
Power Particles:
An incompressible fluid solver based on power diagrams

Fernando de Goes
Caltech

Corentin Wallez
École Polytechnique

Jin Huang
Zhejiang U.

Dmitry Pavlov
Imperial College London

Mathieu Desbrun
Caltech

Figure 1: Splash de Triomphe. A dam break near the Arc de Triomphe is simulated using 600k particles for the fluid and 80k for the solid
obstacle. Bottom two rows show every sixth frame of the whole sequence, with surfacing achieved via OpenVDB [Museth 2013].

Abstract
This paper introduces a new particle-based approach to incompress-
ible fluid simulation. We depart from previous Lagrangian methods
by considering fluid particles no longer purely as material points,
but also as volumetric parcels that partition the fluid domain. The
fluid motion is described as a time series of well-shaped power di-
agrams (hence the name power particles), offering evenly spaced
particles and accurate pressure computations. As a result, we cir-
cumvent the typical excess damping arising from kernel-based eval-
uations of internal forces or density without having recourse to aux-
iliary Eulerian grids. The versatility of our solver is demonstrated
by the simulation of multiphase flows and free surfaces.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: 3D Graphics and Realism—Animation.

Keywords: Lagrangian fluid simulation, power diagrams, incom-
pressibility, multiphase flows, free surface.

1 Introduction

Fluid motion is a visually rich and complex phenomenon that re-
mains, to this day, a challenge to reproduce numerically. Intricate
patterns such as vortices in liquids and volutes in smoke are typ-

ical visual cues of incompressible flows that a numerical simula-
tion needs to capture accurately. While Lagrangian methods have
been shown simple and practical to efficiently generate fluid mo-
tion, they often suffer from numerical artifacts that severely impact
liveliness of the flow. In particular, the manner in which (and the
degree to which) incompressibility is enforced has strong implica-
tions for its dynamics. For instance, the Monte Carlo nature of ker-
nel evaluations in Smoothed Particle Hydrodynamics (SPH) [Lucy
1977] can only control local particle density at the cost of signif-
icant motion damping [Ihmsen et al. 2014]. The addition of an
auxiliary grid to provide more accurate and efficient pressure pro-
jections also causes kinetic energy dissipation and particle drifting
as velocities are transferred from/to the grid [Harlow 1963; Brack-
bill et al. 1988]. Even moving mesh approaches struggle to enforce
incompressibility due to mesh distortion and tangling [Oñate et al.
2004; Tang 2004; Clausen et al. 2013]. Consequently, none of the
current Lagrangian approaches offers both strong incompressibility
and low numerical dissipation.

We propose a radically different Lagrangian method to simulate
incompressible fluid. Particles are considered as non-overlapping
fluid parcels that partition the space occupied by the fluid through
a moving power diagram. By leveraging computational tools on
power diagrams, we formulate a time integrator for these “power”
particles that precisely controls particle density and pressure forces,
without kernel estimates or significant artificial viscosity.

1.1 Related Work

A broad variety of methods for fluid simulation have been de-
vised in computational physics and computer graphics (see surveys
in [Bridson 2008; Ihmsen et al. 2014]). Here we restrict our discus-
sion to Lagrangian methods based on particles and moving meshes.

Early SPH work. Smoothed Particle Hydrodynamics (SPH) dis-
cretizes fluids as material points with interaction forces derived
from smooth kernel functions [Monaghan 2005]. In computer
graphics, this methodology was introduced for smoke and fire de-

Figure 2: Wall-confined dam break. A dam break confined to a U-shaped corridor is simulated with 65k particles. Top row shows every
70 frames of the sequence. The water first splashes against the opposite wall (bottom left), before ricocheting onto the inner wall (bottom
center), then splashing at the end of the domain (bottom right).

piction in [Stam and Fiume 1995] before being used for weakly
compressible flows [Desbrun and Gascuel 1996; Müller et al. 2003;
Becker and Teschner 2007]. These approaches were quickly ex-
tended to handle adaptive sampling [Adams et al. 2007], multiple
fluids [Solenthaler and Pajarola 2008; Ren et al. 2014], viscous
flows [Takahashi et al. 2015], shallow water simulation [Solenthaler
et al. 2011], and parallel computations [Ihmsen et al. 2011], but re-
mained largely limited to the compressible case.

Density-constrained SPH. A family of SPH methods incorpo-
rated incompressibility by controlling particle density throughout
the simulation. The methods of [Ellero et al. 2007; Bodin et al.
2012], for instance, constrained densities via Lagrangian multipli-
ers, while predictive-corrective incompressible SPH (PCISPH) [So-
lenthaler and Pajarola 2009] used an iterative Jacobi-style algorithm
that accumulates pressure changes to correct particle location. The
convergence of PCISPH was accelerated in [He et al. 2012], and
Macklin and Müller [2013] further relaxed time step requirements
by incorporating pressure estimates into the Position-based Dynam-
ics framework. Although these methods retain evenly spaced par-
ticle distributions over time, the iterative computations of pressure
forces induced by intermediate density fluctuations introduce se-
vere numerical damping [Ihmsen et al. 2014], which can be miti-
gated via vorticity confinement [Steinhoff and Underhill 1994].

Divergence-free SPH. Other techniques address fluid incompress-
ibility by moving particles along a divergence-free velocity field.
Cummins and Rudman [1999] proposed a splitting scheme that
projects intermediate velocities to a divergence-free field. In [Shao
and Lo 2003], the projection step was approximated by estimat-
ing density compressions from intermediate velocities. The work
of [Hu and Adams 2007; Kang and Sagong 2014], instead, com-
puted pressure forces based on both divergence and density cor-
rections. However, as noted in [Premože et al. 2003], displac-
ing particles along divergence-free velocities for a finite time step
irremediably leads to spurious particle clumping and interface
tension effects, which impacts simulation stability and accuracy.
These issues are commonly alleviated through a modified pres-
sure solve [Ihmsen et al. 2013], the addition of non-physical anti-
clustering forces [Alduan and Otaduy 2011; Akinci et al. 2013],
artificial viscosity [Monaghan 2000; Clavet et al. 2005], or particle
smoothing [Shadloo et al. 2011]—again, at the cost of extra numer-
ical damping.

Hybrid schemes. Coupling non-diffusive Lagrangian advection
with accurate Eulerian pressure projection on an auxiliary grid can
partially remedy the inherent issues of SPH methods. In [Raveen-
dran et al. 2011], SPH particles were displaced along a divergence-
free velocity field computed on a coarse Eulerian grid. Losasso
et al. [2008] proposed a two-way coupled SPH and particle level
set method to simultaneously capture small and large scale phe-
nomena. In [Zheng et al. 2015], a hybrid pressure projection was
proposed with particles near the liquid interface and an Eulerian
grid for the interior of the liquid domain. The fluid-implicit par-
ticle method (FLIP) [Brackbill et al. 1988] was adopted in [Zhu
and Bridson 2005] to simulate sand, and later extended to viscous
materials [Batty and Bridson 2008] and two-phase flows [Boyd
and Bridson 2012]. The work of [Ando et al. 2013] further com-
bined FLIP with adaptive sampling of particles, while Cornelis et
al. [2014] enriched the SPH methodology with FLIP velocities.

