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Abstract
We present a simple and effective algorithm to transfer deformation between surface meshes with multiple compo-
nents. The algorithm automatically computes spatial relationships between components of the target object, builds
correspondences between source and target, and finally transfers deformation of the source onto the target while
preserving cohesion between the target’s components. We demonstrate the versatility of our approach on various
complex models.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Geometry—Shape De-
formation

1. Introduction

Deformation transfer [SP04] has proven to be a valuable
technique for remapping rigid or non-rigid animation se-
quences from one geometry onto another. Despite its abil-
ity to transfer entire animation sequences from a surface
mesh to another with only little user interaction, its most
serious limitation lies in how similar (in shape and topol-
ogy) the source and target meshes must be. This technique
will simply fail if the source and target objects have drasti-
cally different topologies, e.g., if the source is a single con-
nected mesh while the target is an object containing multi-
ple components (see Figure 1). However in real-life applica-
tions, characters or moving objects usually consist of multi-
ple connected components, as pointed out in a recent paper
by Ben-Chen et al. concurrent to our work [BCWG09]. They
presented an efficient space deformation transfer technique
to handle multi-component objects equipped with polyhe-
dral cages. However, automatic cage generation methods
often generate undesirable cages (e.g., fused feet of hu-
manoid models). Moreover, cage-based techniques can also
run into numerical issues for thin-shell-like deformation as
in Figure 3, where the cage would exhibit significant self-
intersection and degeneracy.

In this paper, we remedy these issues by improving upon the
surface-based deformation transfer algorithm. Our contribu-
tion stems from simple solutions to two main challenges:
how to reliably establish correspondences between wildly
different source and target meshes without heavy user in-
teraction, and how to maintain the spatial distribution of the
multiple components of the target throughout an animation
sequence. The versatility of our method allows for a much

wider range of applications, as we demonstrate through de-
formation transfer onto whimsical objects, and retargeting
captured motion data onto multi-component targets.

1.1. Related Work

Deformation transfer [SP04] provides a simple and efficient
way to remap animation sequences from one mesh onto an-
other. This method first builds a correspondence map be-
tween the triangles of the source mesh and those of the tar-
get mesh by deforming the target into the reference pose
of the source through energy minimization. Then an affine
transformation matrix (or deformation gradient) is com-
puted from each triangle in the source mesh to its coun-
terpart in the deformed source mesh by appending an ad-
ditional vertex to each triangle. Finally the transformation
matrices are applied to the corresponding triangles in the
target mesh, and a linear system (i.e., Poisson equation) is
solved to generate the deformed target mesh whose defor-
mation gradients (with respect to the reference target mesh)
are as similar as possible to the deformation gradients of the
source. The final process is also known as gradient-domain
mesh deformation, which has gained a lot of attention in re-
cent years [YZX∗04, SCOL∗04, BS08].

Since its introduction, the deformation transfer method has
been improved and extended by many researchers. Instead
of transferring all the gradients of the source deformation,
Zayer et al. [ZRKS05] proposed to transfer gradients only
at a few key points, and interpolate them to other points of
the target with a harmonic function. Botsch et al. [BSPG06]
proved that the same transfer results can be achieved without
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Figure 1: Deformations of a single-component horse are transferred to a pebble camel made of 750 separate stones. Only 47
correspondences are specified. (The pebble camel was inspired by The Thing, a fictional character made of stones in the movie
entitled “The Fantastic Four”.)

adding an additional vertex to each triangle, speeding up the
linear system solve. While the original deformation transfer
method requires similar reference poses between the source
and target meshes, Lee et al. [LWC06] developed a method
to remove this restriction. They segment the source and tar-
get into the same number of near-rigid components and ad-
just the orientation of the target components to be similar
to the corresponding source components through rigid trans-
formation. More recently, Baran et al. [BVGP09] proposed
semantic deformation transfer to preserve the semantic char-
acteristics of the motion instead of its literal deformation.

