
To appear in the Journal of Graphics Tools, Volume 16, Issue 1, 2012

Tightening the Precision of Perspective Rendering

Paul Upchurch and Mathieu Desbrun

Abstract

Precise depth calculation is of crucial importance in graphics ren-
dering. Improving precision raises the quality of all downstream
graphical techniques that rely on computed depth (e.g., depth
buffers, soft and hard shadow maps, screen space ambient occlu-
sion, and 3D stereo projection). In addition, the domain of cor-
rectly renderable scenes is expanded by allowing larger far-to-near
plane ratios and smaller depth separation between mesh elements.
Depth precision is an ongoing problem as visible artifacts continue
to plague applications from interactive games to scientific visual-
izations despite advances in graphics hardware.

In this paper we present and analyze two methods that greatly im-
pact visual quality by automatically improving the precision of
depth values calculated in a standard perspective divide rendering
system such as OpenGL or DirectX. The methods are easy to imple-
ment and compatible with 1/Z depth value calculations. The analy-
sis can be applied to any depth projection based on the method of
homogeneous coordinates.

1 Introduction

At each stage of the graphics pipeline, floating point precision
and integer rounding errors accumulate. These small errors can
have a large impact when they are fed into a nonlinear function
such as a pass/fail test. In particular, depth buffer [Catmull 74;
Straßer 74] errors exhibit a class of hidden surface removal (HSR)
artifacts known as Z fighting due to either depth bucket discretiza-
tion or depth inversion. Precision errors are the direct cause of
depth inversion and exacerbate discretization. Similarly, shadow
maps [Williams 78] exhibit light bleeding.

Depth artifacts can be eliminated by tuning the system parameters.
However, an interactive system where meshes, lights and cameras
are free to move in a large spatial environment is very labor in-
tensive to tune. Systematically improving rendering precision for
all possible scene configurations can either eliminate the need to
perform tuning, or reduce the amount of work needed to reach an
equivalent level of quality.

Precise rendering is especially important in applications involving
visualizations of high dynamic range data. Examples include fly-
throughs for solar system missions, or even physically-based sim-
ulations [Harmon et al. 08] where great computational efforts to
guarantee that objects do not interpenetrate to machine accuracy
can be ruined by visual artifacts.

Previous Work. There are three stages of depth buffering that
greatly impact HSR quality: the mapping of Z values to normalized
depth, the calculation of fragment depth, and the choice of storage
format for fragment depth values.

The first published depth mapping is the standard 1/Z depth, which
is still the widest deployed mapping today. Lapidous and Jiao [Lapi-
dous and Jiao 99] give a list of well-known alternative mappings
and describe the complementary Z depth mapping. Their analysis
only considers mapping and storage formats. Akeley and Su [Ake-
ley and Su 06] address depth calculation with a simulated analysis
but they specifically exclude arithmetic errors. Unsuprisingly, there
has been no attention devoted to improving depth calculation arith-
metic since it is merely addition and multiplication followed by a

(a) (b)

(c) (d)

Figure 1: A terrain patch floating above the surface of Mars. An axis
aligned camera can correctly distinguish the patch from the surface
(a). However, rotating the camera slightly produces obvious HSR
artifacts (b). These artifacts cannot be attributed to depth buffer res-
olution or software/hardware defects. They are the result of intro-
ducing inexact floating point numbers into the transform matrix.
Rendering the same off-axis viewpoint with an infinite projection
(c) or two-step transform (d) produces a markedly improved result.
Dataset provided by NASA/JPL/University of Arizona.

division, the so-called perspective divide.

A related topic is the infinite projection matrix, which is generally
employed for its ability to remove the far clipping plane. Everitt and
Kilgard [Everitt and Kilgard 03] describe how this facilitates stencil
shadow volumes. Also, interactive games may use an infinite pro-
jection to ensure that drawn objects are always visible regardless
of the dynamic position of the viewer. Infinite projections are used
cautiously since they are assumed to negatively impact precision.
This is due to the same number of depth storage bits being dis-
tributed across a larger Z range. However, our analysis will show,
counterintuitively, that the infinite projection is a more precise gen-
eral purpose projection and the finite projection is only useful when
the depth range ratio is very small or extremely high precision is
needed at the near plane.

