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Abstract
Vertex- and face-based subdivision schemes are now routinely
used in geometric modeling and computational science, and
their primal/dual relationships are well studied. In this paper,
we interpret these schemes as defining bases for discrete differ-
ential 0- resp. 2-forms, and complete the picture by introducing
edge-based subdivision schemes to construct the missing bases
for discrete differential 1-forms. Such subdivision schemes map
scalar coefficients on edges from the coarse to the refined mesh
and are intrinsic to the surface. Our construction is based on
treating vertex-, edge-, and face-based subdivision schemes as
a joint triple and enforcing that subdivision commutes with the
topological exterior derivative. We demonstrate our construc-
tion for the case of arbitrary topology triangle meshes. Using
Loop’s scheme for 0-forms and generalized half-box splines for 2-
forms results in a unique generalized spline scheme for 1-forms,
easily incorporated into standard subdivision surface codes. We
also provide corresponding boundary stencils. Once a metric is
supplied, the scalar 1-form coefficients define a smooth tangent
vector field on the underlying subdivision surface. Design of tan-
gent vector fields is made particularly easy with this machinery
as we demonstrate.
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1 Introduction
Subdivision schemes are a broadly deployed tool in all ar-
eas of geometric modeling and computer graphics [Zorin and
Schröder 2000; Warren and Weimer 2001]. Their foremost ben-
efit is the ease with which they accomodate the construction
of smooth surfaces in the arbitrary topology setting. They also
offer many favorable computational properties for applications
ranging from surface compression [Khodakovsky et al. 2000] to
physical modeling [Grinspun et al. 2002]. Their mathematical
properties are by now well understood [Reif 1995; Reif 1999;
Zorin 2000a; Zorin 2000b] and a large variety of subdivision
schemes and extensions have been developed. Broadly, sub-
division schemes are classified as either primal (e.g., Catmull-
Clark [1978], Loop [1987], and

p
3 [Kobbelt 2000]) with ver-

tices carrying the data and faces being split, or dual (e.g., Doo-
Sabin [1978] and dual-

p
3 [Oswald and Schröder 2003]) in

which data lives at faces and vertices are split.

In this paper we present a novel class of subdivision schemes
which carry scalar coefficients on edges from the coarser mesh
into scalar coefficients on edges in the refined mesh. The method
can be viewed as constructing higher regularity bases for discrete

differential 1-forms [Desbrun et al. 2005] in the arbitrary topol-
ogy 2-manifold (with boundaries) setting. Given the metric in-
duced by an underlying surface, 1-forms then yield smooth tan-
gent vector fields, which are useful in many applications includ-
ing texture synthesis [Turk 2001], fluid simulation [Shi and Yu
2005], crowd animation [Reynolds 1999], and shading [Schlick
1994]. In particular the design of vector fields is greatly facili-
tated by the intuitive relationship between coefficients and the
resulting vector field (see Figure 1).

Figure 1: Example of vector field design for use in a fur shader. The user
marks selected vertices as sources (red) and sinks (blue) on the control
mesh. Loop subdivision together with our novel 1-form subdivision results
in a tangent vector field which interpolates the given sparse constraints over
the subdivision surface (visualized on the bottom right). Such fields can be
used directly to control standard fur shaders (here using Autodesk Maya).

Context While the relationship between edge-based subdivision
and smooth tangent vector fields on surfaces is of interest in
and of itself, our approach forms a piece of a larger picture. We
treat the construction of edge-based subdivision schemes in the
context of a joint triple of vertex-, edge-, and face-based sub-
division schemes, which are linked through Stokes’ theorem.
This has important practical consequences: a 0-form (function),
given through coefficients at vertices, has a differential, a 1-
form, which can be represented exactly in the basis of 1-forms
generated by the edge-based subdivision scheme. And similarly,
the differential of a 1-form can be represented exactly in the basis
of 2-forms generated by the face-based subdivision scheme. Ad-
ditionally, these coefficients are related through local operations
due to the adjoint relationship that Stokes’ theorem establishes
between the exterior derivative d and the boundary operator ∂ .
Consequently, at the level of the mesh, the exterior derivative
is computationally realized by taking signed sums of coefficients
according to the incidence relations: computing the differential
of a 0-form amounts to visiting each edge and assigning to it the
difference of coefficients at its end points; similarly, the differen-



tial of a 1-form is found by visiting each triangle and assigning it
the signed sum (according to orientation) of its three edge val-
ues. In this way, rather cheap and simple computations at the
discrete level of the mesh correspond exactly to operations from
classical vector calculus, e.g., taking the gradient, curl, or diver-
gence. Since Stokes’ theorem holds by definition, one also gets
standard vector calculus identities, e.g., ∇×∇= 0, for free and
exactly. In many applications these identities are at the core of
conserved quantities and structural relationships between field
variables. Ensuring that they hold at the discrete computational
level avoids, with no cost overhead, spurious numerical prob-
lems in a great variety of numerical simulation scenarios ranging
from standard elliptic problems to applications in fluids, elec-
tro magnetism, and elastiticy [Elcott et al. 2005; Bossavit 1998;
Arnold et al. 2006].