One serious limitation of Sumner and Popović’s method
is that it is restricted to single-component meshes. To re-
move this restriction, Ben-Chen et al. [BCWG09] proposed
a spatial deformation transfer technique to handle multiple-
component meshes and polygon soups. Their technique,
however, requires to construct polyhedral cages for the ob-
jects. Moreover, some high-frequency details of the source
deformation may be lost since the method projects the defor-
mation into a low-dimensional linear subspace. Like Sum-
ner and Popović’s original approach, our method is surface-
based, and thus does not suffer from these issues.

1.2. Algorithm Overview

Our goal is to extend Sumner and Popović’s method to multi-
component meshes. We adopt their approach for the compu-
tation of the per-triangle deformation. However, the original
method requires a manual specification of a global boundary
condition, i.e., an anchor point for each topological compo-
nent of the mesh to assemble the deformations. Handling
objects with multiple parts could thus not be handled for a
series of reasons: (1) providing an anchor for each separate
component of the target object is difficult; (2) preservation of
spatial relationships between components is not addressed;
(3) establishing correspondence between the source mesh
and the target mesh requires tedious manual work to spec-
ify enough marker pairs on each component. To circumvent
these issues, we will show that one can employ simple graph
theoretical techniques, along with recent developments in

mesh deformation that locally preserve shape as best as pos-
sible [BS08].

Our algorithm first computes a set of closest vertex pairs to
build a graph that encodes the spatial relationship between
components. Then both the correspondence algorithm and
the deformation transfer algorithm in [SP04] are adapted
to take into account the graph connectivity. First, when es-
tablishing correspondences between the source and target,
we add an energy term to make the components without
any user-specified markers deform with the components that
have makers. This greatly reduce the manual work to spec-
ify markers for each separate component. Note that, unlike in
[SP04], where every triangle of the target has a correspond-
ing triangle in the source, not all target triangles may have
correspondences in our case. Some components of the tar-
get may not have any corresponding triangles in the source.
Such components are called orphan components.

Second, when deforming the target to match the source de-
formation gradient, we add two new energy terms as soft
constraints. The first term tries to preserve the lengths of the
graph edges so that the spatial relationship between compo-
nents is maintained. It also removes the need to provide an
anchor for each separate component of the target object. The
second term is based on Laplacian coordinates [SCOL∗04]
and tries to preserve the surface details of the orphan com-
ponents in the target. Since the two newly added terms are
not in quadratic form, the total energy cannot be minimized
using a linear solver. Instead, an iterative Gaussian-Newton
method is employed – we approximate the two terms as
quadratic functions and only need to solve a linear system
at each iteration. This optimization scheme works efficiently
for all of our experimental data.

One may think that the above two energy terms are unnec-
essary, and by interpolating the deformation of orphan com-
ponents from nearby components, the desired deformation
can be computed using a linear solver. The assumption of
this linear approach (i.e., the closest triangle pairs of nearby
components have similar deformations), however, is not true
in many cases. For example, when the mechanical-like horse
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shown in Figure 3 is running, two components near to a
joint can have different rotations. Enforcing transformation
smoothness between the closest triangle pairs may introduce
undesirable deformation artifacts (see Figure 3).

2. Algorithm

Given a pair of source objects, S and S̃, and a target ob-
ject T consisting of multiple disconnected components (T =
{T1,T2, ...}), our goal here is to generate a new object T̃ such
that the deformation between T and T̃ is analogous to the de-
formation between S and S̃. Note that the source object may
also consist of multiple components. For clarity, we will de-
note by ui a vertex of S and by ũi its corresponding vertex
in S̃, while vi will refer to a vertex of T and ṽi its associated
vertex in T̃ that we will solve for. We will also sometimes
indicate with a superscript that a vertex belongs to one of the
components of T; e.g.. va

i and vi will refer to the same ver-
tex, but the superscript stresses the fact that vi belongs to the
component Ta.

Our approach starts by adding vertices to the source objects.
Following [SP04], for each triangle of S (resp., S̃) with three
vertices {u1,u2,u3} (resp., {ũ1, ũ2, ũ3}), we add a fourth ver-
tex u4 (resp., ũ4) in the direction of the outward normal
of the triangle, at a distance from the triangle proportional
to the square root of the area. This procedure is designed
to make the stretch in the normal direction the geometric
average of the principal stretches in the plane. The affine
transformation of the source triangle, mapping ui to ũi for
i = 1 . . .3, is computed as:

F = G̃G−1, (1)

where

G = [u2 −u1 u3 −u1 u4 −u1]
G̃ = [ũ2 − ũ1 ũ3 − ũ1 ũ4 − ũ1].