Contributions. In this paper we analyze the floating point preci-
sion of the standard 1/Z depth calculation. Then, we describe two
methods that drop into a standard graphics pipeline and produce
depth values with the standard mapping from Z to buckets. One
method does not require any extra computation, the other method
guarantees improved precision. The methods may be implemented
singly or jointly.

The first method is the infinite projection matrix. It is equivalent to a
standard perspective projection matrix where the far plane has been

1

To appear in the Journal of Graphics Tools, Volume 16, Issue 1, 2012

set to infinity. This causes an element of the matrix to be replaced by
1. By saving one rounding operation and saving one floating point
multiply, relative error is reduced. This method has the greatest im-
pact at the back of the depth buffer and does not affect performance.

The second method is to transform vertices by first transforming
to view space and then multiplying the view coordinates by the
projection matrix instead of transforming by the precomposed ma-
trix. This improves precision by canceling out matching error terms
when dividing by Z. There is no performance penalty for rendering
engines that already generate view coordinates. Otherwise, an extra
matrix multiply is needed in the vertex transform stage.

2 Floating Point Analysis Methodology

Throughout this paper exact real numbers are written ā and have
an associated inexact floating point representation, a. Add, sub-
tract, multiply, and divide floating point operations are written
⊕,⊖,⊗,⊘. Precision errors are measured in units of machine ep-
silon, ǫ.

We follow the method of Goldberg [Goldberg 91], where ⊗,⊘ and
rounding operations have a relative error of ǫ and ⊕,⊖ operations
with a guard digit have a relative error of 2ǫ. Therefore, we will
write

x̄ = x (1+δi), x⊕y = (x+y)(1+γi), x⊗y = xy (1+δi),

where the errors δi and γi satisfy |δi| ≤ ǫ and |γi| ≤ 2ǫ.

3 Projection Matrix Precision

The perspective projection matrix is a sparse matrix that prepares
the transformed vertex coordinates for perspective divide while
simultaneously scaling the values to match the remainder of the
graphics pipeline.

3.1 Standard Projection

For analysis we use a generalized projection matrix that is compat-
ible with both OpenGL and DirectX; i.e., we will write

2

6

4

c̄
d̄

ā −b̄
1

3

7

5

2

6

4

x
y
z
1

3

7

5
where

ā =
f + n

f − n

b̄ =
2fn

f − n
.

The calculated depth value is then

depth =
ˆ

(ā ⊗ z) ⊖ b̄
˜

⊘ z

=
ˆˆ

a (1 + δ1) ⊗ z
˜

⊖ b (1 + δ2)
˜

⊘ z

=
ˆ

az (1 + δ1)(1 + δ3) ⊖ b (1 + δ2)
˜

⊘ z

=
ˆ

az (1 + δ1)(1 + δ3) − b (1 + δ2)
˜

(1 + γ1) ⊘ z

=
ˆ

a (1 + δ1)(1 + δ3) − b/z (1 + δ2)
˜

(1 + γ1)(1 + δ4)

≈ a (1 + 5ǫ) − b/z (1 + 4ǫ).

This expression characterizes the precision error of a single calcu-
lated depth value expressed as a relative error. Generally, we are
more interested in the difference of depth values since that deter-
mines the pass/fail result of a depth test. The absolute error of a
comparison is double the relative error, so we expect 10ǫ a+8ǫ b/z.
However, floating point units are actually deterministic, so ā will
always round to the same value. Thus, error terms that depend on
values that are invariant between depth fragments will cancel out.