Moving mesh approaches. While a vast majority of animation
techniques involve particles and kernel evaluations, fluid solvers
based on moving meshes have also been proposed. Feldman et
al. [2005] and Klingner et al. [2006] used mesh optimization in or-
der to better resolve turbulent regions with semi-Lagrangian advec-
tion. Arbitrary Lagrangian Eulerian (ALE) methods [Hietel et al.
2000] mix moderate mesh optimization with Eulerian-based finite
volume integration, but are mostly restricted to compressible fluids.
A finite element discretization for fluids was presented in [Oñate
et al. 2004], requiring global restructuring of the underlying trian-
gulation every simulation time step. The work of [Erleben et al.
2011; Misztal et al. 2013] proposed to tessellate the entire ambient
space, forcing the mesh to conform to the fluid interface in time
via local remeshing operations. In [Clausen et al. 2013], a fluid
solver on tetrahedral meshes was introduced by ensuring incom-
pressibility per vertex stencil [Irving et al. 2007], combined with
local connectivity updates. While these methods are partially La-
grangian and leverage accurate pressure projection on meshes, they
require a large amount of mesh updates, making them less practical
and robust than particle methods.

Voronoi-based methods. Our work is closely related to Voronoi di-
agrams, a common tool in Eulerian integrators [Mullen et al. 2009;
Brochu et al. 2010]. Their use has been proposed in Lagrangian
methods as well: moving Voronoi cells combined with Eulerian
remapping were introduced in [Whitehurst 1995] for gas dynamics,

while a Voronoi-based finite volume pressure solver was proposed
in [Sin et al. 2009]. Serrano et al. [2005] derived first-order ac-
curate discrete divergence and gradient operators acting on mov-
ing Voronoi cells to conserve both linear and angular momenta.
The work of [Springel 2010] leveraged these Voronoi-based dis-
crete operators to design an ALE simulation for cosmological sys-
tems. Regularization steps based on Lloyd iterations [Lloyd 1982]
and volume corrections are nevertheless required to ensure stability,
limiting this approach to weakly compressible flows. Instead, we
show that the use of power diagrams results in a purely Lagrangian
method with precise local density control suitable for incompress-
ible, free surface flows.

1.2 Contributions

We propose a new Lagrangian method for fluid simulation based on
power diagrams—a generalization of Voronoi diagrams that incor-
porates extra degrees of freedom to partition the domain occupied
by the fluid. The use of power diagrams results in several numerical
benefits. We can now discretize fluids as volumetric parcels formed
by cells of a power diagram that determine, at each time step, a
well-shaped mesh from which accurate discrete differential opera-
tors are derived. The additional variables afforded by a power dia-
gram also offer complete control over the volume of each fluid cell,
resulting in evenly spaced particles over time. The enforcement of
incompressibility is thus achieved both geometrically (through pre-
cise density control) and dynamically (via accurate projection onto
divergence-free velocities). Since our method remains purely La-
grangian, it does not suffer from significant numerical diffusion or
mass fluctuations as commonly seen in Eulerian methods. Finally,
it is entirely devoid of error-prone, kernel-based estimation of pres-
sure, force, or density. We demonstrate the effectiveness of power
particles in scenarios with free surfaces and moving obstacles, and
provide extensions to compressible and multiphase flows.

2 Computational Foundations
Before presenting our approach to fluid simulation, we first describe
core concepts upon which our fluid discretization is based. We de-
note the fluid domain by Ω, with volume |Ω| and boundary ∂Ω.

2.1 Power Diagrams

A power diagram [Aurenhammer 1987] is a partitioning of Ω into
a cell complex defined by a list of n points {qi}i, called sites,
and their associated scalar values {wi}, called weights. For each
weighted point (qi, wi), its power cell Vi is defined as

Vi = {x ∈ Ω | ‖x− qi‖2 − wi ≤ ‖x− qj‖2 − wj ∀j}, (1)

where‖·‖indicates the Euclidean norm. Two sites qi and qj are said
to be neighbors if the intersection Vi

⋂
Vj is a non-empty power

facet Aij of codimension 1, corresponding to a planar polygon in
3D and a line segment in 2D. We indicate by Ni the set of neigh-
boring sites sharing a power facet with site i, and use lij to indicate
the distance ‖qi−qj‖. We also denote
dij as the distance from qi to Aij so that
dij +dji = lij . The centroid (i.e., cen-
ter of mass) of cell Vi is denoted as bi,
while the centroid of power facet Aij is
denoted as bij . Finally, we refer to Vi as
the volume in 3D (resp., the area in 2D)
of Vi, and Aij as the area in 3D (resp.,
the length in 2D) of Aij . Note that when
weights are all equal, power diagrams reduce to Voronoi diagrams.
As for the Voronoi-Delaunay pair, a power diagram also defines by
duality a triangulation of the sites (known as the weighted Delau-
nay triangulation), in which each neighboring pair of sites forms an
edge that is orthogonal to its associated power facet. Furthermore,

the weighted circumcenters of the tetrahedra of this triangulation in
3D (resp., triangles in 2D) correspond to dual vertices of the power
diagram, i.e., they are at the intersection of four power cells in 3D
(resp., three in 2D). Although power diagrams have found many ap-
plications in geometry processing [Mullen et al. 2011; de Goes et al.
2013; Liu et al. 2013], their use in simulation has been restricted to
the formation of bubbles and foams [Busaryev et al. 2012].

Robust construction of power diagrams is best left to one of the sev-
eral existing libraries [Rycroft 2009; CGAL 2015] which return,
from a series of sites and weights, a geometric description of the
power cells and their power facets, as well as iterators encoding cell
connectivity. Power cells that intersect the boundary ∂Ω can be fur-
ther clipped either using the Sutherland-Hodgman algorithm [Yan
et al. 2013], or based on mirrored copies of the subset of sites with
dual facets straddling ∂Ω. If the domain Ω is periodic, a similar
mirroring procedure can be used too [Yan et al. 2011]. The result-
ing clipped cells form finite (and possibly non-convex) polytopes,
from which one can compute all relevant geometric quantities (cen-
troids bi and bij , volumes Vi, areas Aij , and lengths lij). While
the worst-case computational cost to construct power diagrams in
3D is quadratic in the number of sites, the average-case scenario is
linear in the number of sites (see, e.g., [Golin and Na 2003]).

2.2 Volume Constraints

Besides defining connectivity, the weights of a power diagram offer
full control over cell volumes. Indeed, Aurenhammer et al. [1998]
proved that for a set of sites {qi}i and a target volume V i for each
of them, a power diagram satisfying Vi =V i can be uniquely con-
structed by solving for weights that maximize a concave energy

E({wi}i) =
∑
i

∫
Vi
‖x− qi‖2dx−

∑
i

wi

(
Vi − V i

)
. (2)

It is worth pointing out that the energy E is smooth, even through lo-
cal connectivity changes; this implies that even if the weighted De-
launay triangulation changes discretely over time through flips, its
dual power diagram is evolving continuously. It was recently shown
that this weight optimization is equivalent to an optimal transport
problem with volume constraints, and that the Hessian of E has
a simple, closed-form expression [de Goes et al. 2012]. Optimal
weights for a given set of cell volumes are thus efficiently found by
iteratively updating them through Newton’s steps of the form

1
2
∆∆∆ δw = V − V , (3)

where ∆∆∆ is the usual finite-volume Laplacian matrix built from the
facets of the power diagram, with entries ∆∆∆ij = Aij/lij . Notice
that, as power facets always have positive area (resp., length in 2D),
the Laplacian is negative semi-definite, with linear functions in its
kernel. We will make use of this weight optimization in §4 as a
means to preserve local volumes (and thereby densities, since each
particle will have a fixed mass) in our fluid solver.

