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In this supplementary material, we provide a more comprehensive treatment of the various technical aspects involved in our approach, along
with some extensions. In particular, we show how to extend our construction (proposed in the original paper) to arbitrary subdivision factors λ
and polyhex sizes m, and discuss in greater detail why we settled on our particular choices of λ = 37 and m = 3 based on considerations
including memory size and spectral quality.

1 Tiling Construction With Randomized Boundaries

Summary: In this section, we provide formal details on the boundary randomization process. We first generalize the construction presented
in our original paper to a large set of subdivision factors λ. Then, we demonstrate conditions on edge modifiers sufficient to ensure
topologically consistent perturbations (Lemma 1). Finally, we detail the combinatorics of edge modifiers with respect to the desired
subdivision factor (Lemma 2).
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Figure 1: Construction of the regular tiling system: (a) hexagon sequences A, B and C starting from a given origin point (in gray) for
n = {1, 2, 3, 4} (from left to right). (b) tile construction via the joining of three triplets of paths for n = {1, 2, 3}. (c) overall tiling
construction for n = 4.

From a partition of �, we define a recursive structure into multi-hexagon regions we call tiles. Tile boundaries are comprised of hexagon
sequences of equal length n aligned along one of three given directions (Fig. 1(a)):
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• B :={b0, . . . , bn−1}, following the
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direction;

• C :={c0, . . . , cn−1}, following the (1, 0)T direction.

Triplets of A,B, and C hexagon sequences are joined at a single point, the origin, with hexagons a0, b0 and c0 arranged such that a0 and c0
are aligned along (1, 0)T . These hexagons are used to define a sequence of edge paths emanating from the origin; the construction of hexagon
sequences and edge paths is shown in Fig. 1(a). When three triplets of equi-length edge paths are adjoined (Fig. 1(b)), the interior forms a
quasi-hexagonal region of hexagons in �, i.e., a tile. Such tiles can be used to construct a regular paving of �, denoted by Hn (Fig. 1(c)). In
the following, individual tiles are denoted hi ∈ Hn, with the subscript used to identify repetitions of the tile within the lattice.
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Figure 2: Edge randomization for n = 4: (a) subset of tiles with associated hexagons and edge words. (b) an admissible edge modification
with wA = 0110, wB = 0011 and wC = 1100. (c) illustration of a non-admissible modification with isolated hexagons: we have wA = 0001
for the green triplet, wB = 0001 for the brown triplet and wC = 0001 for the pink triplet.

From the sequence length n, the associated subdivision factor λ(n) of the self-similar structure is given by the number of hexagons in hi.

Hence, for n = {1, 2, 3, 4, 5} we have λ = {1, 7, 19, 37, 61}, and more generally λ(n) :=Cn = 1 + 6(n − 1) + 6 (n−1)(n−2)
2

, where the
sequence {Cn} is known as the centered hexagonal number sequence [Sloane 2013c].

To perform boundary randomization, we construct irregular tiles h̃ i from tiles hi ∈ Hn such that:

(i) tiles h̃ i ⊂ � and |h̃ i| = |hi| :=λ, where |.| indicates the total number of hexagons in a tile;

(ii) each tile h̃ i is topologically equivalent to hi, i.e., the mapping does not generate isolated hexagons or holes.

To encode these modifications, we associate these membership changes with a binary value assigned to each hexagon along the tile boundary.
Let l : � → {0, 1} be the one-to-one map attaching the binary character to one of these hexagons. Using l, modifications to a hexagon
sequence A (resp. B and C) will be characterized by a binary word of length n denoted wA := l(a0)l(a1) . . . l(an−1), and similarly for wB

and wC .

For example, consider changes to an A sequence encoded by wA. If wA contains a 0 at position i, i.e., l(ai) = 0, this indicates no change
along that edge. Conversely, if l(ai) = 1, this indicates that the hexagon ai is switched from hj to hi. Similarly, nonzero entries in wB and wC

identify hexagons switched from hk to hj and hi to hk, respectively (Fig. 2).

Fig. 2(b) illustrates a border modification using wA = 0110, wB = 0011 and wC = 1100. Such a triplet is called an edge modifier triplet. As
depicted in Fig. 2(c), some edge modifiers could lead to topological issues such as isolated hexagons. We consider a set of sufficient conditions
on binary words (wA, wB , wC) for each triplet (A,B,C) to ensure the previously described properties on modified tiles.