Approach and Contributions We consider the joint construction
of vertex-, edge-, and face-based subdivision schemes so as to
create smooth bases for 0-, 1-, and 2-forms. The linear spans of
these bases, together with the exterior derivative, form a chain
complex. Assuming convergent subdivision schemes, the chain
complex property is achieved by enforcing commutative relations
at the discrete level: given the discrete exterior derivative oper-
ators d0 and d1 (also called “co-boundary operators”), the sub-
division operators S0 (vertex), S1 (edge), and S2 (face) must
satisfy

d0S0 = S1d0 and d1S1 = S2d1. (1)

In words: subdividing first, followed by application of the dis-
crete exterior derivative, should be the same as first applying
the discrete exterior derivative followed by an associated subdi-
vision scheme. Relations of this type are known as formule de
commutation [Dyn et al. 1987] from the univariate setting. Our
approach generalizes these relations to the bivariate, non tensor
product setting.

Applying this line of reasoning to piecewise linear (PL) subdi-
vision recovers the well known Whitney forms [1957]. Asking
for smoother bases over arbitrary triangulations leads to con-
sidering Loop subdivision for S0. For S2 one may then choose
(a generalization of) half-box splines [Prautzsch et al. 2002].
With S0 and S2 fixed in this manner, the 1-form scheme S1 that
we introduce in this paper follows uniquely using (1). It too
is (a generalization of) a piecewise polynomial spline scheme.
More generally, one may begin with a desired support (stencil
size) and symmetries for the 0-form (vertex-based) subdivision
scheme and then derive fully parameterized families of subdivi-
sion scheme triples from (1). While we demonstrate this only
in the case of Loop (and triangles), the approach applies equally
well to other settings, e.g., quadrilaterals with Catmull-Clark for
S0 and Doo-Sabin for S2 [Wang 2006].

2 Refinable Forms
After briefly fixing notation and introducing the relevant con-
cepts from Discrete Exterior Calculus (DEC), we discuss the PL
case (Section 2.1), i.e., hat functions, and their associated Whit-
ney forms. (Additional details on DEC, including many of the
facts we will use in this section, can be found in [Desbrun
et al. 2005].) Observing that Whitney forms are refinable (Sec-
tion 2.2) we construct smoother bases for DEC using standard
subdivision machinery in the regular setting (Section 2.3).

Setup and Elements of DEC Consider an arbitrary topology ori-
entable 2-manifold (possibly with boundary) simplicial complex
K = (V, E, T ) with triangle set T = {t i jk}, edge set E = {ei j |ei j ∈
t i jk ∈ T} and vertex set V = {vi}, where i, j, k = 1, . . . , n(= |V |)
range over the vertices. Each triangle and edge is given an (ar-
bitrary, but fixed) intrinsic orientation. (Vertices have positive

intrinsic orientation by definition.) If a particular edge ei j is pos-
itively oriented then e ji refers to the same edge but with nega-
tive orientation. Similarly, with t i jk positively oriented any even
(odd) permutation of (i jk) denotes the same triangle with posi-
tive (negative) orientation. Note that in practice, these orienta-
tions are often induced by the immersion of the mesh into R3,
but this is not a requirement. Assuming an arbitrary but fixed
indexing for the triangles (t = 1, . . . , |T |), edges (e = 1, . . . , |E|)
and vertices (v = 1, . . . , |V |) the incidence matrices of K now de-
fine the boundary operators. Let ∂ 2 denote the matrix of |E|
rows and |T | columns with (∂ 2)et = ±1 if edge e is incident on
triangle t and their intrinsic orientations agree/disagree (and
zero otherwise). Similarly ∂ 1 denotes the incidence matrix of
vertices (|V | rows) on edges (|E| columns). In DEC the discrete
exterior derivative mapping discrete 0-forms to discrete 1-forms
is given as d0 = (∂ 1)T , while d1 = (∂ 2)T maps discrete 1-forms
to discrete 2-forms. For example, a (column) vector of coeffi-
cients associated with vertices, cv is mapped as ce = d0cv into a
(column) vector of coefficients associated with edges and simi-
larly for a vector of edge coefficients ce mapping to coefficients
on triangles, ct = d1ce.

One may now ask: what are suitable interpolants, or bases, for
the data on vertices, edges, and triangles such that the discrete
exterior derivative applied to coefficients corresponds to the ex-
terior derivative applied to the underlying interpolated forms?
Such interpolants define a chain map and Whitney forms pro-
vide a PL answer to this question.