2.3 Discrete Operators

Another consequence of using power diagrams is that it naturally
leads to discrete operators on scalar and vector fields stored on
power cells that mimic their continuous counterparts, which will
be crucial in enforcing divergence-free velocity fields. Since we
have a well defined notion of volume per particle (namely, Vi), the
notion of divergence can be measured by how the local volume is
affected by the motion of the sites with fixed weights. We thus de-
fine the discrete divergence operator D as the volume rate of change
induced by displacing sites, i.e., D = ∇qV . For n particles in a d-
dimensional domain Ω, this operator corresponds to an nxn matrix

with row-valued entries:
Dij :=

(
∇qjVi

)t
=
Aij

lij
(qj − bij)

t,

Dii := (∇qiVi)
t = −

∑
j∈Ni

(∇qiVj)
t .

(4)

The corresponding gradient is obtained through Stokes’ theorem:∫
Ω

∇p · v dx +

∫
Ω

p∇·v dx =

∫
∂Ω

p (v · n) dx, (5)

where p is a scalar function and v is a vector field. Assuming Neu-
mann boundary conditions (we will discuss boundary conditions in
more detail in §4), the gradient operator G is defined as the negated
transpose of the divergence operator, i.e., G = −Dt. For a discrete
function with values {pi}i, our gradient then reduces to:

[Gp]i =
∑
j∈Ni

(Dji)
t(pi−pj)=

∑
j∈Ni

Aij

lij
(qi−bij) (pi−pj).

It bears pointing out that this discrete gradient is symmetric (i.e.,
gradient forces from particle i to j cancel forces from j to i) and, as
such, exactly preserves linear momentum. This is in sharp contrast
to the SPH methodology, where the kernel-based gradient needs to
be systematically symmetrized. Angular momentum is also pre-
served due to the invariance of the volume of power cells to global
rotations. Furthermore, since this definition is directly derived from
a consistent partition of the domain into local volumes exactly sum-
ming up to the total volume |Ω|, we do not suffer the usual inaccu-
racies of kernel-based operators: our gradient operator is exact for
linear functions, while the symmetrized gradient operator used in
SPH methods fails to be accurate even on constant fields. We fi-
nally note that the approximation error of our operators on arbitrary
functions are further minimized when sites {qi}i of the power dia-
gram coincide with their respective centroids {bi}i, that is, for cen-
troidal power diagrams [de Goes et al. 2012]. We point the reader
to the Appendix A for more details.

3 Power Particles
We now introduce our new computational method for incompress-
ible fluid simulation based on power diagrams.

3.1 Rationale

Most Lagrangian approaches for incompressible fluid simulation
use time-evolving material points that interact via pressure forces.
Whether these forces are computed through error-prone kernel eval-
uations as in SPH methods or through an auxiliary grid as in FLIP
schemes, numerical dissipation and particle drifting tend to plague
the visual liveliness of such particle methods [Brackbill et al. 1988;
Cornelis et al. 2014]. Moving meshes and ALE methods provide
an alternative by carrying an adaptive mesh along with the mate-
rial points to combine non-diffusive Lagrangian advection and ac-
curate Eulerian pressure estimates; however, connectivity updates
required to resolve mesh entanglement introduce resampling error,
often in the form of numerical viscosity [Clausen et al. 2013].

Instead, we discretize fluid particles as volumetric parcels described
by cells of a time-evolving power diagram—hence, the name power
particles. Our approach adds to the usual set of sites {qi}i used in
material point discretizations a new set of dynamical variables rep-
resented by time varying weights {wi}i. The power diagram deter-
mined by both sites and weights then defines the geometry of the
fluid parcels. Thus, these power particles combine the simplicity of
Lagrangian methods with the accuracy of mesh-based approaches.
In particular, we can leverage the computational tools presented in

§2 to deform power diagrams based on the dynamics of incompress-
ible fluids, while retaining well-shaped, volume-constrained cells.

Starting from n cells of volume {V i}i and fixed mass {mi}i, the
motion of power particles is updated at each time step in two stages:
a velocity update followed by a cell advection. The former is based
on a linear-accurate projection method to enforce zero divergence
of the velocity field {vi}i, while the latter advects cells in time by
updating the sites {qi}i based on the current cell centroids and ve-
locities before optimizing the weights {wi}i to determine spatial
occupancy. Since the volume of each power particle is precisely
controlled, so is the local density since the mass of each particle
is fixed in time. As we will demonstrate, this computational ap-
proach can handle arbitrary large deformations while ensuring ac-
curate pressure forces and evenly spaced particles.

3.2 Velocity update

The velocity update begins by doing an explicit time integration of
the external forces followed (if needed) by an implicit integration
of viscosity forces, leading to an intermediate velocity v∗i for each
particle i. To enforce incompressibility instantaneously, we then
compute pressure forces that project velocities to a zero divergence
field. We leverage the discrete operators defined in §2.3 and solve
for pressure values {pi}i by minimizing the change in kinetic en-
ergy necessary to reach a divergence-free vector field , i.e.:

min
p

∑
i
mi‖v∗i − dt

mi
[Gp]i‖2. (6)

The discrete Poisson equation for pressure is thus:

dtLp = Dv∗, (7)

where L=D diag(m)−1G is the discrete Laplacian with diag(m)
as the diagonal matrix containing every particle mass. The velocity
field v is then updated by subtracting dt diag(m)-1Gp from v∗,
rendering the final velocity divergence-free. Note that our Laplace
operator L is, by construction, negative semi-definite with linear
functions in its kernel. We also point out that L has a two-away
stencil, in contrast to the finite-volume Laplacian ∆∆∆ introduced in
§2.2 with a one-ring stencil that acts on weights. Both operators
approximate the same continuous operator, but play very different
roles in our discrete setting.

3.3 Cell advection

After updating velocities, we now need to advance in time the vol-
umetric fluid parcels represented by power particles. Advection
is achieved by computing new sites {qi}i and weights {wi}i to
evolve the power diagram while controlling the spacing and vol-
umes of the new cells. To this end, we first explicitly update the

Figure 3: Two-phase flow. A heavy (blue) fluid is dropped in an
octogonal container (130k particles); a (pink) fluid which is four
times lighter is then dropped on top (70k particles).