If we note that δ1 depends on a, δ2 depends on b, δ3 depends on a
and z, and both δ4 and γ1 depend on a, b, and z, we can write

depthi− depthj = a (1 + δ1)(1 + δ3i)(1 + δ4i)(1 + γ1i)

− a (1 + δ1)(1 + δ3j)(1 + δ4j)(1 + γ1j) + · · ·
≈ 8ǫ a (1 + δ1) + · · · .

Therefore, 8ǫ is the contribution of the a term in terms of depth
comparison precision.

3.2 Infinite Projection

Observe that as f/n grows, the value of ā approaches 1. We can
eliminate the floating point rounding error by modifying the pro-
jection equation to let ā be exactly 1 and b̄ be 2n since

lim
f→∞

f + n

f − n
= 1 lim

f→∞

2fn

f − n
= 2n.

Thus, the infinite projection matrix is written as

2

6

4

c̄
d̄

1 −2n
1

3

7

5

2

6

4

x
y
z
1

3

7

5
.

Following the method of Section 3.1 we have

depth =
ˆ

z ⊖ 2n
˜

⊘ z =
ˆˆ

z − 2n (1 + δ1)
˜

(1 + γ1)
˜

⊘ z

=
ˆ

1 − 2n/z (1 + δ1)
˜

(1 + γ1)(1 + δ2)

≈ 1 (1 + 3ǫ) − 2n/z (1 + 4ǫ).

Since, in this case, δ1 depends only on n, while δ2 and γ1 depend
on n and z, we get

depthi− depthj = (1 + δ2i)(1 + γ1i) − (1 + δ2j)(1 + γ1j) + · · ·
≈ 6ǫ + · · · .

Infinite Projection versus Standard Projection. The difference
between the two methods above is 2ǫ relative error in depth, or 2ǫ
absolute error in depth comparison. Since depth is in the range of
[−1, 1] a relative (or absolute) error of 2ǫ is equivalent to a relative
error of at least 2ǫ in depth.

While the infinite projection method has 2ǫ better precision and
covers view space from the near plane to infinity, one might argue
that, if there is no interest in rendering objects beyond a far clipping
plane, the smaller depth buckets of a standard projection may be
better. It is, however, easy to see that the precision of an infinite
projection is better over a larger viewing range than the precision
of a finite projection with reasonably large values of f/n.

Small depth values benefit more from smaller buckets since integral
rounding errors dominate relative error for values near zero. We
compute how small the depth must be for this to occur and derive
equations to describe this in terms of a view distance, zλ, and a
tolerance, ∆λ. Letting r = f/n,

zλ =
2f

2r − 1 −√
r

∆λ =
zλ

1

2

b
zλ

2β − 1
.

Precision loss is limited to the view volume between n and zλ. The
loss is at most ∆λ in simulation units. For example, if the near plane
is 1 meter and the far plane is 101 meters, the loss is at most 66
nanometers for objects within 5 centimeters of the near clip plane.
The remaining 99.95% of the Z range will exhibit improved preci-
sion. We provide an in-depth analysis in Appendix A.

2

To appear in the Journal of Graphics Tools, Volume 16, Issue 1, 2012

4 Vertex Transform Precision

The usual vertex transform is P · M · ~v, where P is the projec-
tion matrix and M is the transform matrix (commonly called the
ModelView matrix). It has been standard practice to precompose
the projection and transform matrices before entering the per-vertex
transform stage of the graphics pipeline. The main advantage being
that this approach saves a few multiply/add operations per vertex.
We call the non-precomposed method the two-step transform.

4.1 Two-Step Transform

This transform is now evaluated as P · (M · ~v): first vertices are
transformed to view space by the transform matrix, then the view
coordinates are multiplied by the projection matrix. (For brevity, we
omit floating point rounding operations.)