2.1 Whitney Forms

Let φv = {φi |vi ∈ V} be barycentric interpolation functions
(taken as a row vector), one for each vertex, and supported on
the triangles incident to a given vertex. In the abstract setting
of simplices given as convex hulls of their incident vertices the
barycentric interpolation functions are the standard PL hat func-
tions. (Note that this observation requires neither an embedding
nor a metric.) Given a vector of coefficients cv , the inner product
f = φv cv defines an interpolated function f of the vertex data
over the entire complex K . f (x) may be evaluated at any point
x by furnishing the barycentric coordinates of x . With φv given,
Whitney defined the appropriate 1-form bases as

φi j = φidφ j −φ jdφi ,

one for each edge ei j and φe = {φi j |ei j ∈ E}. (We use bold d to
denote the exterior derivative, while d0 resp. d1 are reserved for
the discrete version acting on vectors of coefficients.) Note that
orientation matters since φ ji = −φi j . With these definitions one
has

d f = d(φv cv) = φ
ed0cv . (2)

To see this, consider a single triangle t i jk and the interpolant
formed over it by the data at the incident vertices

d(ciφi + c jφ j + ckφk) = (c j − ci)(φidφ j −φ jdφi)+

(ck − c j)(φ jdφk −φkdφ j)+

(ci − ck)(φkdφi −φidφk)

(where we used φi + φ j + φk = 1 and d(φi + φ j + φk) = 0).
Applying this reasoning to all triangles simultaneously we ar-
rive at (2). Obviously d f (x) may be evaluated anywhere on the
complex given the barycentric coordinates of x .

The Whitney 2-forms are given as

φi jk = 2(φidφ j ∧ dφk +φ jdφk ∧ dφi +φkdφi ∧ dφ j)

= 2dφ j ∧ dφk = 2dφk ∧ dφi = 2dφi ∧ dφ j



(again, using φi +φ j +φk = 1 and d(φi +φ j +φk) = 0) and
hence are constant in the basis of 2-forms, no matter the metric.
They verify for an arbitrary 1-form g = φece

d g = d(φece) = φ
t d1ce, (3)

which can be seen by considering a single triangle

d(ci jφi j + c jkφ jk + ckiφki)
= 2(ci jdφi ∧ dφ j + c jkdφ j ∧ dφk + ckidφk ∧ dφi)
= (ci j + c jk + cki)φi jk

(using dφi j = 2dφi∧dφ j and d(φi+φ j+φk) = 0). Equation (3)
then follows by summing over all triangles.

With d0 and d1 defined as transposes of the boundary operators
(incidence matrices) and taking account of the above calcula-
tions for Whitney forms, Stokes’ theorem follows by construction

∫

σk+1

d f =: 〈σk+1,d f 〉= 〈∂ σk+1, f 〉 :=
∫

∂ σk+1

f ,

i.e., the integral of the exterior derivative of a k-form integrated
over a (k + 1)-simplex equals the integral of the k-form itself
over the boundary of the (k+ 1)-simplex (k = 0,1). By linearity
of integration this definition extends to any linear combination
of k-simplices in K . Here we also see why the transposes of
the incidence matrices, the co-boundary operators, play the role
of the discrete exterior derivative: it is a natural requirement
if we want a discrete Stokes’ theorem to hold at the simplicial
level. Conversely, Stokes’ theorem, together with the definition
of the boundary operator, becomes the definition of the discrete
d. Computationally all manipulations of forms are now reduced
to manipulating coefficient vectors (cv , ce or ct) with sparse ma-
trices (d0, d1). Only if an interpolation is required do the bases
come into play.

Discussion Whitney 0-, 1-, and 2-forms are interpolating by
construction. This is certainly true for 0-forms, being barycentric
interpolators. In the case of 1-forms we have

∫

ei j

φi j =

∫

ei j

dφ j =

∫

∂ ei j

φ j = 1− 0= 1.

Here we used φi +φ j = 1 on ei j to write φi j as (1−φ j)dφ j −
φ jd(1 − φ j). For all other edges the integral vanishes. This
follows from the simple observation that for any other edge e at
least one of i or j (say i) is not incident to e and hence φi as well
as dφi are zero on e. For the 2-forms we get similarly

∫

ti jk

φi jk =

∫

ti jk

2dφi ∧ dφ j =

∫

ti jk

dφi j =

∫

∂ ti jk

φi j = 1.

Here we used φi jk = 2dφi ∧ dφ j , which only holds on t i jk. Any
other triangle is missing at least one of i, j, or k (say i). With
both φi and dφi vanishing on such a triangle, each summand in
φi jk = 2(φidφ j∧dφk+φ jdφk∧dφi+φkdφi∧dφ j) is identically
zero, implying the claim that Whitney 2-forms are interpolating
as well. (Of course, orientation matters with the value flipping
sign under orientation change.) This also suggests that the coef-
ficients cv , ce and ct should be seen as integrated quantities. In
many practical settings this is preferred in any case, since some
quantities may not be well defined pointwise while their inte-
grals are well defined (e.g., mean and Gaussian curvatures on
triangle meshes). Note that this will have consequences for the
normalization of the subdivision schemes: 1 for 0-forms, 1/2 for
1-forms, and 1/4 for 2-forms (in contrast to standard normaliza-
tions which always enforce that stencil coefficients sum to 1).