Figure 4: Adaptive sampling. Whether initialized with variable
volume sizes (top left) or with a velocity-adapted distribution (bot-
tom left), a four-vortex example is properly captured (right), main-
taining the flow symmetry over long periods of time.

sites {qi}i to the positions of their respective centroids {bi}i once
advected along velocities {vi}i, i.e., qi = bi + dtvi. With these
new sites, we then make use of the concave optimization in §2.2
and solve for new weights {wi}i so that the volume Vi of each cell
equates its target volume V i. Note that if the target volumes remain
constant in time, then this enforcement of local volumes implies ex-
act preservation of fluid densities (hence, incompressibility) since
each particle mass is constant. Target volumes can also be deter-
mined via a state equation in the case of compressible fluids (see
§4). Also, observe that the use of centroids favors evenly spaced
distributions, and thus improves the accuracy of our discrete opera-
tors as mentioned in §2.3. Moreover, the weight update controls the
relative sizing among particles, reducing artificial particle smooth-
ing and velocity damping that are ubiquitous in existing Lagrangian
methods. Finally, we point out that updating sites and weights also
adapts the connectivity of the power diagram directly and continu-
ously, eliminating the risk of mesh entanglement that moving mesh
methods typically face.

3.4 Discussion

While our discretization of fluid flows contains only one additional
variable per particle compared to typical Lagrangian methods, the
consequences of this added degree of freedom are manifold. First,
it induces a tiling of the fluid as each particle is now associated
with a spatial cell of controllable volume. Second, the geometric
definition of these cells allows us to derive consistent discrete dif-
ferential operators (divergence, gradient, and Laplacian) based on
the analytical expression of their volumes. Note that these opera-
tors are, in fact, extensions of the ones derived for Voronoi diagrams
in [Serrano et al. 2005], and thus share their properties of being lin-
ear accurate and matching to first order their Eulerian counterparts.
The accuracy of these operators combined with our pressure projec-
tion thus leads to a time integrator with low numerical dissipation.
Furthermore, our Lagrangian cell advection via centroids maintains
well-centered power cells in time; as power particles come to rest,
they actually form a blue noise distribution [de Goes et al. 2012].

As we will demonstrate in §5, these benefits keep at bay the usual
issues of density fluctuations, spurious pressure modes, and ex-
cessive artificial viscosity. It also entirely sidesteps the problem
of mesh tangling in moving mesh methods (e.g., [Misztal et al.
2013; Clausen et al. 2013]). Finally, Voronoi-based approaches
such as [Springel 2010] simply cannot control the volume of their
cells and thus require mesh regularization to bound volume drift,
while our weights determine volume (and thus density) exactly.

4 Algorithm

Next we delve into the algorithmic details of our fluid solver based
on power particles. We first describe incompressible power parti-
cles, and then show that simple modifications turn our approach into
a compressible and multiphase fluid solver. We also discuss exten-
sions such as free surfaces, surface tension, moving obstacles, and
viscosity. An outline of the simulation loop is given in Algorithm 1.

Algorithm 1 Simulation Loop

1: Update velocity v∗ via Eq. (8)
2: Compute pressure p via Poisson Eq. (7), or state Eq. (9)
3: Add pressure forces: v← v∗ − dt diag(m)-1Gp

4: For compressible fluids, update volumes {V i}i via Eq. (10)
5: Advect sites: q← b + dtv
6: Enforce volumes {V i}i through weight optimization (§2.2)

Initialization. We begin by instantiating a set of n power particles
in the fluid domain Ω with prescribed cell volumes {V i}i. This par-
titioning is initialized by first seeding sites {qi}i on a grid inside
Ω, and then alternating Lloyd iterations and weight optimizations
to form a centroidal power diagram [de Goes et al. 2012]. The re-
sulting power particles are each given a density ρi and a mass mi

such that mi =ρiV i, in addition to an initial velocity. The target
volumes can be set to uniform values {V i ≡ |Ω|/n}i, or initial-
ized with an arbitrary density function. In the latter case, particles
masses {mi}i are no longer uniform in order to define a constant
local density throughout the fluid. Fig. 4 shows an example of an in-
compressible flow initialized with different sampling patterns. One
can also adapt the number of particles dynamically during the ani-
mation similar to [Ando et al. 2013], but we leave the design of a
fully adaptive strategy for power particles as future work.

External and viscosity forces. Our simulation loop starts by up-
dating the velocity of each power particle through an explicit time
integration based on external forces, such as gravity or buoyancy.
For viscous flows, we ensure robustness to large viscosity coeffi-
cients ν through an unconditionally stable implicit time integra-
tor [Stam 1999]. We thus find an updated intermediate velocity
field v∗ by solving the following sparse linear system:

[diag(V)− νdtL]v∗ = diag(V)
(
v+dt diag(m)-1Fext), (8)

where diag(V) and diag(m) are the diagonal matrices containing
all local volumes and masses, respectively.

Incompressible flows. In the case of incompressible fluids, inter-
nal forces come directly from the gradient of pressure that enforces
a divergence-free velocity field. We compute this pressure in Line 2
of Algorithm 1 by solving for the scalars {pi}i that satisfy the dis-
crete Poisson equation given in Eq. (7). In addition to controlling
the velocity divergence, we also enforce incompressibility geomet-
rically by keeping the volume of each cell constant. This means that
Line 4 is rendered unnecessary for incompressible flows as each
V i remains fixed throughout the animation. The weights are finally
computed as described in §2.2.

Compressible flows. The case of compressible fluids requires mi-
nor alterations. First, the pressure p in Line 2 is computed via a
state equation. Our implementation uses the simple constitutive
law [Desbrun and Gascuel 1996; Becker and Teschner 2007]:

pi = κmi

(
1/Vi − 1/V i

)
, (9)

where κ is tantamount to a stiffness parameter. The velocity is then
updated with the pressure forces in Line 3 which, unlike in the in-
compressible case, will no longer result in a divergence-free field.
We then apply, in Line 4, the local volume change induced by the
velocity divergence as an update of the target volumes {V i}i, i.e.:

V i ← V i + dt [Dv]i . (10)

Observe that the new volumes always sum up to the domain vol-
ume,

∑
i V i = |Ω|, as a result of our definition of the divergence

in §2.3 verifying the identity
∑

i [Dv]i =0 (see Appendix A).

Multiphase flows. Power particles also accommodate the simula-
tion of multiphase flows, i.e., when multiple fluid types interact
within the same domain. For interacting fluids of the same kind but
different densities, our method is applicable with no modification
other than proper initialization of the densities (and, consequently,
of the masses) per particle. For the interaction of incompressible
and compressible fluids, Lines 2 and 4 of the algorithm are im-
plemented in such a way that compressible particles are updated
through a pressure from a state equation, while incompressible par-
ticles are adjusted via a pressure projection. We also use the pres-
sure of the compressible particles along the fluids interface to set
the Dirichlet boundary conditon for the pressure projection of the
incompressible fluid in Eq (7).

Free surfaces. When fluid simulation involving a moving in-
terface between fluid and air is desired, we represent free sur-
faces via air “ghost” particles [Schechter and Bridson 2012]. Be-
fore every simulation time step, we populate air ghost parti-
cles around the power particles in a band of thickness propor-
tional to the smallest target volume V (see inset). We then use
these ghost particles to clip the power
cells of the fluid particles encroaching
on this interface. We also exploit air par-
ticles to impose proper boundary condi-
tions at the fluid-air power facets Aij .
In the divergence computation (Eq. (4)),
we equate the velocity of air particles to
the fluid particle in order to enforce zero
Neumann boundary condition. In the projection solve (Eq. (7)), we
ensure that the Dirichlet boundary condition p = 0 is satisfied on
every interface facet Aij between a fluid particle i and an air ghost
particle j. Similar to [Enright et al. 2005], we compute the pressure
value pj so that a linear interpolation along the edge ij reaches zero
at Aij , which is achieved with pj =−(dji/dij)pi. Finally, we set
air particles to zero weights and remove them from the weight op-
timization (Eq. (3)), since their volumes are just temporary.

