bad tetrahedra
during the meshing process, the same process of
sorting elements before choosing them would
be too costly. We therefore process bad tetra-
hedra through a more efficient multiple-choice
approach as explained next, and this is done iter-
atively until no Steiner point can be inserted to
the independent set without overlapping the regions already inserted.
The inset shows an independent set on the mesh of a cylinder for
which only the approximation criterion is not yet satisfied.

Figure 3: Refinement steps without optimization. The mesh initialized with
feature vertices; after a few batch refinement steps (from 5 to 50); the final
refined mesh with shape and approximation criteria satisfied; and its 244
slivers (tetrahedra with dihedral angle smaller than 10 degrees).

Multiple-Choice Selection of Tetrahedra Although many De-
launay refinement algorithms use modifiable priority queues to store
all bad simplices of the meshM, most queue elements are short-
lived as each Steiner point insertion affects its surrounding. In fact,
our experiments consistently showed that the computational burden
spent maintaining the global priority queue of all bad simplices
is overly high compared to the number of primitives actually re-
fined. We thus depart from the usual refinement strategy by using
a multiple choice approach (proposed for mesh decimation in [Wu
and Kobbelt 2002]) as follows. At each step, a small container

Algorithm 2 Construction of Independent Set of Conflict Regions

Require: A PSC as input domain, a coarse initialization of the
mesh, and a set K = {ki}i of criteria to be met.

Set Independent Set IS to nil.
Collect all restricted tets in Tbad .
Collect all bad crease edges in Ebad , bad boundary facets in Fbad .
for each bad simplex s in Ebad and Fbad (from worst to best), do

Let p be the Steiner point of s.
Let Uc be the set of all tets in direct conflict with p’s insertion.
Let Un be the set of all tets sharing a facet with a tet in Uc.
if No tetrahedron of Uc∪Un is in the Independent Set IS, then

Insert conflict region Uc∪Un in IS along with p.
end if

end for
Let Cmcbe a multiple-choice container of Nmctets.
while There are non-conflicted tets do

Fill up Cmcwith random tets from Tbad which Steiner points’
conflict regions Uc∪Un do not intersect regions already in IS.
Add Steiner point of Cmc’s worst tet & its conflict region to IS.

end while
Batch-insert all Steiner points stored in IS to mesh.
Update restricted Delaunay triangulation.

of Nmc“bad” tetrahedra (Nmc= 20 in our implementation) is filled
with randomly selected non-conflicted tetrahedra. The worst tetrahe-
dron in this container is then selected, and the container is updated
with another random non-conflicted tetrahedron. As our goal is
to only sparingly refine the mesh before further optimization, this
multiple-choice approach significantly speeds up our refinement
process while preserving its overall performance.

2.5 Optimization

Chen [Chen 2004] defines an Optimal Delaunay Triangulation
(ODT) as the minimizer of the energy

EODT = || fPWL− f ||L1 = ∑
j

∫
Tj

| fPWL− f |,

where f (x) = ||x||2 and fPWL is the linear function interpolating
the values of f at the vertices of each tetrahedron Tj. This energy
has a simple geometric interpretation: it is the volume between
the 4D paraboloid (defined by f and its inscribed piecewise lin-
ear approximation fPWL through lifting the triangulation onto the
paraboloid [Boissonnat et al. 2007]. Because of a result of function
approximation theory [Shewchuk 2002b] stating that the best inter-
polating approximation of a function is achieved when the elements’
size and orientation match the Hessian of the function, an ODT is
thus isotropic.

The energy EODT can be reformulated [Alliez et al. 2005] as

EODT =
1
4 ∑

xi∈Tj

xi
2|Ωi|−

∫
M

x2dx, (1)

where |Ωi| is the volume of the 1-ring neighborhood of vertex xi.
Noting that the last term is constant given a fixed boundary ∂M,
a derivation of this quadratic energy in xi leads to the following
optimal position x?

i of interior vertex xi in its 1-ring [Chen 2004]:

x?
i =− 1

2 |Ωi| ∑
Tj∈Ωi

∇xi |Tj|
[

∑
xk ∈ Tj
xk 6= xi

||xk||2
]
. (2)

The term ∇xi |Tj| is the gradient of the volume of the tetrahedron Tj
with respect to xi. Replacing the paraboloid function f (x) = ||x||2



by the translated function f (x) = ||x− xi||2, does not change the
interpolation error, leading to the same optimal position. We thus get
the following equivalent expression used to update a vertex position :

x?
i =xi−

1
2 |Ωi| ∑

Tj∈Ωi

(
∇xi |Tj|

[
∑

xk∈Tj

||xi−xk||2
])

. (3)

We also know that ∑Tj∈Ωi
∇xi |Tj|= 0, thus it follows that when all

||xi−xk||2 are equal, x?
i = xi. In other words, when the neighbors

of xi lie on a sphere with center c, x?
i = c; we call this property the

ODT circumsphere property.