2

6

4

c
d

a −b
1

3

7

5

0

B

@

2

6

4

m11 m12 m13 x0

m21 m22 m23 y0

m31 m32 m33 z0

1

3

7

5

2

6

4

x
y
z
1

3

7

5

1

C

A

=

2

6

4

c
d

a −b
1

3

7

5

2

6

4

m11x + m12y + m13z + x0

m21x + m22y + m23z + y0

m31x + m32y + m33z + z0

1

3

7

5
.

Let χ = (m31 ⊗ x)⊕ (m32 ⊗ y)⊕ (m33 ⊗ z)⊕ z0; we then have

depth =
ˆ

(χ ⊗ a) ⊖ b
˜

⊘ χ =
ˆ

χa (1 + δ1) − b
˜

(1 + γ1) ⊘ χ

=
ˆ

a (1 + δ1) − b/χ
˜

(1 + γ1)(1 + δ2).

Note that the perspective divide is nearly exact for the a term. The
same can not be said for the precomposed transform.

4.2 Precomposed Transform

Before entering the pipeline, the transform and projection matrix
can be precomposed instead. Each vertex is thus transformed by a
single matrix multiply as (P · M) · ~v, yielding

0

B

@

2

6

4

c
d

a −b
1

3

7

5

2

6

4

m11 m12 m13 x0

m21 m22 m23 y0

m31 m32 m33 z0

1

3

7

5

1

C

A

2

6

4

x
y
z
1

3

7

5

=

2

6

4

m11c m12c m13c x0c
m21d m22d m23d y0d
m31a m32a m33a z0a − b
m31 m32 m33 z0

3

7

5

2

6

4

x
y
z
1

3

7

5
.

The depth for this precomposed transform now becomes

depth =
ˆˆ

(m31 ⊗ a) ⊗ x
˜

⊕
ˆ

(m32 ⊗ a) ⊗ y
˜

⊕
ˆ

(m33 ⊗ a) ⊗ z
˜

⊕
ˆ

(z0 ⊗ a) ⊖ b
˜˜

⊘
ˆ

(m31 ⊗ x) ⊕ (m32 ⊗ y) ⊕ (m33 ⊗ z) ⊕ z0

˜

=
ˆ

m31a(1 + δ1)x(1 + δ2) ⊕ m32a(1 + δ3)y(1 + δ4)

⊕ m33a(1 + δ5)z(1 + δ6) ⊕
ˆ

z0a(1 + δ7) ⊖ b
˜˜

⊘
ˆ

m31x(1 + δ8) ⊕ m32y(1 + δ9) ⊕ m33z(1 + δ10) ⊕ z0

˜

.

At this point it is clear that we will not get a clean divide as in
the two-step transform case. Indeed, consider the first terms of the

numerator and denominator,

depth =
ˆ

m31a(1 + δ1)x(1 + δ2) ⊕ · · ·
˜

⊘
ˆ

m31x(1 + δ8) ⊕ · · ·
˜

=
ˆ

m31xa(1 + δ1 + δ2 + O(ǫ2)) ⊕ · · ·
˜

⊘
ˆ

m31x(1 + δ8) ⊕ · · ·
˜

≈
ˆˆ

m31x(1 + δ8) + m31x(δ1 + δ2 − δ8)
˜

a ⊕ · · ·
˜

⊘
ˆ

m31x(1 + δ8) ⊕ · · ·
˜

.

Arranging terms so that both the numerator and denominator have
the expression m31x (1 + δ8) reveals an error term of m31xO(ǫ).
Continuing in this fashion, the final result is of the form

a
ˆ

1 + O(ǫ)
˜

− b/χ
ˆ

1 + O(ǫ)
˜

+ a/χ
ˆ

m31xO(ǫ) + m32yO(ǫ) + m33z O(ǫ) + z0 O(ǫ)
˜

.

The last term of this expression represents the arithmetic error in-
troduced by the precomposed transform. Furthermore, the error will
not cancel out during a depth comparison since it is dependent on
x, y and z.

Our analysis clearly shows that the two-step transform will always
give better results than the precomposed transform.