Obstacles. Static or moving obstacles can be discretized in our
power particle framework either as clipping objects [Rycroft 2009]
or via solid ghost particles [Schechter and Bridson 2012]. Clip-
ping is more effective to represent simple obstacles, such as con-
tainer walls in ∂Ω or convex objects (Fig. 2), while solid particles
are more practical to describe arbitrary shapes (Fig. 1). In con-
trast to air particles, solid particles are instantiated only once in the
initialization step. We maintain the volumes of these solid parti-
cles invariant in time by optimizing their weights in Eq. (3) along
with all other fluid particles. In order to ensure Neumann boundary
condition at a fluid-solid interface Aij , we add the boundary flux
(Aij/lij)(qj − qi)

tvj to the divergence of the fluid particle i in

Figure 5: Moving obstacle. A clockwise rotating blade contin-
uously stirs a fluid made out of 100k particles. After transient
splashes, a surface-wrinkling maelstrom develops in the container.

Eq. (4). For the pressure projection, we set zero Neumann bound-
ary condition by removing the solid particles from Eq. (7). Lastly,
particles in moving obstacles are also included in the cell advection
(§3.3) to make them follow a prescribed path. This simple treatment
allows proper transfer of momentum to the fluid.

Surface Tension. A fluid-air interface often exhibits surface ten-
sion due to a difference in cohesion forces on each side. It is usu-
ally modeled as an elastic membrane, resulting in forces minimiz-
ing the interface area. The use of power particles is particularly
convenient as it can incorporate many of the existing strategies to
approximate surface tension. Our implementation follows the ap-
proach of [Hong and Kim 2005], which adds the interface curvature
as discontinuities of pressure in the projection step (Line 3). More
specifically, we first compute an area-weighted normal ni per parti-
cle i by summing area vectors of dual facets Aij in the fluid-air in-
terface, and deduce the mean curvature at interface particles as κ=
−D(n/‖n‖). We then add the term τ(Aij/lij) (djiκi + dijκj) to
the right-hand side of Eq. (7) to account for the integrated curvature
at the interface Aij scaled by the tension coefficient τ .

5 Results
We performed a series of tests in order to validate our method both
in terms of performance and visual quality. A selection of these
examples is included in the accompanying video. We describe our
experiments next, and discuss results compared to previous work.

Implementation. Our implementation is based on our own thread-
safe patch to the VORO++ library [Rycroft 2009] to construct
clipped power diagrams in 2D and 3D. In contrast to [CGAL 2015]
that tiles the entire Euclidean space before clipping cells to the do-
main Ω, VORO++ employs a local approach that calculates clipped
power cell individually. We exploit this strategy to generate, in par-
allel, power cells for fluid and solid particles only—thus reducing
the overhead of air particles and speeding up performance by two
orders of magnitude compared to [Yan et al. 2013]. We use a pre-
conditioned conjugate gradient solver for the sparse linear systems
in Eqs. (3), (7) and (8), as suggested in [Bridson 2008]. We also
adopt a substepping scheme so that every substep dt satisfies the
CFL condition dt<maxi

d
√
Vi/maxi ‖vi‖ (d= 2, 3), and the sum

of substeps between two frames is 1/24 s. In our experiments, there
never were more than three substeps between two frames. We set
the tolerance for volume enforcement in §2.2 to 0.1%, which typ-
ically requires a single Newton step every simulation substep. We

Figure 6: Smoke. Fluid simulation with 20k particles in a box, with
a heat source and buoyancy forces. For visualization, two millions
markers were advected passively along the power particle velocity
field, forming a rising smoke cloud.

used the Mantra renderer in Houdini [Side Effects 2014] for the fi-
nal rendering, and OpenVDB [Museth 2013] for surfacing in Fig. 1.

Examples in 2D. The supplemental video contains a series of
2D experiments showcasing various features of our power particle
framework, including splashes with air particles and surface ten-
sion, liquid falling onto multiple obstacles, and a fluid of uniform
density but varying local volumes. We also provide a simulation
with and without weight optimization, demonstrating that the addi-
tion of weights keeps particle spacing, thus avoiding spurious dri-
fiting. Fig. 10 shows side by side comparisons for the animation
of an incompressible flow with four vortices in a unit square, gen-
erated by our algorithm versus two variants of the FLIP method
(code released by the authors of [Ando et al. 2013]) and our own
implementation of the Position Based Fluids (PBF) [Macklin and
Müller 2013]. We use these methods as representative candidates
of divergence-free and density-constrained Lagrangian solvers, and
point the reader to [Cornelis et al. 2014; Ihmsen et al. 2014] for
further comparisons. We initialized all cases with the same distri-
bution of 5k particles, and set a time step of dt=0.01. Observe that
PBF maintains an even distribution of particles at the cost of large
numerical damping, even when viscosity is set to zero (Fig. 10, top-
left). The FLIP method, on the other hand, exhibits less numerical
dissipation, but clumps particles in between vortices (Fig. 10, top-
right). As suggested in [Ando et al. 2013], we also interleaved FLIP
steps with particle smoothing, which improves the particle distribu-
tion but still presents numerical viscosity (Fig. 10, middle-left). By
contrast, our approach results in an artifact-free motion, keeping
particles evenly spaced and preserving the vortical structures over
time (Fig. 10, middle-right). Finally, the bottom row of Fig. 10
shows the kinetic energy in time for these three methods. Notice
that our method has the smallest decay rate, and provides consis-
tent results even with adaptive sampling (see video). We also tested
the well-known case of a flow in a channel past a disk for a low
viscosity fluid. We used 20k particles with non-slip boundary con-
ditions around the disk, and periodic boundary conditions through
the vertical walls as a means to implement inlet and outlet particles
in the flow direction. Fig. 9 shows the expected vortex shedding
(von Kármán vortex street) formed by the adherence of the fluid to
the boundary, in agreement with physical experiments.

Examples in 3D. We also experimented with our approach to in-
compressible fluids in 3D. Fig. 6 shows a smoke simulation in a
closed container filled with 20k power particles dragged by buoy-
ancy forces and visualized by markers passively advected along the
flow. For free surface examples, we visualized the velocity magni-
tude via pseudocolors ranging from dark blue (low) to white (high).
Fig. 8 shows a splash simulation with 450k particles using two
different coefficients of viscosity. We display in Fig. 1 snapshots
of a 600k-particle animation after surfacing, where a fluid comes

splashing onto the Arc de Triomphe before subsiding. Fig. 5 de-
picts a turbulent flow of 100k particles stirred by a spinning blade,
while Fig. 2 shows a liquid motion along a U-shaped corridor with
65k particles. Notice that, even at a coarse particle resolution, our
method can resolve detailed splashes and breaking waves with no
significant visual dissipation. In addition to the examples listed
above, the accompanying video also includes a double splash sim-
ulation with 1M particles.