Lemma 1 The following conditions on a binary word triplet (wA, wB , wC) are sufficient to obtain properties (i) and (ii):

(a) the number of nonzero entries in each word is equal;

(b) words do not contain the suffix “01”.

Edge modifier triplets following these constraints are called admissible modifiers.

Proof of Lemma 1 :

Consider the binary word triplet (wA, wB , wC) incident on tiles {hi, hj , hk} ∈ Hn, as shown in Figure 2. Let kA, kB , and kC be the number
of nonzero entries in wA, wB , and wC , respectively. Following the method described previously, hi is transformed to h̃ i by adding hexagons
from hj associated with nonzero entries in A and removing hexagons associated with nonzero entries in C. Arguments for the construction of
h̃j and h̃k follow similarly, yielding:

|h̃ i| = |hi| + kA - kC = λ(n) + kA - kC ,

|h̃j | = |hj | + kB - kA = λ(n) + kB - kA ,

|h̃k| = |hk| + kC - kB = λ(n) + kC - kB .

Hence, when kA = kB = kC , property (i) is satisfied.

To show that condition (b) ensures property (ii), consider, without loss of generality, a nonzero value l(ax) ∈ wA. This indicates that hexagon
ax ∈ hj will be added to hi in the construction of h̃ i. Given (b), we show that (ii) is satisfied by finding a path of adjacent hexagons from ax

to some hexagon h belonging to hi ∩ h̃ i. The existence of such a path demonstrates that ax is not an isolated hexagon. Along the A sequence,
h could be any hexagon save two: the first is c0 in the the current triplet, shown in light gray in Fig. 3, which might be switched from hi to hk

if l(c0) = 1. The second hexagon, dark gray in Fig. 3, is removed from the tile if l(b̂n−1) = 1, where (Â, B̂, Ĉ) is the edge modifier triplet
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Figure 3: Illustration for Lemma 1. (a) details the local configuration. Hexagons in orange correspond to hexagon h in the text; light gray
hexagons are removed from hi if l(c0) = 1; dark gray hexagons are removed if l(b̂n−1) = 1. (b) case 1: a word wA starting with “10”,
(c) case 2: a word wA containing an isolated “1” in the middle of the edge path, (d) case 3: a word wA ending in “11”, (e) a forbidden
configuration ending in “01”.

neighboring (A,B,C) across path A. Because these two hexagons may not remain in the tile when hi is transformed to h̃ i, they cannot be
used to establish topological consistency.

Observing this fact, for any x ∈ [0, n− 1] we can specify a hexagon h in hi ∩ h̃ i which is adjacent to ax (see Fig. 3; hexagons are identified
by the position of their center in the Euclidean plane):

case 1: x = 0, h = ax +
(
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,
√
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)T

,

case 2: x ∈ {1, . . . , n− 2}, h = ax + (1, 0)T ,

case 3: x = n− 1, constraint (b) implies that l(an−2) = 1. Hence, ax is adjacent to an−2, which is also adjacent to an−2 + (1, 0)T

under case 2.

Thus, when using edge modifiers that conform to (b), isolated hexagons will not be produced along path A. Similar arguments can be used for
words wB and wC to show that constraining binary word triplets using conditions (a) and (b) will always ensure properties (i) and (ii).�
In this process, the size of the set of potential tile shapes is governed by the number of admissible edge modifiers for a given edge path length
n. In the general case, no closed formula exists for the number of admissible triplets, but next we will show that there is a lower bound whose
asymptotic behavior is exponential in n (see Table 1 for the first few values).

n 1 2 3 4 5 6 7

# Admissible triplets 1 3 18 120 816 5658 39876

Table 1: Number of admissible triplets with respect to n. Numbers in bold correspond to the subdivision factor λ(4) = 37 used in the
experiments presented in the original paper.

Lemma 2 Given a path of length n > 2, the number of admissible edge modifier triplets is given by

1 + (n− 1)3 +

n∑
k=2

((
n− 1
k

)
+

(
n− 2
k − 2

))3

. (1)

A lower bounded is given by the (n− 1)th Franel Number, Fr(n− 1) (Sloane’s A000172, with Fr(k) ≈ O( 2
3k+1

k
) [Sloane 2013a]).