To visualize Whitney 0-, 1-, and 2-forms we must first introduce
a metric. For convenience we will assume the Euclidean metric
in all our visualizations. In the case of Whitney 0-forms this
gives us PL hat functions over the embedded triangles, while
2-forms are constant functions (= Area−1

i jk) supported on single
triangles. To visualize 1-forms as tangent vector fields we must
furthermore fix a coordinate frame and will use the standard
Euclidean orthonormal frame. Recall that a differential 1-form
maps tangent vectors to reals, dϕ : Tp M → R. With a metric
and coordinate frame fixed, a 1-form may be represented as a
co-vector field and evaluation of the 1-form amounts to taking
the inner product between this 1-form proxy and the argument
tangent vector. Further identifying vectors and co-vectors we
may visualize the 1-forms as vector fields. Figure 2 (middle)
shows such a visualization of the vector proxy φi j = φi∇φ j −
φ j∇φi (having picked a metric, d applied to a 0-form becomes
the gradient operator ∇). This vector field is supported on the
two triangles incident to the given edge (or one triangle if it is
a boundary edge) where it varies linearly. At the common edge
the vector field is not continuous. However, it is tangentially
continuous, i.e., if we consider its inner product with a vector
parallel to the edge it is continuous across the shared edge.

Figure 2: Visualization of Whitney 0-, 1-, and 2-forms. The 0-forms corre-
spond to the usual PL hat functions, while 2-forms are piecewise constant
over each triangle. The 1-forms can be visualized as vector fields if we
choose a metric.

So far the topology of K has played absolutely no role. Neither
irregular vertices nor boundaries change anything. On the other
hand piecewise linear interpolation is obviously insufficient for
many applications. The goal now is to build form bases which
are smoother and for this method to work elegantly in the ar-
bitrary topology setting. Simply adding local polynomials as is
customary in many finite element constructions leads to a num-
ber of compatibility conditions [Hiptmair 2001], not unlike what
one finds when attempting to join individual parametric sur-
face patches smoothly [Prautzsch et al. 2002]. Instead we go
the subdivision route. The resulting subdivision bases will have
larger support and (in general) will not be interpolating any-
more, though they will retain the property that the action of d
on a form is still realized by the standard topological d0 resp. d1

matrices acting on the coefficient vector of the form and Stokes’
theorem will continue to hold exactly.

2.2 Whitney Forms are Refinable

Because Whitney 0-, 1-, and 2-forms are interpolating one read-
ily checks that they are refinable over barycentric quadrisection
of triangles. For example, the barycentric interpolator φi takes
on the value 1/2 at the barycentric “midpoint” of edge ei j by def-
inition. Similarly the Whitney 2-form integrated over a barycen-
tric “quarter” triangle results in a coefficient of 1/4. (Note that
these statements do not depend on the metric or an embedding.)
See Figure 3 for the corresponding 0- and 2-form refinement
stencils on the left resp. right. Note that orientation of ei j is
indicated by an arrow pointing from i to j and orientations of
triangles are CCW throughout this paper.

For Whitney 1-forms (using the notation of Figure 3) we get

φi j =
1
4
(2φip + 2φp j +φmn −φnp −φpm +φrq −φqp −φpr),



i jp
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r q

m1/2

1/2 1/2
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1/4

1/4
-1/4 -1/4

Figure 3: Left side: even (top) and odd (bottom) refinement stencils for
Whitney 0-, 1-, and 2-forms; right side: notation for 1-form refinement
relation.

which gives rise to the edge based refinement stencils shown
in Figure 3. These coefficients follow from elementary com-
putations, e.g.,

∫

emn
φi j =

1
2

∫

emn
dφ j =

1
4

using the fact that

φi + φ j =
1
2

on emn. Letting now SW
0 , SW

1 , and SW
2 denote the

subdivision operators for Whitney 0-, 1-, and 2-forms, the refine-
ment equations for basis forms at the coarser (Φ) and finer (φ)
levels follow as

Φv = φvSW
0 , Φe = φeSW

1 , and Φt = φ tSW
2 . (4)

Using (4) together with (2) and (3) we can now prove that the
associated subdivision operators satisfy the commutative rela-
tions (1)

φed0SW
0 cv = d(φvSW

0 cv) = d(Φv cv) = Φ
ed0cv = φ

eSW
1 d0cv

for SW
0 and SW

1 (and entirely analogously for SW
1 and SW

2 ).