Two-phase flows. Our method can simulate fluids of variable den-
sity as well. Empirically, we observed that our approach is robust up
to a density ratio of 30. For easy comparison to existing multiphase
Lagrangian approaches (see, e.g., [Hu and Adams 2007]), we repro-
duce the 2D Rayleigh-Taylor instability test described in [Cummins
and Rudman 1999] in the supplemental video. Fig. 3 shows a 3D
simulation with two incompressible fluids of different densities and
local volumes falling into an octagonal container.

Compressible flows. We also demonstrate the flexibility of our
approach to simulate compressible fluids. We tested our 2D com-
pressible fluid model to simulate shallow water, in which densities
represent particles heights as in [Lee and Han 2010]. Fig. 7 shows
the smooth transition of power cell areas for a shallow water wave
in a domain containing an obstacle.

Performance. Our experiments were clocked on an Intel Xeon
3.1GHz workstation with 32GB RAM and 12 cores. Examples in
2D using between 5k and 20k particles took less than 10 millisec-
onds per substep. The average time spent per substep in 3D was
1 second for 20k particles (Fig. 6), 2.7 seconds for 65k particles
(Fig. 2), 7 seconds for 100k particles (Fig. 5), 17 seconds for 200k
particles (Fig. 3), 28 seconds for 450k particles (Fig. 8), and 34
seconds for 600k particles (Fig. 1), indicating a linear asymptotic
complexity w.r.t. the number of particles. For profiling purposes,
we also broke down the timing of one substep for a 3D simula-
tion with 1M particles (see video): it took a total of 62.5 seconds,
with 54% for the power diagram construction, 16% for the pro-
jection step, 11.2% for the diffusion solve, 9.6% for seeding air
particles, and 9.2% for the weight update. As noted in [Schechter
and Bridson 2012], ghost particles create a memory overhead pro-
portional to the surface area and particle size, varying from 30%
up to 160% in Fig. 3. Overall, our method incurs an increase in
computational complexity when compared to state-of-the-art parti-
cle methods [Ihmsen et al. 2014] due to the construction and update
of the power diagram. However, the benefits of this extra step are
numerous, varying from significantly reduced numerical damping
(Fig. 10) to the ability to handle a large variety of fluids and their
interactions with the environment. Consequently, our approach re-

Figure 7: Shallow water. Power particles can handle compressible
flows as well. In this example, the shallow water equations are
simulated in a square domain with a polygonal obstacle. Starting
from a step-like height field (represented via color ramp), a wave
comes crashing onto the obstacle and the left wall, creating a wide
variety of particle sizes indicating various degrees of compression.

Figure 8: Viscosity control. As our method does not suffer from
significant numerical dissipation, the effect of kinematic viscosity is
finely captured: the same 450k particles simulation with viscosity
ν= 0.001 (top) versus ν= 0.01 (bottom) exhibits a striking differ-
ence in turbulence. Displayed are times 1s (left) and 4s (right).

duces the wall-clock time to design a fluid animation sequence, as
the results are consistent across time step and particle sizes, and no
additional energy-injecting post-processing stages are required to
obtain fine detail in the motion.

6 Conclusion and Future Work

By combining a simple Lagrangian discretization with robust com-
putational geometry tools, power particles offer a stable and flexible
approach for fluid simulation that reduces numerical damping and
particle drift by affording accurate mesh-based pressure projection,
precise control over particle distributions, and seamless mesh con-
nectivity updates. As future work, we are interested in applying our
power particle formulation to a broader family of physical models,
including incompressible elasticity, elasto-plastic flows and granu-
lar materials. We are also investigating extensions to the VORO++
library to construct power diagrams on GPUs.

Acknowledgements.

We thank Chris Rydalch for his help with Houdini, Chris Rycroft
for sharing the VORO++ library, Jiong Chen for rendering Fig. 6,
and Santiago V. Lombeyda for help with figures and video. MD
gratefully acknowledges the TITANE team and the INRIA Interna-
tional Chair program for their support. Partial funding was provided
by NSF grant CCF-1011944 and a Google PhD Fellowship.

References

ADAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. J. 2007.
Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3.

AKINCI, N., AKINCI, G., AND TESCHNER, M. 2013. Versatile
surface tension and adhesion for SPH fluids. ACM Trans. Graph.
32, 6.

ALDUAN, I., AND OTADUY, M. A. 2011. SPH granular flow with
friction and cohesion. In Symp. on Comp. Anim., 219–228.

ANDO, R., THÜREY, N., AND WOJTAN, C. 2013. Highly adaptive
liquid simulations on tetrahedral meshes. ACM Trans. Graph.
32, 4.

AURENHAMMER, F., HOFFMANN, F., AND ARONOV, B. 1998.
Minkowski-type theorems and least-squares clustering. Algo-
rithmica 20, 1, 61–76.

AURENHAMMER, F. 1987. Power diagrams: properties, algorithms
and applications. SIAM J. on Computing 16(1), 78–96.

BATTY, C., AND BRIDSON, R. 2008. Accurate viscous free sur-
faces for buckling, coiling, and rotating liquids. In Symp. on
Comp. Anim., 219–228.

BECKER, M., AND TESCHNER, M. 2007. Weakly compressible
SPH for free surface flows. In Symp. on Comp. Anim., 209–217.

BODIN, K., LACOURSIERE, C., AND SERVIN, M. 2012. Con-
straint Fluids. IEEE Trans. Vis. Comput. Graphics 18, 516–526.

BOYD, L., AND BRIDSON, R. 2012. MultiFLIP for energetic two-
phase fluid simulation. ACM Trans. Graph. 31, 2.

BRACKBILL, J., KOTHE, D., AND RUPPEL, H. 1988. FLIP: A
low-dissipation, particle-in-cell method for fluid flow. Computer
Physics Communications 48, 1, 25 – 38.

BRIDSON, R. 2008. Fluid Simulation for Computer Graphics. AK
Peters/CRC Press.

BROCHU, T., BATTY, C., AND BRIDSON, R. 2010. Matching fluid
simulation elements to surface geometry and topology. ACM
Trans. Graph. 29, 4.

BUSARYEV, O., DEY, T., WANG, H., AND REN, Z. 2012. Ani-
mating bubble interactions in a liquid foam. ACM Trans. Graph.
31, 4.

CGAL, 2015. Computational Geometry Algorithms Library (re-
lease 4.5). http://www.cgal.org.

CLAUSEN, P., WICKE, M., SHEWCHUK, J., AND O’BRIEN, J.
2013. Simulating liquids and solid-liquid interactions with la-
grangian meshes. ACM Trans. Graph. 32, 2.

CLAVET, S., BEAUDOIN, P., AND POULIN, P. 2005. Particle-
based viscoelastic fluid simulation. In Symp. on Comp. Anim.,
219–228.

CORNELIS, J., IHMSEN, M., PEER, A., AND TESCHNER, M.
2014. IISPH-FLIP for incompressible fluids. Comp. Graph. Fo-
rum 33, 2.

CUMMINS, S. J., AND RUDMAN, M. 1999. An SPH projection
method. J. Comp. Physics 152, 2, 584–607.

DE GOES, F., BREEDEN, K., OSTROMOUKHOV, V., AND DES-
BRUN, M. 2012. Blue noise through optimal transport. ACM
Trans. Graph. 31, 6.