Proof: Let us consider a binary word of length n, with n ≥ 3. We want to calculate the number mn
k of binary words containing exactly k

nonzero entries without containing the suffix “01”, for k ≥ 2. These words, denoted Wn
k = w0 . . . wn−1, can be explicitly constructed, and

form the set:

W
n
k ={w0 . . . wn−2︸ ︷︷ ︸

with k ones

0 , w0 . . . wn−3︸ ︷︷ ︸
with (k−2) ones

11} .



Hence, mn
k = |Wn

k |, and

mn
0 = 1 , (2)

mn
1 = n− 1 , (3)

mn
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)
+
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)
for k ∈ {2, . . . , n− 1} , (4)

mn
n = 1 . (5)

As a consequence, the number of admissible edge modifiers is given by

n∑
k=0

(mn
k )

3 . (6)

A lower bound for this equation is given by the first term of Eq. 6:

n∑
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(mn
k )

3 >
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(
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k

)3

(7)

> Fr(n− 1) . (8)

where Fr(n− 1) is the (n− 1)th Franel number.�

2 Decomposition of Irregular Trihexes into Subdivided Irregular Trihexes

Summary: This section describes the subdivision of trihex t̃ into yet smaller hexagons, and the clustering of these hexagons into further
trihexes (set T̃ in Fig. 4).

t̃ T ˜T

Figure 4: Decomposition of the irregular trihex t̃ into regular trihexes T. Applying the subdivision system on T yields irregular trihexes T̃.

Given a set t̃ ⊂ � of adjacent hexagons homeomorphic to a disk (Fig. 4, left), we need to subdivide t̃ into disjoint trihexes, T. Following
the tiling literature from discrete mathematics, it must first be determined whether t̃ is tileable by the set of trihexes. Then, a valid tile
decomposition for the region must be identified. In the general case—attempting to tile t̃ ⊂ � with a finite set of trihexes—both problems are
NP-complete [Berman et al. 1990]. Fortunately, our construction ensures that t̃ is without holes, and because the number of tiles is limited
(11 trihexes), we expect a better class of complexity. This is analogous to the problem of decomposing a set of unit squares into vertical and
horizontal tiles of length greater than 3. This problem is NP-complete if the set is allowed holes [Berman et al. 1990] but is in P, with a linear
time solution, when the set does not contain holes [Kenyon and Kenyon 1992]. Because our setting is similarly constrained, we are able to
efficiently explore various valid trihex tilings of t̃ . From these, we will choose the best tiling with respect to a few criteria, described below.

If a trihex decomposition exists, there will be some integer k such that |t̃ | = 3 · k. We randomly assign a label in {1 . . . k} to each hexagon,
with each label appearing exactly three times. Then, through a series of local iterations, labels are swapped between adjacent hexagons if
the change minimizes the CCVT energy proposed in [Balzer et al. 2009], mimicking the discrete capacity-constrained Voronoi tesselation
presented in that work1. After several swapping steps, we check if the obtained decomposition is valid: if so, triplets of hexagons with the same
label will be adjacent. Otherwise, we perform local swaps to perturb the labels of the solution and continue iterating. Minimizing the CCVT
energy in this way allows us to quickly obtain valid, non trivial decompositions.

This heuristic is performed offline to construct the decomposition of each set t̃ in the subdivision library (see original paper). In practice, only a
handful of iterations are required to obtain a valid trihex decomposition. This decomposition can be optimized further using a simple penalty

1The analogy between trihex decomposition and CCVT is clear if one defines each hexagon to have unit capacity; trihex decomposition then corresponds to

tesselating into contiguous, equi-area regions, each with a total capacity of 3.
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Figure 5: Comparison of spectral quality when optimizing from different initial tilings. Circles indicate values of 0.1 and greater (DC value of
1). (a) Polyomino-based tiling system [Ostromoukhov 2007] combined with BNOT optimizer [de Goes et al. 2012]. (b) Our irregular trihex
tiling system with tile centroids optimized using the same BNOT optimizer.

method. For instance, we ensure that most of the trihex configurations are observed. This criteria is useful in preventing regularity from arising
due to the subdivision rules. In our system, for each of the 11 · λ sets requiring subdivision, we generate 100 valid decompositions. Then, we
compute the distributions of trihex configurations and select the most diverse decompositions. Because the discrete CCVT minization requires
only a few iterations over small sets, the total process takes less than a minute to compute.

3 Recent optimizers applied to previous tile-based methods

Summary: Using recent optimization techniques in conjunction with previous tile-based methods gives unsatisfactory results.