5 Implementation and Results

5.1 Implementation

An advantage of the methods presented in this paper is that they
do not require extensive software development. The infinite projec-
tion method is implemented by substituting the values 1, 2n for a, b
in the standard perspective projection matrix. In addition, if depth
value clipping is desired, the depth buffer clear value must be ad-
justed. In total, three constant values are modified. The two-step
transform method requires making changes at the vertex transform
stage of the graphics pipeline. Output vertex values are computed
by first multiplying the input vertex by the transform matrix, fol-
lowed by a second multiply by the projection matrix. The total
is two lines of code, provided that the graphics engine has a pro-
grammable vertex stage.

The specific values of a and b are implementation dependent. In
Listing 1 we apply the infinite projection method to an OpenGL
system that is compatible with glFrustum [Segal and Akeley 06]
by changing two elements of the matrix. Likewise, for a DirectX
system compatible with D3DXMatrixPerspectiveLH, which has
f/(f − n) and −nf/(f − n) as the 10th and 14th elements of
the matrix, we would set those elements to 1 and −n and set the
remaining elements according to the function documentation [Mi-
crosoft Corp. 11].

We give a basic implementation of the two-step transform in List-
ing 2. Several optimizations are possible. Since the projection ma-
trix is typically sparse, floating point operations can be saved and
bandwidth can be reduced with value packing. Even more optimiza-
tion is possible in conjunction with an infinite projection where
n = 1/2. In addition, the intermediate value, VertexViewPos,
which is the vertex position in the frame of the camera relative to
the camera origin, may be useful for unrelated graphical techniques.

5.2 Results on a Synthetic Example

Figure 2 shows the results of applying each method singly to a test
scene. The test scene is a green plane under a red mesh. The left
half of the red mesh is parallel to the green plane. The right half of
the red mesh slopes downward until it touches the green plane at
the rightmost edge. Correct HSR would display a red square inside

3

To appear in the Journal of Graphics Tools, Volume 16, Issue 1, 2012

Listing 1: An implementation of infinite projection in an OpenGL
system.

i f (i s i n f i n i t e p r o j) {
f l o a t a , b , c , d , i , j , k , mx [1 6] ;

a =(−1.0 f) ; /∗ l i m f−>i n f o f (−(f+n) / (f−n)) ∗ /

b =(−(2.0 f∗n)) ; /∗ l i m f−>i n f o f (−(2.0 f∗ f∗n) / (f−n)) ∗ /

c = (2 . 0 f∗n) / (x2−x1) ;

d = (2 . 0 f∗n) / (y2−y1) ;

i =(x2+x1) / (x2−x1) ;

j =(y2+y1) / (y2−y1) ;

k=(−1.0 f) ;

mx[0] = c ; mx [4] = 0 ; mx[8]= i ; mx[1 2] = 0 ;

mx [1] = 0 ; mx[5] = d ; mx[9]= j ; mx[1 3] = 0 ;

mx [2] = 0 ; mx [6] = 0 ; mx[1 0] = a ; mx[1 4] = b ;

mx [3] = 0 ; mx [7] = 0 ; mx[1 1] = k ; mx[1 5] = 0 ;

g l M u l t M a t r i x f (mx) ;

}
e l s e g l F r u s t u m (x1 , x2 , y1 , y2 , n , f) ;

g lDepthRange (0 , 1) ;

i f (i s i n f i n i t e p r o j && i s d e p t h c l i p) {
g l C l e a r D e p t h (1.0−n / f) ;

}
e l s e g l C l e a r D e p t h (1 . 0) ;

Listing 2: An implementation of two-step transform in a GLSL ver-
tex shader.

i f (i s t w o s t e p) {
vec4 VertexViewPos = gl ModelViewMatr ix∗ g l V e r t e x ;

g l P o s i t i o n = g l P r o j e c t i o n M a t r i x ∗VertexViewPos ;

}
e l s e g l P o s i t i o n = g l M o d e l V i e w P r o j e c t i o n M a t r i x∗ g l V e r t e x ;

a green square. We expect HSR artifacts to manifest most strongly
at the right edge of the red mesh where separation approaches zero.