The algorithm then proceeds as follows:

1. Computation of Proximity Pairs between Components:
Since T consists of multiple disconnected components,
we start by encoding the spatial relationship between
components through a set of proximity pairs. For each
pair of components (Ta,Tb), we will define as Pab a se-
lected set of vertex index pairs that represent key spatial
adjacencies that subsequent processing will try to pre-
serve during transfer. Note that Pab may be empty if the
associated components are too far away from each other.
The computation of Pab will be described in Section 2.1.

2. Establishment of Correspondences: We assume that the
user has provided a small set of markers that indicate
point-to-point correspondences between meshes S and
T. From these markers, we will deduce correspondences
between source triangles and target triangles through a

set M:

M = {(s1, t1),(s2, t2), ...,(s|M|, t|M|)}, (2)

where a pair (sm, tm) indicates that the target triangle
tm should deform like the source triangle sm. The com-
putation of M will be explained in Section 2.2. Unlike
in [SP04], where every triangle of the target object has
a corresponding triangle in the source object, not all tar-
get triangles may have correspondences. If the source and
target objects have drastically different topologies, en-
forcing a correspondence to a triangle on the source for
each triangle of the target and transferring the deforma-
tion will generate unintuitive and unappealing results (see
Figure 3). We denote by H the set of “orphan” target tri-
angles (i.e., the ones that do not have correspondences).
Note that some components in T may not contain any
corresponding triangles in M. We denote by TH the set of
these “orphan” components without corresponding trian-
gles.

3. Deformation Transfer: Finally, deformation is transferred
through an energy minimization that accounts for the
presence of multiple components. Section 2.3 reviews
this final process.

We now provide details on the successive steps of our defor-
mation transfer approach.

2.1. Proximity of Components

The spatial relationship between the components of the tar-
get mesh, encoded as proximity pairs, can be established
through the following steps:

• For every pair of components (Ta,Tb), find the shortest
distance da,b between them as well as the pair of vertices
(va

i1 ,v
b
j1) corresponding to this shortest distance:

da,b := ‖va
i1 −vb

j1‖= min
vi∈Ta,v j∈Tb

‖vi −v j‖.

• Build a complete graph G with the components as its
nodes, where edges are weighted by the shortest distances
computed above.

• Compute a minimal spanning tree K (i.e., the minimum
weight subgraph) of the graph.

• For each component Ta, compute its largest distance da
from each of its adjacent components in K:

da = max
edge (a,b)∈K

da,b

• For every pair of components Ta and Tb not connected
by an edge in the subgraph K, if da,b ≤ da + εa and
da,b ≤ db + εb, connect Ta and Tb by adding an edge in
K between them. The user-specified thresholds εa and εb
define a notion of “close” proximity, controlling how co-
hesive the target must remain. In our implementation, εa
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(resp., εb) is computed as the maximal edge length of the
component Ta (resp., Tb) times 1.5.

The proximity pairs are then easily defined: for two compo-
nents Ta and Tb, Pa,b is set to nil if these components are
not connected by an edge in the subgraph K. Otherwise,
we set Pa,b to be a set initialized with the pair (va

i1 ,v
b
j1);

we further add to Pa,b any vertex pair (va
ik ,v

b
jk ) such that

‖va
ik −vb

jk ‖< da,b +min{εa,εb}.

This simple choice of using a few distance-based vertex pairs
to encode proximity provides robustness to all sorts of tar-
gets while limiting undesirable relative rotations between
nearby components, as we will demonstrate in Section 3.

2.2. Establishing Correspondences

Finding correspondences between the source and target ob-
jects is achieved by deforming the target T into the static
pose of the source S in a fashion nearly identical to the orig-
inal deformation transfer approach [SP04]. The deformed
vertices of T that we need to solve for will be called xi’s,
and are only temporarily used in this procedure to establish
correspondences.