In order to improve upon previous tile-based sampling methods, one might consider revising previous methods by combining them with the
latest in state-of-the-art optimization techniques. Unfortunately, even the best optimization methods may be unable to alleviate the spectral peaks
inherent to existing tilings. For instance, in Fig. 5 (a), we show the results produced by optimizing the centroids of polyominoes [Ostromoukhov
2007] using the method of [de Goes et al. 2012]. This distribution retains the spectral peaks found in polyomino tilings (see circled regions). In
contrast, the same optimizer applied to our new tiling system produces a distribution free of spurious peaks (see Fig.5 (b)).

4 Influence of Method Parameters on Tiling Quality and Lookup Table Requirements

Summary: In this section, we explore the main parameters of our system and analyze their respective impact on the spectral quality of the
tiling (see Fig. 7 and 8) and the size of the offset lookup table (see Table 2). Our sampling algorithm requires three main parameters:

• The structural index depth, l, affecting the size of the neighborhood referred to by each structural index;
• The subdivision factor, λ, of the underlying tiling;
• The polyhex size, m, i.e., the number of irregular hextiles comprising each polyhex.

In the following section, please refer to Fig. 7 for an illustration of the tiling system parameterized by different values for m and λ; the
corresponding spectra can be found in Fig. 8. The total number of structural indices, |id l|, generated with various configurations of m, λ, and
l is presented in Table 2, along with the relevant lookup table size.

Lookup table (LUT) size is simply the total number of offsets calculated for the corresponding tile set, namely: |LUT | = |id l|·(λ−1)/2.
Here, the total number of structural indices is multiplied by (λ−1) rather than λ, as offsets for each range of rank Rλ are equal to those for R1,
up to a transformation. Furthermore, for each range of ranks Rr offsets are calculated only for ranks 1...r, yielding the additional factor of 1/2:

the lookup table is in fact a triangular matrix with |id l|·(λ−1)/2 nonzero entries.

The number of structural indices is driven by two quantities: the set of l rank indices of size λ l (see Eq. 9), and the number of neighboring
configurations around each polyhex, denoted as f(m,λ). This value is difficult to express asymptotically in m and λ; however, it is lower-
bounded by the number of hexagonal polyominoes (polyhexes) with m cells, a quantity whose behavior is exponential in m [Sloane 2013b].
The total number of polyhexes is further increased by a factor of λ due to the border shuffling step.

|LUT | =
(
f(m,λ) · λ l

)
· λ−1

2
, with f(m,λ) ≡ o(λ · exp(m)) .

Structural index depth l. The structural index (Eq. 2) introduced in Sect. 3.3 of the submitted paper can be generalized as follows. Rather
than characterizing the entire subdivision path from t0 to t̃k−1 with the rank of the final subdivision step, one can instead utilize ranks for each
of the last l subdivision steps. This sequence of l ranks is then appended to the neighborhood index summarizing the trihexes surrounding t̃k−l,
denoted by n(t̃k−l). The resulting structural index is:

id l(t̃k) :=n(t̃k−l)⊕ rank (t̃k−l+1|t̃k−l→ T̃k−l+1) ⊕ · · · ⊕ rank (t̃k|t̃k−1→ T̃k) . (9)



Employing larger or smaller values of l will widen or constrict the neighborhood described by each structural index, respectively. For example,
if l = 0, the index characterizes the first ring neighborhood (≈ 7 polyhexes); for l = 1, it describes 7λ neighboring polyhexes; and for
l=2 it describes 7λ2 neighboring polyhexes. Hence, the larger the structural index depth, the more accurate the optimization process will
be (Fig. 6). Indeed, increasing the depth improves the characterization of local trihex neighborhoods and thus the support on which the point
set optimization is performed. In Fig. 6, we first observe an important improvement on the spectrum and sample distribution from l = 0 to
l = 1. We also observe that changes when increasing l from 1 to 2 are limited.

Note that this improvement comes at a cost: as l increases, so does the number of structural indices generated—exponentially (i.e., as λl). As
noted above, this has direct impact on the size of the lookup table. In our implementation, we find l=1 to provide a sufficient neighborhood
characterization at an acceptable cost.

Subdivision factor λ. The subdivision factor determines the number of smaller hexagons into which each larger hexagon is divided. If λ is
too small there will not be enough variety in the tile set to overcome the limitations common to previous tile-based sampling methods. Indeed,
when hexagons are divided into a great many smaller hexagons, more highly irregular hextile borders are possible. On the other hand, finer
adjustments to the border reduce the influence of each shuffled hexagon, leading to smaller magnitude perturbations of polyhex centroids.
Larger values of λ also increase the size of the resulting lookup table (see Table 2).