To recreate the test results it is necesary to store real numbers in
the 3x3 upper-left corner of the transform matrix. A default camera
initialized with an identity matrix will exhibit greatly reduced pre-
cision error. Also, the red plane must be rendered before the green
plane so that the presence of green pixels is due to depth inversion
(caused by a green fragment having a calculated depth less than
a red fragment), not discretization (caused by depth values falling
into the same bucket). The test scene was designed to specifically
show HSR artifacts and they will always appear on the right-hand
side of the red plane, although a narrow field of view may be needed
depending on the test environment.

In every screenshot pictured here, the precision errors are com-
pletely eliminated on the left-hand side of the red plane. This is
because the precision improvement was enough to lower the depth
value error below the parallel separation distance. On the right-hand
side the errors remain, but typically displaced and with varying in-
tensity relative to the errors shown in the first column. On average
the errors will be significantly less, but any two screenshots will
vary considerably.

5.3 Results on Real Examples

Figure 3 shows the two-step transform implemented in the Dspace
software at the Dynamics And Real-Time Simulation (DARTS) Lab
at JPL. The image is of a terrain patch positioned above the Lunar
surface. The far clipping plane was adjusted to intersect the terrain
patch. The two-step transform method displays a clean, high preci-
sion clipped edge. The test environment was a Linux/OpenGL/O-

Figure 2: Standard projection (left column), infinite projection
(middle column) and two-step transform (right column). Each row
represents a comparison of the three methods. Four rows are pro-
vided because results vary considerably even when camera angle
and/or position changes only slightly.

Figure 3: Precomposed transform exhibits a ragged edge where a
clean depth clip is expected (left). The two-step transform gives a
much better approximation of a clean clip (right). Dataset provided
by NASA.

gre3D PC with NVIDIA Quadro hardware.

Figure 1 shows both methods implemented in a high dynamic range
terrain engine developed at Caltech for the Visualization Technol-
ogy Applications & Development group at JPL. The image is of a
terrain patch positioned at least 600 meters above the surface of
Mars. The camera was located 10 km above the surface. Depth
bucket resolution at the terrain patch was less than 7 meters and
input vertex coordinate error was less than 1 meter. Despite the
low error relative to the 600 meter separation, HSR artifacts are
prominent. Both methods, singly or jointly, removed all artifacts.
In addition, the underlying surface of two overlapping patches also
exhibited HSR artifacts. Improved HSR quality was observed here
as well. The test environment was a Windows XP/OpenGL PC with
NVIDIA GeForce hardware.

Figure 4 demonstrates an improvement to a non-interactive system.
Blender is an open source 3D modeling software package that in-
cludes a rendering tool for producing high quality stills and movies.
The renderer relies on a depth buffer and thus can benefit from
our methods. We downloaded the source code to version 2.49b and

4

To appear in the Journal of Graphics Tools, Volume 16, Issue 1, 2012

Figure 4: A quality render of two intesecting torii by Blender 2.49b
(left). This non-interactive render is improved by implementing an
infinite projection (right). The change only requires adding two
lines of code.

modified the depth calculation in arithb.c to implement an infinite
projection. The two-step transform was not implemented since the
software renderer does not have a programmable vertex stage. The
test scene of two interpenetrating torii exhibit obvious cracks where
the surfaces intersect. With infinite projection the cracks are re-
duced even though the depth buckets are larger. This clearly shows
the arithmetic benefits of infinite projection.

6 Discussion and Conclusion

The methods given in this paper are direct improvements on the
standard 1/Z depth mapping with supporting analysis. However, the
designer of a graphics pipeline may decide to use an alternative
depth mapping and/or depth value storage format. Even so, most of
our results are still relevant.