The user controls the deformation by specifying a set of pairs
of source and target vertex indices. Each pair indicates that
the target vertex, after deformation, should match the loca-
tion of the source vertex. Then an iterated closest point algo-
rithm is performed. At each iteration, the target is deformed
through an energy minimization, and the set of closest valid
vertex-point pairs is updated.

Correspondence Energy We compute the deformed ver-
tices X = [xt

1xt
2 . . . ]t by minimizing the following energy:

E = wSES +wIEI +wCEC +ER
s.t. xmk = mk, k ∈ 1...m (3)

where mk is the vertex index on the target mesh for marker
k, and mk is the corresponding position of marker k on the
source object. The deformation smoothness term ES, the de-
formation identity term EI , the closest valid point term EC
and the choice of weights are all identical to [SP04]: our
only change to the correspondence process lie in the last en-
ergy term ER. The purpose of this added term is to make
the components without any user-specified markers deform
along with the components that do have markers, thereby
minimizing the need for user-defined correspondences. The
ER energy is computed as follows:

• For each component pair (Ta,Tb), we find a pair of trian-
gles (ta

ik , t
b
jk ) for each vertex pair (va

ik ,v
b
jk ) in Pa,b, such that

ta
ik ∈N(va

ik ), t
b
jk ∈N(vb

jk ) (N(.) refers to the usual topolog-
ical one-ring), and that the triangles have the largest sep-
aration along the normal directions. More precisely, the

Figure 2: Finding correspondences through deforming the
target into the source. From left to right are the source,
the target, and the deformed target object. User-specified
marker points are shown in red.

pair is defined as:

argmax
ta
ik
,tb

jk

|h ·nta
ik
|+ |h ·ntb

jk
|,

where nt is the normal of triangle t, and h is the vector
between the barycenters of the two triangles, ta

ik and tb
jk .

• For each triangle ta
ik we found above, we construct a tetra-

hedron by using one of the three vertices of tb
jk as the

fourth vertex. Similarly, we construct a tetrahedron for
triangle tb

jk . However, if triangles ta
ik and tb

jk are approxi-
mately coplanar in the rest pose of the target object, the
two constructed tetrahedra will be degenerate. In this case
we simply use ta

ik ’s fourth vertex (that was added in the
direction perpendicular to the triangle, see Section 2) as
the fourth vertex of both tetrahedra.

• The energy ER is then defined as:

ER=∑
a,b

|Pa,b |
∑
k=1

(
wS‖F̂ta

ik
− F̂tb

jk
‖2+wI‖F̂ta

ik
− I‖2+wI‖F̂tb

jk
− I‖2

)
,

(4)
where F̂ta

ik
indicates the transformation of the newly con-

structed tetrahedron based on ta
ik .

Note that our goal is to deform the target into the source to
establish correspondences. After deformation, the shape of
every component as well as the edge length between com-
ponents may have changed greatly. We thus cannot base our
energy on edge length constraint or on the Laplacian con-
straint, both of which are described in Section 2.3 (as E3
and E4). Our solution, implemented through ER, of adding
tetrahedra between two components allows for affine trans-
formations of components, and is therefore more effective.

Solving for Correspondences The correspondence energy
minimization is achieved via the same two-phase method
described in [SP04], consisting in successive linear solves.
At each iteration, after the target object is deformed we also
need to update the set of the closest valid vertex-point pairs.
For each vertex of the deformed target object at the current
iteration, we find its closest point on the source object. If
the distance between vertex and point is less than a user-
specified threshold and the difference between the vertex’s
normal and the point’s normal is less than 90 degree, we
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Figure 3: A mechanical-like horse collapsing.

add the vertex and point to the valid set. The whole process
converges fast and reaches a minimum after a few iterations
(see statistics in Section 3). We then compute the triangle
correspondences between the source and the deformed tar-
get triangles. For each deformed target triangle, if one or
more of its three vertices are among the markers or in the
set of the closest vertex-point pairs, it will not be assigned
any corresponding source triangle. Otherwise, we label its
corresponding source triangle as the one with the smallest
distance between the barycenters of the two triangles.