As a special case of this property, the optimal position of a vertex
that has only four neighbors is exactly at T ’s circumcenter, denoted
cT . Using Eq. (3) in this special case of a 1-ring in the shape of a
tetrahedron T = (xp,xq,xr,xs), and taking the point xi to be located
at xp, we get:

cT = xp−
1

2 |T |

[
∇xp |T |

[
∑

xk∈T
||xp−xk||2

]
+ F(xp,xq,xr)+ F(xp,xq,xs) + F(xp,xr,xs)

]
(4)

where the extra terms on the rhs only depend on each face of the
tetrahedron (because, as we took xi to be at xp, all but one of the
tetrahedra inside T are degenerate and become faces of T ). More
precisely, these terms are explicitly given as:

F(xp,xq,xr) = +
1
3

[
||xp−xq||2 + ||xp−xr||2

]
Np,q,r

where Np,q,r is the area-weighted normal of the face (p,q,r)
pointing towards the inside of the tetrahedron, i.e., Np,q,r =
|(p,q,r)|np,q,r. Now, go back to Eq. (3) for an arbitrary 1-ring cen-
tered on xp, and note that the term in parenthesis appears as is (for
p≡ i) in Eq. 4. Substitute this term by the circumcenter and all the
other terms that Eq. 4 contains. All the face terms F cancel each
other out, thus simplifying the expression to:

x?
i =

1
|Ωi| ∑

Tj∈Ωi

|Tj|c j. (5)

Natural ODT for Boundary Vertices While [Chen 2004; Alliez
et al. 2005] do not involve the boundary vertices in the minimization
of the ODT energy, we propose an extension that changes the update
of boundary vertices during optimization so as to further reduce the
total energy, thus providing a boundary extension to the original
ODT mesh smoothing procedure. Denote by xi a vertex on the
boundary of a 3D mesh (i.e., it does not have a full 1-ringN (xi) of
restricted tetrahedra). For a given connectivity, the new position x?

i
of xi that extremizes the ODT energy is a bit more complicated, as
some of the face terms F do not disappear:

x?
i =

[(
∑

T∈N (xi)
|T |cT

)
+B

]
/ ∑

T∈N (xi)
|T |,

where the boundary terms B are

B =
1
6

(
∑

(i,p,q)∈∂M
Ni,p,q

[
||xi−xq||2 + ||xi−xq||2

])
.

The first part (|T |cT ) is the weighted barycenter of the circumcenters
divided by the total 1-ring volume just as before. At the boundary
appears an extra term, a sum over boundary triangles (i, p,q) involv-
ing the squared length of the “spokes” of the triangle 1-ring. This
formula, applied as is, shrinks the domain as it obviously decreases
the total energy. However, as seen previously, we can assign a multi-
plicative weight λ to the supplementary term B without affecting the

Figure 4: Comparing Delaunay refinement and mesh optimization. Distri-
butions of dihedral angles are shown to the left. Slivers are shown for a
dihedral angle bound of respectively 5 (middle) and 10 degrees (right). Top:
Delaunay Refinement alone (resp. 35 and 136 slivers). Middle: Optimized
mesh with 100 Lloyd iterations (resp. 23 and 55 slivers). Bottom: Optimized
mesh with 100 NODT iterations (resp. 0 and 3 slivers).

update rule for internal vertices, because the boundary terms cancel
each other out for a full 1-ring:

x?
i =

[(
∑

T∈N (xi)
|T |cT

)
+λB

]
/ ∑

T∈N (xi)
|T |.

We now use set this extra degree of freemdom λ so as to retain
the ODT circumsphere property mentioned earlier, but now in the
case of an incomplete 1-ring: if all neighbors of xi are at the same
distance from xi, we want x?

i = xi: we will thus obtain a formula
valid for both the complete 1-ring and incomplete 1-ring cases, while
preserving the ODT circumsphere property. We have

x?
i = xi−

1
2|Ωi| ∑

Tj∈Ωi

(
∇xi |Tj|

[
∑

xk∈Tj

||xi−xk||2
]

+ (1−λ ) ∑
p,q 6=i

F(xi,xp,xq)

)
. (6)

Consider the case where all ||xi−xk||2 are equal to some constant R.
We want x?

i = xi and we know, from the divergence theorem applied
on the 1-ring of the boundary vertex, that

∇xi |Tj|=− ∑
p,q 6=i

1
3

Ni,p,q.