We can generalize the analysis of Section 3 by noting that the key
results depend on whether or not the a value has an exact float-
ing point representation, and not on the specific values of a and b.
Therefore, we can extend the analysis to any depth mapping. Com-
plementary Z, having a = n/(f − n) and b = fn/(f − n), will
suffer the same arithmetic precision loss of 2ǫ as 1/Z. Whereas,
inverse W, having a = 0 and b = n, will enjoy the same high
precision as infinite projection.

Likewise, the results of Section 4 are only dependent on the pres-
ence of a non-zero a value. Therefore, the two-step method would
still be effective in a complementary Z system, but should not have
any effect in an inverse W system. The special case of a = 1 is
noteworthy because it reduces the error term to 2ǫ z0/χ.

It should also be noted that, regardless of the depth mapping, any
system can improve precision by carefully choosing values of n and
f such that a becomes exact. Our analysis shows exactly why this
trick improves precision. However, in the case of 1/Z, this trick is
clearly inferior to our methods that do not constrain n and f .

To summarize, the designer of a perspective divide transform matrix
should strive to set a = 0 as this value maximizes the arithmetic
precision of the perspective divide. Failing that, a = 1 is preferable
to a = ā. An a value without an exact floating point representation
should be avoided whenever possible.

Conclusion. In this paper we describe two different methods of
improving depth precision with little or no cost. The methods are
easy to implement and should be applicable to all modern rasteri-
zation engines.

We have restricted our attention to the 1/Z depth calculation; how-
ever the same approach may be applied to other depth methods to
tighten the bounds on precision. Furthermore, other stages of the
graphics pipeline may contain hidden opportunities for optimizing

floating point precision, yielding further improvements to rendering
quality.

Acknowledgments. We would like to thank Stephen Kulczycki, Kevin Hussey,

Patrick Mullen, Marc Pomerantz and Steven Myint for their support. MD wishes to ac-

knowledge the partial support of the NSF (CCF-1011944, CCF-0811373, and CMMI-

0757106 grants), Disney & Pixar Animation Studios. This work was funded by JPL’s

Office of Communications and Education.

A Infinite Projection Depth Bucket Analysis

A depth value is stored with integer rounding, which introduces an absolute error g.

The error is related to the number of depth buffer bits, β.

bd = d + g : |g| ≤ 1

2

1

2β
.

This absolute error can be expressed as a relative error that varies depending on the

value of d. The relative error is not well defined as d approaches zero.

d + g = d (1 + δ) δ =
g

d
: d > 0.

Consider the difference between standard depth, d, and infinite depth, d′.

d =
1

2

“
a − b

z
+ 1

”
d
′

=
1

2

“
1 − 2n

z
+ 1

”
.

Express infinite depth as a function of depth through

d
′

=
1

2

“ f − n

f − n
− 2n(f − n)

f − n

1

z
+ 1

”

= d +
1

2

“ −2n

f − n
+

2n2

f − n

1

z

”

= d −
“ n

f − n

”“ z − n

z

”

= d − θ φ : 0 < θ, 0 < φ < 1 for z > n.

Both θ and φ are positive, so d′ is always less than d. If the increase in relative error

is less than ǫ, then the larger buckets do not dominate the precision. Specifically, we

want
g

d′
− g

d
< kǫ : k ≥ 1.

For a 24-bit depth buffer and single precision floating point, we have β = 24, ǫ =

2−24, thus ǫ = 2g. Therefore, the domain in which (d − d′)/dd′ < 2k is satisfied

for all values of d, d′ in some range for given f , n, k is the domain in which kǫ is

larger than the change in depth bucket size.

If d ≥ 1
2 and d′ ≥ 1

2 then d−d′

dd′
< 2k is true for all k ≥ 1, provided that

f > 2n.