2.3. Deformation Transfer

We finally solve for deformed vertex positions Ṽ =
[ṽt

1ṽt
2 . . . ]

t by minimizing the following energy:

E = w1E1 +w2E2 +w3E3 +w4E4. (5)

Each term (explained next) serves a different purpose, while
the weights offer control on the overall deformation transfer
behavior. We use weights w1 =w2 = w4 = 1.0 and w3 = 0.1,
for all the examples in this paper.

The E1 term measures the difference between the source and
target transformations (defined in Eq. (1)) :

E1 =
|M|
∑
i=1
‖Fsi −Fti‖2. (6)

For each triangles in H (i.e., with no corresponding trian-
gle in the source object), E2 acts as a regularization, forcing
the transformation of this orphan triangle to be close to the
transformations of its adjacent triangles (where adjacency is,
again, defined as its topological one-ring):

E2 = ∑
ti∈H

∑
t j∈N(ti)

‖Fti −Ft j ‖2. (7)

The E3 term helps maintain the spatial relationship between
components by preserving the edge lengths of the vertex
pairs in each Pi, j:

E3 = ∑
Ta,Tb∈T

a,b

|Pa,b |
∑
k=1

(‖ṽa
ik − ṽb

jk ‖− ‖va
ik −vb

jk ‖)2. (8)

Note that ‖va
ik −vb

jk ‖ is computed on the rest pose of the tar-
get object and remains constant. Finally, the components in
TH do not have corresponding triangles in the source object.
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Figure 4: A 9-component bird running like a horse.

Model Components Vertices Triangles
Horse 1 8,431 16,843
Woman (source) 1 9,971 19,938
Car (source) 261 26,362 47,315
Mechanical Horse 21 10,209 20,334
Pebble Camel 750 51,000 99,000
Bird 9 6,712 13,388
Woman (target) 4 12,594 25,704
Car (target) 40 28,885 57,332

Table 1: Number of components, vertices and triangles for
the models used in the paper.

Thus, we use Laplacian coordinates [SCOL∗04] to preserve
the surface details of these components by adding a fourth
energy:

E4 = ∑
Ta∈TH

‖LTa ṼTa − δ̂(ṼTa)‖2, (9)

where LTa is the Laplacian operator matrix computed on the
mesh Ta, ṼTa is a sub-array of Ṽ containing only the vertex
positions of component Ta, and the Laplacian coordinates
δ̂(ṼTa) are defined as in [HSL∗06]:

δ̂(ṼTa) =
LTa ṼTa

‖LTa ṼTa‖
‖LTa VTa‖.

The total energy E is therefore a nonlinear function of Ṽ,
but can be efficiently minimized using an iterative Gauss-
Newton method as advocated in [SZT∗07]: while E1 and E2
are quadratic functions of Ṽ, repeated quadratic approxima-
tions of E3 and E4 lead to a linear solve for every Gauss-
Newton iteration. Note that the optimization problem re-
quires an additional boundary condition to determine the
global translation: this is easily fixed by setting the position
for a target vertex, or by specifying another positional con-
straint such as foot placement.

Note that all energy terms in Eq. (5) were carefully designed,
and proved to be necessary in our experiments. In particular,
the smoothness term E2 is used to propagate the transforma-
tions of the triangles with correspondences to those orphan
triangles without correspondences. The Laplacian term E4 is
used to preserve the surface details of orphan components.
Omitting E2 would leave the transformation matrices of the
orphan triangles discontinuous. Thus, the positions of these
vertices could not be determined and the orphan triangles
would not be deformed accordingly without E2. Omitting E4
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Figure 5: A woman in a dress follows the moves of a dancer.

would leave orphan components underconstrained. The po-
sitions of orphan components could thus not be determined.

3. Results

We have implemented our deformation transfer algorithm on
an Intel Xeon 3.7GHz workstation. We selected a number of
examples to demonstrate the versatility of the resulting algo-
rithm. We provide statistics for the models presented in this
paper in Table 1 and Table 2, including timings and number
of markers needed.