To limit the size of the lookup table and maximize the effect of the border shuffling, our implementation uses λ=37.

Subdivision factor λ

19 37 61

P
o

ly
h

ex
si

ze
m

|id 0| 3.49k (31.4k) 10.6k (191k) 24.8k (744M)

2 |id 1| 66.2k (595k) 39.3k (707k) 1.51M (45.3M)

|id 2| 1.26M (11.3M) 14.5M (261M) 92.4M (2.77B)

|id 0| 37.4k (337k) 138k (2.48M) 32.9k (987M)

3 |id 1| 710k (6.39M) 5.10M (91.8M) 20.0M (600M)

|id 2| 13.5M (122M) 189M (3.40B) 1.22B (36.6B)

|id 0| 176k (1.58M) 721k (13.0M) 1.88M (56.4M)

4 |id 1| 3.35M (30.15M) 26.7M (480M) 114M (4.32B)

|id 2| 63.7M (573M) 63.7M (573M) 6.98B (209B)

Table 2: The size of the set of structural indices |id l| is determined by the index depth l, subdivision factor λ, and polyhex size m. The
resulting number of lookup table entries is given in parentheses. The entry in bold corresponds to the parameters used in the original paper.

Polyhex size m. The number of irregular hextiles in each polyhex also influences the size of the lookup table. Larger polyhexes produce many
more possible tile configurations, considerably affecting the total number of neighborhood indices. This effect can be seen by scanning the
entries corresponding to |id 0| in Table 2.

Polyhex size also influences the quality of sampling generated by tile centroids. Because our method relies upon the clustering of subdivided
hexagons into polyhexes using a CCVT-based approach (Sec. 2 of the original paper), large polyhexes—say, of size m = 500—will have
centroids that produce very good quality blue-noise spectra, similar to those shown in [Balzer et al. 2009]. However, the effect of such large m
on lookup table size makes these types of polyhexes infeasible in our framework. In comparison, polyhexes of insufficient size (m = 1 or 2)
produce centroid distributions with inferior blue-noise spectra.

In our implementation, we thus use polyhexes of size m = 3, also known as trihexes.
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BALZER, M., SCHLÖMER, T., AND DEUSSEN, O. 2009. Capacity-constrained point distributions: A variant of Lloyd’s method. ACM Trans.
Graph. 28, 3, 86:1–8.

BERMAN, F., JOHNSON, D. S., LEIGHTON, F. T., SHOR, P. W., AND SNYDER, L. 1990. Generalized planar matching. J. Algorithms 11, 2,
153–184.

DE GOES, F., BREEDEN, K., OSTROMOUKHOV, V., AND DESBRUN, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31,
6, 171:1–171:10.

KENYON, C., AND KENYON, R. 1992. Tiling a polygon with rectangles. In FOCS, IEEE Computer Society, 610–619.

OSTROMOUKHOV, V. 2007. Sampling with polyominoes. ACM Trans. Graph. 26, 3, 78:1–78:6.

SLOANE, N. J. A. 2013. The On-Line Encyclopedia of Integer Sequences, A000172. http://oeis.org/A000172.

SLOANE, N. J. A. 2013. The On-Line Encyclopedia of Integer Sequences, A001207. https://oeis.org/A001207.



Index depth l

0 1 2
P

o
w

er
sp

ec
tr

u
m

D
is

tr
ib

u
ti

o
n

Figure 6: Spectral quality after performing our optimization, with varying index depth l as described in Eq. 9. The distribution shown is that
of the range of rank R2. Our original paper uses l = 1 (green outline).
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Figure 7: Tile configurations produced by varying subdivision factor λ and polyhex size. Our original paper uses the parameters shown at the
center (green outline, m = 3, λ = 37).
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Figure 8: Spectra of tile centroids for various subdivision factors λ and polyhex sizes m. Circled marks indicate peaks of magnitude 0.1 or
greater (with DC value equal to 1). Our original paper uses the parameters shown at the center (green outline, m = 3, λ = 37).



Figure 9: Realtime image sampling using our tile based method with an offline optimization based on [de Goes et al. 2012]. Top: Stanford
bunny. Bottom: Julia set.