Indeed, d′ is constrained to be less than d, but greater than 1/2. So, the numerator

is maximized by d = 1 and d′ = 1/2, while the denominator is minimized by

d = d′ = 1/2. Note that either way d′ is set to the lower bound of 1/2. The

expression (1 − 1/2)/(1/2)2 < 2k is true for all k ≥ 1. Consequently, we see

that the infinite projection matrix will always improve precision for depth values in the

range [0.5, 1].

Moreover, if
f
n

= r then d must satisfy
1

r−1

d(d−
1

r−1
)

< 2k.

Following the same strategy of maximizing the numerator and minimizing the denom-

inator, we will set d′ equal to the lower bound. Therefore, consider the general case

where d − h < d′ < d and the expression to satisfy is (d − (d − h))/(d(d −
h)) < 2k. Note that 1/(r − 1) = θ and recall that d′ = d − θ φ. We have

d′ = d − φ/(r − 1). Since φ is less than 1, then d′ ≥ d − 1/(r − 1). Thus,

let h = 1/(r − 1) and kǫ = 2ǫ. Solving for the positive root of the quadratic

h/(d2 − hd) = 4 gives us a λ < 0.5 such that depth precision is improved in the

range [λ, 1].

5

To appear in the Journal of Graphics Tools, Volume 16, Issue 1, 2012

λ =
1

2

n +
√

fn

f − n
.

To translate this into something meaningful, we need z and bucket size, ∆, expressed

in terms of λ:

zλ =
b

a + 1 − 2λ
,

1

2

“
a − b

zλ

+ 1
”
− 1

2

“
a − b

zλ + ∆λ

+ 1
”

=
1

2β
.

From these equations we derive the equations given in Section 3.2.

References

Kurt Akeley and Jonathan Su. “Minimum triangle separation for correct z-buffer oc-

clusion.” In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium

on Graphics Hardware, pp. 27–30, 2006. Available online (http://portal.

acm.org/citation.cfm?id=1283900.1283904).

Edwin Catmull. “A subdivision algorithm for computer display of curved surfaces.”

Ph.D. thesis, The University of Utah, 1974.

Cass W. Everitt and Mark J. Kilgard. “Practical and robust stenciled shadow volumes

for hardware-accelerated rendering.”, 2003. Available online (http://arxiv.

org/abs/cs.GR/0301002).

David Goldberg. “What every computer scientist should know about floating-point

arithmetic.” ACM Comput. Surv. 23 (1991), 5–48. Available online (http://

doi.acm.org/10.1145/103162.103163).

David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. “Robust treat-

ment of simultaneous collisions.” ACM Trans. Graph. 27 (2008), 23:1–23:4. Avail-

able online (http://doi.acm.org/10.1145/1360612.1360622).

Eugene Lapidous and Guofang Jiao. “Optimal depth buffer for low-cost graphics hard-

ware.” In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on

Graphics Hardware, pp. 67–73, 1999. Available online (http://doi.acm.

org/10.1145/311534.311579).

Microsoft Corp. “D3DX Reference.”, 2011. Available online (http:

//msdn.microsoft.com/en-us/library/windows/desktop/

bb172965(v=vs.85).aspx).

Mark Segal and Kurt Akeley. “The OpenGL Graphics System: A Specification (Ver-

sion 2.1).”, 2006. Available online (http://www.opengl.org/registry/

doc/glspec21.20061201.pdf).

W. Straßer. “Schnelle Kurven- und Flächendarstellung auf graphischen Sichtgeräten.”

Ph.D. thesis, Technische Universität Berlin, 1974.

Lance Williams. “Casting curved shadows on curved surfaces.” SIGGRAPH Comput.

Graph. 12 (1978), 270–274. Available online (http://doi.acm.org/10.

1145/965139.807402).

Web Information:

Paul Upchurch, Caltech, MC 305-16, 1200 East California Boulevard, Pasadena, CA

91125

(paulup@gmail.com)

Mathieu Desbrun, Caltech, MC 305-16, 1200 East California Boulevard, Pasadena, CA

91125

(mathieu@cms.caltech.edu)

6