Discussion While the above calculations used Whitney forms,
the underlying argument is generic. Suppose the spaces spanned
by a set of bases for 0-, 1-, and 2-forms together with d form a
chain complex and the bases define a chain map with respect to
the co-boundary operator. If these bases satisfy a refinement
relation, then the refinement relation commutes with the co-
boundary operator. Conversely, given refinement relations which
commute with the co-boundary operator and assuming the asso-
ciated subdivision schemes are convergent, then the resulting
bases form a chain complex with respect to exterior differentia-
tion and the subdivision bases yield a chain map (for d and the
co-boundary operator). For this reason we make the commuta-
tive relations the core of our approach.

Practically speaking, one now seeks smoother bases by looking
for subdivision schemes which produce smoother limit forms
while still satisfying the commutative relations. Even though
the resulting schemes may have larger support and may not be
interpolating anymore (as is the case in our proposed construc-
tion), the action of d is still computationally realized by the simple
co-boundary operators we have used all along.

2.3 Increasing the Smoothness of Whitney Forms

A well known fact from subdivision [Warren and Weimer 2001]
states that, in the regular setting, a given subdivision scheme can
be transformed into a subdivision scheme of higher regularity
through convolution. Since we are working with triangles, con-
volution along the three principal directions is appropriate and
we denote its discrete representation with C . With such an ad-
ditional convolution Whitney 0-forms yield quartic box splines
(with subdivision operator S L

0 = CSW
0 ) while Whitney 2-forms

give rise to half box splines (SH
2 = CSW

2 ). Convolution of the
Whitney 1-forms gives a new, smooth 1-form basis with subdi-
vision scheme SE

1 := CSW
1 . The support of the smooth 1-form

basis is contained in the 1-ring of triangles around the two tri-
angles incident to the given edge. Over this support the 1-form
is piecewise polynomial (quartic) in terms of barycentric coordi-
nates [Wang 2006]. The subdivision stencils for S L

0 , SE
1 , and SH

2
(in the regular setting) are summarized in Figure 4.

To check that the new subdivision schemes still satisfy the com-
mutative relations (1) we consider the subdivision process in
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Figure 4: Even (top) and odd (bottom) stencils (regular setting) for smooth
0-, 1-, and 2-forms for 3-direction convolved Whitney forms.

the Fourier domain over the Z2 lattice with diagonals. For
z = (z1, z2) let S(z) denote the symbol of the subdivision scheme
S as usual. The symbols of the co-boundary operators are given
by

d0(z) =

 

−1+z−1
1

−z−1
1 +z−1

1 z−1
2

1−z−1
1 z−1

2

!

and d1(z) =
�

1 1 1
−1 −z1z2 −z2

�

.

The symbol of three direction convolution is C(z) = 1/8(1 +
z1)(1+ z2)(1+ z1z2). While S0(z) is a scalar polynomial, S1(z)
is a 3x3 matrix valued polynomial, grouping the coefficients as-
sociated with the three edge types into a 3-vector, and S2(z) is a
2x2 matrix valued polynomial, with coefficients of “up”/“down”
triangles gathered into a 2-vector. Importantly, C(z) is scalar and
thus “pulls through” the relevant products in the Fourier domain

d0(z)S L
0 (z) = d0(z)C(z)SW

0 (z) = C(z)d0(z)SW
0 (z)

= C(z)SW
1 (z)d

0(z) = SE
1 (z)d

0(z).

An entirely analogous calculation shows that the commutative
relation between SE

1 and SH
2 holds as well (with respect to d1).

Unfortunately, the convolution argument does not carry over
into the arbitrary topology setting where irregular vertices and
boundaries need to be dealt with. To address this issue we follow
the usual path of using the standard stencils in the locally regu-
lar setting and modify the weights in the irregular setting only.
For the latter we will use the commutative relations directly.

3 Arbitrary Topology Setting
For 0-forms we use Loop subdivision near irregular vertices (as
well as at the boundary) following [Biermann et al. 2000] (see
Figure 5 [left] for the modified even stencil). For half-box splines
we follow [Oswald and Schröder 2003] (see Figure 5 [right] for
the modified odd stencils) near irregular vertices. (We are not
aware of any boundary rules.) As usual the odd 0-form stencil
and even 2-form stencil remain unchanged.

Making now the standard assumption that the 1-form odd sten-
cil (Figure 4, bottom middle) remains unchanged one may set
up a fully parameterized—in terms of α and β—even stencil for
the 1-form near irregular vertices using the commutative rela-
tions (1). The resulting stencil is shown in Figure 6. The solu-
tion is unique as a function of α and β and both α and β can be
varied independently.

Figure 7 visualizes a few basis 1-forms in the regular and irregu-
lar setting. To demonstrate their smoothness we show the graph
of the component functions. Note that the 1-forms in the irregu-
lar setting are only smooth with respect to the parameterization
induced by the 0-form characteristic map (as is to be expected).
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Figure 5: Even stencil for Loop (left) and odd stencils for generalized half-
box splines (right) near irregular vertices.
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Figure 6: Irregular even 1-form stencil.