DE GOES, F., ALLIEZ, P., OWHADI, H., AND DESBRUN, M.
2013. On the equilibrium of simplicial masonry structures. ACM
Trans. Graph. 32, 4.

DESBRUN, M., AND GASCUEL, M.-P. 1996. Smoothed Particles:
A new paradigm for animating highly deformable bodies. In EG
Computer Animation Symp., 61–76.

ELLERO, M., SERRANO, M., AND ESPAÑOL, P. 2007. Incom-
pressible Smoothed Particle Hydrodynamics. J. Comp. Physics
226, 2, 1731–1752.

Figure 9: Flow past obstacle. The wall-confined flow of an incompressible viscous fluid past a circular obstacle exhibits the expected von
Kármán vortex street: the obstacle is “shedding” swirling vortices in its wake (top: vorticity plot; bottom: advected dye).

ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. 2005. A fast
and accurate semi-Lagrangian particle level set method. Com-
put. Struct. 83, 6-7, 479–490.

ERLEBEN, K., MISZTAL, M. K., AND BÆRENTZEN, J. A. 2011.
Mathematical foundation of the optimization-based fluid anima-
tion method. In Symp. on Comp. Anim., 101–110.

FELDMAN, B. E., O’BRIEN, J. F., KLINGNER, B. M., AND GOK-
TEKIN, T. G. 2005. Fluids in deforming meshes. In Symp. on
Comp. Anim., 255–259.

GOLIN, M. J., AND NA, H. 2003. On the average complexity
of 3D Voronoi diagrams of random points on convex polytopes.
Computational Geometry 25, 3, 197–231.

HARLOW, F. H. 1963. The particle-in-cell method for numerical
solution of problems in fluid dynamics. Experimental arithmetic,
high-speed computations and mathematics.

HE, X., LIU, N., LI, S., WANG, H., AND WANG, G. 2012. Local
Poisson SPH for viscous incompressible fluids. Comp. Graph.
Forum 31, 6, 1948–1958.

HIETEL, D., STEINER, K., AND STRUCKMEIER, J. 2000. A finite-
volume particle method for compressible flows. Math. Models
Methods Appl. Sci. 10, 9, 1363–1382.

HONG, J.-M., AND KIM, C.-H. 2005. Discontinuous fluids. ACM
Trans. Graph. 24, 3.

HU, X. Y., AND ADAMS, N. A. 2007. An incompressible multi-
phase SPH method. J. Comp. Physics 227, 1, 264–278.

IHMSEN, M., AKINCI, N., BECKER, M., AND TESCHNER, M.
2011. A parallel SPH implementation on multi-core CPUs.
Comp. Graph. Forum 30, 1, 99–112.

IHMSEN, M., CORNELIS, J., SOLENTHALER, B., HORVATH, C.,
AND TESCHNER, M. 2013. Implicit Incompressible SPH. IEEE
Trans. Vis. Comput. Graphics 99.

IHMSEN, M., ORTHMANN, J., SOLENTHALER, B., KOLB, A.,
AND TESCHNER, M. 2014. SPH fluids in computer graphics.
Eurographics STAR Report.

IRVING, G., SCHROEDER, C., AND FEDKIW, R. 2007. Vol-
ume conserving finite element simulations of deformable mod-
els. ACM Trans. Graph. 26, 3.

KANG, N., AND SAGONG, D. 2014. Incompressible SPH using the
divergence-free condition. Comp. Graph. Forum 33, 7, 219–228.

KLINGNER, B. M., FELDMAN, B. E., CHENTANEZ, N., AND
O’BRIEN, J. F. 2006. Fluid animation with dynamic meshes.
ACM Trans. Graph. 25, 3.

LEE, H., AND HAN, S. 2010. Solving the shallow water equations
using 2D SPH particles for interactive applications. The Visual
Computer 26, 6-8, 865–872.

LIU, Y., HAO, P., SNYDER, J., WANG, W., AND GUO, B.
2013. Computing self-supporting surfaces by regular triangu-
lation. ACM Trans. Graph. 32, 4.

LLOYD, S. 1982. Least squares quantization in PCM. IEEE Trans.
Inf. Theory 28, 2, 129–137.

LOSASSO, F., TALTON, J., KWATRA, N., AND FEDKIW, R. 2008.
Two-way coupled SPH and particle level set fluid simulation.
IEEE Trans. Vis. Comput. Graphics 14, 4, 797–804.

LUCY, L. B. 1977. A numerical approach to the testing of the
fission hypothesis. Astronomical Journal 82, 1013–1024.

MACKLIN, M., AND MÜLLER, M. 2013. Position based fluids.
ACM Trans. Graph. 32, 4.

MISZTAL, M., ERLEBEN, K., BARGTEIL, A., FURSUND, J.,
CHRISTENSEN, B., BAERENTZEN, J., AND BRIDSON, R.
2013. Multiphase flow of immiscible fluids on unstructured mov-
ing meshes. IEEE Trans. Vis. Comput. Graphics 20, 1.

MONAGHAN, J. 2000. SPH without a tensile instability. J. Comp.
Physics 159, 2, 290 – 311.

MONAGHAN, J. J. 2005. Smoothed Particle Hydrodynamics. Re-
ports on Progress in Physics 68, 1703–1759.

MULLEN, P., CRANE, K., PAVLOV, D., TONG, Y., AND DES-
BRUN, M. 2009. Energy-preserving integrators for fluid anima-
tion. ACM Trans. Graph. 28, 3.

MULLEN, P., MEMARI, P., DE GOES, F., AND DESBRUN, M.
2011. HOT: Hodge-Optimized Triangulations. ACM Trans.
Graph. 30, 4.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Symp. on
Comp. Anim., 154–159.

MUSETH, K. 2013. VDB: High-resolution sparse volumes with
dynamic topology. ACM Trans. Graph. 32, 3.

OÑATE, E., IDELSOHN, S., DEL PIN, F., AND AUBRY, R. 2004.
The Particle Finite Element Method: An Overview. Int. J. Comp.
Meth. 1, 2, 267–307.

PREMOŽE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND
WHITAKER, R. T. 2003. Particle-based simulation of fluids.
Comp. Graph. Forum 22, 3, 401–410.

RAVEENDRAN, K., WOJTAN, C., AND TURK, G. 2011. Hybrid
Smoothed Particle Hydrodynamics. In Symp. on Comp. Anim.,
33–42.

REN, B., LI, C., YAN, X., LIN, M. C., BONET, J., AND HU, S.-
M. 2014. Multiple-fluid sph simulation using a mixture model.
ACM Trans. Graph. 33, 5.

RYCROFT, C. H. 2009. VORO++: A three-dimensional Voronoi
cell library in C++. Chaos: An Interdisciplinary Journal of Non-
linear Science 19, 4.

SCHECHTER, H., AND BRIDSON, R. 2012. Ghost SPH for ani-
mating water. ACM Trans. Graph. 31, 4.

SERRANO, M., ESPAÑOL, P., AND ZÚNIGA, I. 2005. Voronoi
fluid particle model for Euler equations. J. Statistical Physics
121, 133–147.

SHADLOO, M. S., ZAINALI, A., SADEK, S. H., AND YILDIZ,
M. 2011. Improved incompressible Smoothed Particle Hydro-
dynamics method for simulating flow around bluff bodies. Com-
put. Methods in Appl. Mech. Eng. 200, 9-12, 1008 – 1020.