On the one hand, ∇xi |Tj| is weighted by 3R in (6). On the other hand,
each 1

3 Ni,p,q is weighted by 2R in (6). Enforcing the circumsphere
property on partial 1-rings at the boundary thus requires (1−λ ) =
3/2, i.e., λ =−1/2. The optimal position for this variant (denoted
NODT for Natural ODT) is now computed as

x?
i =

[(
∑

T∈N (xi)
|T |cT

)
− 1

2
B

]
/ ∑

T∈N (xi)
|T |,

where the boundary terms B (if any) are

B =
1
6

(
∑

(i,p,q)∈∂M
Ni,p,q

[
||xi−xp||2 + ||xi−xq||2

])
.



Variable Sizing The optimization formula above is only valid for
generating uniform isotropic meshes. To account for a variable mesh
sizing, we update a dynamic mesh sizing function after each batch
of refinement, and replace all measures in above formulas (lengths,
areas, volumes) by measures in the metric of the sizing function.
Such measures are obtained by quadratures over the mesh elements.
This sizing function [Antani et al. 2007] is guaranteed to be K-
Lipschitz and is initialized with values computed by averaging the
lengths of the mesh edges incident to all mesh vertices. Intuitively,
the refinement is in charge of discovering the local feature size of
the domain boundary. One of the user-defined criteria triggers a
local refinement of the mesh, which induces an update of the sizing
function, which in turn imposes further refinements to maintain the
K-grading of the mesh. The optimization part of the algorithm then
takes the current sizing function as input to avoid the undoing of
local refinements that a uniform sizing would produce.

Restriction and Projection In practice, as we want the mesh to
interpolate the domain, each boundary vertex of the mesh should
be on ∂Ω. To enforce this property, the new location x?

p of xp is
projected onto ∂Ω. Two cases are distinguished: x?

p can belong to
a surface patch, or to a sharp feature of the mesh. If at least one of
the incident edges to xp is a crease edge (i.e., its dual Voronoi facet
intersects a PSC crease), then we project x?

p onto the closest crease.
Similarly, if at least one of the incident facets to xp is a boundary
facet (i.e., its dual Voronoi edge intersects the PSC), we project x?

p
onto the closest facet of the input PSC.

2.6 Sliver Removal

While our NODT boundary treatment significantly reduces the num-
ber of slivers compared to the results reported in [Alliez et al. 2005],
we cannot guarantee a total absence of slivers (see Fig. 10). We
thus perform a final phase of sliver removal. We implemented an
explicit perturbation inspired by [Li 2000] which performed better
than sliver exudation [Cheng et al. 2000] in all our experiments. This
phase, described in [Tournois 2009], applies small perturbations to
each vertex incident to slivers. We first try to move along the gra-
dient of the squared circumradius of the sliver; if unsuccessful, the
volume gradient is tried. If neither of these perturbations remove the
sliver without adding new ones, random perturbations are applied
repeatedly. Vertices located on sharp creases or the boundary are
further reprojected onto their respective crease or boundary after
perturbation. A relocation is validated if it both reduces the number
of incident slivers and preserves the restricted triangulation locally.
This process is iterated as long as there is a sliver in the mesh whose
four vertices have not yet been perturbed, or until a maximum itera-
tion count is reached. We also tried our perturbation directly after
Delaunay refinement and Lloyd-based optimization; however, the
presence of sliver chains (several slivers incident to each other) often
resulted in significantly worse outputs.

2.7 Further Implementation Details

Our algorithm is implemented in C++ using the CGAL library. We
use its 3D Delaunay triangulation as our core data structure. The
input PSC is represented as a surface triangle mesh. One crucial
component for reaching good timings is the efficient update of the
restricted triangulation and Steiner points: this requires many inter-
section tests between rays and Voronoi edges and the input domain
boundary, as well as intersections between Voronoi faces and the in-
put sharp creases. We have implemented a collision detection library
based on the principles used in OPCODE [Terdiman 2005]. Two
hierarchies of axis-aligned-bounding-boxes (AABBs) are created
right after loading the input PSC: one for the PSC triangle facets
and one for the PSC segment sharp creases. Each intersection query

Figure 5: Bimba. Mesh generated by interleaved refinement and optimiza-
tion with lmax = 0.1, εmax = 0.0005.

(be it a test or an exhaustive enumeration) then calls intersection
with AABBs during traversal, and intersection with PSC primitives
(triangle or segments) at the leaves of the tree. In addition, the same
AABB trees are used for projecting the optimized boundary vertices
onto the domain boundary or creases. The trees are this time queried
with 3D balls whose radius decreases during the tree traversal. We
also significantly speed up the NODT procedure through a locking
process. We lock up (i.e., deactivate the optimization of) all mesh
vertices which are incident to only excellent restricted tetrahedra.
A tetrahedron is defined as excellent when all its dihedral angles
are within a user-specified interval (typically [45-95]). Only the
vertices newly inserted during refinement or relocated during opti-
mization are allowed to unlock their incident vertices. Consequently,
entire parts of the mesh which do not need to be improved either
by refinement or by optimization are skipped throughout the refine-
ment/optimization alternation. Tuning the interval bounds which
qualify as excellent tetrahedra trades efficiency for the final mesh
quality. Finally, each time the restricted Delaunay triangulation is
updated, the circumcenters are cached to avoid recomputing them at
each refinement and optimization step.