Discussion A natural question that arises in this context is
why are the directional derivatives of the quartic box spline
not a good basis for the 1-forms? Letting M222 be the sym-
bol for the quartic box spline (indicating 2-fold averaging along
the three principal directions of the mesh), the box splines
M122/M212/M221 would appear to be a natural choice of basis for
the 1-forms. Unfortunately this choice leads to far lower smooth-
ness of the 2-forms. While vector field design, strictly speaking,
only requires “nice” 1-form bases, many applications simultane-
ously require nice 0- and 2-form bases. Examples include phys-
ical simulation and more generally any approach relying on a
proper Hodge decomposition. While we do not pursue this fur-
ther here, it does provide the ultimate background behind our
particular choice.

That our proposed smooth 1-form bases are C1 in the regular
setting follows trivially from the fact that 3-direction convolution
increases smoothness by two orders (their tangential continuity
is even C2). What about the smoothness at irregular vertices?
Consider the eigen vector/value pairs of the three subdivision
operators in light of (1).1 For example, the leading eigen vectors
of S1 are the image under d0 of the subdominant eigen vectors of
S0 with the same eigen value. Now consider the need to span all
linear 1-forms (a necessary condition to be C1): we need four
independent eigen vectors. Three of these arise as the image
(under d0) of the “quadratic” eigen vectors of S0. The fourth
one is the pre-image of the constant eigen vector of S2 (this also
explains why α and β are independent parameters in our 1-form
construction). But at the irregular vertex we know that Loop’s
scheme lacks a full span of “quadratic” eigen vectors making it
unlikely that we can achieve C1 smoothness at the irregular ver-
tices so long as we fix S L

0 . The scheme as described here is only

1The following argument is only a rough outline as we entirely ne-
glect issues such as generalized eigen vectors and other legal but com-
plicated degeneracies in the spectra [Zorin 2000b; Reif 1999].

Figure 7: Visualization (x resp. y component of vector proxy) of 1-form
bases in the regular (k = 6, top) and irregular (k = 4, middle; k = 11,
bottom) setting. A single edge coefficient incident to the (ir-)regular vertex
is set to 1. The edge is aligned with the x axis.

C0 at irregular vertices of valence k > 3 (for k = 3 an additional
modification is required [Wang 2006]).

3.1 Boundary Rules

The design of suitable boundary rules is more subtle since the
boundary rules of Loop subdivision are fixed so that the bound-
ary curve depends only on the boundary data. Additionally the
cross boundary second derivative vanishes. Consequently we ex-
pect a reduced approximation power of the 1-forms near the
boundary. To use (1) we also need to fix suitable boundary rules
for the 2-form scheme.

In what follows, k is used to denote the number of triangles
adjacent to vertex v on the boundary. We call a boundary vertex
v regular when k = 3, irregular otherwise. Boundary vertices
are marked in black while interior vertices are marked in white.
Vertices without markers may or may not be on the boundary.

1/2 1/2
1/8

1/8
3/4-γ

γ 1/8 3/4 1/8
1/83/8

Figure 8: Odd stencil for interior edges adjacent to irregular boundary
vertices (left) and the even/odd boundary rules for 0-forms (middle). On
the right the 1-form boundary stencil.

3.2 0- and 2-Form Boundary Rules

For the boundary 0-form rules we follow Biermann et al. [2000].
In particular we assume the γ modified odd rules for interior
edges incident on boundary irregular vertices (see Figure 8, left).
To design boundary rules for 2-forms, we wish to preserve the
maximal size of the odd stencil (see Figure 5, top middle). This
simple constraint results in a 7-parameter family of 2-form sten-
cils (with A, B, C , D, F0, F1, F2 as parameters) near the boundary
as shown in Figure 9 (here we consider only k ≥ 3).

3.3 1-Forms Near the Boundary

The even 1-form boundary rules are simple as they must com-
mute with the 0-form boundary rules which reproduce cubic
splines along the boundary. Consequently even 1-form stencils
along the boundary are the rules for quadratic splines up to a
factor of 1/2 (see Figure 8, right). With these fixed, and a fully
parameterized set of 1-form stencils near the boundary, we can
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Figure 9: Fixing the 2-form stencil support near the boundary we have four
cases for odd children (left) and a single case for the even child (right).

solve the commutative relations. If we require that the even 2-
form stencil near the boundary does not depend on the valence
of either boundary vertex we find that B, F0, F1, F2 become lin-
ear functions of C and D only, giving us a 2-parameter family of
stencils overall.

To tie down a particular choice for C and D we ask for a
“nice” spectrum for the 2-form near the boundary. In the
regular case (k = 3) the spectrum consists of a single one,
three quarters, four eighths and the remaining eigen values
{1 − 3D, 1 − C − D, 1 − C − D,−1 + 2C + D}. Choosing
C = 2/3 and D = 1/6 yields the particularly nice spectrum
{1,1/2,1/2,1/4,1/4,1/4,1/6,1/6,1/8,1/8,1/8,1/8} and
weights

A= 1
2
, B = 2

3
, C = 2

3
, D = 1

6
, F0 =

5
24

, F1 =
7
12

, F2 =
1
12

.