SHAO, S., AND LO, E. Y. 2003. Incompressible SPH method
for simulating Newtonian and non-Newtonian flows with a free
surface. Advances in Water Resources 26, 7, 787–800.

SIDE EFFECTS, 2014. Houdini engine. http://www.sidefx.com.

SIN, F., BARGTEIL, A. W., AND HODGINS, J. K. 2009. A point-
based method for animating incompressible flow. In Symp. on
Comp. Anim., 247–255.

SOLENTHALER, B., AND PAJAROLA, R. 2008. Density contrast
SPH interfaces. In Symp. on Comp. Anim., 211–218.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible SPH. ACM Trans. Graph. 28, 3.

SOLENTHALER, B., BUCHER, P., CHENTANEZ, N., MLLER, M.,
AND GROSS, M. 2011. SPH-based shallow water simulation. In
VRIPHYS, 39–46.

SPRINGEL, V. 2010. E pur si muove: Galilean-invariant cosmolog-
ical hydrodynamical simulations on a moving mesh. Mon. Not.
Roy. Astron. Soc. 401, 2, 791–851.

STAM, J., AND FIUME, E. 1995. Depicting fire and other gaseous
phenomena using diffusion processes. In SIGGRAPH, 129–136.

STAM, J. 1999. Stable fluids. In SIGGRAPH, 121–128.

STEINHOFF, J., AND UNDERHILL, D. 1994. Modification of
the Euler equations for vorticity confinement: Application to the
computation of interacting vortex rings. Physics of Fluids 6, 8,
2738–2744.

TAKAHASHI, T., DOBASHI, Y., FUJISHIRO, I., NISHITA, T., AND
LIN, M. C. 2015. Implicit formulation for SPH-based viscous
fluids. Comp. Graph. Forum.

TANG, T. 2004. Moving mesh methods for computational fluid
dynamics. In Contemporary Mathematics, no. 383, 141–173.

WHITEHURST, R. 1995. A free Lagrange method for gas dynam-
ics. Mon. Not. Roy. Astron. Soc. 277, 2, 655–680.

YAN, D.-M., WANG, K., LÉVY, B., AND ALONSO, L. 2011.
Computing 2D periodic centroidal Voronoi tessellation. In Int.
Symp. on Voronoi Diagrams, 177–184.

YAN, D.-M., WANG, W., LÉVY, B., AND LIU, Y. 2013. Effi-
cient computation of clipped Voronoi diagram. Computer-Aided
Design 45, 4, 843 – 852.

ZHENG, W., ZHU, B., KIM, B., AND FEDKIW, R. 2015. A new
incompressibility discretization for a hybrid particle MAC grid
representation with surface tension. J. of Comp. Physics 280,
96–142.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Trans. Graph. 24, 3, 965–972.

A Volume-based Derivatives

In this appendix, we detail the construction of our discrete opera-
tors based on power diagrams, derived from gradients of local vol-
umes with respect to the site locations {qi}i and weights {wi}i.
Reynolds’ theorem will be a useful tool for our derivations, as it
states that the rate of change of the integral of a scalar function f
within a region V is equal to the region integral of the change of f ,
plus the boundary integral of the rate at which f flows through the
region boundary ∂V with outward unit normal n; i.e.:

∇
(∫
V
f(x) dx

)
=

∫
V
∇f(x) dx+

∫
∂V
f(x) (∇x)t n dx.

When applied to power cell volumes, the above expression simpli-
fies to boundary integrals (in qi or wi) of the form:

∇Vi =
∑
j∈Ni

1

lij

∫
Aij

(∇x)t (qj − qi) dx. (11)

We also introduce two identities relevant to our computations. As
the power diagram partitions the domain Ω, power cell volumes
{Vi}i always sum to the volume of the domain |Ω|, and thus:

∇iVi =−
∑
j

∇iVj . (12)

We further express any point x on a power facet Aij as:

x =
1

2
(qi + qj) +

wi−wj

2 l2ij
(qj−qi) + sxRx (qj−qi) , (13)

where the three terms indicate, respectively, the midpoint of the
edge connecting qi and qj , a displacement along the edge vec-
tor qj − qi, and finally a displacement within the facet Aij (thus
orthogonal to qj − qi) of magnitude sx along the rotated edge
Rx (qj−qi), with Rx as a rotation matrix.

Divergence operator. In §2.3 we defined the divergence operator
D as an nxn row-valued matrix obtained from the derivatives of
cell volumes w.r.t. sites {qi}i. The diagonal term in Eq. (4) is a
direct result of Eq. (12), while the off-diagonal terms are computed
using Eq. (11) as follows. Noticing that the directional derivative
of sxRx (qj−qi) along qj−qi is idempotent (due to the orthog-
onality between these two vectors), we get:

∀x ∈ Aij ,
(
∇qjx

)t
(qj − qi) = qj − x.

Thus the off-diagonal term in Eq. (4) reduces to:

∇qjVi =
1

lij

∫
Aij

(qj − x) dx=
Aij

lij
(qj − bij) . (14)

Our discrete divergence also satisfies the identity
∑

i [Dv]i = 0
for any vector field {vi}i, which is easily verified by writing∑

i [Dv]i =
(∑

i

∑
j∈Ni

Dijvj

)
+
(∑

i Diivi

)
=
∑

i

∑
j∈Ni

[(
∇qjVi

)
vj − (∇qiVj)vi

]
= 0.

Gradient operator. We defined the gradient operator G in §2.3 as
the negated transpose of the divergence. This construction is de-
sirable due to two properties originally discussed in [Serrano et al.
2005], but still valid in our power diagram context. First, this op-
erator is linear accurate, i.e., for any linear function of the form
{fi ≡ atqi + b}i, with constant vector a and scalar b, we have:
[Gf]i = Vi a. Second, our discrete gradient preserves both linear
and angular momentum due to the invariance of cells volumes to
global translations and rotations.

Laplacian operator. The Laplacian operator ∆∆∆ used in Eq. (3) was
originally computed in [de Goes et al. 2012] based on the deriva-
tives of cell volumes w.r.t. weights. This proof remains valid in
our context: we can in fact recover their result by noticing that the
directional derivative of a point x ∈ Aij w.r.t. weights is simply
−1/2, which applied to Eq. (11) yields∇wjVi =−Aij/(2lij).

K
in

e
ti

c
 E

n
e
rg

y

Number of Time-steps
0 500 1000 1500 2000

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

FLIP�smoothing

FLIP

PBF

PP vel�adapted

PP two�resolutions

PP uniform

Figure 10: Comparisons. For an initial divergence-free velocity
field forming four vortices, we compare three Lagrangian methods
after 2000 time steps with dt = 0.01. Density-constrained meth-
ods such as Position Based Fluids [Macklin and Müller 2013] (top
left) keep a good particle distribution at the cost of significant mo-
tion damping. Projection-based methods such as FLIP [Ando et al.
2013] (top right) exhibit less artificial viscosity, but fail to maintain
spacing. Combining FLIP with particle smoothing (middle left) re-
stores evenly-spaced particle, but dissipates kinetic energy. Power
particles (middle right) preserve the flow symmetry over time and
offer low dissipation as evidenced by the energy plot (bottom).