Whimsical Objects The first example shows a deformation
of a single-component horse transferred to a robot-looking
horse which has 21 components (see Figure 3). Both global
and local deformations are nicely reproduced on the new
model. Moreover, all components of the model deform con-
sistently and their spatial relationship is well maintained.
Note that we constrained a marker vertex on one of the tar-
get’s feet components to match its correspondence marker
on the source. In Figure 4, we transfer the deformations of
the horse to a 9-component bird. Although every component
intersects with its adjacent components, our algorithm ro-
bustly handles the deformation transfer, producing very rea-
sonable results.

Objects with Many Components To test the robustness of
our correspondence and transfer algorithm further, we try
to transfer the deformations of a horse onto a pebble camel
made of 750 separate stones (see Figure 1). In this case, only
47 correspondence markers are specified. Although most
components do not have markers, our correspondence algo-
rithm handles them reliably via the extra tetrahedra (added in
the energy ER), and nicely deforms the camel into the horse,
establishing satisfactory correspondences. The spatial rela-
tionships between components are very well preserved while
the deformations are faithfully transferred.

Human body & Clothes In [VBMP08], complex captured
data are encoded as a time-varying single-component mesh.
However, transferring deformation from such captured data
to other meshes will often involve multiple-component tar-
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Figure 6: Deformation transfer of multi-component objects.

Example # Markers Build Corresp. Transfer
Horse/Mec. Horse 43 8.15s 0.424s
Horse/Bird 19 5.65s 0.439s
Horse/Pebble Camel 47 54.56s 14.72s
Woman 78 14.87s 1.83s
Car 70 32.86s 8.09s

Table 2: The number of correspondence markers and the
timing results (in seconds) for building correspondence and
transferring a single frame.

gets: clothes and body meshes (as in Figure 5) are typi-
cally given as separate meshes. We show that our approach
can transfer animations from multiview silhouettes to multi-
component models created using commercial modeling soft-
wares. Note that in some regions of the target model, the
body mesh is very close to the cloth mesh; they both are
deformed into the source mesh and find correct correspon-
dences. As a result, these regions of the body are deformed
along with the cloth.

Our last example shows that our algorithm can easily han-
dle deformation transfer from one multi-component object
to another. As shown in Figure 6, the deformation of a 261-
component sports car is transferred to a 40-component vin-
tage car model. Note that the algorithm of Section 2 naturally
works for multi-component source objects as is.

4. Conclusion

We have generalized the deformation transfer technique
of [SP04] to handle complex models consisting of arbitrar-
ily many components. We proposed simple methods to es-
tablish spatial relationship between components, build cor-
respondences between models with different topologies, and
transfer deformation while preserving pairwise component
proximity. The resulting algorithm is straightforward to im-
plement.

Although our algorithm works well even in the cloth exam-
ples, we cannot guarantee collision-free deformation trans-
fer (see Figure 4). This may be, in certain applications, a
serious limitation. For future work, we believe that parts
of our algorithm can be easily adopted by as-rigid-as-
possible shape interpolation algorithms [ACOL00] to handle
multi-component objects. We are also interested in defin-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



K. Zhou, W. Xu, Y. Tong and M. Desbrun / Deformation Transfer to Multi-Component Objects

(a) rest pose (b) our method

(c) full correspondence method (d) linear method

Figure 7: Comparison on the horse sequence. (a) Rest pose.
(b) Transfer result using our method. (c) Transfer result by
enforcing a correspondence between a triangle on the source
for each triangle of the target. Note the artifacts at the front
legs of the horse. (d) Transfer result using a linear method,
i.e., without the two terms E3 and E4 in Equation (5) and by
imposing smoothness constraints on paired tetrahedra found
as described in Section 2.2. As closest triangle pairs get dif-
ferent transformations from the source, this method intro-
duces undesirable deformations. The relative distance be-
tween components are not well maintained either.

ing and preserving other kinds of spatial relationship be-
tween components during deformation transfer; currently we
only use edge lengths between vertex pairs, which is in-
appropriate if the relative distance between components in
the source model are supposed to change during deforma-
tion.Therefore, extensions could be proven useful.
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