3 Results

To evaluate our approach, we tested the various steps of our algo-
rithm separately, then together. Fig. 3 shows our refinement routine
when no optimization step is performed. Notice that the resulting
mesh lacks gradation, as typical for Delaunay refinement methods.
We compare results of Delaunay refinement, Lloyd relaxation [Du
et al. 1999], and our NODT in terms of number of slivers (before
sliver removal for fairness) in Fig. 4. Fig. 10 shows an elephant
mesh obtained by Delaunay refinement (top) as it gets optimized by
our NODT routine (middle), then after sliver removal (bottom).

Figure 6: Turbine. Mesh generated by interleaved refinement and optimiza-
tion with lmax = 0.1, εmax = 0.001. The inset shows the input PSC with all
patches segmented. The mesh has 14K vertices and 51K tetrahedra, with all
dihedral angles greater than 15 degrees.



Fig. 5 shows the mesh of the bimba model obtained by interleaved
refinement and optimization with approximation and element quality
criteria activated (the sizing criterion lmax = 0.1 is not significant as
the input PSC fits into a unit bounding box). The mesh contains 43K
vertices and all dihedral angles are above 17 degrees. The input PSC
has 400K vertices. We also tested our method on mechanical parts.
Fig. 6 shows the mesh of a turbine generated by our interleaved
algorithm. The mesh contains significantly fewer vertices (13%)
than Delaunay refinement alone.

We also compared our technique to DelPSC [Cheng et al. 2007a],
TetGen [Si 2007] and GHS 3D [George 2004] in Fig. 7 in terms
of both mesh quality and vertex count. Note that for TetGen and
GHS 3D we provided as input the boundary of our optimized mesh
for fair comparison. Fig. 9 shows the mesh of the Buddha model
obtained by interleaved refinement and optimization, showcasing
our method on a domain with a large range of local feature sizes.

Figure 7: Cover rear. Top left: mesh obtained by interleaved refinement
and optimization with lmax = 0.1, εmax = 0.001, σ f

max = 1.5, σ t
max = 1.5,

with topology criterion activated; 4,050 vertices. Top right: mesh generated
by DelPSC, same parameters; 15,157 vertices. Bottom: meshes generated
by TetGen (left, 4,189 vertices) and GHS 3D (right, 6,641 vertices), same
parameters and with the boundary of our optimized mesh taken as input.

Activating the topology criterion enforces that each restricted facet
has its three vertices on the same PSC patch, and that each restricted
edge has its two vertices on the same PSC crease. The mesh can
thus be refined beyond the specified approximation criterion until
all surface sheets are separated, as illustrated by Fig. 8. In our
experience (Table 1), computational times to obtain a mesh range
from seconds for the sphere and nested-spheres models, to minutes
for the anchor, turbine and bimba models (resp. 10, 15 and 23), to
two hours for Michelangelo’s David model.

Model εmax Nb of tetrahedra Time
Coverrear 0.001 22,091 3 min
Bimba(1) 0.001 52,866 10 min
Bimba(2) 0.0005 121,644 41 min
Buddha 0.001 161,378 20 min

Table 1: Timings. The four meshes mentioned in this table were generated
with lmax = 0.1, σ f

max = 2, and σ t
max = 2.

Figure 8: Nested spheres. Left: input PSC. Middle: mesh generated by
refinement with lmax = 1, εmax = 0.03 and topology criterion not activated.
Right: mesh further refined with same criteria but with topology activated.

4 Conclusion

The algorithm presented in this paper introduces a new mesh gener-
ation framework, based on the idea of interleaving refinement and
optimization. Guided by user-defined criteria such as size, shape,
and approximation error of mesh elements, refinement steps are par-
simoniously applied batch-wise through the insertion of independent
sets. Optimization steps are performed through a variant of Chen’s
ODT that handles boundary as well as spatially-varying mesh siz-
ing. The main limitation of our algorithm is that it does not handle
sharp input creases subtending small angles (the theoretical bound
on input angles is 90◦, see [Rineau and Yvinec 2007]). As future
work, we plan on dealing with sharp creases subtending small angles
through, e.g., the use of weights of a regular triangulation [Cheng
et al. 2007a]. Finally, as the general framework of this algorithm is
generic enough, we wish to extend it to other representations of the
input, for example implicit surfaces or piecewise smooth parametric
surfaces represented as NURBS patches.

Figure 9: Buddha. Obtained by interleaved refinement and optimization.
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