The corresponding 1-form stencils are depicted in Figure 10 and
Figure 11 visualizes representative basis forms on the boundary.
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Figure 10: 1-form stencils (times 32) near the boundary derived from the
γ modified boundary rules from [Biermann et al. 2000].

4 Computational Tools
We discuss in this section some of the computational tools neces-
sary for the application of 1-forms and in particular their use in
the intrinsic design of vector fields. Our implementation of the
proposed subdivision schemes is based on CGAL and extends the
polyhedron example code [Shiue et al. 2005]. The use of a half-
edge data structure is advantageous since the direction of edges
and orientation of faces matters in terms of the meaning of 1-
and 2-form coefficients as they change sign under orientation
reversal.

4.1 Evaluation

Exact Evaluation Since our triple of subdivision schemes pro-
duces piecewise polynomial splines in the regular setting one
can use these to implement exact evaluation of all quantities at
arbitrary parameter locations in the regular setting, and with
suitable eigen decompositions, in the irregular setting (for de-
tails see [Zorin and Kristjansson 2002] and [Stam 1998]). As

Figure 11: Vector proxy visualization of 1-form bases at the boundary. Top:
regular (k = 3), x & y; bottom: irregular (k = 7), x & −y.

these ideas are by now well understood we focus here only on
the evaluation of vector field proxies of 1-forms. Due to the
support of the 1-form edge bases, evaluation anywhere within a
triangle requires the coefficients on all edges within a 1-ring of
the triangle. Using these coefficients, one can use a Bézier repre-
sentation (in the regular setting, or the eigen representation in
the irregular setting) to compute a 2-vector value at the desired
parametric location. This 2-vector represents a tangent vector in
the domain, which must now be pushed forward into the tan-
gent space induced by the underlying 0-form at that parametric
location. This requires evaluation of the parametric derivatives
of the underlying 0-form data (the Loop surface in our case) at
that point. Given such a tangent space basis the final tangent
vector is given as the linear combination of the basis co-vectors
{d x , d y} with the coefficients from the 1-form evaluation.

Fast Evaluation In practice, for visualization especially, we have
found far simpler to just employ the subdivision method itself to
refine the mesh to a suitable level. In this scenario we refine the
mesh through quadrisection and apply 0-form subdivision to the
vertex positions and 1-form subdivision to the edge data. The
0-form data is then displayed through piecewise linear interpo-
lation over each triangle, in effect using the Whitney 0-forms.
This is the mesh as usually visualized in subdivision algorithms
for surfaces. The 1-form data is similarly interpolated over each
triangle piecewise linearly with the Whitney 1-forms. The ad-
vantage of this approach is that there is no need to explicitly
push tangent vectors forward from the domain to the surface. In
effect the underlying metric is “pulled along” through the subdi-
vision of the 0-form data. Given vertex positions a, b, c of the
three corners of a refined triangle together with the scalar coeffi-
cients a, b, c on the edges opposite a, b, c produces a vector field
at any point inside the triangle. Given barycentric coordinates u,
v, w we get

V(u, v, w) = 1
2A
{[v(a+ b+ c)− b]

# »

ab⊥+[w(a+ b+ c)− c]# »ac⊥},

where A denotes the area of triangle abc and ⊥ indicates a CCW
rotation by 90◦ in the plane of the triangle. This method of
evaluation is used throughout our examples. We typically draw
a single (3D embedded) arrow at the centroid of each triangle
(see Figures 1, 12, 13, 14, and 15).

Limit Circulation Stencil For 0-form subdivision one typically re-
quires a limit stencil to move vertices to the limit surface. Since
1-forms are treated as quantities integrated along curves the cor-
responding notion is that of a limit circulation stencil, i.e., the

http://www.cgal.org/


Figure 12: Gallery of vector fields. Top: tet with 3 edges incident to a vertex
set to +1 (left) resp. 3 edges incident on a face set to +1 (right); torus with
2 vortices and an open surface with 1 vortex.

computation of the circulation of the limit vector field on the
limit edge of the surface. These can be computed analytically
using the Bézier representation for a regular edge [Wang 2006]
and extended to the irregular setting through a geometric series
argument [Halstead et al. 1993]. Just as 0-form limit stencils are
useful for approximation of a given surface with a subdivision
surface (see for example [Litke et al. 2001]) the limit circulation
stencils are useful for the approximation of given vector fields
over a surface.

