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In this additional document, we provide a detailed proof of the bound on Lp kissing approximations stated for p=1 in our main submission
(Eq. (22)), and give expressions for the gradient and Hessian of the approximation error EOVT for completeness.

1 Proof of approximation error bound

Assume that function f : Ω 7→ R is inC2(Ω) and is convex in a convex regionD ⊂ Rn containing Ω. Suppose that the kissing approximation
approach applied to f leads to an OVT tessellation V = {Vi}Ni=1 of Ω satisfying conditions (1-4) in Sec 3.3 of the paper.

We use the following shorthand notations:
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− 1
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∫
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2 |Vi|, |Vi|HVi,p

= (detHVi,p
)
1
2 |Vi| = (detHVi

)
p

2p+n |Vi|,

Vol (Ω; ρ;HVi,p
) =

∑
i

ρ
n

2p+n
Vi

|Vi|HVi,p
, Vol (Ω; ρ;Hp) =

∫
Ω

(detHp(x))
1
2 ρ(x)

n
2p+n dx =

∫
Ω

(det Hess[f ] (x))
p

2p+n ρ(x)
n

2p+n dx.

(1)

Condition 3 can be rewritten as: ∃ β0 > 0, such that

∀Vi ∈ V,
diamHVi,p

Vi

|Vi|
1
n
HVi,p

=
diamHVi

Vi

|Vi|
1
n
HVi

≤ β0. (2)

Similarly, Condition 4 (with density modulation) is equivalent to: ∃ β1 > 0, such that

maxi ρ
n

2p+n
Vi

|Vi|HVi,p

mini ρ
n

2p+n
Vi

|Vi|HVi,p

≤ β1.

First case: 1 ≤ p <∞

In star-shaped cell Vi ∈ V (Condition 1) we can reexpress f − Ti using Taylor expansion at xi for any x ∈ Vi with the Lagrange remainder:

f(x)− Ti(x) =
1

2
(x− xi)t Hess[f ] (xi + θ(x− xi)) (x− xi).

where θ ∈ [0, 1]. From the second inequality of Condition 2, it follows that:

f(x)− Ti(x) ≤ 1

2
α1(x−xi)t HVi

(x−xi). (3)

The star shape assumption of Vi and Eqs. (3) and (2) lead to

f(x)− Ti(x) ≤ 1

2
α1β

2
0 |Vi|

2
n
HVi

. (4)
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Together with the relations among cell volumes in different metrics, i.e.,
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we then have∫
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Condition 4 implies that for every Vi ∈ V ,

ρ
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where N is the number of cells in V . Therefore,
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Finally, using the first inequality of Condition 2, the strict positivity of ρ and the fact that for two matrices M1 � M2 we have detM1 ≤
detM2, we get:
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Taking p-th root of the above and using Eq. (1), we arrive at
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Second case: p =∞

Denote the limits of Vol (Ω; ρ;HV,p) and Vol (Ω; ρ;Hp) as p→∞, respectively, by
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Assume the difference (f−fd) attains its maximum at point x∗ in a cell V ∗. Then, analogously to the previous case, we use the bound inside
the cell V ∗ demonstrated earlier and Conditions 1-4 to obtain
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The result follows from the expression for |Ω|H :

||f − fd||L∞ ≤ C(α0, α1, β0, β1, n)N−
2
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1
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L
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.

2 Derivatives of OVT Energy

Our derivation of the gradient and Hessian of the objective function EOVT is based on Reynold’s transport theorem, which states that for a
function f(x,p), a parameter p, and a domain D, one has

∂

∂p

∫
D

fdx =

∫
D

∂f

∂p
dx +

∫
∂D

f

(
∂x

∂p
· n
)
dA,

where n is the outward unit normal field of the boundary ∂D.

Gradient. As site location xi is a parameter of the objective function E , we have

∇xiEOVT(f,X) =

∫
Ω

∇xi(f−fd) dx +

∫
∂Ω

(f−fd)
∂x

∂xi
·n dA.

The second term is zero since the boundary of the domain does not depend on the site location, while the first integral reduces to
−
∫
Vi
∇xiTi(x)dx, since f does not depend on xi and the continuous function fd depends on xi only within Vi.

Analogously,∇xiEρ-OVT(f,X) = −
∫
Vi
ρ(x)∇xiTi(x) dx.



Hessian. Applying Reynold’s theorem to the general case of non-uniform density again and denoting Hi = Hess[f ] (xi), we obtain:

∇xi∇xiEρ-OVT = Hi|Vi|ρ Id−|Vi|ρ∇3f(xi) · (bi − xi)

−
∑

j∈N(i)

1

2lij

∫
Aij

ρ(x) [Hi(x−xi)]⊗ [Hi(x−xi)] dA,

where N(i) is the set of one-ring neighbors of site i and Aij is the boundary facet between the two adjacent cells Vi and Vj , while lij is the
distance between xi and xj . Here, the boundary term cannot be omitted as the integral is associated with (over) Vi, which (whose) boundary
depends on xi. Taking into account the influence of xj on the boundary of Vi, we also have

∇xj∇xiEρ-OVT =
1

2lij

∫
Aij

ρ(x) [Hi(x− xi)]⊗ [Hj(x− xj)] dA.

Since we assume f ∈ C2, the expressions above imply that Eρ-OVT is twice continuously differentiable as a function of sites.