4.2 Design of Vector Fields

In surface modeling one manipulates control points to change
the shape of the surface. To model a desired tangent vector
field (over the underlying surface), one now manipulates con-
trol coefficients on edges. These coefficients have rather intuitive
meaning, making design of a desired field simple. Placing a sin-
gle coefficients of 1 on a given oriented edge produces a smooth
vector field whose overall direction is roughly aligned with this
edge and which decays smoothly to zero over the 1-ring of the
two triangles incident to the edge. The magnitude of the vectors
is directly controlled by the magnitude of the coefficient. Simi-
larly, typical tasks in vector field design such as the placement of
sinks, sources, and vortices becomes extremely easy. Sinks (and
sources) at a vertex are where the divergence of a 1-form has
negative (sink) or positive (source) value at the selected vertex.
Vortices are similarly characterized by a positive (CW vortex) or
negative (CCW vortex) curl (valued at a face) of a 1-form (see
Figure 12).

However, setting only a few non-zero coefficients creates tangent
vector fields that vanish over large parts of the surface since the
basis 1-forms have finite support. In many scenarios one would
like to place only a few select sources/sinks and/or CCW/CW
vortices and then directly find a global vector field which satisfies
these sparse features. This problem can be seen as the converse
of the traditional Hodge decomposition of vector fields [Tong
et al. 2003; Desbrun et al. 2005].

Hodge Composition A simple design tool that we have em-
ployed proceeds as follows. Given the coarse control mesh of
a surface (assumed genus-0 for now), the user places sources
and sinks at some chosen vertices (and implicitly zeros at all
other vertices). A 0-form is then solved for by using this data
as the rhs of Laplace’s equation over the vertices. CCW and
CW vortices are placed at selected faces (and implied zeros at

Figure 13: 1-form basis forms on an open surface near the boundary.

Figure 14: Vector fields resulting from sparse interpolation. Top left: plac-
ing ±1 at two opposing vertices results in a global (curl free) vector field
with a single source and sink. Placing ±1 at selected faces results in a
global (divergence free) vector field with two opposing CCW/CW vortices.
To produce a non-trival harmonic field on a higher genus surface (here, a
torus), selected edge coefficients were set to +1 (right).

all other faces). Using Laplace’s equation for 2-forms with the
given data as rhs we get a corresponding global 2-form. (Any
other sparse interpolation technique could of course be used as
well.) If boundaries are present one may also supply Dirichlet
or Neumann data there to enforce tangential or normal vector
fields (or a mixture) at the boundary. Once 0-form (cv) and 2-
form data (ct) is defined on all 0- respectively 2-simplices the
final 1-form data ce for all edges ei j is set as

ce = d0cv +δ
2ct .

Here δ2 is the co-differential defined as follows. Letting t i jk and
t i jl be the two triangles (with areas Ai jk and Ai jl) incident to ei j

and angles k̂ and l̂ at vk and vl we get

(δ2ct)i j = (cti jk
/Ai jk + cti jl

/Ai jl)/(cot k̂+ cot l̂).

Figures 14 and 15 demonstrate examples of this approach. Here
we only used a low order approximation of the Laplace operator
since it is sufficient for our experiments. For applications requir-
ing high accuracy (e.g., physical modeling) one can use exact
Laplace stencils with wider support [Wang 2006].

While this approach allows for the flexible placement of sources,
sinks, and vortices, some vector fields, in particular when the
surface has non-trivial topology, are neither the differential of
a 0-form nor the co-differential of a 2-form. Figure 14 (right)
shows such an example, a non-vanishing harmonic vector field



Figure 15: Fun with the mannequin head. Two vortices were placed on
the head and a global vector field interpolated on the dual graph with zero
Neumann boundary conditions. Note in the close ups the smooth variation
of the vector field even in the presence of irregular vertices.

which is specified by setting edge coefficients directly. Impor-
tantly, for arbitrary topology surfaces any vector field can be
specified with a combination of 0-, 1-, and 2-form data placed at
the appropriate simplices.

5 Summary and Future Work
We have presented a novel class of subdivision schemes which
carry scalar coefficients on edges from a coarse, to a refined
mesh. The method constructs higher regularity bases for dis-
crete differential 1-forms in the arbitrary topology 2-manifold
setting and is intricately linked, through the commutative re-
lations, with the associated 0- and 2-form subdivision schemes.
These schemes should prove useful for the many applications
which require smoothly varying tangent vector fields, and which
benefit from a simple and intuitive design methodology. They
should also prove useful for applications in computational sci-
ence which benefit from smoother finite element type bases for
divergence and curl free field variables (examples include flu-
ids [Elcott et al. 2005] and electromagnetism [Bossavit 1998],
among others), and other applications of DEC.

While we have given a concrete set of stencil weights, other
choices are possible and a deeper study of the analytic prop-
erties of these new bases is required to provide further guidance
in fine tuning the scheme, designing a proper Hodge decom-
position, and fully understanding the underlying approximation
properties to facilitate approximation of given vector fields with
high accuracy. When the 1-forms are used in isolation it would
be desirable to design weights which ensure C1 continuity at ir-
regular vertices, even if this can only be achieved by “breaking”
the commutative relations. Finally, our approach applies equally
well to other settings, e.g., for quadrilateral-based modeling with
Catmull-Clark for S0 and Doo-Sabin for S2 [Wang 2006].
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